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 We compare five regression methods to predict natural frequencies of a bridge. 
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 The relative importance of variables is useful to evaluate environmental effects. 

 Traffic loading and temperature are the most influential parameters.   

 Obtaining these parameters should be a priority. 
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Abstract 

In vibration-based structural health monitoring, changes in the natural frequency of a structure 

are used to identify changes in the structural conditions due to damage and deterioration. 

However, natural frequency values also vary with changes in environmental factors such as 

temperature and wind. Therefore, it is important to differentiate between the effects due to 

environmental variations and those resulting from structural damage. In this paper, this task is 

accomplished by predicting the natural frequency of a structure using measurements of 

environmental conditions. Five methodologies - multiple linear regression, artificial neural 

networks, support vector regression, regression tree and random forest - are implemented to 

predict the natural frequencies of the Tamar Suspension Bridge (UK) using measurements 

taken from three years of continuous monitoring. The effects of environmental factors and 

traffic loading on natural frequencies are also evaluated by measuring the relative importance 

of input variables in regression analysis. Results show that support vector regression and 

random forest are the most suitable methods for predicting variations in natural frequencies. 

In addition, traffic loading and temperature are found to be two important parameters that 

need to be measured. Results show potential for application to continuously monitored 

structures that have complex relationships between natural frequencies and parameters such as 

loading and environmental factors. 
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Abstract 12 

In vibration-based structural health monitoring, changes in the natural frequency of a structure 13 

are used to identify changes in the structural conditions due to damage and deterioration. 14 

However, natural frequency values also vary with changes in environmental factors such as 15 

temperature and wind. Therefore, it is important to differentiate between the effects due to 16 

environmental variations and those resulting from structural damage. In this paper, this task is 17 

accomplished by predicting the natural frequency of a structure using measurements of 18 

environmental conditions. Five methodologies - multiple linear regression, artificial neural 19 

networks, support vector regression, regression tree and random forest - are implemented to 20 

predict the natural frequencies of the Tamar Suspension Bridge (UK) using measurements 21 

taken from three years of continuous monitoring. The effects of environmental factors and 22 

traffic loading on natural frequencies are also evaluated by measuring the relative importance 23 

of input variables in regression analysis. Results show that support vector regression and 24 

random forest are the most suitable methods for predicting variations in natural frequencies. 25 

In addition, traffic loading and temperature are found to be two important parameters that 26 

need to be measured. Results show potential for application to continuously monitored 27 

structures that have complex relationships between natural frequencies and parameters such as 28 

loading and environmental factors. 29 
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 32 

1. Introduction 33 

Many vibration-based approaches in structural health monitoring have been designed to 34 

identify changes in natural frequency values for the purpose of detecting changes in structural 35 

conditions that may indicate structural damage and degradation.  In reality, however, civil 36 

engineering structures are subject to environment and operating effects caused by changes in 37 

temperature, traffic, wind, humidity and solar-radiation [1-5]. Such environmental effects also 38 

change natural frequency values, hence concealing changes due to structural damage [6-10]. 39 

Therefore, it is important to distinguish between changes due to structural damage and 40 

changes resulting from environmental effects. This task is managed observing then modeling 41 

dependencies of natural frequencies on environmental parameters [11]. The prediction of 42 

natural frequencies of structures under environmental changes has been studied using methods 43 

such as linear regression analysis, artificial neural networks and support vector regression. 44 

Multiple linear regression (MLR) was employed to predict changes in natural 45 

frequencies of the Alamosa Canyon Bridge (USA) due to environmental temperature variation 46 

[9] with natural frequencies formulated as a linear function of temperature data. It was found 47 

that the changes in the frequencies were linearly correlated with temperature taken from 48 

different locations on the bridge. Peeters et al. [12] conducted a one-year monitoring study for 49 

the Z24-Bridge (Switzerland) before it was deliberately damaged, applying a linear regression 50 

analysis to distinguish normal frequency changes from abnormal changes due to damage. 51 

Also, for this concrete box girder bridge, Peeters and Roeck [13] applied an autoregressive 52 

method with exogeneous inputs (ARX) to predict the bridge natural frequencies, where no 53 

relationship was found between natural frequencies and wind, rainfall and humidity. Liu and 54 
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Dewolf [3] simulated the varying natural frequencies under temperature changes using a 55 

linear regression analysis, concluding that the long-term variations of natural frequencies are 56 

closely related to the variation in in-situ concrete temperature for the three frequencies they 57 

measured. The MLR method has also been used to predict natural frequencies of suspension 58 

bridges and a footbridge using long-term monitoring data [11, 14]. 59 

Artificial neural networks (ANNs) have been successfully applied in fields such as 60 

pattern recognition [15], artificial intelligence [16] and civil engineering [17-20].  For long-61 

term monitoring of structures, ANNs have been employed to predict time-dependent natural 62 

frequencies of a structure in order to eliminate the environmental effects on vibration-based 63 

damage detection procedures. For example, Ni et al. [21] applied an ANN to formulate the 64 

correlation between the natural frequencies and environmental temperatures taken from the 65 

cable-stayed Ting Kau Bridge (Hong Kong). Zhou et al [22] further investigated the 66 

performance of the ANNs  formulated using the early stopping technique by constructing 67 

three different kinds of input, including mean temperatures, effective temperatures and 68 

principle components (PCs) of temperatures.  The results indicated that when a sufficient 69 

number of PCs were taken into account, the ANN using temperature PCs as inputs predicted 70 

natural frequencies more accurately than that when using the mean temperatures. More 71 

studies on ANNs for the prediction of structural responses are found in references [22-25]. 72 

