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ABSTRACT 

Recent high-profile failures of footbridges to carry pedestrians without excessive and uncomfortable vibration have shown the 

need for a better understanding of vibration serviceability of structures under pedestrian loads. Failure to predict excessive 

response may be due to misunderstanding the mechanism of pedestrian loading, but also due to inaccurate response 

calculations in code-based  assessments during design.  For a bridge expected to have a low natural frequency this assessment 

is a dynamic analysis using linear single degree of freedom models requiring realistic estimates of modal frequency, damping, 

shape and mass. If the design fails and a retrofit is necessary the same parameters are required, but are expected to be estimated 

to a higher accuracy by full-scale vibration measurement. 

Modal mass and modal damping are critical parameters for the assessment process yet are the most difficult to measure 

experimentally. This paper evaluates procedures for modal mass estimation via two case studies of problematic mass 

estimation through structural analysis end experiment. As well as traditional forced vibration testing, methods using calibrated 

footfall excitation are shown to be remarkably effective.  
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VIBRATION SERVICEABILITY ASSESSMENT OF FOOTBRIDGES 
 

The lively nature of footbridges, particularly those that are cable supported, has made them a popular subject for research 

by structural engineers (1,2) an interest enhanced by recent high-profile failures to carry pedestrians comfortably.  For Design 

codes dealing with vibration serviceability of footbridges (3) suggest either to avoid ranges of natural frequencies matching 

natural walking paces or to check simulated response to walking against frequency-dependent acceleration levels. For example, 

the UK design code for footbridges, in the form of BD37/01 (4) specifies, for footbridges having fundamental frequencies 

below 5Hz, the limiting accelerations in terms of natural frequency for a single pedestrian and goes on to show how to estimate 

both natural frequency and response levels.  

As vibration serviceability problems in footbridges are a result of resonance in either one or a very small number of modes 

of vibration, for the purposes of response calculation it is appropriate to characterize the bridge as one or a few independent 

single degree of freedom (SDOF) oscillators. Even with the remarkably optimistic assumptions that the loading can be 

modeled to a high degree of accuracy and that the response can be assessed objectively, there remains the need to identify 

appropriate values of modal frequency, modal damping ratio and modal mass.  

The currently accepted procedure for vibration serviceability assessment  involves predicting the steady state structural 

response ( ) ( )siny t y tω=  due to a harmonic or sinusoidal force ( ) ( )sinp t p tω=  applied to a structure with modal mass , 

modal damping  

rm

rζ , modal stiffness  and modal frequency rk r r rk mω =  for which the peak response amplitude at resonance 

obtained after an infinite number of load cycles is given by  

2 r ry p mζ= .          Equation 1 

In the practical case where a finite number of cycles is applied and steady state resonance has not been achieved, a 

reduction factor is applied to the resonance response, depending on the number of cycles of oscillation (effectively the number 

of footfalls) that will be applied to the bridge. Account may be also be taken of the mode shape so that it is not necessary to 

assume the worst case of walking on the spot at midspan. 

Clearly, accurate estimates of damping and mass are equally important in estimating resonant response, but in the cases 

where only a few cycles of excitation are applied or where the mode frequency is so high that resonance could never be 

established by normal imperfect walking, damping is less relevant. Figure 1 shows the simulated response of a 145,000kg 

structure with natural frequency 2Hz and 0.4% damping to a  1kN harmonic force applied for 10 seconds, representative of the 

effect of 20 on-the-spot and perfectly synchronized jumps. Since the damping is low, the force is almost entirely used to 

increase the kinetic and potential energy of the system by an amount per cycle which, for a given frequency is dependent only 

on the mass. It is hard to observe any effect of damping in reducing the increment of response for higher amplitudes even 

though 50% of the peak resonant response has been achieved after 10 seconds. 

ESTIMATION OF FREQUENCY, DAMPING AND MODAL MASS 
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Modal parameter estimation techniques proliferate (5), but for practical application to civil structures, simple and 

thoroughly validated curve fitting procedures are used. This section summarises their applications.  

Resonant build up and logarithmic decrement 

For a linear elastic dynamic system with viscous damping, the equations of motion can be de-coupled into SDOF equations 

such as, for mode r having modal amplitude ( )ry t : 

( ) ( ) ( ) ( )22r r r r r ry t y t y t p t mζ ω ω+ + = r  Equation 2 

where 2r r rc m rζ ω= ,   is modal damping and rc ( )p t  is force, not necessarily harmonic. 

