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Abstract 

 

     Time domain formulation of the self-excited wind forces on bridge decks employs indicial 

functions. In bridge aeroelasticity, these functions are obtained by transforming the flutter 

derivative model to time domain. Studies have suggested, however, that the relative amplitude 

effect, i.e. the effect of structural oscillation amplitude relative to the amplitude of response to 

ambient wind, on flutter derivatives needs to be considered. This effect indicates the difference 

between the two cases, where the pulse response of an elastically supported body is smooth and 

where the motion is significantly affected by ambient wind forces. The nonlinearity may affect 

the transformation of flutter derivative model to time domain. An alternative obtaining the time 

domain formulation for the self-excited force is to treat the self-excited force as a separate 

dynamic system, so that the relative amplitude effect can be evaluated in more details. In this 

paper, a self-excited force generation system coupled with the rigid bridge deck system is 

proposed to overcome the difficulties in the measurement and derivation of the time domain 

representation of self-excited force on bridge decks. This expression can be linked to a flutter 

derivative model, and a transform relationship between the two models is suggested.  
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1. Introduction: 

1.1 Previous Work 

 

     The most fundamental task of bridge aeroelasticity lies in the formulation of the self-excited 

forces, the wind load caused by the movement of the structure. Theodorsen [1] derived the 

theoretical description of the unsteady aerodynamic forces on the efficient airfoil under 

sinusoidal motion by employing the reduced frequency dependent Theodorsen’s circulation 

function. Theodorsen and Garrick [2] further extended the work to characterize the non-stationary 

flow about a wing-aileron-tab combination. Following Sears [3] and Luke and Dengler [4], 

Edwards [5] showed that these results could be generalized for arbitrary motion. The unsteady 

aerodynamic forces can thus be formulated by a reduced-frequency dependent aerodynamic 

influence matrix.  

     The duality of time and frequency domain formulation of the self-excited wind forces on 

airfoils was emphasized by Garrick [6]. In time domain, Wagner [7] showed the lift evolution 

with dimensionless time acting on a theoretical flat airfoil given a step change in angle of attack 

via an indicial function. Kussner [8] considered the problem of an airfoil with forward flight 

velocity penetrating a uniform vertical gust of infinite downstream extent and vertical velocity. 

Sears [3] derived the corresponding oscillatory lift for a gust velocity distribution that is 

sinusoidal. Jones [9] introduced rational approximations of indicial functions.  

     In the time domain formulation of self-excited forces on a bridge deck, indicial functions are 

also adopted by Borri and Hoffer [10] and Brar and Scanlan [11]. Wilde et al. [12], Bucher and 

Lin [13] and Chen et al. [14], [15] also treated the surrounding airflow as a set of filter-like 

devices in generating self-excited forces on a bridge by transforming the frequency domain flutter 

derivatives [16] to time domain for flutter and buffeting analysis of cable supported bridges. 

     However, the signature turbulence, in the case of efficient airfoils in smooth flow, is 

intentionally reduced by careful streamlining with notable attention to introduction of a sharp 

trailing edge. For bluff bodies, the situation is different. The formulation of self-excited forces on 

civil engineering structures, such as bridge decks, is more experimental than theoretical. The 

direct measurement of indicial functions, however, is neither easy nor conventional.  

     Scanlan et al. [17] studied the aeroelastic moment on a bluff bridge deck due to indicial 

angular movement. The characteristic of corresponding indicial function of a bridge, i.e. the 



rotational aerodynamic damping due to the rotational motion, according to their experiment, is 

strongly different from those of the corresponding functions of airfoils. It was shown that the 

relationship between the flutter derivatives and the indicial function is obtained by recognizing 

that for a sinusoidal motion, the Duhammel integral is of the nature of a Fourier transform [18] 

and the inverse transform of frequency domain expression should then produce the indicial 

function. Figure 1 shows the indicial functions with different structural forms. The Jones 

approximation is for efficient airfoils. The other two curves are experimental measurements from 

bluff bridge decks. Scanlan et al [17] used the exponential approximation form with two 

exponential terms to curve fit the experimental data from a truss structure. The measurement of 

Yoshimura and Nakamura [19] is a direct measurement of indicial aerodynamic moment 

response of moving bluff prismatic sections of H or T type in still air. This curve is scaled to 

match the magnitude of other curves; it is shown here only qualitatively. Striking differences can 

be observed from the exponential approximation curves: an initial steep rise from a low negative 

value to a peak, which “overshoots” the steady state value, then settles down asymptotically. The 

oscillating component in the curve by Yoshimura and Nakamura is clear and cannot be neglected.       

