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Learning Context on a Humanoid Robot
using Incremental Latent Dirichlet Allocation

Hande Çelikkanat, Güner Orhan, Nicolas Pugeault, Frank Guerin, Erol Şahin, and Sinan Kalkan

Abstract—In this article, we formalize and model context
in terms of a set of concepts grounded in the sensorimotor
interactions of a robot. The concepts are modeled as a web
using Markov Random Field, inspired from the concept
web hypothesis for representing concepts in humans. On
this concept web, we treat context as a latent variable of
Latent Dirichlet Allocation (LDA), which is a widely-used
method in computational linguistics for modeling topics
in texts. We extend the standard LDA method in order
to make it incremental so that (i) it does not re-learn
everything from scratch given new interactions (i.e., it is
online) and (ii) it can discover and add a new context into
its model when necessary. We demonstrate on the iCub
platform that, partly owing to modeling context on top
of the concept web, our approach is adaptive, online and
robust: It is adaptive and online since it can learn and
discover a new context from new interactions. It is robust
since it is not affected by irrelevant stimuli and it can
discover contexts after a few interactions only. Moreover,
we show how to use the context learned in such a model
for two important tasks: object recognition and planning.

Index Terms—Context, Situated Concepts, Latent
Dirichlet Allocation

I. INTRODUCTION

We tackle the problem of using contextual information
to improve the performance of a cognitive robot, specif-
ically in perception and planning. We define context as
the totality of the information characterizing the situa-
tion of a cognitive system; e.g., it can include objects,
persons, places, and temporally extended information
related to ongoing tasks, but also information not directly
related to these tasks [1].
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There is ample evidence that natural cognitive systems
modulate their response to stimuli depending on a wide
range of other, seemingly irrelevant stimuli (context).
Yeh and Barsalou [2] demonstrated in a series of experi-
ments that human subjects perform better at a variety of
cognitive tasks when taking context into account. This
is because context can promote relevant information and
behaviors, while suppressing irrelevant ones, based on
statistical likelihood of various objects and behaviors
in a certain setting. A concept such as a chair does
not exist in isolation, but is associated in memory
with other concepts that also occurred in the concrete
situations where the concept was previously encountered
by the system; e.g., the chair’s location, office or living
room, but also the actions performed with the chair,
such as reclining. These connections between concepts
in memory then allow the system, when detecting a
concept, to draw inferences about connected concepts;
this is illustrated in Figure 1. The activation of a ‘chair’
concept promotes related objects such as ‘table’ and
‘lamp’, and draws inferences on their plausible position.
Furthermore, a ‘living room’ concept will promote chair
properties such as ‘large’ and ‘soft’, rather than ‘small’
and ‘hard’ (contrary to, e.g., a ‘classroom’ concept).
Similarly, actions usually associated with the active
concepts, such as ‘sitting’ in our example, are promoted,
whereas unlikely actions (‘lifting’) are suppressed. In
sum, what forms context depends on the concept of
interest, and consists of all other concepts present at
the same time. Through experience, a cognitive system
forms an interconnected network of related concepts and
situations that allows efficient filtering of context and
inference.

In this article, motivated by the concept-based nature
of human cognition, we formulate context to be the set
of active concepts in the scene, rather than relating it
directly to raw sensorimotor data. For this, we employ
a widely-used topic model in computational linguistics,
called Latent Dirichlet Allocation (LDA), and apply it
to the active concepts in the scene. For modeling the
concepts, we use a concept-web model that we developed
using Markov Random Fields in our previous work [3].
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Fig. 1: (a) Existing cognitive systems have concepts which have links to perceptual features and motor actions which were
programmed by a designer or trained in context-free environments. (b) The concept web model that we developed in our previous
study [3]: A densely connected concept web connecting perception, action and language; however, there is no notion of context
in this model. (c) We propose a system that learns in context the links between concepts and sensorimotor primitives, based on
the statistics of its interactions in real-life environments. For clarity, only a few links and concepts are shown. [Sub-figures (a)
and (c) adapted from [1]]

We demonstrate how context can be learned and used by
such a model for several tasks by a humanoid robot.

A. Context in Cognitive Science and Robotics

It is a matter of consensus across fields that context
processing is an essential part of embodied cognition
(e.g., psychology [2], language [4]–[6], AI [7], robotics
[8], [9] and computer vision [10], [11]). Schank and
Abelson [7] argued that reasoning about situations in
daily life relies on “scripts” that inform reasoners about
the prototypical features of these situations. A restaurant,
for example, tends to come with a menu, dishes, a
waiter, a chef, and so on. This work has gone on to
influence today’s formal ontologies. Probably the earliest
research on context focused on linguistic phenomena,
studying how the understanding of an expression (e.g., a
personal pronoun like “it”) is affected by the rest of the
sentence or text [5]. Later research applied these ideas to
other aspects of communication, including speech (e.g.,
pitch accent) and body language (e.g., [12]). Even more
drastically, the notion of a context has been extended to
all symbolic systems (e.g., [13]). Perhaps most notably,
McCarthy [9] proposed the rectification of context in
classical (logical) AI, arguing that Artificial Intelligence
needs to put the notion of a context centre stage. In
McCarthy’s view, intelligent machines “must construct
or choose a limited context containing a suitable theory
whose predicates and functions connect to the machine’s
inputs and outputs in an appropriate way” [14]. This
work gave rise to a wave of theoretical work focusing
on issues like the problem of “lifting” information about
one knowledge base to another.

Work in all these traditions continues to inspire Cog-
nitive Science and AI. But times have changed: the rise
of embodied cognition theories in the 90’s, for instance,
has offered a different perspective on context, based
on a perceptual and action-based rather than symbolic
approach [8]. This perceptual perspective is particularly
relevant for robotics, where contexts typically need
to be acquired from perception (i.e., they cannot be
programmed in advance). Barsalou, for example, has
advocated the necessity for concepts to be situated [2],
[15]; in other words, for an abstract concept to be related
to concrete contexts. Coventry et al. [6] studied the
difference between geometric and functional contexts in
the use of spatial prepositions (“over” vs. “above”) and
of linguistic quantifiers (“few” vs. “many” vs. “several”).

One striking example concerns work on affordances.
Until some years ago, behavioral studies on affordances
tended to highlight the fact that affordances are automat-
ically activated, independently from the kind of task and
context. This was shown through compatibility effects in
which, for example, size resulted as a relevant dimension
even if the task did not require subjects to judge objects
on the basis of their size but, instead, of their category
(e.g., [16]). Recent evidence has questioned this view of
affordances, showing that the activation of affordances
is modulated by the physical and by the social context.
A variety of studies have shown that the embedding in
a context given by a specific scene (e.g., [17]–[19]) or
by the presence of other objects influences affordances
activation (e.g., [20]–[22]).