The solution of Equation 2 for a unit impulse ( )tδ  is the ‘impulse response function’  

( ) ( ) ( )2 21 1 sin 1 r r t
r r r r r ry t m e ω ζω ζ ω ζ −= − − ⋅ . Equation 3 

which is the characteristic exponentially decaying sinusoid. The same characteristic is also seen in free decay from 

resonance or initial deflection and a curve fit of experimentally obtained single mode free decay to Equation 3 yields estimates 

of frequency and damping. This ‘logarithmic decrement’ method is regarded as the most accurate damping estimation 

procedure. Naturally, the free decay signal used must belong to the single mode being studied and while such signals can be 

recovered by processing of a wideband response signals, the most satisfactory origin is the physical free decay of a structure in 

the one single mode following either resonance or carefully controlled initial conditions of displacement or velocity. 

The solutions of Equation 2 in terms of acceleration and velocity for zero damping and harmonic excitation at resonant 

frequency ( )sin rp p tω=  are 

( ) ( ) ( )2 sinr r r ry t pt m tω ω≈ − ( ) ( ) ( )2 cosr r ry t pt m tω≈ and   Equation 4 

which describe the linearly growing part of the response shown in Figure 1. Equation 4 represents the behaviour of a lightly 

damped system well enough in the first few cycles, hence if it is possible to drive a system at or very close to resonance, it 

should be possible to recover the modal mass for a curve fit to Equation 4. Even the first half-dozen cycles of response to 

poorly synchronized forcing can be used to estimate mass.  

Relationship between mode shape and modal mass 

Structures behaving as SDOF systems with proportional or zero damping adopt characteristic deflected shapes or mode 

shapes in which inertia and stiffness forces are perfectly balanced in resonance. Mode shapes are described by a modal 

coordinate r
jψ  giving the amplitude of mode r at location j. Being an eigenvector, a mode shape has an arbitrary scaling and 

for purposes of full-scale response studies it is convenient to define a scale by fixing the maximum amplitude over the 
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structure to be one metre i.e. for maximum amplitude  
max

1rψ ≡ . 

Modal mass is then defined by the product of mass (density) with squared mode shape  integrated over the entire structure, 

i.e. for mode r:  

2r
rm ψ= ∫ dm        Equation 5 

If the above scaling is used and the mode shape is largest at point k, then for harmonic excitation and response at point k in 

mode r, the bridge behaves as a SDOF oscillator with mass mr. If the force is applied and response measured elsewhere at a 

point j with   then the modal mass goes with 1r
jψ < 21

j

rψ  so that it becomes infinite (as expected) at a fixed support. For a 

uniform linear structure with a perfect half-sine mode shape the modal mass will be exactly half the structure mass. 

Frequency response function (FRF) and circle fit 

For a SDOF system representing mode r,  the ratio of acceleration response at location j to harmonic force input at location 

k in steady state vibration at frequency ω is defined by the accelerance or inertance form of the FRF having units of mass-1

( ) ( ) ( )
2

2 2 2

r r
j k

jk j k
r r r

H Y P
m i

ψ ψ ωω ω ω
rω ω ζ ω

−
= = ⋅

− + +
. Equation 6 

where ( )jY ω  is acceleration at location j, ( )kP ω  is force at location k and r r r
j k r jkm Aψ ψ =  is the modal constant for the 

force/response pair j,k. 

The circle fit method (5) is very effective for extracting modal parameters from experimental FRFs when modes are well 

separated. Where j=k and 1r
kψ =  the ‘driving point’ modal constant  is the inverse of the modal mass mr

kkA r and the values of 

modal constant for fixed driving point and varying j provide the mode shape.  

Figure 2 shows an example of an experimental FRF of relatively good quality obtained from a floor vibration test using a 

shaker driven by a broadband chirp signal. Such an experimental FRF is given as real and imaginary data points at discrete and 

usually evenly spaced frequencies. When plotted in the Nyquist plane, as in the right hand plot of Figure 2, as a sequence of 

values at increasing frequency, the points rotate about a centre and describe a circle. A resonant frequency shown as a peak in 

the modulus plot is identified in the Nyquist plot by maximum rotational rate, and the damping ratio is obtained from the 

relative angle between pairs of data points either side of resonance. For a good circle fit the damping value should be 

insensitive to choice of data pair, but noisy data result in shifted data points and scatter in damping values. The circle radius 

can be estimated with relatively high accuracy and its inverse give the product of  modal mass and damping, hence errors in 

damping estimates translate directly to errors in mass estimation. If only the peak resonant response is required (Equation 1) 

the errors cancel, but as shown in this paper, pure resonance is rarely the concern and when it is, it may not be possible to trust 

damping estimates obtained from low level shaker tests. 