Support vector regression (SVR) is an application form of support vector machines that 73 

is a learning system using a high dimension feature space [26-27]. An attractive characteristic 74 

of SVR is that instead of minimizing the observed training error such as with MLR and 75 

ANNs, SVR involves minimizing the generalized error bound in order to achieve good 76 

performance. The generalized error bound is the combination of the training error and a 77 

regularization term that controls the complexity of prediction functions. A good overview of 78 

SVR is given in [28-29]. SVR has been successfully employed in fields such as text 79 
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categorization and pattern recognition as well as structural health monitoring [27, 30]. Ni et 80 

al. [31] applied SVR to predict natural frequencies of the cable-stayed Ting Kau Bridge 81 

(Hong Kong) subjected to temperature variations taken from one-year measurement data, the 82 

method exhibiting better prediction capability than the MLR method. Also using 83 

measurement data of this bridge, Hua et al. [32] combined principle component analysis 84 

(PCA) and SVR to simulate temperature-frequency correlations.  It was found that the SVR 85 

method trained using the PCs of measured temperature data outperformed that trained using 86 

measured temperature data directly. 87 

The methodologies used above are based on parametric functions that specify the form 88 

of the relationship between inputs and a response (output) but in many cases, the form of the 89 

relationship is unknown.  Regression tree (R_Tree) methods offer a non-parametric 90 

alternative [33] that has been used extensively in a variety of fields.  The method has been 91 

found to be especially useful in biomedical and genetic research, speech recognition and other 92 

applied sciences [34]. Recent studies in the machine-learning field found that significant 93 

improvements in prediction accuracy have resulted from growing an ensemble of trees in a 94 

random way, a methodology called random forest (RF) [35]. It has been demonstrated that RF 95 

has improved prediction accuracy in comparison to other regression methods [36] but 96 

additionally provides measures of variable importance for each input variable [37-38]. This 97 

method has not been evaluated for its applicability to structural health monitoring, so this 98 

paper investigates the performance of RF on predicting natural frequencies through a case 99 

study of a suspension bridge. 100 

The studies mentioned above have proposed methodologies for predicting the dynamic 101 

responses of bridges, but none has compared methodologies for prediction accuracy.  This 102 

paper compares five methodologies – multiple linear regression, artificial neural networks, 103 

support vector regression, regression tree and random forest – in terms of their ability to 104 
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predict natural frequencies of a suspension bridge.  Confidence intervals are then defined for 105 

the best method to differentiate the effects due to environmental changes from those caused 106 

by structural damage. Furthermore, the individual effects of temperature, wind and traffic 107 

loading on the natural frequency responses of the bridge are evaluated using the variable 108 

importance metric in regression analysis. 109 

2. Methodologies for predicting natural frequencies of the bridge 110 

2.1. Multiple linear regression (MLR) 111 

Assuming that a response variable y  (for example natural frequency) is linearly related 112 

to the p  input variables (for example temperature, wind and traffic loading) 1,... px x  so that 113 

 0

1

p

i i

i

y x e 


   . (1)  114 

This relationship is known as a linear regression analysis, where i  is the regression 115 

coefficient associated with the thi  input variable ix  and e  the random error with mean zero 116 

and variance 2 . Using the dataset of n  observations in measurement time series, the 117 

unknown coefficients i  are determined using the least-squares method. 118 

2.2.  Artificial neural networks (ANNs) 119 

Artificial neural networks can be used as a nonlinear regression method to predict the 120 

natural frequency of a bridge. ANN is a two-stage regression in which the first stage is to 121 

create derived features Zm , represented by hidden layer, from linear combinations of the 122 

inputs and the second stage is to model the output Ym  as a function of linear combinations of 123 

the Zm . Zm  could be considered as a basis expansion of the original input X . 124 
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where Z  Z1,Z2,...,ZM , ( )v  is the activation function which is usually chosen to be the 126 

sigmoid ( ) 1/ (1 )vv e   , e  the random error,  i  and i  are unknown parameters. Given a 127 

training set  ,i ix y   1,...,i N , the ANN regression model is formulated by searching these 128 

unknowns so that the sum-of-squared errors as a measure of fit reaches a minimum value. 129 

     
2

1 1

,
K N

ik k i

k i

R y f x 
 

    (3) 130 

The generic approach to minimizing, R , , is by gradient descent, called back-131 

propagation. A two-layer back-propagation neural network (BPNN) is employed to predict 132 

the natural frequencies of a structure. BPNN is first trained using the training set in order to 133 

formulate the relationship between the natural frequencies and environmental factors 134 

including direct loading such as traffic. BPNN is composed of one hidden layer and one 135 

output layer with a tan-sigmoid transfer function in the hidden layer and a linear transfer 136 

function in the output layer. The tan-sigmoid transfer function is capable of capturing the 137 

nonlinear relationship between input variables (in our example three of them) and output 138 

variables (in our example individual natural frequencies). 139 

An important parameter to be determined when using BPNN for prediction tasks is the 140 

optimal number of hidden nodes in the hidden layer. A network with too few hidden nodes 141 

might not have enough flexibility to capture the nonlinearities in the relationship while a 142 

network with too many hidden nodes may have a tendency to overfit the training data. 143 
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2.3. Support vector regression (SVR) 144 

