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Abstract: 

 

Self-excited wind forces on a bridge deck can be nonlinear even when the vibration amplitude 

of the body is small. This phenomenon is evaluated in this paper. Experiments detecting the 

nonlinearity are performed first, with the concept of “relative amplitude”, i.e. the amplitude of 

the externally triggered free vibration relative to the envelope of the ambient response of an 

elastically supported rigid sectional model. Two types of sectional model, a twin-deck bluff 

model (model A) and a partially streamlined box girder model (model B) are tested with two 

extreme cases of relative amplitude. Based on the flutter derivatives of model B, a flutter 

boundary prediction is subsequently carried out on a cable-supported bridge to manifest the 

changes of critical flutter wind velocity due to different relative amplitudes. The effect of 

relative amplitude on flutter derivatives and on the flutter boundary reveals, from the 

structural point of view, a complex relationship between the self-excited forces and the 

“structural vibration noise” due to ambient wind forces. Although the aeroelastic forces are 

linear when the body motion due to an external trigger is not affected significantly by ambient 

wind forces, they are nonlinear when the noise component in the vibration cannot be 

neglected.  
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1 Introduction 

 

In the formulation of self-excited wind forces on cable-supported bridge decks, a linearized 

flutter derivative model is often used [1]. The amplitude dependency of the flutter derivatives 

has been indicated by previous researches [2][3]. From their points of view, nonlinearity does 

not exist for the small amplitude case. As a matter of fact, however, the self-excited wind 

forces due to a pulse response of the deck can be nonlinear even if the response amplitude is 

small. 

 

Historical study [1] showed that the flutter derivative presentation of the interactive forces 

holds strictly for sinusoidal oscillation or exponentially modified sinusoidal motion of decay 

rates less than 20%. Therefore, for a flexible bridge in the wind, the flutter analysis predicts 

the critical wind speed for a smooth sustained sinusoidal motion of the deck, which indicates 

the bridge is going to lose its stability due to negative damping.  

 

A “smooth” sinusoidal motion is rarely the real case when there are disturbances in the 

aerodynamic forces. An initially small amplitude sinusoidal motion can only be considered as 

a “noisy” sinusoidal one. It needs to be answered in the first place whether or not the noisy 

sinusoidal motion will grow in the “environmental noise” and become larger in amplitude 

making itself smoother (the ambient vibration then becomes relatively unimportant) before a 

flutter prediction is applied.  

 

It is necessary, in this case, to investigate how the interactive force changes due to the effect 

of the “noise” in the structural motion. The changes in the interactive forces will be indicated 

by a change in the flutter derivatives. 

 

2 The Relative Amplitude Effect 

 

We shall limit our discussions to an elastically supported rigid sectional bridge model 

subjected to a pulse input to trigger the model to vibrate. The interactive forces under 

investigation are the self-excited wind loads generated by the pulse response of the rigid body. 

In all the cases discussed below, the absolute values of vibration amplitude are small. 
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The relative amplitude is then defined as the triggered vibration amplitude of the model 

relative to “structural noise” in the vibration due to the ambient wind excitation. To quantify 

it, we define the relative amplitude as Δ= /0ARa  in the simulation of Figure 1, where 0A is 

the mechanically triggered vibration amplitude and Δ is a characteristic measurement 

representing the ambient vibration magnitude. Relative amplitude is thus defined in one-

dimensional. There is no problem to apply it to a multi-dimensional case. 

 

This study is to manifest that the relative amplitude may affect flutter derivatives and the 

flutter boundary.  This effect reveals, from the structural point of view, a relationship between 

the self-excited forces and the “structural vibration noise” due to fluctuating ambient wind 

forces. If ∞→aR , the triggered vibration is totally smooth. If 0→aR , the triggered 

vibration is severely affected by the ambient dynamic wind load. The ambient response exists 

for either smooth or turbulent flow due to the fact that small fluctuations in the oncoming 

wind are inevitable and the signature turbulence is an inherent part of bluff body dynamics. 

The ambient response forms the environment for the impulse response to exist. It could be 

different stories if the pulse response of the sectional model is strong and affects the 

surrounding flow, or the pulse response is small with all the ambient properties of the 

aeroelastic system unchanged.  