In the example of Figure 2, eight interactive circle fits around the peak at 12Hz provide a mean modal mass of 122,750kg 
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with standard deviation of 6,200kg, a 5% coefficient of variation. While criteria can be coded for optimal ‘best fit’ this 

indicates the level of accuracy achievable for civil structures in well controlled conditions.  

PRACTICAL APPLICATION TO TWO BRIDGES  

Two experiences are reported where there was a need for but difficulty in obtaining reliable estimation of modal mass. In 

both cases a range of procedures was adopted, including novel techniques involving direct or indirect measurement of human 

dynamic loading and parallel estimates of modal mass were obtained from a-priori finite element models.  

The first bridge studied (6) is a 140m span shallow steel arch constructed between the parallel tracks of an indoor railway 

terminus. Figure 3 shows the steel frame during construction and Figure 4 shows the glass-clad end product. The bare frame 

(skeleton) of the bridge comprises approximately 8×105 kg of steel hollow sections clad in an envelope of glass on a steel 

support frame. According to the consultant, the bridge mass is 6.5×103 kg/m i.e. 1.3×106 kg total including all fixtures and 

fittings and includes approximately 2×105 kg of glass, although the final value of as-built mass could not be obtained. 

Following ad-hoc measurements during the final seven months of construction, the bridge was the subject of an unusual 

analytical and experimental vibration serviceability assessment followed by retrofit based on the results. In particular, accurate 

estimates of modal frequency mass required for design of a tuned mass damper were obtained from shaker testing and 

controlled jumping and swaying. 

The second bridge (7) is a 46m walkway between two blocks of an educational institution, constructed from open steel 

frame sections and behaving as a cantilever, with one end connected to the adjoining building only via an elastomeric bearing. 

The bridge (Figure 5) was studied as part of a continuing investigation into effects of people exciting and controlling flexible 

structures, and even for such a simple structure the necessary estimation of modal mass was far from simple. Mass estimates 

were obtained from hammer testing as well as from direct measurement of jumping force and response. 

MODAL MASS ESTIMATION FOR STEEL ARCH  

Estimation of modal mass from response build up due to jumping  

Regardless of modal damping and frequency values, the instantaneous physical change of velocity at a point k  on a 

structure that results immediately from an impulse I applied at point k for which 

v∆

1r
kψ ≡  is inversely proportional to   i.e.  rm

rm v I∆ = . Equation 7 

  The results was put to effect to gauge the modal mass during construction. Figure 6 shows the vertical acceleration 

response close to the midspan location while a student weighing 720N jumped at a frequency close to that of a mode 

subsequently identified as the first symmetric vertical mode and designated VS1. This was the first attempt to force vibration 

by jumping and captured the characteristic of the bridge while it carried a modest non-structural mass of glass cladding. At the 

time VS1 had a natural frequency of 1.32Hz and the jumping was crudely timed using a stopwatch. 
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Initially the vibration build up was linear, but with imperfect timing, resonance could not be established, and the response 

died out.  Although the forcing function due to the student was not available, a crude estimate of modal mass could be obtained 

from simple physical principles. If the weight of the jumper could be concentrated in ‘perfect impulses’ I occurring 1.32 times 

per second these must have the value I=545Ns for to have zero average acceleration. Using equation 7 it follows that for 

jumping at fHz with weight W, 

rv W fm∆ ≈ . Equation 8 

Examination of Figure 6 shows that in the early part of the vibration build up before damping has significant effect, peak 

acceleration increases by 0.0133m/sec2 per cycle,or v∆ =1.61mm/sec in harmonic response, hence 3.38 ×10rm ≈ 5 kg. 

The analysis is simplistic and errors must arise from the assumption that the jumping is equivalent to a perfect impulse. The 

same procedure was reapplied with a jumper weighing 853N when the bridge was structurally complete, and with relatively 

good prompting possible using metronome, to excite a range vibrations modes involving varying degrees of vertical, torsional 

and lateral (sway) motion. 