The strategy of SVR is to transform nonlinear relationships from the original space into 145 

linear relationships in a new space (or feature space) defined using a kernel function so as to 146 

discover relationships more easily [27, 36]. The linear function in the new space is given by 147 

    Ty x w x b e     (4) 148 

where w  is the weight vector; b  is the bias constant and  x  is the mapping function that 149 

transfers the input vector x  into the new space. Given a training set  ,i ix y   1,...,i N , a 150 

SVR model is obtained by minimizing the following objective function [39] 151 
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where   is the regularization parameter and ie  is the error. Such optimization that is subject 153 

to a condition is solved using the Lagrangian function 154 

       
1
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N

T

i i i i
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L w b e J w e w x b e y  
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      (6) 155 

 where i  is a Lagrange multiplier. The conditions for optimality are given by 156 
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Elimination of w  and e  yields a set of linear equations that are written in the matrix form 158 

 
1

00 1

1

T

N

N N

b

YI  
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 (8) 159 

where  1,...,
T

NY y y ,  1 1,...,1
T

N   and  1,...,
T

N   . NI  is an N N  identity matrix 160 

and    is a N N  kernel matrix defined by a kernel function as  161 

      ,
T

ij i j i jx x K x x    . (9) 162 

The kernel function is designed to compute inner-products in the new space using only the 163 

original input data.  The choice of K  implicitly determines   and the new space. Thus, the 164 

advantage of kernel functions is that if a kernel function K  is given, it is not necessary to 165 

know the explicit form of the mapping function  x .  The selection of the kernel function 166 

generally depends on the application domain. It has been shown that Gaussian radial-basis 167 

function (RBF) is a reasonable first choice of kernel functions since it has only a single 168 

parameter (standard deviation,  ) to be determined [27, 40]. The Gaussian RBF is expressed 169 

as 170 
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  
2 22

, i jx x

i jK x x e
 

 . (10) 171 

Solving Equation (8) identifies the values of   and b . Then, substituting these values into 172 

Equation (4) leads to the prediction 173 

    
1

,
N

i i

i

y x K x x b


  . (11) 174 

There are only two tuning parameters,   and  , that need to be determined when using the 175 

RBF kernel function and their optimal values are determined using the grid search method . 176 

Possible intervals for the two parameters are first defined. Then all grid points are tried to find 177 

the one giving the best accuracy. For each combination of the two parameters, SVR is trained 178 

using the training data and their performance is evaluated by a ten-fold cross-validation 179 

scheme.  180 

2.4. Regression tree (R_Tree) 181 

Regression tree is a nonparametric statistical method [33] that offers an alternative to 182 

parametric regression methods which usually require assumptions and simplifications to form 183 

the relationship. A regression tree is built by recursively partitioning the entire dataset, 184 

represented by a root node, into more homogeneous groups with each to be represented by a 185 

node.  When the splitting process terminates, each resulting group is referred to as a terminal 186 

node.  Splitting at each node is based on one value of an input variable that leads to the most 187 

homogeneous resulting nodes. Assuming that we have a partition into M regions 1R , 2R , ..., 188 

MR  the system model is identified as  189 

 ( ) ( )j j my x ave y x R e    (11) 190 
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Where jy  and jx  represent the response and input variables at 
thj  observation respectively. 191 

Equation 10 shows that the predicted response is the average of jy  in region mR  with the 192 

error e . 193 

A simple regression tree is built with two input variables 1x  and 2x  and a response y  194 

by considering a recursive partition as shown in Figure 1(a).  First, we select the splitting 195 

variable (for example, 1x ) and the split point (for example 1s ) in order to achieve the most 196 

homogeneous splitting groups and split the space of the dataset into two groups. The selected 197 

variable and point solve 198 

 

1 2

2 2

1 2
,

( , ) ( , )

min ( ) ( )
i i

i i
j s

x R j s x R j s

y c y c
 

 
    

 
   (11) 199 

1c  and 2c  are the mean value of all the responses in the corresponding groups.  Then, each of 200 

these groups is further split into two more groups.  As shown in Figure 1(a), the group 1 1x s  201 

is split at 2 2x s  and finally the group 1 1x s  is split at 1 3x s .  The process results in four 202 

groups 1R , …, 4R .  This process can be represented by the binary tree (Figure 1(b)).  The 203 

entire dataset sits at the top of the tree, as a so-called root node.  Observations (data points) 204 

satisfying the condition at each node are assigned to the left branch, and the others to the right 205 

branch.  The terminal nodes of the tree correspond to the groups, 1R , .., 4R .  Once a tree has 206 

been built, the response for any new observation can be predicted by following the path from 207 

the root node down to the appropriate terminal node of the tree, based on the observed values 208 

of the splitting variables. 209 

When determining tree size, note that a small tree may not capture a nonlinear 210 

relationship that may exist while a very large tree may over-fit the data.  Therefore, tree size is 211 

a tuning parameter and the optimal tree size should be adaptively chosen from the data.  The 212 
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preferred strategy is to gradually increase the tree size and evaluate the accuracy of each tree 213 

size until each node contains fewer than a given number of observations (for example, 5).  214 