Robotics has achieved significant success in terms of
both theory and applications in the past five decades [23];
however, research involving context has focused on the
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environmental aspect only, e.g., in scene interpretation
[10], urban search for rescue tasks [24], home security
[25] and elderly people’s living environments [26], ob-
ject recognition in daily activities [27], [28], and trying to
fulfill possibly incomplete natural language instructions
of humans [29].

Of all these works, [27], [29]–[31] stand out for at-
tempting more explicit utilization of contextual informa-
tion. In an attempt to provide a common representation
for multiple agents sharing knowledge, Padovitz et al.
[30] and Mastrogiovanni et al. [31] define context as
explicit and crisp conjunction rules of a priori known
predicates for each context. However, these representa-
tions are therefore both overly restrictive to conjunctive
phrases, and also naive in the sense that the programmer
is assumed to know how to encode each context rule in
conjunctions. The assumption of existing and perfectly
known conjunctive rules for each context is indeed a
strong one, and would be over-sensitive, for instance, to
the failures in the sensing of any one of the necessary
premises, or to the emergence of unpredicted contexts.
Indeed, the main emphasis in both works is more on
providing a common ground for facilitating information
sharing among multiple agents, rather than elaborating
on contextual representation. Anand et al. [27] define
and use a more restricted notion of spatial context,
limited to the spatial relationships between canonical
placements of objects in the environment: A computer
is usually found on-top-of a table, and this information
can be used facilitating object search and labeling (see
[18], [19] for similar behavior in humans). On the other
hand, Misra et al. [29] treat context as multiple-choice
values of the states of known objects in the environment
(i.e., microwave door is closed or open), used afterwards
for completing missing information in natural-language
commands of humans. Given an incomplete command
from a naive human partner, the robot can therefore use
this contextual background to complete missing implied
links to achieve these commands. An example might be,
when commanded to “heap up the milk”, reasoning that
“the milk is currently in the carton, but it needs to be
on the oven, and the oven must be in the on state.”

In computer vision, the notion of context has grown
in prominence over the last decade, both explicitly and
implicitly [10]. Explicitly, the study of visual gist [32]
showed that holistic encodings of the visual input could
carry a large amount of information, allowing scene
identification [32], [33], urban scene detection [34], and
autonomous navigation [35], as well as action recog-
nition [36], object categorization [37], and detection
[11]. Implicitly, the now popular data-driven, machine

learning-based approach to vision led to algorithms that
efficiently extract all predictive information from the
visual data, making heavy use of context to reach high
performance (see [38] for a criticism).

A promising approach for developing an explicit
model of context seems to be Latent Dirichlet Allocation
(LDA), a hidden topic model developed for categorizing
documents of large text corpora [39]. As a robust,
unsupervised Bayesian method, it has been utilized as
well in a variety of applications, ranging from fraud
detection [40] to the identification of functional regula-
tory networks of miRNA-mRNAs [41]. Since the method
provides the statistical tools for discovering hidden top-
ics in unsupervised data, we propose that it can also
be used for modeling context. In fact, ours is not the
first attempt to use LDA formulation in robotics: It has
been utilized successfully for object categorization from
multi-modal sensory data [42]–[44], and for autonomous
drive annotation [45]. However, our work is the first to
use LDA for modeling context in robotics.

B. This Study

We see in existing works various piecemeal efforts to
tackle particular facets of context in specific domains.
In contrast, following the intuitions of [2], we argue that
a principled approach is needed to learn, represent and
process context in a developing cognitive system.

We study how we can equip a robot with the ability
of detecting and using context, e.g., in object recognition
and planning as proof of concept. The novelty and
contributions of our approach can be summarized as:
• Formalization of context on a robot using Latent

Dirichlet Allocation (LDA). To the best of our
knowledge, this is the first time that context is
tackled systematically, as a separate entity but also
in direct relation with other conceptual entities, in
a robotics scenario. In contrast to the attempts of
Anand et al. [27] and Misra et al. [29] for using
contextual information, which do not introduce a
general model of context, resorting to defining it in
terms of predefined geometric relations or object-
part states, we formalize context to develop an
adaptive system in which contextual information
can be extracted, represented, and utilized explicitly.

• We provide an incremental extension of LDA so
that (i) it does not re-learn everything from scratch
given new sensorimotor interactions (i.e., it is on-
line) and (ii) it can discover and add a new context
into its representations when necessary.

• Finally, motivated by our findings of the compu-
tational advantages in [3], we propose applying
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Fig. 2: The setup used in the experiments. iCub senses the
environment with tactile sensors, a microphone and a Kinect.

LDA on a concept web representation of the scene,
instead of its raw features directly. We subsequently
demonstrate how learning context from high-level
concepts, instead of raw features, is easier and
achieves higher performance.

The current article extends an earlier version of our
work [1], where preliminary results on integrating con-
text were presented using the standard LDA with an
ad hoc concept web. The current article differs in the
following aspects: (i) The LDA is extended in order to
make it online and incremental. (ii) The ad hoc concept
web is replaced with a formally developed concept-web
modeled using Markov Random Fields. (iii) A more
extensive evaluation of the system is presented.

The current article uses the concept web model that
we developed in [3]. This previous work introduced a
concept web model and showed why it is important and
useful. However, the current work goes beyond that and
integrates context on top of this model, to demonstrate
how context can be learned and used by a robot.

II. EXPERIMENTAL SETUP

We conduct our experiments using the iCub humanoid
robot platform [46] (Figure 2). iCub has tactile sensors
in each fingertip to detect the degree of grasping of
an object and collect haptic information about the its
hardness. Joint encoder values are used for collecting
the proprioceptive information about the hand and the
arm status. A Kinect device is used to get 3D visual
information from the environment. iCub also has an
external microphone to record the sound of objects.

A. Object Set

We have an object set O of 60 objects, arbitrarily
divided into a training set of 45 and a test set of 15
objects. The training objects are labeled via supervision
as belonging to one of the 6 noun categories, {box, ball,

cylinder, cup, plate, tool} (Figure 3), and one of the two
adjectives in each 5 dichotomic adjective pair, {hard ×
soft, noisy × silent, tall × short, thin × thick, round
× edgy} (Figure 4). The mapping between nouns and
adjectives is not 1-to-1; e.g., a box can be soft or hard,
silent or noisy etc. Table I depicts these co-occurrences.

B. Behaviors

We have a repertoire of 13 behaviors, {grasp, push
left, push right, push forward, push backward, move
left, move right, move forward, move backward, drop,
throw, knock down, shake}, which are performed via
hard-coded scripts on perceived objects with variable
positions and poses. To ensure realism, some objects
are (assumed to be) fragile and certain behaviors are
not applied on them: We prevent iCub from dropping,
shaking, throwing, knocking and pushing plates and cups.
We also refrain from pushing balls, since they tend to
roll down and disappear from the table. Table II shows
the allowed behaviors for each noun category.

C. Features and Data Collection

iCub interacts with each object o ∈ O as follows:

1. The object o is placed on the table to an arbitrary
location.

2. iCub “looks” at the object (i.e., takes a 3D snapshot
using the Kinect sensor) and extracts the initial
visual features ev .