 

1.2 Relative Amplitude Effect on the Transformation of Flutter Derivative Model to 

Time Domain  

 

     The relative amplitude is defined as the ratio of triggered vibration (transient vibration) 

amplitude of the model to “structural noise” magnitude in the vibration due to the ambient wind 

excitation. In the numerically simulated figure 2, the dotted line represents a triggered vibration 

and the continuos line stands for the “noisy background” due to the ambient wind excitation. The 

relative amplitude can then be defined as Δ= /ARa , where A is the mechanically triggered 

vibration amplitude and Δ is an averaging characteristic measurement representing the ambient 

vibration magnitude. The effect of relative amplitude on flutter derivatives and on the flutter 

boundary reveals, from the structural point of view, a relationship between the self-excited forces 

and the “structural vibration noise” due to buffeting forces. If ∞→aR , the triggered vibration is 

totally smooth and the effect of turbulence is negligible. If 0→aR , the triggered vibration is 



severely affected by the ambient dynamic wind load. The latter case can be studied by identifying 

flutter derivatives from ambient vibration [20].  

     As have been observed in a study by Zhang and Brownjohn [21] on the identification of flutter 

derivatives from transient and ambient vibration, the relative amplitude effect on flutter 

derivatives may not be neglected. Figures 3 show the flutter derivatives of a partially streamlined 

box girder section (Figure 4). The differences between the results from transient and ambient 

identification indicate the effects of relative amplitude on flutter derivatives. In the experiments, 

no turbulence in the oncoming flow was artificially generated by active devices, therefore, the 

ambient vibration was due to the small turbulence in the oncoming flow and signature turbulence 

generated by the bluff body itself. Effect of turbulence in the oncoming wind can be studied with 

the same method, but due to the limitation of experimental devices, was not studied in this 

research.     

     If relative amplitude effect is to be considered, it may not be valid to transform the flutter 

derivative model measured under sinusoidal or exponentially modified oscillation to time domain 

for general-purpose analysis. An alternative model for the direct identification of interactive 

forces in time domain from experiments may be favourable so that more complex cases can be 

studied directly by experiments.  

 

2 State Space model for Self-Excited Force  

      

     In this section, the self-excited wind load is dealt with as a separate dynamic system. The 

effort is not to provide a nonlinear model, but to study the interactive forces at different values of 

relative amplitude.  

   

2.1 The Model 

 

     The dynamic system of self-excited force is coupled with the elastically supported bridge 

deck; the rigid body gives excitations to the self-excited force dynamic system and receives 

feedback from it.  

     The equations of the sectional model motion are: 



[ ] [ ] [ ] buffsef ffxKxCxM +=++ &&&      (1) 

in which { }Tphx α= is the displacement vector comprising vertical, lateral and rotational 

motion, [ ]M is the structural mass matrix, [ ]C  is the structural damping and [ ]K  is structural 

stiffness. bufff  is the buffeting force vector due to the fluctuation component in the oncoming 

flow and signature turbulence generated by the bluff body itself. This term is considered 

independent of the structural motion. seff  represents the self-excited forces.  

     Changing equation (1) to dimensionless time s domain,  
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where s  is the dimensionless time; U  is the wind velocity, B is the width of the bridge deck, one 
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where ′ and ″  are the first and second derivatives of corresponding variable with respect to 

dimensionless time s , respectively.  

     The state space form of equation (1) is: 
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The input matrix for self-excited forces and buffeting forces vector is  
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and the output matrix is 
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      Similarly, the state space formulation for the flutter derivative model is obtained by using 

reduced frequency dependent matrices [ ]aeroC and [ ]aeroK : 

[ ] [ ] )()()( txKtxCtf aeroaerosef += & .     (9) 

Therefore equation (4) can be rewritten as 
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[ ] [ ] [ ]aeroeff KKK −=  and       (12) 

[ ] [ ] [ ]aeroeff CCC −=        (13) 

     The dynamic system of self-excited force is also formulated by state space equations in 

dimensionless time domain.  One fundamental question is how to determine the input of the 

system. It can be argued that the dimensionless time derivative of the rigid body state vector can 

be considered as the input “force” of the self-excited force dynamic system.  