Figure 7 upper and lower plots show, respectively, the lateral or vertical response to a sequence of jumping in modes LA1, 

TS1, VS1, LS1, VA1, TA1 and VS2. The form of these modes is indicated in Figure 8 where L, T and V indicate modes 

predominantly lateral, torsional or vertical; S and A are symmetric and anti-symmetric and the numeral indicates mode order. 

Table 1 summarises the exercise with column 6 providing the initial estimate of modal mass for unit mode shape at the jump 

point using Equation 8. 

Improved vertical mode mass estimation from response to jumping 

A fixed laboratory force plate was used subsequently to record the vertical forces of the 853N jumper at each of a range of 

frequencies from 1.1Hz to 3Hz. Figure 9 shows the time series and Fourier amplitudes of vertical force due to jumping at 

1.1Hz which is a deliberate (and very tiring) series of individual jumps. Figure 10 shows the same information for jumping at 

3Hz, which is much smoother and less tiring. The figures show that jumping at 3Hz more closely resembles a pure sinusoid 

and that as a result it should be more effective in exciting oscillations at the jumping frequency. Of course the differences 

depend on individuals. The simple approach using Equation 8 was refined to account for relative effects of real jumping forces 

compared to the ‘equivalent’ sequence of  periodic and infinitely sharp ‘perfect impulses’.  

For each jumping frequency the response of an oscillator having the same frequency but unit mass and 1% damping was 

obtained by numerical simulation of response to 30 seconds of perfect impulses and 30 seconds of recorded real jumping. The 

ratios of (response to impulses)/(response to real jumping) quantified by RMS and maximum values of the oscillator responses 

are plotted in Figure 11 which shows that, for example, perfect impulses at 1.1Hz generate three times the response of real 

jumping i.e. real jumping at this rate is one third as effective as perfect impulses. It also appears that the approximation of 
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jumping as a perfect impulse is most accurate for jumping around 2Hz, a result that normally be explained in terms of Fourier 

coefficients. Overestimation of input force corresponds to overestimation of mass, so Figure 11 provides, by interpolation, 

reduction factors to results from Equation 8 leading to more reliable estimates of modal mass which are given in the last 

column of Table 1. Since jumping was not at the point of maximum modal response, about 22m from midspan, the mass values 

for unit maximum mode shape would be smaller. 

The low value of mr for TS1 is remarkable as it shows that even approximately 1.3×106kg of steel footbridge can behave as 

a relatively low mass for a mode with a frequency to match pedestrian gait. Accurate assessment of both damping and mass 

were thus vital in studying susceptibility to pedestrian-induced response. 

Lateral mode mass estimation from response to swaying 

A tri-axial laboratory force plate at the National Institute of Education Singapore was used to obtain signals for ‘swaying’ 

at two frequencies that would excite bridge lateral modes. Figure 12 shows, as time series and Fourier amplitudes, lateral 

forces generated during ‘swaying’ to a 1.8Hz metronome beat, generating signals with 280N amplitude at 0.9Hz and much 

smaller components at the 3rd and 5th harmonics of this frequency.  

A different approach to estimate mass was then used by comparing response build-up measured on the bridge with 

numerical simulation using the forces of Figure 12 applied to oscillators having unit mass and frequency and damping ratios 

corresponding to the full-scale modes. The ratio between the simulated and measured responses gives the approximate modal 

mass values in the last two rows of Table 1 which are subject to tolerance of around 10% corresponding to the degree of 

repeatability of the swaying forces.  

Modal mass estimation from shaker testing 

Just before opening the bridge, a forced vibration test of the bridge was conducted using electro-dynamic shakers to define 

more clearly the modal parameters for all bridge vibration modes up to 3Hz. In the wind-sheltered internal environment of the 

bridge, the 100N order forces provided by the shakers should have provided an adequate signal to noise ratio. Difficulties in 

restricting movement of construction workers to the deck meant FRF quality obtained with 204-second chirp excitation was 

compromised, hence it was possible to estimate natural frequencies and driving point modal masses via circle fitting only for 

relatively high frequency modes i.e. TS1, LS2 and TA1.  