Then this large tree is pruned by sequentially cutting off branches that add the smallest 215 

capability to predictive performance of the tree according to a specified pruning criterion. 216 

2.5. Random forest (RF) 217 

A random forest is a combination of regression trees that are grown in random ways 218 

[35]. The idea behind the random forest method is to generate an ensemble of low-correlated 219 

regression trees and average results in order to reduce variance. The low-correlated trees are 220 

generated by adding randomization in two steps: (i) each tree is grown using a random sub-221 

dataset of observations and (ii) each node of a tree is split using a random subset of input 222 

variables.  Figure 2 shows the layout of the random forest method. 223 

The first step is to generate B  sub-datasets of observations by randomly copying 224 

observations from the original training set L  until each sub-dataset has the same number of 225 

observations N  as the original training set.  Some observations can be chosen several times 226 

for each sub-dataset, whereas others are not chosen at all.  It has been proved that about 37% 227 

of the observations in the original training set are not chosen for each sub-dataset [38, 41]. 228 

The collection of non-chosen observations corresponding to each sub-dataset functions as a 229 

validation set.  Each sub-dataset is denoted bL  where 1,2,...,b B . 230 

The second step involves growing a regression tree  bT  using a sub-dataset  bL .  This 231 

step is to reduce further the correlation between the regression trees that enter into the 232 

averaging step later.  This is achieved during the tree-growing process by randomly selecting 233 

a subset of m  input variables from all p  input variables  m p  before splitting each node.  234 

A regression tree is grown by recursively repeating the following three sub-steps for each 235 

node until the specified number of observations within each node is reached. 236 
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- Randomly select a subset of m  variables from all p  variables. 237 

- Find the best split among the m  variables. 238 

- Split the selected node into two resulting nodes. 239 

After B  regression trees are grown from B  sub-datasets, an ensemble of these  B  trees 240 

is called a random forest. The random forest makes a prediction for a new observation x  by 241 

using each regression tree bT  in the forest to obtain a prediction  by x  and then averaging B  242 

prediction values from the B  trees: 243 

    
1

1 B

b

b

y x y x e
B 

   (12) 244 

3. Case study subject: The Tamar suspension bridge  245 

The Tamar Suspension Bridge, as shown in Figure 3, is a road bridge connecting 246 

Saltash to Plymouth in southwest England. The original bridge was designed as a 247 

conventional suspension bridge with symmetrical geometry and was first opened in 1961. The 248 

total length is 642 m with  a main span of 335 m and side spans of 114 m and the tower height 249 

is 73 m. Trusses are 4.9 m deep with chords of welded hollow box structures. To meet the 250 

requirement that bridges should be capable of carrying lorries up to 40 tons, the Tamar Bridge 251 

was strengthened and widened in March 1999 and the upgrading was completed in December 252 

2001[42-43]. The upgrading included replacing the original composite main deck by a three-253 

lane orthotropic steel deck, adding single lane cantilevers at each side of the truss and 254 

installing sixteen new cables acting as additional stays to carry the additional dead load of 255 

new cantilever lanes and associated temporary works. Figure 2 shows the layout of one of the 256 

truss sections with the main orthotropic deck and two cantilever lanes. 257 

Many types of sensors were installed during and subsequent to the strengthening and 258 

widening to monitor the behavior of the bridge [44]. They included anemometers, 259 
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displacement sensors, thermometers, load cells and accelerometers.  Most recently, a robotic 260 

total station was added to monitor the deflection of the bridge deck and a pair of 261 

extensometers installed to track relative movement across the single expansion joint located 262 

around the Saltash Tower [45]. Measurement data have been collected continuously since 263 

February 2007. 264 

These data used in this study include air temperature, wind velocity, the measured 265 

natural frequencies of the bridge and the number of vehicles crossing the bridge every hour.  266 

Vehicle crossing data were available from the bridge toll reports, temperature and wind values 267 

are 30-minute averages of data sampled at either 1Hz from four thermistors on the cable and 268 

deck and an anemometer close to midspan, while frequencies are derived from modal analysis 269 

of 64-Hz sampled acceleration signals from a pair of accelerometers located near mid span. 270 

Locations of these sensors are shown in Figure 3. The covariance-driven stochastic subspace 271 

identification (SSI-COV) procedure operated automatically on the acceleration data after 8-272 

fold decimation, reporting frequency and damping estimates at 30 minute intervals. 273 

Figure 6 shows the time history of air temperature for three years, including daily and 274 

seasonal temperature variations.  The temperature ranges from -5 °C to 25 °C between winter 275 

and summer. The first five natural frequencies of the bridge are summarized in Table 1. 276 

