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Abstract 

Structural condition assessment of highway bridges is largely based on visual 

observations described by subjective indices, and it is necessary to develop methodology 

for accurate and reliable condition assessment of aging and damaged structures. This 

paper presents a method using a systematically validated finite element model for 

quantitative condition assessment of a damaged reinforced concrete bridge deck 

structure, including damage location and extent, residual stiffness evaluation and load-

carrying capacity assessment. In a trial of the method in a cracked bridge beam, the 

residual stiffness distribution was determined by model updating thereby locating the 

damage in the structure. Furthermore the damage extent was identified through a defined 

damage index and the residual load-carrying capacity was estimated. 
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1. Introduction 

Many existing bridges have been deemed structurally deficient (Aktan et al. 1996), 

but despite the extent of the problem, condition assessment of bridges is still largely 

based on visual observations and described by subjective indices which do not permit 

accurate evaluation of serviceability and safety. Subjective or inaccurate condition 

assessment has been identified as the most critical technical barrier to the effective 

management of highway bridges. Perhaps the most significant challenge to bridge 

condition assessment is the quantification of information on bridge condition by 

development of technologies for objective and accurate condition assessment and 

reliability evaluation. 

A significant research effort has focussed on the condition assessment of existing 

bridges, and relevant research has accelerated in recent years (Aktan et al. 

1996,1997,1998; Enright and Frangopol 1999; Wahab and Roeck 1999). However, most 

investigations were based on field testing and numerical analysis without attempts to 

quantify structural condition. In addition, most of research effort has focussed on damage 

detection with very little research on stiffness and load-carrying capacity assessment. 

A procedure that can be applied in condition assessment  is the finite element (FE) 

model updating method (Mottershead and Friswell 1993) that integrates finite element 

analysis (FEA) and experimental modal analysis (EMA). This model updating technique 

can produce a systematically validated FE model by correcting uncertainties from 

modeling, geometry, physical and analysis to improve the analytical results closing to 

real values based on the dynamically measured data. It has emerged in the 1990s as a 

subject of great importance for mechanical and aerospace structures. However the 



technique may be difficult to apply for civil engineering structures, because of the 

constraints on prototype testing and experimental data analysis resulting from the nature, 

size, location and usage of these structures. Recently, the civil engineering community 

has begun to apply this technique. For example, Cantieni (1996) investigated model 

updating of a concrete arch bridge while Pavic et al. (1998) and Reynolds et al. (1998) 

have been applying the technique to footbridges and concrete floors, while applications to 

cable supported bridges have been reported by Brownjohn (1997) and Brownjohn and 

Xia (1999; 2000). 

This paper describes the application to quantitative condition assessment of a 

damaged reinforced concrete (RC) bridge deck model, whose FE model was pre-

validated and post-validated systematically by model updating based on dynamically 

measured data from the undamaged and damaged structure. The damage location and 

quantification of the damaged structure were then identified, leading to residual stiffness 

and load-carrying capacity assessment. 

 

2.  Damaged Bridge Structure and Finite Element Modeling 

The bridge deck used in the investigation was a  RC slab/beam structure comprising a 

shallow lightly RC slab supported by two deep RC edge beams and simulating a short 

span pedestrian bridge, details of which are shown in Fig. 1. The edge beams were 

250mm deep by 150mm wide and overall structure width was 1m. The bridge deck was 

simply supported on the concrete blocks. 

In order to produce damage in the RC bridge deck, the static loads were applied at the 

midspan location of the structure until a maximum load of 47kN  was sustained. Being an 



under-reinforced beam, the failure (yield of tension steel) was accompanied by tensile 

cracks that developed at midspan of one edge beam component. Because of the damage 

in the beam components of the bridge deck, the structural condition (stiffness and 

strength) had been degraded, leading to a reduction of the serviceability and load-

carrying capacity. If such a structure is to remain in use after damage, accurate 

assessment of the condition would be vital for safety. 

In FE modeling the bridge deck structure, two edge beams of the test structure were 

modeled using 3D beam elements, the slab between the beam was modeled using shell 

elements and the boundary conditions were simulated using eight linear springs. 