Response during steady state excitation at estimated modal frequencies, illustrated in Figure 13, was used for extracting 

mode shapes. The shaker frequency did not match the resonant frequency perfectly, but it was still possible to use short initial 

part of the response build up to estimate mass, the steady state part to estimate mode shape (together with signals from other 

locations) and the free decay to estimate damping.  

Comparison of modal mass estimates 
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Table 2 presents the modal parameter estimates with the last four columns giving modal mass estimates from four methods. 

‘FRF’ gives values obtained for three modes using the broadband shaker excitation (chirp), ‘sine’ give values obtained where a 

clear building up to steady state could be observed as in Figure 13 and ‘jump’ uses the values from Table 1 corrected to unit 

maximum modal ordinate. Finally, FEM gives values of modal mass estimated by the consultant’s finite element model. 

Except the first torsional mode TS1, there is considerable scatter among the values for the same mode. Table 2 also 

compares experimental and FEM and gives modal assurance criteria (MAC) values that are correlation coefficients between 

modal ordinates from test and FEM. The frequency matching is reasonable with a consistent FEM overestimation of 8.5% due 

to either mass or stiffness errors in the modelling. The MAC values show very close correlation between experimental and 

FEM mode shapes and with the excellent correspondence for mass estimates from TS1 it was finally concluded that the most 

reliable modal mass values for the design of the tuned mass damper would come from the effectively validated FEM.  

MODAL MASS ESTIMATION FOR WALKWAY 

A FEM of the walkway (Figure 14), was used to estimate frequencies for 1st lateral, vertical and torsional modes as 

estimated as  L1=0.87 Hz, V1=4.72 Hz and T1=10.23 Hz. Preliminary ambient vibration response shown in Figure 15 

indicates strong vertical response around 5Hz with strong lateral response just under 2Hz and also around 4.5Hz. Under the 

circumstances it is reasonable to assume the peaks correspond to vibration modes, as was confirmed in later forced vibration 

(hammer) testing. The FEM did not predict the lateral response at all well, yet the vertical mode agreed well in frequency and 

in mode shape with the cantilevered part participating in pure vertical bending. Strong vertical vibrations of the walkway 

observed during passage of pedestrians were most likely generated by the third harmonic of footfall forces from those 

pedestrians moving with pacing rates around 1.67Hz.  

Because of the susceptibility to pedestrian excitation, the effect of an on human occupants was studied with respect to move 

V1 and attempts were made to calibrate human dynamic models indirectly through their effects on dynamic characteristics of 

the occupied walkway (7). As the effects depend on the relative masses of structure and occupants, an accurate estimate of 

modal mass was required. From the FEM the modal mass for unit maximum vertical displacement at the free end in this 

vertical mode was estimated to be 8500kg, about 14% of total mass of the bridge, while for predicted lateral modes involving 

sway motion of most of the bridge, the FEM indicated masses exceeding 35000kg.  

A forced vibration test was carried out using an instrumented hammer to excite vertical or lateral vibrations at the free end. 

Circle fit (5) was used to estimate modal parameters from the FRFs but with little success as it was difficult to avoid standing 

on the bridge and affecting the response, difficult to apply a vertical impact at the free end without overloading the 

accelerometer and difficult to apply a lateral impact. Mode V1 and T1 frequency and damping alone were estimated from the 

hammer test and mode L1 parameters were estimated from the ambient response data; Table 3 provides the values.  

Extensive free decay testing later showed a range of amplitude- (and occupant-) dependent damping values with a 

representative figure for strong response due to walking being approximately 1.3%. 
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Modal mass via jumping

With  no reliable experimental estimate of modal mass yet available to verify the FEM, a portable force plate was used to 

estimate mass via direct measurement of contact force together with response at a single point due to a human jumping. The 

top plot of Figure 16 shows part of the measured acceleration response due to an 80kg student jumping at the free end of the 

bridge at 2.5Hz to build up a resonant response through the second harmonic of the jumping frequency, at 5Hz. The middle 

plot shows the force plate signal, and the data were used to estimate modal mass as follows. 

For the period up to 62 seconds the measured force signal was used as input to a simulation using Equation 2 with mass 

mr=1000kg, 2 5rω π= × Hz and rζ =1.3%. The bottom plot of Figure 16 shows the result. For the initial build up, Equation 4 

applies and comparison of acceleration increment per cycle between measurement (top plot, 0.08m/sec2) and simulation 

(bottom plot, 0.59m/sec2), leads to an estimate of modal mass mr=7380kg.  