3. For each allowable action on the object (Table II):
3.1. iCub executes the action on the object.
3.2. If the grasp behavior is in progress, haptic (eh),

and proprioceptive (ep) features are collected.
3.3. If the shake behavior is in progress, audio (ea)

features are collected.
3.4. iCub takes a second 3D snapshot and extracts the

final visual features e′v .
3.5. The object is placed to a different initial position

(to allow possible variability) by a human super-
visor, before proceeding with the next action.

Table III lists the features used by iCub in this study.
The first 6 visual features are basic position information
and three dimensional properties of the object, and the
next 40 features are the zenith and azimuth normal
vectors of each point on the object. In addition to the
normal information, we use histogram of shape index
values. Shape index [47] is essentially a representation
of the local surface type, calculated from the maximum
and minimum principal curvatures (Q1,Q2, respectively)
of the point as follows: Q1+Q2

Q1−Q2
.
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Fig. 3: The objects used in the experiments, divided to each noun category.

Fig. 4: The objects for each adjective category.

TABLE I: The co-occurrences of noun and adjective labels
for the dataset. Numbers denote the number of objects (out of
60) belonging to both categories.

Hard Soft Noisy Silent Tall Short Thin Thick Round Edgy
Box 2 14 2 14 0 16 0 16 0 16
Ball 3 7 7 3 0 10 1 9 10 0
Cylinder 14 0 5 9 10 4 9 5 14 0
Cup 11 0 1 10 0 11 0 11 11 0
Tool 5 0 5 0 5 0 0 5 5 0
Plate 4 0 0 4 4 0 0 4 4 0

The following 13 are auditory features (ea) used to
determine whether an object produces sound when in-
teracted with. We use MFCC (Mel-Frequency Cepstrum
Coefficients) on the raw audio data, yielding a set of
13-feature vectors. As features, we use the differences
between the maximum and minimum values of each
vector.

Haptic and proprioceptive features (eh and ep) are
obtained from the index finger of iCub only. They are
collected through the grasping action, and encode the
difference between initial and final sensor readings for
haptic/proprioceptive data, the minimum and maximum
readings, and also the mean, variance, and the standard
deviation values.

The concatenation of these features (ev, ea, eh, ep) is
called an entity feature vector and is denoted by e.
Each object is described by an entity feature vector.
For describing behaviors, we use effect feature vectors,
denoted by f, capturing the effect of a behavior on
an object. They give the difference between the visual
feature of the object before and after a behavior is
applied, obtained by f = e′v − ev . See Figure 5 for an
illustration.

TABLE II: The set of behaviors applicable for each object.
A:Applicable; NA: Not-Applicable

Push Move

Drop Grasp Shake Throw
(Left, Right (Left, Right Knock

Forward, Forward, down
Backward) Backward)

Box A A A A A A A
Ball NA A A A A A A
Cylinder A A A A A A A
Cup NA A NA A NA NA NA
Tool A A A A A A A
Plate NA A NA A NA NA NA

TABLE III: The visual, audio, haptic and proprioceptive
features extracted from the interactions of the robot.

Feature Type Feature Position
Position:(x, y, z) 1-3
Object dimensions:(width, height, depth) 4-6

Visual (ev) Normal zenith histogram bins 7-26
Normal azimuth histogram bins 27-46
Shape index histogram bins 47-66

Audio (ea) 13 bins of MFCC (max - min) 67-79
Change for index finger 80
Min values for index finger 81

Haptic (eh) Max values for index finger 82
Mean for index finger 83
Variance for index finger 84
Standard deviation for index finger 85
Change for index finger 86
Min values for index finger 87

Proprioceptive (ep) Max values for index finger 88
Mean for index finger 89
Variance for index finger 90
Standard deviation for index finger 91

D. Contextual Setting

Our experimental setting is comprised of three con-
texts, Kitchen, Playroom, and Workshop. Some concepts
in our framework occur in certain contexts, such as plates
and cups existing in a Kitchen, balls and boxes occurring
in a Playroom, as so on. Notice that this tendency is
mostly a characteristic of noun concepts, which have
more clear-cut divisions into contexts. On the contrary,
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Fig. 5: Extraction of entity (e) and effect (f) feature vectors.
ev and e′v are the initial and final visual features of the object
before and after a behavior’s execution. f = e′v − ev .

some concepts are so general that they do not have
such clear-cut divisions. This is a characteristic of most
adjective concepts in our setting: Adjectives such a round
or tall are so generic that they are not limited to certain
contexts. Table IV summarizes the prevalent concepts of
the three contexts.

III. A CONCEPT WEB USING MARKOV RANDOM
FIELD

In our system, context is formalized over a set of
concepts that are extracted from the scene, and repre-
sented in a densely-connected web structure, called the
concept web [3]. Since this web is central to our model,
before continuing with the exact formalization and use of
context in the system, we briefly describe the extraction
of relevant concepts from a scene, and the formation of
the concept web. We describe a framework consisting of
three kinds of concepts: Noun concepts N ={box, ball,
cylinder, cup, plate, tool}, adjective concepts A ={hard
× soft, noisy × silent, tall × short, thin × thick, round
× edgy}, and verb concepts V = {grasp, push left, push
right, push forward, push backward, move left, move
right, move forward, move backward, drop, throw, knock
down, shake}.1 Before evaluating each scene in terms of
its context, the robot views and possibly interacts with
the objects, makes initial predictions about the concepts
associated with the scene, and then builds a web of these
concepts to make use of their related semantics.

1Note that “verb concepts” do not have to correspond to the
behavior set in a 1-1 manner: A verb concept can be associated with
multiple behaviors, for instance, provided that all of these behaviors
produce the same effect [48], although this is not the case in this study.

TABLE IV: Used contexts and their prevalent concepts.

Kitchen Playroom Workshop
cup short thin ball edgy silent tool edgy tall
plate hard thick box soft thick cylinder hard thin
round silent round noisy round silent thick

A. Reasoning with Individual Concepts

The initial task of the robot is to predict the individual
concept(s) that are related to an object in its environment.
This mapping of the world from raw features to a concept
can be learned in a variety of manners, e.g., using
Support Vector Machines, k-Nearest Neighbors, Neural
Networks, etc. In this work, we adopt a prototype-based
approach [49], [50] following previous work [48], [51];
however, this choice is not central to the rest of the
article; any method that provides a measure of similarity
to a category from raw features is sufficient for this part.
For a review of alternative representation schemes, the
reader may for instance refer to [52]–[54].