However, preparation of a FE model to be a candidate for updating requires some 

specific considerations of additional factors not normally taken into account in 

conventional FE model construction. Of these, an important one is that uncertainties in a 

structure must be expressed quantitatively as parameters. When damage is known to exist 

in a localised area in a structure, one way to simulate the damage is to incorporate some 

‘weak’ elements (Brownjohn and Xia 1999) into an FE model. This avoids the problem 

of damage detection that would require far more unknowns. For the purpose, four beam 

elements were used to represent the damage zones at the midspan in the edge beams 

components. The resulting FE model for model updating is shown in Fig. 2 in which 

numbers represent beam elements of the edge beam component ands the ‘weak’ beam 

elements are numbered 10-13. If the parameters take the real values for the damage 

zones, then the FE model is taken to represent the damaged bridge deck, but if the 

parameters match those for the rest of the beam the FE model represents the undamaged 

bridge. By estimating the parameters of the ‘weak’ beam elements through model 



updating based on measured data, the damage is quantified and the residual stiffness and 

load-carrying capacity would be determined. 

 

3. Validating FE Models 

FE models can be validated systematically by correcting uncertainties in the structure 

based on the dynamically measured data. Dynamic properties of a structure are normally 

very sensitive to boundary conditions and these were uncertainties for the bridge deck 

structure. Also, the Young’s modulus and to a lesser extent mass density of concrete were 

not well defined. Hence it was very important to determine these physical parameters for 

the structure, in the undamaged state, to establish a reliable initial FE model prior to 

condition assessment of the damaged bridge. The validation of FE model thus consisted 

of two steps: 

(1) pre-validating the FE model for the undamaged structure before loading, based on 

the dynamically measured data on the undamaged structure, to determine the 

uncertain physical parameters of the structure and provide a reliable initial FE 

model for damage identification of the damaged structure; and 

(2) post-validating FE model for the damaged structure, based on the dynamically 

measured data from the damaged structure, to identify the damage and assess the 

structural condition. 

If FE model validating goes straight to the damaged case, then the identified damage may 

reflect the uncertain structural parameters not associated with damage, furthermore the 

updating may not converge because of too large differences between the modal properties 

generated by the FE model and those measured. For this reason, vibration tests were 



performed using modal testing technique (Ewins 1984) on the undamaged and damaged 

structures for updating their respective FE models. In both cases, dynamic properties i.e. 

frequencies and mode shapes were identified using excitations provided by instrumented 

hammer and electrodynamic long stroke inertial shaker. Both techniques applied a 

broadband excitation, the shaker via a continuous chirp or fast sine sweep (Godfrey 1993) 

and the hammer by impulsive load. Using two methods provided a high quality of test 

data. The measured frequencies ef  are listed in the second and sixth column in Table 1 

respectively for the undamaged and damaged structure. The measured mode shapes are 

shown in the first column of Fig. 3 (the dots represented the measured data) and show 

some important features: 

(1) there were significant responses at the supports (concrete blocks) which were 

obviously not rigid, as commonly assumed. These were simulated by linear 

springs in the FE model, as shown in Fig. 2; 

(2) the frequencies of the cracked structure were slightly reduced consistent with the 

expected reduced stiffness compared to the undamaged structure;  

(3) there was slightly sharper curvature of first and third mode shapes at midspan of 

the damaged structure and 

(4) the frequencies and mode shapes were slightly different for damaged and 

undamaged structures. 

Based on the measured frequencies and mode shapes, a FE model can be validated 

and then updated. Generally, a sensitivity analysis based model updating procedure 

includes three aspects (Brownjohn and Xia 1999; 2000): 



(1) selection of responses as reference data which are normally the measured data 

such as measured frequencies and mode shapes;  

(2) selection of physically and geometrically uncertain parameters to which changes 

in the selected reference responses should be sensitive; and  

(3) model tuning, an iterative process to update or modify the selected parameters 

based on the selected reference data. 

After model updating, the validity of the FE model can be checked by correlation 

indicators such as difference between FE model and experimental natural frequencies and 

by the modal assurance criterion or MAC  (Allemang and Brown 1982) defined by: 
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where, aφ  and eφ  are the analytical and experimental mode shape vectors, respectively. 