 

The difference will be illustrated by the various flutter derivatives identified with different 

relative amplitudes. 

 

 

3 Using Output Covariance as Markov Parameters 

 

Experiments with the large relative amplitude, i.e. transient vibration testing, are common. It 

is difficult, if not impossible, to identify directly the flutter derivatives when the pulse 

response amplitude is smaller than the magnitude of the ambient vibration. However, a 

nominal pulse response for the ambient vibration can be retrieved mathematically by using 

output covariance [4][5]. This corresponds to identifying the extreme case where the pulse 

response amplitude tends to zero. Therefore, in the study of relative amplitude effect, it is 
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possible to compare two extreme cases, i.e. large aR  transient vibration case and zero aR  

ambient response case. 

 

Because in current experiments, except for the relative amplitudes, all other experimental 

conditions remain the same, it is reasonable to state that if the output covariance produces a 

state matrix considerably different form the physically triggered case, there is a relative 

amplitude effect on the flutter derivatives. 

 

It is a classical result in stochastic identification that the output covariance can be used as the 

discrete version of pulse response function, i.e. Markov parameters, of a deterministic linear 

time invariant system, when the measurement noise in the equipment and process noise 

(dynamic ambient wind excitations) is white (wide-banded in the practical sense) and zero 

mean. A proof is presented in the Appendix I.  

 

We assume, in the experiments, the displacement measurement is zero mean. If the deck has a 

static displacement due to the static wind load, it can be treated as a centered process, i.e. 

 

[ ])()()( tYEtYtY −=      (1) 

 

where [ ]•E  denotes expectation operation. 

Therefore, we always assume we are dealing with a zero mean process. 

 

The input term, buffeting forces on the bridge deck model, is random and unknown and 

assumed to be wide banded noise because a real world process will not be white noise. The 

approximation is a widely adopted one in the application of system identification techniques 

as long as the noise frequency band is considerably larger than the system frequencies band. 

The errors so generated should be tolerable. A typical turbulence power spectral density is 

shown in Figure 2 at wind speed of 17.5m/s. It can be observed that the turbulence is wide 

banded therefore meet the requirement for the application of the output covariance method. 

 

One consideration is that within the time period of measurement of the ambient vibration, the 

system is actually non-stationary due to uncontrollable experimental conditions. Therefore, in 

calculating the output covariance, some numerical consideration has been taken to overcome 
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the problem. 

 

The structure function was introduced by Kolmogorov [6] in his study of locally isotropic and 

homogeneous stochastic turbulence. It is defined as: 

 

[ ] ))()0((2)()(1
lim)(

0

2 τττ tt

T

T
CCdttYtY

T
Z −=+−= ∫

∞→
  (2) 

 

where )(τtC is the auto-covariance function of the measurement after time τ+t . 

 

For ambient vibration, the covariance function for zero lag time is constant, and the structure 

function is the sum of the negative covariance function and a constant. If the measurement 

shows slow fluctuation or has a time varying trend, i.e. shows marked derivation from a 

stationary behavior, the method of structure function may be advantageous because the 

structure function can tolerate more low frequency noise than the correlation function [7].  

 

Figure 3 shows a typical calculated output covariance )(kCi ( 1...2,1 −= Nk  is the number of 

lags) from the ambient response by structure function. It can be observed that the signal is 

quite smooth and suitable to be used in system identification.  

 

4 Experiments and Results  

 

Two sectional models (Figure 4,5) were tested. The experimental environment was kept the 

same for the same model in either ambient and transient vibration testing. The setup is shown 

in Figure 6. The model was restrained in the lateral direction to allow two-dimensional tests. 

Eight vertical springs were hung from two frames to hold the sectional model in position. 