Figure 16 represent a short portion extracted from a  three minute of intermittent jumping during which contact force and 

response were continuously measured. The complete sequence was broken into 16-second frames to create an experimental 

averaged FRF and the circle fit to the first mode is shown in Figure 17. The frequency and damping agree perfectly with values 

obtained in free vibration for similar amplitudes so the modal mass estimate of 8130 kg should be reliable. 

DISCUSSION 

In the last decade there has been rapid development in dynamic testing procedures for civil structures partly driven by a 

growing demand for their reliable vibration serviceability assessment during design and in service. As the problems occur in 

structures sensitive to pedestrian movement it is natural that pedestrian loads be used under well controlled conditions to study 

the problems they cause. This paper presents experiences and techniques where controlled and measured human dynamic loads 

have been perfectly suited to the situation and have been able to provide modal parameter estimates at least as good as those 

available from the conventional techniques used in civil experimental studies. Using humans to excite structures for testing is 

by no means a new idea (1,8,9) but in these case studies calibrated humans have been used (with their complete consent) to 

identify modal mass, one of the most difficult to measure yet vital parameters necessary for vibration serviceability assessment. 

The arch bridge was a learning experience for this form of modal analysis yet it was possible to obtain good modal 

parameter estimates without resorting to high power and logistically demanding low frequency shakers as used for the much 

lighter but dynamically similar London Millennium Bridge. The walkway was studied intermittently over a long period in a 

number of student projects related to vibration control and excitation due to human activity and occupancy, and the portable 

force plate was found to be a simple and  effective transducer.  
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APPENDIX. NOTATION 

r
jkA  modal constant 

rc  modal damping constant 
e 2.71828 
f  jumping/swaying frequency 

( )jkH ω Frequency response function (FRF) 
I  Impulse 

rk  modal stiffness 
MAC Modal assurance criterion 

rm  modal mass 

( )kP ω  Fourier transform of input force 

( ) ,p t p  time dependent and peak input force 
W  weight of jumper 
( )jY ω  Fourier transform of acceleration response 

( ) ,y t y   time dependent and peak displacement response 

( )ry t  time dependent modal displacement response 
v∆  velocity increment between cycles 

r
jψ  mode shape ordinate 

rζ  modal damping ratio 
ω  circular frequency 

rω  resonant circular frequency 
 
Subscripts 

j response location 
k force location 
r mode number 
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FIGURE CAPTIONS 

Figure 1  Resonant build up with negligible effect of damping 

Figure 2  Example of good quality frequency response function (FRF) for civil structure 

Figure 3  Arch bridge: steel frame during construction 

Figure 4  View of completed arch bridge with glass cladding 

Figure 5  Walkway, with cantilevered end to left 

Figure 6  Midspan vertical response to stop-watch timed 72kg student jumping to excite mode VS1 

Figure 7  Envelopes of vertical (upper) and lateral (lower) response to prompted jumping to excite modes LA1 (2x), 
  TS1 (3x), VS1, LS1, VA1, TA1 and VS2 in turn 

Figure 8      Experimental mode shapes for arch bridge 

Figure 9  Time series and Fourier amplitudes of vertical forces  for jumping at 1.1Hz 

Figure 10 Time series and Fourier amplitudes of vertical forces  for jumping at 3Hz 

Figure 11 Ratio of response from sequence of ‘equivalent’ impulses to response from actual loading time series  
  for jumping at frequencies from 1.1Hz to 3Hz.   

Figure 12 Lateral forces time series and Fourier amplitudes for ‘swaying’ with a footfall rate of 1.8Hz 

Figure 13 Run up, steady state response due to shaker, and rundown for mode LA1 at 1.47Hz  

Figure 14 Isometric View of Finite Element Model of the Bridge 

Figure 15 Walkway auto-spectral density of ambient vertical (upper) and lateral (lower) acceleration response 

Figure 16 80kg student jumping at 2.5Hz. 
  top:  measured acceleration response 
  middle:  measured contact force 

  Bottom: simulated acceleration response for 1000kg mass 

Figure 17 FRF from data of Figure 16 
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 Table 1   Jumping sequence for Figure 7 and modal mass estimates for 1rψ <  