Given a set of experimental modes and a set of predicted modes, a matrix of MAC values 

can be computed.  The mode shapes with a MAC value equal to 100% represent a perfect 

correlation, modes which are completely orthogonal have 0% MAC. Generally, it is found 

that a value in excess of 90% should be attained for correlated modes depending on how 

the degrees of freedom to be correlated are selected; for a small number of modes visual 

correlation may work better. 

In the FE model pre-validating for the undamaged bridge deck, the stiffness of the  

boundary supports, Young’s modulus and mass density of concrete were uncertain, as 

described previously, and selected to update. The updated frequencies uf , frequency 

differences fΔ  and MAC values correlating the measured and updated data are listed in 

the first, third and fourth column respectively in Table 1. The low fΔ  and high MAC 



values show an excellent correlation between updated FE model and test model. The 

comparison of the updated and measured mode shapes is shown in the first column in 

Fig. 3, where. The pre-validated FE model could be taken as a reliable initial FE model 

with correct boundary conditions and physical parameters for further damage 

identification. The updated value of Young’s modulus of concrete was found to be 

4 22.8 10 /cE N mm= × , a reduction  on the value 4 23 10 /cE N mm= ×  estimated based on 

sample cube tests. 

For the damaged bridge deck, the cracking in the concrete was widest and deepest at 

midspan, whereas narrower and shallower minor cracks developed towards the supports. 

The cracks effectively reduced the section moment of inertia and stiffness. Hence the 

moment of inertia of the beam and the cross section area were taken as uncertain 

parameters to update for the four midspan ‘weak’ beam elements in the FE model around 

midspan. To observe the effect of beam bending stiffness on the dynamic properties of 

the bridge deck, the sensitivity analysis of dynamic properties to the beam cross section’s 

moment of inertia in bending was conducted through sensitivity coefficients. These are 

defined as the rate of change of a particular response quantity with respect to a change in 

a structural parameter and the set of sensitivities of N structural responses iR  ( Ni ,...,1= ) 

to M structural parameters jP  ( Mj ,...,1= ) are collected in a sensitivity matrix ][S  

defined as, 
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     Fig. 4 and Fig. 5 shows the envelop of sensitivities of the measured frequencies and 

MAC values to the cross section’s moment of inertia along the beam, respectively i.e. 



values in one column of S. The horizontal coordinates in Fig. 4 and Fig. 5 represent the 

distribution of beam elements in which element 11 and 12 were at the midspan of the 

beam. It can be found that the most sensitive area is located at element 7 and 16, while 

the midspan (element 11 and 12) has low sensitivity. Hence the changes in dynamic 

properties of the damaged structure were not too obvious in spite of the serious damage at 

the midspan. 

The initial estimate of midspan moment of inertia should be realistic; if the initial value is 

too far from the true value, then the iterative updating process may diverge. Often, it is 

required to carry out manual tuning by engineering judgement or relevant preliminary 

estimation. For the damaged bridge deck, the initial value of moment of inertia of cracked 

beam section at the midspan was estimated to be 7 45.3 10bcrI mm= ×  which was obtained 

from analysis of the RC beam at the post-cracking stage (Nawy 1990). 

Based on the model tuning based using the measured data from the damaged 

structure, the updated frequencies uf  of the FE model with ‘weak’ beam elements are 

listed in the fifth column in Table 1. The frequency differences fΔ  and correlation MAC 

values between updated and measured are listed in the seventh and eighth column 

respectively showing very small fΔ  and very high MAC values. The other ways to 

correlate the updated data with the measured data are shown in Fig. 6 and Fig. 7. Fig. 6 

shows pairing of frequencies between the updated and measured models emphasizing 

errors as departures from a diagonal line with unit slope. Fig. 7 shows the MAC matrix 

with high values were high for comparable modes and dissimilar modes off the diagonal 

indicated by values close to zero. The mode shapes of the updated FE model for the 

damaged structure are visualized in the second column in Fig. 8 and very close to the 



measured mode shapes. All of these correlation analyses between updated and measured 

data illustrate that the model updating was successful for validating the FE model with 

‘weak’ beam elements, safeguarding the accuracy of damage identification and condition 

assessment.  