These springs were pre-tensioned to avoid nonlinearity. The stiffness of the springs was 

chosen to make the model vibrate in a suitable frequency, so that a suitable range of reduced 

wind speeds can be covered by the experiment. The separations between the springs could be 

adjusted according to the required rotational frequency. Laser displacement sensors were used 

to measure the displacement history of the model, with one below the front edge and the other 

below the rear edge to record the vertical and rotational displacement. A single hot-wire 

anemometer was mounted in front of the sectional model at mid-span location to record the 
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wind speed. The typical turbulence intensity of the oncoming wind is less than 2%, e.g. 1.7% 

at wind speed of 17.5m/s. Therefore, the wind is considered smooth. The following discussion 

will be limited to smooth flow case. For turbulent flow cases, more researches are needed. 

 

The experimental procedure for the tests is as follows: 

 

1) One of the bridge deck models, model A or model B, was installed.  

2) Lateral DOF was constrained with thin wire for 2DOF experiment. Measurement 

of the system properties was made with free decaying vibration of the model by 

giving it an initial displacement when there was no wind.  

3) Five-minute ambient response records of the model under the action of wind were 

recorded.  

4) Three to five free decay tests were conducted under the same condition as in step 

3) except for the initial conditions. 

5) Wind speed was increased. Experiments in steps 3 and 4 were repeated. The wind 

velocities varied from minimum to maximum wind speed at a reasonable interval. 

6) After the wind speed reached the upper limit, the other model replaced the first 

one. Experiments from 2) to 5) were repeated. 

 

Flutter derivatives were then identified from the transient vibration and the output covariance 

of the ambient vibration. The identification method used was ERA (eigensystem realization 

algorithm) [8]. 

 

Figures 7-8 show the flutter derivatives vs. reduced wind velocity (RU) of model A and 

model B identified with transient and ambient vibration. For model B, the quality of *
2A  

identified from ambient case is poor; the dotted line in Figure 8b is used as the fitting curve 

for it.  

 

The features of some of the flutter derivatives are very different for different relative 

amplitudes, suggesting nonlinearity in the self-excited wind load. In the flutter derivatives for 

the twin deck bluff model (model A), differences are observed in *
2H , *

3H  and *
4H . However 

there is no big difference in *
iA , )4,,1( L=i . For Model B, *

1H , *
2H  and *

3H  are among the 

most sensitive parameters to the relative amplitude. In the transient vibration, where the value 
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of relative amplitude is high, the interaction between the vertical and rotational DOF is strong 

within lower range of the reduced velocity both in terms of aeroelastic stiffness and damping; 

while in the ambient response ( 0=aR ), this effect is reduced greatly. *
4A  is also sensitive to 

the relative amplitude.  

 

5 Flutter Analysis Considering Relative Amplitude Effect 

 

Differences between the flutter derivatives identified from transient and ambient vibration 

testing suggest further study is needed to investigate the effect of relative amplitude on the 

flutter boundary of a full bridge.  

 

Figure 9 gives the three-dimensional view and finite element mesh of a bridge with partially 

streamlined box girder cross-section (section model B). Table 1 summarizes the material 

properties and other dimensions required in calculation. The main span is 1410m, with side 

span of 530 and 280m. The steel box-sections are 22m wide and 4.5m deep. The towers are 

box section, 6 by 6 m at the bases and 4.5 by 4.5 at the tower tops. To facilitate the inclusion 

of an aeroelastic load model, 3-D beam elements were used to model the deck structure. Spar 

elements (having no flexural stiffness) were used to present the main cable and hanger. They 

have the facility to accommodate the initial strain value. The tower was analyzed using beam 

elements with tension, compression, torsion and bending capabilities. The modal analysis was 

conducted by using commercial software, ANSYS. Table 2 summarizes the modal analysis 

results. 

 

The frequency domain method developed by Jain et al [9] is used to perform the flutter 

instability analysis, which requires solving an aeroelastically-influenced eigen-problem. The 

flutter condition is obtained at the reduced frequency satisfying equation 

 

0)( =KE .      (3) 

 

The general term of the impedance matrix )(KE is 

 

)()(2 KBKiKAKE ijijijij ++−= δ    (4) 
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where 1−=i  and ijδ is the Kronecker delta function defined as: 

 

⎩
⎨
⎧

≠
=

=
ji
ji

ij 0
1

δ .    (5) 

 

ijA and ijB  are shown in Appendix II. The nontrivial solution ξ of the aeroelastically 

influenced eigenvalue problem  

 

0=ξE       (6) 

 

indicates the relative participation of each structural mode under the flutter condition. 