     A proof is due to Bisplinghoff and Ashley [22]. They have pointed out that indicial response 

functions corresponding to lift and moment due, respectively, to step changes in effective angle 

of attack and effective rate of change of angle of attack, should be used to formulate the unsteady 

aeroelastic force on airfoil. Lin and Yang [23] held the same idea and suggested impulse response 

functions of the self-excited forces due to velocity and acceleration of the rigid body, 

respectively. It is justified to argue that the time derivative of rigid body state vector, i.e. 

)(sX
ds
d , can be used as the input of the concerned system.  

     The self-excited force system may be modeled by a linear state space model, with order up to 

experimental determination, in dimensionless time domain: 
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in which )(sf is the 1×n state vector of self-excited force system, 

)(sf ′ is the dimensionless time derivative of )(sf  with respect to dimensionless time, 

F is the nn×  square state matrix,  

fB is the 6×n input matrix, 

fC is the n×3 output matrix.  

The value of n , i.e. the system order, is to be determined from experimental data.   

     The coupled system governed by equations (4) and (14) can be expressed in the form of 

simulation diagram showed in figure 5. In the diagram, the self-excited forces and the bridge 

deck system are referred to as SEF and BDS, respectively. The SEF takes the dimensionless time 

derivative of the BDS state vector as its input and returns the self-excited forces as output to the 

BDS as a part of its input.  

 

2.2 Relation to Flutter Derivative Model 

 

     The duality of indicial functions and flutter derivatives has been emphasized by other 

researchers such as Scanlan [24]. The transform relationship between time domain model and 

flutter derivative model is important. 

     When there is exponentially modified or pure sinusoidal motion of the bridge deck section, the 

self-excited forces can be described by flutter derivative model [25]. For ambient response, we 

consider the self-excited wind forces due to a small impulse response of the bridge deck in wind. 

As shown in the Appendix, this is equivalent to considering self-excited wind forces due to the 

output covariance of the ambient vibration of the body [20][26].  

     Let the flutter derivative matrix be 
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The self-excited forces model is rewritten in a matrix form: 
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in which { }T
aeaeaesef MDLf = is the self-excited lift drag and moment forces. ρ  is the air 

density, 
U
BK ω

=  is the reduced frequency and 6,1,,, *** K=iAPH iii  are flutter derivatives. 

     It seems easier to adopt a different format by using Duhammel integral to represent the “fluid 

memory”. The “force” term is the time derivative of rigid body state vector: 
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is the pulse response function of self-excited force dynamic system.  

     The relationship between the flutter derivative model and the dimensionless time domain 

model can be developed as follows: substitute the rigid body state space equation (10) into (17) 

and equating to (16): 
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Change the integration variable σ  to στ −= s  
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Taking Laplace transform and using convolution property, we have 
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in which, an over bar denotes Laplace transform. 



     For the rigid body state space equation (10), because the buffeting force is considered as 

process noise, which is white around the reduced natural frequency, its magnitude should be 

much smaller than that of the state vector. Therefore  

)()( kfBkXA buffs
f
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The covariance function equation (A.6) corresponds to the noise free case, i.e. 0)( =kfbuff . 

Therefore, in both cases equation (21) yields 
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The general relationship between the flutter-derivative matrix and the transfer function matrix of 

the self-excited force system is: 
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     Figure 6 shows the matrix [ ])(kΦ  obtained from flutter derivatives shown in Figure 3. The 

[ ])(kΦ  matrix so identified must be real due to the fact that the flutter derivative matrix is real. 

     The other observation is that the transformation dependents on matrix ( ) 1−f
sA , which, consists 

of aeroelastic coupling due to the self-excited forces in addition to the structural properties. If the 

motion is decoupled, e.g. sinusoidal rotational motion, the system matrix must have the following 

format: 
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so that the aeroelastic matrix is 

[ ] [ ]*
2

*
3

2 KAAK=Η ,      (26) 

therefore 

[ ] [ ][ ] [ ]*
3

*
2

-1
s

f
sA AKAHMM −==ΦΦ ′′′ αα .   (27) 

Because the state vector is  
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we define impulse function for moment due to the rotational movement as  
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     This single DOF transform relationship was also suggested by Brar and Scanlan [12].   