 

4. Damage and Stiffness Assessment 

After post-validating the FE model for the damaged structure, the updated value of 

moment of inertia bI  along the beam span was obtained. The value for the damaged 

beam cross section at the midspan was updated to be 7 43.1 10bmI mm= × , smaller than the 

initial estimate 7 45.3 10bcrI mm= × . The stiffness distribution c bE I  along the beam span 

was also estimated and is shown in Fig. 8.  The smallest stiffness was at midspan with 

5 29 10c bmE I Nm= ×  with the stiffness distribution increasing gradually towards the 

supports. 

It is worth pointing out that the updated minimum stiffness at midspan, c bmE I  was 

smaller than the estimated value 6 21.5 10c bcrE I Nm= ×  for the beam at the post-cracking 

stage, which meant that the damaged beam had gone beyond the post-cracking stage and 

entered the post-serviceability stage (Nawy 1990). At this stage it is difficult to estimate 

theoretically the residual stiffness due to the yielding of the tension steel in the RC beam 

(for an under-reinforced member). However, it is important to recognize the reserve 

deflection capacity determined by stiffness as a measure of ductility in structures e.g. in 

earthquake zones and in other applications where there can be serious overload. 



In terms of the stiffness distribution of the damaged beam, the extent of damage in the 

beam also can be identified. The cross-section with reduction of stiffness located the 

damage in the beam. A damage index iD  which determines the extent of damage is 

defined as: 

( )
( )0

100%i
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D
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Δ

= ×                                                                                              (3) 

where ( )EIΔ  denotes the change in stiffness between original and damaged cross-

section of the beam and ( )0EI denotes the original stiffness of the undamaged cross 

section of the beam. Fig. 9 shows the damage index iD  along the beam. Obviously, the 

extent of damage at midspan of the damaged beam was most serious, at 71%. 

 

5.  Load-Carrying Capacity Assessment 

Load-carrying capacity of the bridge deck can not be assessed directly from the 

updated results because the ability to resist the bending moment induced by applied loads 

is due to reinforcing steel embedded in the tension zones. In the design of a RC cross 

section for a given moment with given material strengths, two basic quantities to be 

determined are geometric dimensions and steel area that will provide the ultimate 

moment (Spiegel and Limbrunner 1998). Therefore, the ultimate moment of the structure 

may in effect be determined by the tensile steel ratio or percentage for a given cross 

section of given material strengths, and since the stiffness also depends on the steel ratio 

there is a link from stiffness assessment to capacity assessment. This strategy can be 

applied to an existing RC flexural structure. Once the ultimate moment is determined, the 

load-carrying capacity can be estimated. 



Normally, it is difficult to identify the effective steel ratio of a damaged RC structure 

due to unknown details of damage in the structure. However, as described previously, the 

moment of inertia of the damaged cross section can be identified by model updating. If 

the relationship between the moment of inertia and the steel ratio of the damaged beam 

cross section is developed, then the steel ratio can be estimated, leading to determination 

of the ultimate moment and load-carrying capacity. 

Based on extensive testing verification (Nawy 1990) and the requirement of the 

design codes (BSI 1997; ACI 1995), it is assumed for the RC beam that: (1) concrete 

does not resist any tension; (2) compatibility of deformation between steel and concrete 

exists; (3) flexural ultimate limit state occurs as tension failure with reinforcement 

yielding before concrete crushes; (4) the maximum steel tensile stress equals yield stress; 

(5) the concrete compressive strain is less than the maximum useable concrete 

compressive strain at the extreme fibre; and (6) the steel compression stress is less than 

its yield stress. With these assumptions, two sets of equations for the edge beam shown in 

Fig. 1 are developed relating moment of inertia to steel area (equation (4)) and then 

relating steel area to moment capacity: 
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where cc  is the neutral axis depth at the cracking stage; uM  is the ultimate moment of 

the edge beam; uc  is the neutral axis depth  at ultimate state; bdAs /=ρ  is the steel ratio; 



/s cn E E=  and sE is steel modulus of elasticity; '
cσ  is the compressive concrete stress; β 

is a constant that depends on the strength of concrete (normally, 80.0=β ); yσ  is the 

steel yield stress. 