In our framework, we describe the noun (N), adjective
(A) and verb (V) concepts in terms of their prototypes,
which we learn from accordingly labeled interactions
during the training phase (Figure 6(a), see Appendix
for more detail). These prototypes are learned from
the entity feature vectors e and effect feature vectors f
during training, and summarize which features are highly
relevant for the concept (need to be strongly positive,
strongly negative, or close to zero), and which are
irrelevant for the concept. During execution, an incom-
ing instance is compared with the concept taking into
account the concept prototype: The Euclidean distance
D(c, x) between the incoming feature vector x and the
concept prototype of c is calculated by disregarding the
irrelevant features of the concept:

D(c, x) =
1

|Rc \ R?
c |

√ ∑
i∈Rc\R?

c

(xi − µi
c)

2
, (1)

where R?
c is the set of indices that are not relevant

for concept c; xi is the ith dimension of x, and µc is
the prototype of concept c. The complete procedure of
prototype extraction and concept assignment is provided
in Appendix. Interested readers can also refer to [3], [48].

B. From Individual Concepts to a Densely Connected
Web

In [3], we show how concepts can be extracted and
represented in a densely connected web based on Markov
Random Fields (MRF) [55], providing greater robustness
of reasoning than considering concepts in isolation. For
the sake of completeness, we describe the method here
briefly.
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Fig. 7: Visualization of the MRF-based model. Initial predic-
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mance to these are maintained by minimizing the unary poten-
tial functions ψC . Clique potentials are initialized from the co-
occurrence information of the training data, and conformance
to this is maintained by minimizing the clique potentials ψK .

A Markov Random Field is an undirected graph of
random variables, over which inference is often carried
out by a minimization of a predefined energy function.
In the energy function, the consistency of the categories
(i.e., the nodes) with the input (by the “data term” in
MRF) and the consistency between the categories (by
the “smoothness term”) are specified. By minimizing this
energy function, an MRF finds the most likely categories
for an input, satisfying also the regularization constraints
specified in the smoothness term.

In our representation of the concept web as an MRF,
the nodes correspond to concepts, and commonly co-
occurring concepts are connected via edges. With C =
N ∪ A ∪ V being the set of all concepts, the concept
web W is defined as a graph, W = G(C,E), with each

concept c ∈ C being a node in W , and edge εij ∈ E
meaning that concepts ci and cj have co-occurred in the
training set. In other words, the edges between the nodes
(concepts) are learned from the training data, which
is composed of observations of individual objects and
behaviors executed on them.

What happens when a new observation arrives is
depicted with a schematic representation in Figure 7. The
connections from the input to the nodes correspond to the
data term (represented with ψC , unary potentials), and
the connections between the nodes model the smooth-
ness term (represented with ψK , clique potentials). The
energy U(ω), of a given MRF configuration ω, is then:

U(ω) = Udata(ω) + Usmooth(ω)

=
∑
c∈ω

ψc(c) +
∑

K ∈K

ψK (K , ω), (2)

where the first term, i.e., the data term, is a summation
of the unary potentials for each active concept c in
ω, and the second term is the smoothness term, as
a summation of clique potential functions. The unary
potential function denoted by ψC is defined as:

ψC(c) ..= D (c, x) , (3)

with x being the instantaneous observation, D(c, x) its
distance to concept c (Equation 1). The potential function
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Fig. 8: A sample concept web constructed by the iCub. Noun,
adjective, and verb concepts are indicated with red, blue, and
green respectively. Connections between concepts are shown
with gray. Ubigraph 3D visualization library [56] is used for
displaying the graph, presented here as a projection on the 2D
plane. [Taken from [3], best viewed in color]

for cliques, denoted by ψK , is defined as:

ψK(K, ω) ..= VK(xK) ..=
∑

xi∈xK

|val(xi)− E(xi|xK−i)|

(4)
where VK(xK) is defined as an (abused) shorthand nota-
tion for the potential of a clique node consisting of active
variables xK, xi is the ith variable in the clique, xK−i
are the variables in the clique excluding the ith variable,
val(xi) is the current value assignment of the variable
xi, |.| is the absolute value function, E(.) is the expected
value function, and E(xi|xK−i) is the expected value
of the ith variable given the values of the remaining
variables in the clique.

The energy function in Equation 2 must be
minimized to find the most likely configuration
ω∗ = arg minω (U(ω)). We use the Loopy Belief
Propagation (LBP) algorithm [57], [58] designed specif-
ically for cyclic MRFs, for this energy minimization. A
schematic depiction of the complete system is presented
in Figure 6(b), showing the information flow from per-
ception space through a feature-extraction mid-layer, as
well as from language, and action spaces. The finalized
concept web has all the relevant concepts in the active
state (indicated with white color), and connected to
their relevant counterparts in the three spaces. A sample
concept web that is constructed is shown in Figure 8.

IV. MODELING CONTEXT USING INCREMENTAL
LATENT DIRICHLET ALLOCATION

In our framework, context is linked to the set of
concepts that the robot perceives from its immediate
environment. We use Latent Dirichlet Allocation (LDA)
to detect the latent (unobserved) context(s) of the scenes.
Initially, the scene is represented as a concept web
(Section III), which is then used as an input to contextual
analysis. The detected contexts are in turn fed back to
the concept web to guide its reasoning. In this section,
we provide the details of these steps.

A. Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) [39] is a method
for modeling topics of documents in large text cor-
pora. Assuming a document d ∈ D is a set of words
{w1, · · · , wN} drawn from a fixed vocabulary (wi ∈
W, vocabulary size is |W|, |.| denotes set cardinality),
LDA posits a finite mixture over a fixed set of topics
{z1, · · · , zk} (zt ∈ Z, |Z| = K is the topic count). Then,
a document can be described by its probabilities of being
related to each of these topics, P (zt|di). Meanwhile, a
topic is modeled by its probability of producing each
word in the vocabulary, P (wj |zt). LDA tries to infer
these document and topic probability distributions, given
a corpus D.

Being a generative model, LDA assumes that the
corpus had previously been generated by choosing a
Dirichlet prior α, and a K× |W| matrix, called β,
that contains the probabilities of each word given each
topic, i.e., with entries βjk = P (wj |zt). Furthermore, it
assumes that every document d ∈ D had been generated
by first choosing a probability distribution of topics
for this document, θ ∼ Dir(α), followed by, for each
word location n in the document, choosing a topic
zn ∼ Discrete(θ), and eventually a word wn, given the
chosen topic zn and the β matrix denoting P (wn|zn, β).

LDA effectively tries to estimate the unknown α and
β parameters from the given corpus, through which it
is possible to infer any other parameter. This problem,
however, is infamously intractable [39]. There are var-
ious solutions though, including a variational inference
method [39], a collapsed Gibbs sampling solution [59]
and collapsed variational inference approach [60].

The strengths of LDA are two-fold: First, it is a
generative model. There exists other powerful, non-
generative models for topic analysis (for instance, see
[61]), however, being a generative model, LDA can
assign probabilities to documents that have not been
seen before. Second, it allows non-strict memberships of
words to topics: A word may be generated by multiple
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Algorithm 1 Batch Gibbs sampling algorithm [59]. Algorithm
formulation adapted from [62].

initialize ~z = [z1, · · · zN ] randomly from the set {1, 2, · · ·K}
while not converged do

choose a word index j from {1, 2, · · ·N}
sample zj according to P (zj |~z\j , ~wN ) (Equation 5)

end while

topics, and according to which document it occurs in,
considering the topic probability distribution of the doc-
ument, a different topic might be assigned to the different
occurrences of the word.