4. Results 277 

The five regression methodologies presented in the previous section are applied to 278 

predict the natural frequency variation of the Tamar Bridge based on environmental factors as 279 

well as traffic loading. The prediction is performed for each natural frequency separately. The 280 

measurement data taken from July 2007 to January 2010 on the Tamar Bridge are divided into 281 

two non-overlapping and independent data sets: a training set of 70% and a test set of 30%.  282 

While the training set (from July 2007 to May 2009) is used for regression analysis to predict 283 
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natural frequencies, the test set is used for assessing prediction accuracy (from June 2009 to 284 

January 2010). 285 

4.1. Multiple linear regression 286 

The relationship between natural frequency responses and air temperature, wind and 287 

traffic loading are first formulated for each frequency using the least square method.  Figure 7 288 

shows the prediction of the 10-day time histories (from 20 to 30 July 2009) of the third 289 

frequency that is compared with the measured frequency in the test phase.  This figure 290 

indicates that the predicted frequency is unable to capture the high variation in the natural 291 

frequency.  Table 2 presents the mean square error (MSE) values in the training and test sets, 292 

where the error is the difference between the measured frequency value and its corresponding 293 

predicted value.  For frequency 1 and 3, MSE values in the training set are somewhat larger 294 

than those in the test set.  This is because there are more outliers in the training data than in 295 

the test set. 296 

4.2. Artificial neural networks 297 

The optimal number of hidden nodes in the hidden layer is determined so that the 298 

validation error reaches the minimum value. To do this, a set of neural networks with respect 299 

to the increasing number of hidden nodes from 1 to 50 are trained using training data. The 300 

number of hidden nodes of the neural network that gives the minimum error is taken as the 301 

optimal number. 302 

Table 3 presents the optimal numbers of hidden nodes for five natural frequencies, 303 

together with MSE values of the training set and the test set.  The optimal number of hidden 304 

nodes for five frequencies ranges from 10 to 33 nodes. These values are close to the optimal 305 

value (19 hidden nodes) for the first natural frequency of the Ting Kau cable-stayed bridge 306 

[46].  Figure 8 shows the predicted natural frequency along with the measured frequency.  307 

Comparing Figure 7 and Figure 8  indicates that an artificial neural network achieves a better 308 
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prediction value than multiple linear regression. Comparing the prediction capability of ANN 309 

with other methods is further discussed in Section 4.6. 310 

4.3. Support vector regression 311 

Table 4 presents the optimal values of   and   that give the best performance (lowest 312 

MSE) of SVR for five natural frequencies. The corresponding MSEs are also listed in this 313 

table.  Comparing the MSE values in Table 4 with Table 2 and Table 3 indicates that the SVR 314 

method has a better performance than the MLR and ANN methods in both the training set and 315 

the test set. For example, the prediction error (in the test set) for frequency 5 using SVR is 316 

reduced by 20% when compared with the prediction error using MLR. Figure 9 shows the 317 

predicted and measured time histories of frequency 3 from July 20 to 30, 2009. It is shown 318 

that the predicted frequencies closely match the measured ones. 319 

4.4. Regression tree 320 

Figure 10 shows the mean squared error with respect to the increasing number of 321 

terminal nodes (i.e. tree size) of the pruned tree for the first natural frequency.  The optimal 322 

tree size (i.e. the point where increasing tree size only leads to minor decrease of MSE) for 323 

this frequency is composed of 31 terminal nodes.  The optimal tree sizes for the second and 324 

third frequencies are 44 and 35 terminal nodes respectively (Table 5). It is observed that the 325 

higher frequency requires more terminal nodes, leading to a larger tree size, i.e. higher tree 326 

complexity.  Table 5 also presents the mean squared errors in the training and test sets.  The 327 

prediction of the R_Tree method is better than that of the ANN and MLR methods but it is not 328 

as good as that of the SVR method. 329 

 Figure 11 shows the 10-day time histories of measured and predicted frequencies from 330 

July 20 to July 30, 2009.  For both sets, the predicted frequency time history reasonably 331 

matches the measured one.  Flatness exists at some peaks of the predicted time history.  This 332 
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is because the observations at the peaks fall into the same groups where the predicted 333 

responses are equal to the mean of measured responses within the corresponding group.   334 

4.5. Random forest 335 

When applying the random forest method for regression analysis, three parameters need 336 

to be determined: (i) the sufficient number B  of trees, (ii) the optimal number of observations 337 

in each terminal node and (iii) the number m  of input variables randomly chosen as 338 

candidates for splitting at each node. For the Tamar Bridge, there are three input variables (i.e. 339 

3p  )  including temperature, wind and traffic. For this case study, to reduce the correlation 340 

between regression tress, the number of input variables chosen for splitting at each node is 2 341 