 

3 Suggestions and Conclusions 

 

     One of the possible issues concerning the relative amplitude effect on the measurement of 

flutter derivatives is as follows. In transient vibration tests, the triggered vibration is clearly larger 

than the ambient vibration at the beginning, but decays very fast into the ambient vibration 

envelope. When the vibration starts, the relative amplitude effect is negligible but it is not at the 

end. The identification of flutter derivatives corresponding to the free decay vibration actually 

deals with a time-varying phenomenon. On the other hand, in the conventional forced vibration 

tests, the ambient vibration is “screened out” by the rigid forcing devices and does not present in 

the tests. By using the dimensionless time domain model proposed in this paper, it is possible to 

study the effect in more detail.  

     The practice may need non-contact active drivers (e.g. electro-magnetic force driver) to force 

the model so that the model, undergoing a “noisy” forced sinusoidal motion, is not constrained by 

the forcing device as it is in the conventional forced vibration tests. By choosing the magnitude of 

the driving force, the experiment can be done with a set of controlled relative amplitude.  

     Because the ambient vibration “noise” level in the tests is the major topic of concern, the 

forced vibration may be considered to contain other frequency components besides the natural 

frequency of the suspension system. In view of this, a time domain model of self-excited forces 

may be an alterative for further study of the relative amplitude effect. 

 



Appendix: The Correlation Function of the Output Signal 

 

The correlation function of the output signal is: 

 

⎥⎦
⎤

⎢⎣
⎡ +=+ ∫

+ −+δ τδδ ττδ
s

s

TT
buffs

sAA CsXdfBesXeCEsYsYCov
f

s
f

s )(})()({))(),(( )(  

⎥⎦
⎤

⎢⎣
⎡+= ∫

+ −+δ τδδ ττ
s

s

TT
buffs

sAT
s

A CsXdfBeCECCovCe
f

s
f

s )()()(     (A.1) 

 

in which  
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and [ ]•E  is the mathematical expectation. 

 

If the condition is met that the system is subjected to white noise, and the fluctuating buffeting 

force containing no memory of the bridge deck vibration history, considering this is a centered 

process, [ ] [ ] 0)()( == sXCEsYE , the second term in equation (A.1) vanishes, i.e., 
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 It gives rise to 
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This gives rise to a linear dynamic system: 
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Nomenclature 

 

A    amplitude of triggered vibration 
*
mA , *

mH , *
mP   flutter derivatives 

f
ss AA ,    state matrix of rigid body system 

B    deck width  

fB , sB , covB   input matrix of SEF, rigid body and covariance dynamics system 

[ ]C , [ ]aeroC , [ ]effectC  structural, aeroelastic and effective damping  matrix 

fC    output matrix of SEF system  

sC    output matrix of rigid body system  

Cov    covariance estimation  

)(sf    State vector of SEF  

bufff     buffeting force 

seff    self-excited forces  

F    state matrix of SEF system 

[ ])(kH    flutter derivative matrix 

K    reduced frequency 

[ ]K , [ ]aeroK , [ ]effectK  structural, aeroelastic and effective stiffness 

[ ]M     structural mass matrix 

aeM    aeroelastic moment  

aR    relative amplitude 

s    dimensionless time  

U    wind speed 

)(sX    state vector of rigid body motion 



)(sY    output vector of rigid body state space model  

Δ    averaging character measurement of ambient vibration amplitude  

[ ])(kΦ , [ ])(kΦ  pulse response function of self-excited force dynamic system 
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Figure 3a Two Degree of Freedom Flutter Derivatives ( *
iH ) 

 



 

Figure 3b Two Degree of Freedom Flutter Derivatives ( *
iA ) 

 



Figure 4 Streamlined Box Girder Model (mm)



 

Figure 5 Simulation Diagram of the Time Domain Model  
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Figure 6a [ ])(kΦ  Matrix via Flutter Derivatives (Transient Vibration) 

 



 

Figure 6b [ ])(kΦ  Matrix via Flutter Derivatives (Ambient Vibration) 