Batch Gibbs Sampling Approach for Solving LDA
Introduced by Griffiths and Steyvers [59], the Batch
Gibbs Sampling Approach (Algorithm 1) is a “collapsed”
method for solving the LDA problem, because it inte-
grates out the Dirichlet parameters and instead directly
samples the topic variables ~z = [z1, · · · , zN ] for every
word position n ∈ {1, · · · , N} . The algorithm starts
by randomly assigning ~z, and then until convergence
samples the topic assignment zj for the word wj in
document d, according to the instantaneous state:

P (zj |~z\j , ~wN ) ∝
n
wj

zj ,\j + ξ

nzj ,\j + |W|ξ
×
ndzj ,\j + α

Nd
\j +Kα

, (5)

where (.)\j notation stands for all items excluding the
currently considered index j, therefore letting ~z\j : the
vector of all topics except zj , ~wN : the vector of all
words, nwj

zj ,\j : the number of times that word wj has
been assigned to topic zj except at index j, nzj ,\j : the
number of times that any word has been assigned to
topic zj except at index j, ndzj ,\j : the number of times
that any word in document d has been assigned to topic
zj except at index j, Nd

\j : the total number of all words
in document d except at index j, |W|: the size of the
vocabulary set, and K: the topic count. The approach
assumes symmetric Dirichlet priors α and ξ, i.e., that
they are vectors with the same value in all entries. The α
vs. ξ trade-off controls the compromise between having
few topics per document, vs. having few topics per word.

B. Modeling Contextual Information with LDA

We now describe how we model our robotics scenario
within the Latent Dirichlet Allocation framework. The
components of our system correspond to the specific
LDA terms as follows:

1. Each scene the robot encounters is represented as an
LDA document. In our concept web-based model,
this scene/document is then a set of active concepts.

2. The sum of all the encountered scenes is analogous
to the corpus D.

TABLE V: The correspondence between the LDA terms and
the notation used in this work

LDA Our Notation
document d ∈ D a single scene

(i.e., the set of active concepts in the scene)
corpus D all encountered scenes
word wi ∈W an active concept cact in the concept webs

(can be a noun, adjective, or verb: cact ∈ C = N ∪ A ∪ V)
topic a ‘context’, either Kitchen, Playroom, or Workshop

3. Each active concept cact in this scene corresponds
to a word wi in the document.

4. Finally, the “context”s that we are trying to discover
correspond to the latent topics of LDA.

Our aim is to associate each scene with the relevant
contexts. Table V summarizes the correspondence be-
tween the LDA terms, and the notions in our robotics
scenario. Also note that LDA works on the bag-of-words
assumption that the order of the words in a document is
not important, which is compatible with our scenario:
Indeed, concepts exist or do not exist in a scene, there
is no ordering between them. That is, the probabilities
of the existence of concepts are not dependent on an
order of appearance, in contrary to, for instance, certain
natural language processing scenarios.

C. An Incremental and Online Version: Incremental-
LDA

Since a robot operates in a dynamic world, it needs
to be able to discover newly emerging contexts with
new interactions. To truly comply with developmental
principles, the robot not only needs to estimate itself
the ideal number of contexts, but also to validate its
own prediction continuously and revise and update it if
necessary; we cannot foresee this for it (for a very good
discussion on what makes a system developmental, see
[63]).

One limitation of LDA is that it requires a fixed
number of topics. This requirement is characteristic of
the parametric approaches, where the parameters of the
solution are defined a priori and do not change no matter
how many training examples are encountered. Although
they are very widely used and successful in general
(among well-known examples are regression, Fisher’s
discriminant analysis, Bayesian graphical methods), the
necessity of predefining parameters can be restrictive. In
the case of latent feature models, different methods have
been proposed for dealing with an unknown number of
clusters, focusing especially on the Dirichlet process and
Bayesian solutions [64]–[66]. Targeting specifically the
LDA problem, Teh et al. [67] proposed a Hierarchical
Dirichlet Process framework which can start with in-
finitely many possible topics, and settle on the likeliest
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Algorithm 2 The proposed Incremental-LDA algorithm

initialize context count K ← 1.
for all encountered scenes do

run K-Incremental Gibbs sampler with K
while Clow 6= ∅ do

increment context count K ← K + 1
run K-Incremental Gibbs sampler with K

end while
output converged context assignments ~zN for the scene

end for

number of topics itself. Wang et al. [68] developed an
online solution for this hierarchical setting.

Since the previously proposed variations are either
batch or parametrically dependent on the number of top-
ics K, we enhance the original LDA methodology with a
simple mechanism that allows both online learning, and
dynamic updating of the ideal K value over time. This
new variant, henceforth called Incremental-LDA, does
not need the number of contexts to have been predefined,
starting instead with the most general case of K = 1,
and increasing the context count when necessary.

Incremental LDA Incremental-LDA (Algorithm 2) de-
cides on K dynamically, starting the with most general
case, K = 1, and incrementing the context count as
necessary. For deciding when to increase K, we define
and use Clow, the set of words whose confidence values
for contextual assignments are lower than a threshold
value τ . If there exists such words with low confidences,
i.e., Clow 6= ∅, Incremental-LDA attempts to increase
their confidences by incrementing the context count.

K-Incremental Gibbs Sampling Standard batch Gibbs
sampler proposed by Griffiths and Steyvers [59] is not
suitable for use with Incremental-LDA, because it needs
to start from scratch each time the context count K is
incremented. The previous solution is forgotten com-
pletely, whereas parts of it would still be applicable. This
is especially true for the parts of the previous solution
that exhibited high enough confidence. Therefore we in-
troduce K-Incremental Gibbs Sampling (Algorithm 3) as
an incremental variant: When the context count is incre-
mented to K, K-Incremental Gibbs Sampling resumes its
search from the previously converged solution for K−1
contexts, conducting a local search in the close vicinity.
This is done by retaining the previous assignments of the
high-confidence terms, while initializing low-confidence
terms (Clow) to the newest context id K. Effectively, the
highly confident part of the solution is reused. Note that
for escaping possible local minima, a high-confidence
term can also be reassigned to the new context with a
low probability δ � 1.