(i.e. 2m  ). 342 

Figure 12 shows that when the number of trees increases, the mean squared error 343 

computed from the validation set decreases.  The prediction is stable at about 100 trees for 344 

both cases of 1 and 50 observations in each terminal node. It is seen that the tree with 50 345 

observations in terminal nodes performs better than that with only one observation in terminal 346 

nodes. This is attributable to the over-fitting situation when growing a tree to its maximum 347 

size (i.e. one observation in terminal nodes). 348 

Figure 13 shows the change in the normalised mean squared error with respect to the 349 

increase in the number of observations in terminal nodes for 5 frequencies. For each 350 

frequency, the normalised MSE is calculated by dividing the MSE by the difference between 351 

maximum and minimum MSE. When the number of observations in terminal nodes starts 352 

increasing, initially the normalised MSE of all three frequencies drops dramatically to a 353 

minimum and then it increases gradually. The optimal number of observations in terminal 354 

nodes ranges from 10 to 50 observations.  Table 6 presents the optimal number of 355 

observations for each frequency together with its mean squared errors computed from the 356 

training set and the test set.  The results show that the random forest method has the smallest 357 
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errors as compared with those from the previous four methods. Figure 14 compares the 358 

predicted natural frequency with the measured frequency.  The predicted frequency closely 359 

matches the measured one. 360 

4.6. Performance comparisons and discussions 361 

In order to find a suitable method to predict the natural frequency responses from 362 

environmental measurement data for a suspension bridge, the prediction capability of five 363 

regression methods are compared.  The result of a regression method can have a very good fit 364 

to the training data; however, it may poorly predict the response for a new observation. Thus, 365 

the prediction capability of these methods is evaluated through prediction error that is defined 366 

as the mean squared error from the test set, with a smaller prediction error indicating a better 367 

prediction capability. When comparing the prediction error of the five regression methods 368 

from Table 2 to Table 6, it can be seen that the four nonlinear regression methods (ANNs, 369 

SVR, R_Tree and RF) predict frequencies more accurately than the MLR method. Table 7 370 

presents the reduction in the prediction error for these methods when using the prediction 371 

error of the MLR method as a basis.  For frequency 5, SVR and RF can reduce the prediction 372 

error up to 20% when compared with MLR.  The good performances of SVR and RF indicate 373 

the possibility of existence of non-linear correlations between natural frequency responses and 374 

environmental factors as well as traffic loading for the Tamar Suspension Bridge.  In addition, 375 

comparing Figure 11 and Figure 14 demonstrates that RF employing multiple trees, which are 376 

grown in a random way, can lead to better predictions than the R_Tree method that employs a 377 

single tree.  RF is able to capture the high variations at peaks of frequency time histories. 378 

The performance of SVR and RF are further assessed through a normality test [47]. 379 

From a statistical point of view the error, which is the difference between the predicted value 380 

and the corresponding measured frequency value, complies with a normal distribution with 381 

zero mean [32].  Figure 15 compares the observed probability density functions of the error 382 
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with the corresponding theoretical curves of the normal distribution obtained using the mean 383 

and standard deviation values computed from error values. The figure shows the observed 384 

probability distribution of the error for SVR and RF methods is in good agreement with a 385 

normal distribution with zero mean. 386 

SVR and RF are used to define the confidence intervals around the predicted natural 387 

frequencies for a new observation. It is found that the error in the training data for SVR and 388 

RF also have a normal distribution with zero mean. Thus, the confidence interval is defined 389 

based on the error variance of the training data. Figure 16 shows the identified and predicted 390 

natural frequencies for RF between July 20 and July 30 (2009), together with the 95% 391 

confidence interval for the second natural frequency.  For the test set, the ratio of the data that 392 

falls within the 95% confidence level to the full set of the data is referred to as the success 393 

rate.  For SVR, the success rates for frequencies 1 to 5 are 98%, 91%, 98%, 94% and 91%, 394 

respectively.  The corresponding success rates for RF are 98%, 91%, 98%, 94% and 89%. 395 

These high success rates indicate that the variations in bridge natural frequencies can be 396 

accounted for by measuring temperature, wind and traffic loading.  These rates also 397 

demonstrate the consistency of continuously monitored data from 2007 to 2010, thereby 398 

establishing a baseline data for continuous health monitoring of the bridge.  In addition, the 399 

success rate can be used as a damage-detection index.  If the success rates for future natural 400 

frequencies change, it is likely that the bridge has experienced some kind of structural change. 401 

5. Effects of environmental factors and traffic loading on natural frequencies of the 402 

bridge 403 

The changes in bridge natural frequencies are adequately accounted for by three factors: 404 

temperature, wind and traffic loading.  This study identifies the degree to which each factor 405 

has an effect on the frequency change.  Simultaneous effects of these factors on the first five 406 

natural frequency responses are evaluated.  This is carried out by using the measure of relative 407 
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importance of input variables in regression analysis.  The measure of relative importance 408 

indicates the variables that are highly related to the response for interpretation purposes. 409 

5.1. Evaluation of effects using relative importance metrics of the multiple linear regression 410 

method 411 

Multiple linear regression can be used to evaluate the contribution of an individual input 412 

variable  1,..,jx j p  to the prediction of a response y .  The contribution of each variable is 413 

compared with that of other variables using a metric of so-called relative importance.  Several 414 

relative importance metrics have been proposed to assess the amount of variation in the 415 

response that is explained by each individual variable [48-49].  In this study, since the 416 

correlation between input variables is negligible, the relative importance of each individual 417 

variable is defined as the squared correlation coefficient of an input variable jx  with the 418 

response y . 419 

Figure 17 shows the relative importance of temperature, wind and traffic loading using 420 

MLR for the first five natural frequencies of the bridge. The effects of temperature, wind and 421 

traffic loading on the first frequency are 8%, 18% and 74%. Such effects correspond to 34%, 422 