 

Figure 10 is the analysis result using flutter derivatives from transient vibration testing. This is 

equivalent to defining two surfaces, one for the real part and the other for the imaginary part 

of E . These two surfaces are functions of reduced velocity RU  and vibration frequency f . 

The intersection of these surfaces with fRU ~ plane is obtained by linear interpolation. Then 

the zero contour curves of the real surface (solid line) and imaginary surface (dashed line) are 

obtained with piecewise linear approximation and their intersections can be determined either 

numerically or graphically. These intersection points define the flutter conditions.  

 

There are two flutter frequencies identified: 0.27Hz and 0.39Hz, corresponding to flutter wind 

speed 52.7m/s and 75.9m/s respectively. The flutter modes corresponding to them are shown 

in Figure 11. The result shows, for flutter derivatives identified from transient vibration, 

flutter may happen at two different wind speeds with different flutter frequencies and modes. 

More flutter conditions may exist beyond the reduced velocity range covered by the 

experiments. However only low reduced velocity solutions are important in the practical sense 

and are calculated.  

 

For flutter derivatives corresponding to the pulse response of ambient vibration ( )0=aR , 

there is no flutter condition found below wind reduced velocity value of 8.  
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Based on the concept of relative amplitude, there should be two thresholds AmbU  and TranU  of 

the wind speed. The former is for a signal to diverge in the context of ambient response, the 

latter is for a larger amplitude signal to diverge after going outside “ambient vibration 

envelope”.  If a signal cannot diverge in the former case, i.e. AmbUU < , it would not go to the 

stage of latter case. Theoretically, the structure is stable to wind excitation. If the signal 

diverges from ambient response to larger amplitude but subsequently decays, 

i.e. TranAmb UUU << , the response is bounded. If the signal diverges in both cases, 

i.e. UU Amb < & UUTran < , the system is not stable. 

 

It is interesting to consider the case where AmbTran UU < . Under this condition, the judgment of 

the onset of flutter based on AmbU  is not safe, since there could be other sources of excitation 

contributing to the dynamic response. A strong gust, for example, could push the bridge deck 

outside the normal ambient vibration envelope. After the gust, the bridge deck may oscillate 

back from outside into the ambient vibration envelope. Before the gust, the critical wind 

speed for flutter is ambU , after the gust, however, the critical wind speed may change to tranU , 

which may be lower than ambU . This is shown in Figure 12. If flutter happens in this way, a 

transient rather than steady critical flutter wind speed exists. It will be conservative to use 

TranU  as the design flutter wind speed in this case. 

 

Summary 

 

In this study, nonlinearity in self-excited wind forces is detected through the concept of 

relative amplitude. By comparing the flutter derivatives identified from triggered free decay 

and output covariance of ambient vibration of elastically supported rigid sectional bridge 

models, the relative amplitude effect on the interactive wind forces is manifested. This effect, 

from the structural point of view, reveals a complex relationship between the self-excited 

forces and the “structural vibration noise” due to ambient wind excitations. Although the 

aeroelastic forces are linear when the body motion due to an external trigger is not affected 

significantly by the turbulence, they are nonlinear when the noise component in the vibration 

due to the turbulence is not negligible. The experiments were conducted in smooth flow; more 

experiments are needed to have a discussion on the relative amplitude effect under turbulent 
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condition. Conclusions apply to the specific sectional type tested in the study. 

 

Flutter derivatives of the partially streamlined box girder section identified from transient and 

ambient vibration testing were used to manifest the relative amplitude effect on flutter 

boundary. The flutter derivatives from ambient vibration were found aeroelastically stable, 

while the flutter derivatives from transient vibration were not. Therefore, as far as this section 

type is concerned, the relative amplitude effect appears to have a stabilizing consequence. 
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Appendix I Output Covariance 

(Overschee and Moor [10]) 

 

When the measurement noise v  in the equipment and process noise p (ambient wind forces) 

is white and zero mean, then  

 

0][ =⋅ TqXE  and 0][ =⋅ TwXE     (A.1) 

where )()( iBpiq = and )()( iDviw = . B  and D are input and feed through matrix of a state 

space model respectively. 