D. Making Use of Context: Feeding the Contextual
Information back to the Concept Web

Since the system does not employ an attentional
mechanism, it focuses on each object in the scene one
by one, identifying the concepts related to each one with
a concept web. The set of all these active concepts for
all objects is then used for deducing the context of the
scene. After determining the context, the probabilities of
concepts are updated with the conditional likelihood of
concepts in that context:

P (c)∗ = σ × P (c) + (1− σ)× P (c|χ), (6)

where c ∈ C = N ∪ A ∪ V is a concept, P (c) is
the MRF-decided probability of the concept c, χ is
the context, P (c|χ) is the probability of the concept
given the context (decided by Incremental-LDA), and
P (c)∗ is the updated value of the concept probability.
The whole system, which consists of (1) reiteration of
the object concept webs, (2) context deduction, and (3)
probabilistic update of concept webs according to the
context, is then repeated until the convergence of the
individual concept webs and context analysis. See Figure
6(b) for a schematic visualization.
σ in Equation 6 is responsible with regulating the

strength of contextual feedback in our world, with σ = 0
corresponding to using only contextual information, and
σ = 1 corresponding to pure concept web decision. An
average log likelihood l̂ is calculated over the test set as
follows and depicted in Figure 9:

l̂ =
1

N |Cn+|

N∑
i=1

∑
c∈Cn+

logP (c|xn, σ), (7)

with N denoting the observation count, xn being the
nth observation, Cn+ with cardinality |Cn+| being the
set of concepts related with the nth observation, and
P (c|xn, σ) denoting the probability of obtaining the
related concept c given observation xn, under the setting
σ. The results estimate a reasonable interval between
[0.4, 0.5]; from this interval, we select σ as 0.5. Note
that the convergence of l̂ for σ ≥ 0.7 corresponds to the
contextual feedback being too weak to affect concept

Algorithm 3 The K-Incremental Gibbs sampling approach we
propose as a companion to Incremental-LDA

initialize ~zN from the previous solution for K − 1 contexts
∀ context t | ct ∈ Clow , initialize zt ← K
∀ context t′ | ct′ 6∈ Clow , reassign zt′ ← K with prob. δ � 1
while not converged do

choose a concept index j from {1, 2, · · ·N}
sample zj according to P (zj |~zN\j , ~wN ) (Equation 5)

end while
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Fig. 9: Average log likelihood l̂ for varying σ (Equation 6,
σ = 0: Pure contextual information, σ = 1: Pure concept web
decision). The interval [0.4, 0.5] is depicted as maximizing l̂.

web decision at all, therefore the average log-likelihood
does not vary in this region.

E. Entropy-Based Evaluation of the System

We define an entropy-based metric of disorder to
evaluate the performance of the system, with two terms:

H̃ = ρ×H(C|X) + (1− ρ)×H(X|S), (8)

where H(.) is the entropy function, C, X , S are random
variables denoting concepts, contexts, and scenes respec-
tively, H(C|X) is the conditional entropy of concepts
given the context, H(X|S) is the conditional entropy
of contexts given the scene, and ρ is a parameter de-
termining the relative importance of the two terms (set
to 0.25 experimentally). These two terms stem from two
possibly opposing targets: We would like as few contexts
as possible assigned to a scene, giving us more specific
“documents”; and at the same time as few concepts as
possible associated with a context, thereby more specific
“topics”. A combination of the two terms is expected to
give us the most specific contextualization of the scene2.

V. EXPERIMENTS AND RESULTS

We now evaluate our framework and assumptions
from three different aspects:

1. We first test whether Incremental-LDA can deter-
mine the optimal number of contexts; e.g., if it stops
adding new contexts at the optimal point. We also
test if reusing partial solutions in K-Incremental
Gibbs sampler leads to better performance.

2. Then we compare extracting context directly from
raw features of the scene, against modeling it on
top of the concept web.

3. Finally, we demonstrate how contextual information
can improve reasoning, in three different scenarios:

2Similar multi-objective optimization of these two metrics can be
found in the literature, for instance see [59].

(1) scene interpretation, (2) object recognition, and
(3) planning.

The training and test scenes in the experiments can
belong to 3 different contexts (Kitchen, Playroom, and
Workshop). Unless explicitly mentioned, a scene is a
pure context scene, i.e., contains elements of a single
context. A scene can also contain elements from multiple
contexts, in which case it is denoted as a mixed context
scene. For generating each scene in the set, a context is
decided randomly and then the scene is populated with
randomly chosen objects that have the noun, adjective,
and verb attributes related to the selected context.

A. Performance of Incremental-LDA and K-Incremental
Gibbs Sampling

First, we analyze the dynamics of Incremental-LDA
under two variables: One is a varying number of en-
countered scenes, in which we hope to detect the correct
number of contexts as soon as possible, and the second is
the varying number of contexts K, in which we look for
a preference for the expected number of contexts, i.e.,
K = 3 for our case. Figure 11 depicts the number of
highly uncertain concepts (|Clow|) and the entropies (H̃ ,
Equation 8) of the system for different configurations.
Note that, left alone, Incremental-LDA would itself con-
verge to a certain K setting, which is ideally K = 3 here,
however, for the sake of comparison, we force varying
K values in these experiments.

For each configuration, we use 10 test sets of |D|
scenes with random contexts. The number of encoun-
tered scenes in a test set, |D|, is one of the free variables.
Each scene d ∈ D is populated with 3-5 random objects
of the randomly selected context. Figures 11(a) and 11(b)
show that with a reasonable number of scenes (|D| ≥ 3),
|Clow| remains positive until K reaches 3, and then
diminishes. For cross-check of the results, Figures 11(c)
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Fig. 10: A comparison of the entropy (H̃) evolution (Equation
8) of K-Incremental Gibbs solver, versus the standard batch
Gibbs solver. The K-Incremental Gibbs solver is fed a partial
solution for 2 contexts and then run for K = 3 contexts. The
batch Gibbs sampler is directly run for K = 3 contexts.
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and 11(d) presents the change of the entropy of the
system, H̃ , for varying K and scene count. The mean
and standard deviation values for the 10 test sets are
indicated with error bars. We hope to achieve as early
convergence as possible to the correct context count,
which is duly achieved by the |D| = 3 scenes mark.
Note that for reasonable numbers of scenes, the lowest
possible entropy values are achieved when K = 3, which
conforms our expectations since, in our experiments,
since we truly have three contexts, namely the Kitchen,
Playroom, and Workshop contexts.

In all four cases, the system converges with about
3 encountered scenes, and shows preference (in terms

of minimal entropy and minimal number of highly
uncertain concepts) at K = 3 contexts. Since this is also
the point at which |Clow| reaches to zero, Incremental-
LDA then stops adding new counts, correctly deducing
the minimum entropy setting of our system.

Next, we compare the performance of K-Incremental
Gibbs sampling with batch Gibbs sampling. The question
is whether reusing the previous partial solution leads
to faster convergence times for K-Incremental Gibbs
sampler. Our test set includes 100 scenes.

Figure 10 presents the results over this test set that
conform with our expectations: Using a partial solution
for 2 contexts, K-Incremental Gibbs sampler converges
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faster compared to the batch solver. We measure the
convergence of the system in terms of its entropy3.

Note that K-Incremental Gibbs Sampling is fundamen-
tally a variant of the standard Gibbs sampler employing
an informed initialization, which has been successful in
various challenging problems with very high number of
contexts (topics), e.g., in [59], which extracts ≈ 300
“hot” scientific topics over 28,154 abstracts published
in PNAS between 1991 and 2001. Therefore, in spite
of the physical limitations on the data set used in this
study, resulting in a modest number of concepts and
contexts, it is reasonable to expect that K-Incremental

3Also note that the entropy value eventually reached by the
two solvers is indeed the expected minimum entropy value for these
environmental conditions.