10% and 56% for the second frequency. They are 28%, 10% and 62% for the third frequency 423 

and 22%, 10% and 68% for the fifth frequency. Except for the fourth frequency (i.e. 70%, 424 

21% and 9%), based on relative importance metrics defined using MLR, traffic loading is the 425 

main factor that affects the natural frequencies. 426 

5.2. Evaluation of effects using relative importance metrics of the random forest method 427 

The random forest method has improved the prediction accuracy in comparison to other 428 

prediction methods.  Besides, RF also evaluates the relative importance of variables in a 429 

dataset in order to measure the prediction strength of each variable.  430 

As mentioned in Section 2.5, approximately 63% of the observations in the original 431 

training set are used for each sub-dataset on which to grow each individual tree. The non-432 
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chosen observations (about 37%) are utilized as validation observations for that tree. The 433 

computation of the importance of an input variable jx  is carried out one tree at a time. First, 434 

when the b
th

 tree bT  is grown, the validation observations are then used to determine the mean 435 

squared error from the validation data bMSE . Next, the values of variable jx  in the validation 436 

data are randomly permutated while leaving the values of all other variables unchanged. Then, 437 

the permuted observations are used in the tree bT  and the mean squared error from the 438 

permuted validation data  b jMSE x  is computed. If jx  is important, permuting its observed 439 

values will reduce the prediction accuracy of each observed value in the validation data. Thus, 440 

 b jMSE x  from the permuted validation data is larger than bMSE  from the un-permuted 441 

data. 442 

Finally, a measure of the importance of the j
th

 variable jx  is obtained by averaging the 443 

mean squared errors from the permuted validation data over all of the trees: 444 

     
1

1 B

j b j b

b

imp x MSE x MSE
B 

  . (13) 445 

The relative importance of each variable is computed by normalizing its importance to 446 

the summation of the importance of all variables.  The relative importance metrics are 447 

expressed in percentage.  Figure 18 shows the relative importance of temperature, wind and 448 

traffic loading on the natural frequency responses of the bridge.  There is a significant effect 449 

of traffic loading on the frequency.  Figure 18 also indicates that while the effect of traffic 450 

loading decreases from frequencies 1 to 5, the effect of temperature increases respectively.  451 

Both effects are almost similar for frequency 5 and the effect of temperature is more dominant 452 

than that of traffic loading for frequency 4. 453 
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5.3. Discussion 454 

Comparing Figure 17 and Figure 18 shows that although variable importance metrics 455 

are defined in two different ways using multiple linear regression and random forest, the 456 

importance rankings for temperature, wind and traffic are identical.  For the first frequencies, 457 

the averaged percentages of the effects taken from both variable importance metrics are about 458 

8%, 17% and 75% respectively.  Such percentages correspond to 26%, 15% and 59% for the 459 

second frequency, 24%, 9% and 66% for the third frequency, 60%, 22% and 18% for the 460 

fourth frequency and 31%, 11% and 58% for the fifth frequency. A possible reason for the 461 

effect of traffic loading is that there is a significant contribution of the traffic mass to the total 462 

mass of the truss-span suspension bridge. Despite the strong influence on other frequencies, 463 

the relative effect of the traffic on the fourth frequency is quite small. This could be due to the 464 

fact that the fourth frequency refers to a torsional vibration mode while other frequencies refer 465 

to vertical and lateral modes.    466 

As for temperature effects, the influence on the variation of the fourth and fifth 467 

frequencies is larger than that of the other frequencies. This could be caused by the non-linear 468 

temperature distribution due to solar radiation. In general, for successful data interpretation 469 

when monitoring natural frequency responses of suspension bridges, the effects of both traffic 470 

loading and temperature need to be taken into account. 471 

6. Conclusions 472 

This paper compares five methodologies to predict the natural frequency responses of a 473 

suspension bridge using measurements of temperature, wind and traffic loading. The 474 

following conclusions are drawn 475 

 Random forest and support vector regression are the most appropriate methods for 476 

predicting the natural frequencies of a suspension bridge using measurement data of 477 

temperature, wind and traffic loading. This may be due to non-linear behavior. 478 
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 The relative importance of input variables of regression analysis is a useful metric to 479 

evaluate the simultaneous effects of environmental factors and traffic loading on the 480 

long-term natural frequency responses of a bridge. 481 

 Traffic loading and temperature are the most influential parameters on natural frequencies 482 

of the suspension bridge studied.  Obtaining these parameters should be a priority when 483 

using natural frequency changes to detect damage. 484 
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Figure 1. (a) The partitioning of a two-dimensional feature space into four regions, R1-R4; (b) a 

decision tree with three splits and four terminal nodes corresponding to the four partitions. 
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Figure 2. A layout of the random forest analysis method. 