The set of equations (4) develop the relationship between the moment of inertia bcrI  

and the steel ratio ρ and provide a means to determine steel ratio ρ for a given value of 

moment of inertia bcrI . From equations (4), the cracked beam moment of inertia was 

calculated as 7 45.3 10bcrI mm= ×  which was used as the starting value of damaged beam 

moment of inertia at the midspan for model tuning as described previously. For the 

damaged beam structure, the updated value of the moment of inertia of the midspan beam 

was 7 43.1 10buI mm= × , leading to a steel ratio solved as 0.43%ρ = . 

The set of equations (5) determine the relationship between the ultimate moment 

uM and the steel ratio ρ. For the damaged beam, the ultimate moment corresponding to 

the percentage of steel ratio 0.43% was estimated as 14uM kNm=  by which the load-

carrying capacity of the damaged beam structure could be determined. For a simply 

supported beam subjected to midspan load 4 uM
luP = , the ultimate load of the whole 

structure with two damaged beams was 22.5kN , reduced by 52% compared with the 

ultimate load value 47kN  of the undamaged deck structure according to the static load 

testing. 

 

6. Conclusions 

The structural condition of a damaged reinforced concrete bridge, including the 

damage extent and residual stiffness and load-carrying capacity can be assessed 



quantitatively after the FE model of the damaged structure is validated systematically by 

dynamics-based model updating techniques. Load-carrying capacity assessment requires 

development of the relationships of moment of inertia with steel ratio and ultimate 

moment in the RC structure. 

Prior to damage identification, it is recommended to obtain a reliable initial FE model 

by pre-determining other uncertainties such as boundary conditions of the structure. The 

model updating procedure is furthermore applied to the pre-validated initial FE model so 

that the damages are identified by updating the parameters which quantitatively simulate 

it. The finally validated FE model will represent the damaged structure. 

The method is also suitable for condition assessment of an undamaged beam 

structure. Normally, the as-built structure differs from original design and numerical 

simulations also have errors due to assumptions and inaccuracies in modeling, so the 

estimated stiffness and/or load-carrying capacity of the as-built beam may be in error.  

Finally, it is in principle also possible to apply the method in a single updating step 

provided the effects of damage and FE model uncertainties can be separated. 
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Undamaged structure Damaged structure 
uf  

(Hz) 
(1) 

ef  
(Hz) 
(2) 

fΔ  
(%) 
(3) 

MAC  
(%) 
(4) 

uf  
(Hz) 
(5) 

ef  
(Hz) 
(6) 

fΔ  
(%) 
(7) 

MAC  
(%) 
(8) 

13.3 12.9 3.20 98.8 10.0 10.0 -0.40 99.7 
31.3 33.0 -5.12 97.6 32.0 32.2 -0.76 99.0 
44.5 42.6 4.40 97.3 41.1 40.8 0.69 97.7 
74.1 70.6 4.99 96.6 70.2 68.8 1.98 93.2 
78.2 81.4 -3.95 98.2 78.6 78.5 0.13 97.6 

 

Table 1 Correlation between updated and measurement 



Fig. 1. Schematic of RC bridge deck structure 
(a) span unit with simple supports; 
(b) cross-section, unit: length(mm), area(mm2) 
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Fig. 2. A damaged bridge FE model with ‘weak’ beam elements 
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Fig. 3. Pair of mode shapes between updated and measured 
                    undeformed          updated      •     measured 
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Fig. 4. Sensitivity envelop of frequencies to moment of inertia of beam 
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Fig. 5. Sensitivity envelop of MAC to moment of inertia of beam 



 

Fig. 6. Frequency pair between updated and measured data 
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Fig. 7. MAC Matrix correlating updated and measured modes 
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Fig. 8. Stiffness distribution along damaged edge beam 

Fig. 9. Distribution of damage index along bridge deck 
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