Gibbs sampler will also be able to scale up for a high
number of contexts as well.

B. Context from the Concept Web against Context from
Raw Features

Next we evaluate how useful the concept web is in
guiding contextualization. Figure 12 shows the com-
parison of LDA on concept web versus LDA on raw-
features-only. First, we contrast how the two schemes
fare in case of insufficient scene encounters. Concur-
rently, we also investigate to what degree the discretiza-
tion of the raw-features is necessary, if at all. In the
second type of tests, we conduct a grid parameter search
in the LDA space, to decide the best parameter settings
for the two algorithms, as well as their sensitivity level to
the changes in these parameters. Note that these two sets
of experiments must be thought of in unison, in the sense
that we have iteratively updated the parameters used in
one set according to the best results of the other set,
therefore we hope to present meaningful results in both
sets. In the figures, we present the predicted likelihoods
assigned by these algorithms to the contexts that we
“know” to be true. The correct contexts have been de-
cided through supervision for evaluation purposes only.

Figures 12(a-b) depict the contextualization perfor-
mance on raw features directly, with Figures 12(c-d)
showing the performance of the concept web. Figure
12(a) versus Figure 12(c) compare the results of the first
set, i.e., the effects of scene count and discretization
(with the trade-off parameters α and ξ from Equation
5 both set to 0.1) An important result that pops out
is that the raw features approach needs 50 scenes to
settle on a meaningful partitioning, while the concept
web method manages to converge with an impressive
speed at as few as 3-5 scenes. Even at 50 scenes, the
raw features approach needs to be supported by coarse
discretization of the features (i.e., being divided into 10
bins at most), since LDA is unable to locate statistically
significant co-occurrences otherwise. For other settings,
the decisions of the raw-features approach are at chance
level: 33.3% for a 3-way decision.

Figures 12(b) and 12(d), on the other hand, present
the results of the grid search in the α-ξ space (with
50 scenes, 10-bins of discretization). Once again, we
see that LDA-on-raw-features is more fragile against pa-
rameter changes, while the concept web method proves
robust under most settings. Indeed, even for the worst
parameter settings, notice that the concept-web case
provides confidences of over 50%, which are sufficient
for correct decision making, and are well over the chance
level of 33.3%.
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Fig. 13: The combined results of object recognition in context,
over all 15 objects in the test set. The prediction accuracies
over all determined noun and adjective concepts, using (i) only
perceptual features, (ii) the concept web, and (iii) contextual
information are compared. In the plot, the red lines denote the
median values, the boxes denote the data that fall between the
25th and 75th percentiles, the whiskers cover the extreme data
that are not outliers, and stars indicate the outliers.

The results confirm that learning context from con-
cepts is better than learning them from raw features
in two aspects: (i) Learning converges faster, and is
therefore more reliable even after as few as 3-5 scene
encounters, and (ii) It is less sensitive to the model
parameters, which increases the robustness of learning
without needing a careful tuning of parameters.

C. Using Context, Part 1: Making Sense of Pure- and
Mixed-Context Environments

Now we demonstrate how our context model can be
utilized in reasoning and decision making. The first
scenario is designed for assessing how successful our
model is in recognizing contexts of scenes. The robot
encounters six different scenes, three of which are com-
posed of items of a single context, and the remaining
three of multiple contexts. Table VI demonstrates the
predicted context(s), showing that the robot can distin-
guish between pure and mixed-context scenes correctly,
and decide on the correct components in case of a mixed-
context scene. These results are important because they
demonstrate that our interpretation of the scene context
is correct, regardless of the scene being composed of a
single context or multiple contexts. Therefore, we obtain
justification for our next step of using this contextual
interpretation for guiding reasoning in other cognitive
tasks.

D. Using Context, Part 2: Object Recognition in Context

The second scenario considers the effect of context on
object recognition. Table VII demonstrates the recogni-
tion results for seven sample objects that are either (i)
individually perceived (columns 2-3), (ii) assessed in an
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individual concept web (columns 4-5), or (iii) evaluated
in context4 (columns 7-8).

The results show that concept web itself can cor-
rect certain mistakes of the perception-only assessment,
while also boosting confidences of guesses to 100%
certainty. However, it is not flawless and is also prone,
albeit in a lesser amount, to errors (see rows 2-3 in the
table). In such cases, it is especially difficult to correct
these errors, due to the (unfounded) high confidence
associated with them. Contextual information can be
beneficial in these settings.

Remembering our fundamental assumption that re-
lated objects occur together in context (which allowed
us to develop an LDA-based model in the first place),
the system can use context to revise and correct its pre-
vious judgments. The loop of (a) context deduction, (b)
probabilistic update of concept web, and (c) reiteration
of MRF, as described in Section IV-D and Equation
6, also visualized in Figure 6, is utilized for refining
predictions in context. Combined results for all 15 test
objects are demonstrated in Figure 13, which also show
an improvement of performance for the context-guided
recognition.

In all these results, however, the individual predictions
made solely using prototypes are quite good already,
thereby making it difficult to adequately estimate the
benefits of using context. Hence we have conducted an
additional set of experiments, depicted in Figure 14,
under artificial noise specifically added to the prototype

4The objects are given in pure-context environments, for the sake
of easy analysis.
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Fig. 14: The performance of the individual prototype-based
predictions, versus context enhanced concept web predictions,
under artificially added noise, presented as prediction accura-
cies scaled to [0,1]. The noise probability denotes the prob-
ability of artificial noise being added to each single concept,
via reversing its prototype-predicted probability from p% to
reversed to (100− p)%. σ refers to the trade-off parameter in
Equation 6.
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Fig. 15: Pruning of forward planning trees by integrating con-
textual information. (a) iCub’s workspace. (b) First planning
scenario. iCub is expected to move a cup from position 8 to
position 5. Since pushing and knocking actions are dangerous
in the kitchen context, these nodes are pruned without further
expansion. Pruned branches are indicated with crosses. (c)
Second scenario. iCub must bring a ball from position 7 to
1. Pushes are pruned, since pushing a ball causes it to roll
down from the table. PX: Push left/right/forward/backward,
MX: Move left/right/forward/backward, KD: Knock down, SH:
Shake, TH: Throw, DP: Drop, G: Grasp.

predictions. An average of the prediction accuracies
(scaled to [0, 1]) over 15 random trials over the test
set are shown. A noise probability parameter is de-
termined in the range [10%, 90%], and this parameter
defines the probability of selection of each concept for
addition of artificial noise. In case a concept is selected,
its prototype-predicted probability p% is reversed to
(100− p)%. The σ trade-off parameter of Equation 6 is
varied in the range [0.1, 0.9]. Each noise probability vs.
σ combination is repeated 15 times5 and the average per-
formance results are presented in Figure 14. The system
is shown to be quite resilient under increasing artificial
noise: Combining information from many sources all of
which contributes to the contextual analysis, the system
is able to detect the context correctly and thereby correct
individual wrong predictions using the majority vote.