Training dataset L with p input variables 

Step 1 

Generate sub-datasets, Lb (b=1 – B), by randomly copying 
observations from the training dataset L 

Step 2 

Grow a regression tree Tb by recursively repeating the following 
three sub-steps until the minimum number of observations of each 
node is reached 

- Select m variables randomly from the p variables (m ≤ p) 

- Find the best split point among the m variables 

- Split the node of interest into two nodes 

 

Make a prediction for a new observation by averaging B prediction 
values using regression trees, Tb (b=1 – B), see Equation (12) 
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Figure 4 The truss section with the main orthotropic deck and two cantilever lanes 

 

Figure 3.  The Tamar Suspension Bridge 
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Figure 5 Sensor locations (circle for accelerometers, square for thermistors and triangle for anemometer) 
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Figure 6. Time history of temperature measured from 2007 to 2010 
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Figure 7. Measured and predicted natural frequencies between July 20 and July 30, 2009 using the 

multiple linear regression method. 
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Figure 8. Measured and predicted natural frequencies between July 20 and July 30, 2009 using the 

artificial neural network method. 
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Figure 10. Mean squared errors versus the number of terminal nodes of a tree. 
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Figure 9. Measured and predicted natural frequencies between July 20 and July 30, 2009 using the 

support vector regression method. 
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Figure 12. Mean squared errors versus number of trees for two cases of 1 and 50 observations in 

terminal nodes. 

3.0

4.0

5.0

6.0

7.0

8.0

0 30 60 90 120

M
ea

n
 s

q
u

ar
ed

 e
rr

o
r 

(x
1

.0
E-

6
)

Number of trees

1 50 
Number of observations in terminal nodes

 

Figure 11. Measured and predicted natural frequencies between July 20 and July 30, 2009 using 

the regression tree method. 
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Figure 13. Mean squared errors versus the number of observations in a terminal node 
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Figure 14. Measured and predicted natural frequencies between July 20 and July 30, 2009 using 

the random forest method 
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Figure 15. Probability distribution of errors for (a) support vector regression and (b) random forest 
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635 

Figure 16. Measured and predicted natural frequencies (20 – 30 July, 2009) together with the 95% 

confidence interval using (a) support vector regression and (b) random forest  
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639 

Figure 18. Evaluating simultaneous effects of temperature, wind, and traffic loading on the modal 

frequency responses through the relative importance of variables using the RF method. 
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Figure 17. Evaluating simultaneous effects of temperature, wind, and traffic loading on the natural 

frequency responses through the relative importance of variables using the MLR method. 
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 640 

Table 1. Parameters of measured natural frequencies of the bridge. 641 

Mode number  

Average 

frequency  

(Hz) 

Frequency range (Hz) Maximum 

difference 

(%) 

Standard 

deviation  

(Hz) minimum maximum 

1 0.39 0.38 0.41 8 0.00 

2 0.47 0.41 0.57 34 0.01 

3 0.60 0.58 0.61 5 0.01 

4 0.69 0.67 0.70 4 0.00 

5 0.73 0.71 0.75 6 0.01 

 642 

 643 

 644 

Table 2. Results of the MLR method for the first five modes of the bridge 645 

Frequency 

number 

Mean squared error (×10
-6

) 

Training set Test set 

1 4.0 2.8 

2 84.4 99.1 

3 20.5 13.7 

4 11.7 11.6 

5 18.5 23.1 

 646 

 647 

Table 3. Results of the ANN method for the first five modes of the bridge 648 

Frequency number 
Number of hidden 

nodes 

Mean squared error (×10
-6

) 

Training set Test set 

1 11 3.9 2.7 

2 10 87.6 95.7 

3 21 22.8 12.3 

4 33 15.7 18.6 

5 21 19.5 20.0 

 649 

 650 

Table 4. Results of the SVR method for the first five modes of the bridge 651 

Frequency number     
Mean squared error (×10

-6
) 

Training set Test set 

1 20 0.8 3.7 2.5 

2 9 0.17 69.5 96.7 

3 20 0.56 16.6 11.8 

4 12 0.28 9.4 10.6 

5 14 0.36 15.7 18.6 

 652 

 653 

654 
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 655 

Table 5. Results of the R_Tree method for the first five modes of the bridge 656 

Frequency number 
Number of terminal 

nodes 

Mean squared error (×10
-6

) 

Training set Test set 

1 31 3.7 2.6 

2 44 74.1 98.1 

3 35 17.1 11.7 

4 54 9.7 10.8 

5 78 16.4 19.4 

 657 

 658 

 659 

Table 6. Results of the RF method for the first five modes of the bridge 660 

Frequency number 

The optimal number of 

observations in 

terminal nodes 

Mean squared error (×10
-6

) 

Training set Test set 

1 45 3.5 2.5 

2 30 68.8 96.7 

3 45 15.2 11.4 

4 25 9.1 10.1 

5 15 13.6 18.4 

 661 

 662 

 663 

Table 7. Reduction in prediction errors of the ANN, SVR, R_Tree and RF methods when using the prediction 664 
error of the MLR method as a basis. 665 

 666 

Frequency number 
Error reduction (%) 

ANN* SVR R_Tree RF 

1 6.5 10.8 9.8 12.9 

2 3 2.4 1.1 2.4 

3 10.4 14.2 14.9 17.0 

4 8.6 8.5 6.9 12.9 

5 13.5 19.4 15.8 20.1 

(*) The error reduction for ANN when compared with the error of MLR, MLRMSE , is equal to 667 

  100 /ANN MLR MLRMSE MSE MSE  ; the same formulation is also applied for SVR, R_Tree and 668 

RF. 669 