 

The Lyapunov equation for the state covariance matrix is 

 

QAAiXiXE Ts
i

Ts
i +Σ=+⋅+=Σ + )]1()1([1    (A.2) 

where )]()([ iqiqEQ T⋅=  and A  is the state matrix. 

 

If output covariance is defined as 

)]()([)( iYkiYEkC T
i ⋅+=      (A.3) 

then 

RCCiYiYEC Ts
i

T
i +Σ=⋅= )]()([)0(     (A.5) 

where )]()([ iwiwER T⋅=  

 

If define  

SCAiYiXEG Ts
i

T +Σ=⋅+= )]()1([ ,   (A.6) 

 

where )]()([ iwiqES ⋅= , we have for L,2,1=k  

 

GCAkC k
i

1)( −= .      (A.7) 

 

This produces a new state-space model of )0(,,, iCCGA . 
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Appendix II Coefficients of the Impedance Matrix Elements 

(Jain et al [9]) 

 

The coefficients of the impedance matrix element ijE  are 

]
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where UBK d /ω= is the reduced frequency and UBK idi /ω= is the reduced frequency of 

mode i , *** ,, mmm PAH , )6,,1( L=m  are flutter derivatives and the modal integrals 
ji srG are 

obtained by integration over the deck, which is the primarily aerodynamic load source 

 

∫=
l

jisr l
dxxsxrG

ji 0
)()(       (A.10) 

 

where iii phr ,=  or iα ; jjj phs ,=  or jα . 
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Table 1 Material Properties of the Bridge 

Cable  

Young’s modulus of cables 193 KN/mm2 

Young’s modulus of hangers 140 KN/mm2 

Area per hanger 0.0021 m2 

Main Span 0.29 m2 

Area of each cable 
Side Span 0.31 m2 

Box Girder Deck  

Young’s Modulus 200 KN/mm2 

Axial area of steal 0.73 m2 

Second moment of area for vertical bending 1.940 m4 

Second moment of area for lateral bending 37.07 m4 

Torsional rigidity 4.5 m4 

Towers  

Young’s modulus 20 KN/mm2 

Average axial material area of each leg 20.37 m2 

Average second moment of area of each tower leg for longitudinal bending 66.8 m4 

Average second moment of area of each tower leg for lateral bending 68.24 m4 

Average torsional rigidity of each tower leg 113.1 m4 
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Table 2 Dynamic Properties of the Bridge 

Mode No. Mode Type 
Frequency 

in   (Hz) 

1 L, 1st S 0.0688 

2 V, 1st S 0.1277 

3 L, 1st AS 0.1591 

4 V, 1st AS 0.1646 

5 V, 2nd S 0.1897 

13 V, 2nd AS 0.2498 

14 LT, L, 2nd S; T, 1st S 0.2816 

16 V, 3rd S 0.3246 

26 V, 3rd AS 0.4022 

28 T, 1st AS 0.45853 

   

Note: S=symmetrical; AS=anti-symmetrical; L: Lateral; V=vertical; LT=lateral-torsion; T=torsion and  

Structural modes used in flutter boundary computation are normalized with respect to mass matrix. 
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Figure 1 Definition of Relative Amplitude 

 
 

Figure 2 Power Spectral Density of Lateral Turbulence U=17.5m/s 
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Figure 3 A Typical Output Covariance 
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Figure 4 Model A: Twin Deck Bluff Model (Dimension in mm) 
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Figure 5 Model B: Streamlined Box Girder Model (Dimension mm)
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Figure 6 Setup for Free Vibration Test (One End)
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Figure 7a 2DOF H (Model A) 
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Figure 7b 2DOF A (Model A) 
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Figure 8a 2DOF H (Model B) 
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Figure 8b 2DOF A (Model B) 
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Figure 9 Plot of the Bridge 
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Figure 10 E Matrix (Transient Vibration Case) 
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Figure 11a First Flutter Mode 
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Figure 11b Second Flutter Mode 
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Figure 12 Non-Stationary Flutter Boundary