Time No. of 

sequences 

Jump 

/sway 

Jump 
rate /Hz 

mode mr estimate (jump) 

v∆ /cycle (sway) 

corrected 
mr /103kg 

T=0-300 2 sway 2.92 LA1 0.174mm/sec 575   

T=450-650 3 jump  1.63 TS1  337 ×103kg 280  

T=680-780 1 jump  1.1 VS1 1,653 ×103kg 634   

T=780-900 1 sway  1.78 LS1 0.28mm/sec 442   

T=900-1000 1 jump  1.37 VA1 600  ×103kg 392  

T=1000:1100 1 jump  2.68 TA1  756  ×103kg 577   

T=1100-end 1 jump  2.77 VS2. 942  ×103kg 720  
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Table 2 Arch bridge modal parameters from low level vibrations 

Frequency /Hz Modal mass /103kg Mode 
Test FEM 

MAC Damping 
 /% FRF sine jump1 FEM2

LS1 0.891 0.924 0.98 0.43 - - 314 453 
VS1 1.117 1.117 0.99 0.31 - 402 335 480 
VA1 1.375 1.574 0.93 0.77 - 543 334 261 
LA1 1.465 1.470 0.99 0.39 - 544 348 512 
TS1 1.634 1.860 0.99 0.46 160 175 145 147 
LS2 2.510 2.750 0.93 0.44 496 - - - 
TA1 2.701 3.010 0.94 0.30 317 337 422 213 
VS2 2.751 3.060 0.65 0.37 - 134 - 312 
1 Modal masses corrected to  at maximum response 1r

kψ ≡
2 Consultant’s FEM. 
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Table 3 Walkway modal parameters from low level vibrations 

Mode Frequency /Hz Damping /% 
V1 4.992 0.85 
T1 11.13 1.45 
L1 1.962 1.96 
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Figure 1  Resonant build up with negligible effect of damping 
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Figure 2  Example of good quality frequency response function (FRF) for civil structure.  
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Figure  3 Arch bridge: steel frame during construction 
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Figure 4  View of completed arch bridge with glass cladding 
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Figure 5  Walkway, with cantilevered end to left 
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Figure 6  Midspan vertical response to stop-watch timed 72kg student jumping to excite mode VS1 
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Figure 7  Envelopes of vertical (upper) and lateral (lower) response to prompted jumping to excite modes LA1 (2x), 
  TS1 (3x), VS1, LS1, VA1, TA1 and VS2 in turn 
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 Figure 8     Experimental mode shapes for arch bridge 

 mode: LS1 f=0.89Hz  mode: VS1 f=1.11Hz

 mode: VA1 f=1.37Hz  mode: LA1 f=1.46Hz

 mode: TS1 f=1.63Hz  mode: LS2 f=2.5Hz

 mode: TA1 f=2.68Hz  mode: VS2 f=2.77Hz
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Figure 9  Time series and Fourier amplitudes of vertical forces  for jumping at 1.1Hz 
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Figure 10 Time series and Fourier amplitudes of vertical forces  for jumping at 3Hz 
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Figure 11 Ratio of response from sequence of ‘equivalent’ impulses to response from actual loading time series  
  for jumping at frequencies from 1.1Hz to 3Hz.    
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Figure 12 Lateral forces time series and Fourier amplitudes for ‘swaying’ with a footfall rate of 1.8Hz 
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Figure 13 Run up, steady state response due to shaker, and rundown for mode LA1 at 1.47Hz  
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Figure 14 Isometric View of Finite Element Model of the Bridge 
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Figure 15 Walkway auto-spectral density of ambient vertical (upper) and lateral (lower) acceleration response 
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Figure 16 80kg student jumping at 2.5Hz. 
  top:  measured acceleration response 
  middle:  measured contact force 
  Bottom: simulated acceleration response for 1000kg mass 
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Figure 17 FRF from data of Figure 16 
 

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Im
ag

in
ar

y

Real

n5 ch1/ch3 1/mod=8134 φ=175.4° f=4.929Hz ζ= 1.22%

Mod(RE)=ψi.ψj/ψ
T[m]ψ Mod(TF)=ψi.[m].ψ/ψT[m]ψ = ψiL / M 

 
 
 
 
 

  32 03/22/04 


	ABSTRACT
	Modal mass is then defined by the product of mass (density) 
	If the above scaling is used and the mode shape is largest a