E. Using Context, Part 3: Planning in Context

Finally, we show how contextual information can be
useful in a planning task. It is known that humans hugely
rely on contextual information for planning their actions
[69]–[73], possibly due to a severely restricted working
memory capacity [74], [75], which results in efficient
day-to-day planning, but maybe less-than-favorable per-
formances in chess. The robots would also benefit from
similar contextual guidance in planning.

5Each trial is a random one, due to the probabilistic selection of the
reversed concepts, with probability equal to the momentarily utilized
noise probability parameter.
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To show how context can be used similarly in a robotic
planning scenario, we provide two simple situations as
proof-of-concept: The robot has to move two objects
over a table (Figure 15(a)) from an initial to a goal
position. Since the robot has learned the effect features
of behaviors on training objects, it is theoretically able
to expand a planning tree starting from the initial state
and expanding behavior nodes until the goal condition
is reached. These scenarios are simulated; however, the
decisions of the robot are based on real world data: The
robot plans according to the expected results of actions
as learned by the verb prototypes. Although it does not
physically move to perform the plan, theoretically the
plans are executable. In other words, we are interested
not in the physical success of the plans, but in the
computational efficiency of producing these plans.

In the first scenario, Figure 15(b), the robot is asked to
move a cup from position 8 to position 5. This goal can
be achieved with three consecutive move right actions
in our setting. A fully-expanded tree, therefore, would
consist of three levels, and with a branching factor of
13, it will consist of 130 + 131 + 132 + 133 = 2380
nodes. However, given the contextual information of
the scene, which is the Kitchen context, the robot can
refrain from expanding the inappropriate behaviors in a
Kitchen6, leaving only the move left, move right, move
forward, move backward and grasp as possible actions
to be expanded. Such an elimination gives a drastic
reduction in the size of the planning tree, resulting in
50 + 51 + 52 + 53 = 156 nodes instead of 2380.

Figure 15(c) shows another scenario in the Playroom
context. This time, the robot refrains from applying the
push actions on associated objects, since balls, which
are also in this context, tend to roll down and fall from
the table when pushed. Therefore, the push nodes are
pruned, leaving 90+91+92+93 = 820 nodes in the tree.
We use a breadth-first forward planning scheme subject
to context-dependent pruning.

Figure 16 compares un-pruned and pruned node
counts for 10000 random scenarios in the move-over-
the-table scenario presented above, presented for the
three contexts separately. Each scenario is prepared by
randomly determining a context, as well as initial and
goal positions on the table environment, and then asking
the robot to plan a behavior sequence from the initial
to the goal position in this contextual background. Note
that the amount of node reduction in these experiments
depend on the randomly chosen target position. If the
goal position is very close to the initial position, then
relatively little reduction is possible, since the height

6Assuming we do not want to, for instance, shake a full cup.

of the planning tree will already be fairly shallow even
in the unpruned case. However, if the random target is
chosen sufficiently far from the initial position, which
would normally require a very deep and wide planning
tree, significant pruning is possible. The outliers in the
graph correspond to such points. Note that the amount of
pruning in the Kitchen case is greater than the Playroom
case, since potentially greater number of actions are non-
applicable in the Kitchen case. In the Workshop case,
where all actions are applicable, there are no possible
reductions.

The reductions shown here are only provided as proof-
of-concepts, but it is clear how important it is for a
robot to learn to prune its search trees in a real world
setting. For a very limited robot of a small, or maybe
even intermediate set of actions, considering each action
for every situation might be an option, but for any robot
who aims to operate in the real world, the actions will
be so varied and planning chains will necessarily be so
long that even most basic reductions (i.e., no need to
consider opening the kitchen door for heating a glass of
milk) will be of critical importance.

F. Running Time Performance of the System

The whole system is able to work close to real-time:
10 test runs with non-optimized code on a standard desk-
top PC (i5 core, 8GB RAM) provided an average running
time of 209.82ms±3.38ms for the detection of context
with Incremental LDA, and 1395.22ms ± 15.31ms for
the convergence of the concept web.

VI. SUMMARY AND DISCUSSION

In the article, we studied how a humanoid robot can
model, learn and use context. For modeling context,

Kitchen Playroom Workshop
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Fig. 16: The node counts of unpruned vs. pruned planning
trees of 10000 random scenarios, grouped by their contexts.
The Kitchen context is subject to more pruning, as expected,
due to a large number of NA behaviors. The Workshop context,
on the other hand, is not subject to any pruning, since all
behaviors are potentially applicable. In the plot, the boxes
denote the data that fall between the 25th and 75th percentiles,
and stars indicate the outliers. [Best viewed in color]
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we employed and extended Latent Dirichlet Allocation
(LDA), a widely-used topic model in the computational
linguistics literature. Unlike the existing applications of
LDA in robotics for, e.g., word learning, where LDA
is directly applied onto low-level sensorimotor data,
we were motivated by the concept web hypotheses in
humans and its computational advantages to apply LDA
onto a concept web model that we developed in our
previous work using Markov Random Fields.

We demonstrated the following important aspects:
• In an unsupervised fashion, the robot can learn

context even if the number of contexts is not given.
By using an online version of the Gibbs sampler
proposed in the article, the robot can work online
to process new observations and can tackle new
contexts. By a systematic analysis, we show that
the model finds the correct number of contexts in
different settings.

• The robot can use the learned contexts to improve
its performance in cognitive tasks. In the article,
we showed this aspect for object recognition and
planning.

• Finally we show how learning context over a web
of abstracted concepts is easier and provides better
performance for an LDA-based architecture, which
deals with the sensorimotor complexity of real
world better than raw features themselves.

Below, we discuss several aspects of our design.

A. Basing Context on the Concept Web

Basing context on a concept web has significant
computational advantages: In [3], we show how concept
web enables a superior performance of object recognition
and conceptualization as compared to a raw-feature
based scheme. In this work, we provide further evidence
regarding the performance of concept web for LDA-
based conceptualization. We demonstrate how the con-
cept web provides better performance with significantly
fewer training examples, as well as reduced sensitivity
against system parameters. These advantages are due to
its abstraction capability: The real world presents an
overwhelming amount of complex information, which
needs some structure to be imposed before statistically
significant relations can be discovered. This is argued to
be the driving reason of conceptualization in humans
as well (e.g., [76]–[82], for a slightly different but
interesting argument, see also [83].)

B. Planning in the Real World

Bylander [84] and Chapman [85] show that planning
is intractable in the general sense, unless it is restricted

severely, for instance, to propositional planning with
strictly positive preconditions and exactly one postcon-
dition. Such restricted cases can be defined to reduce the
planning problem to a polynomial-time subset; however,
small deviations make the problem intractable again:
e.g., the NP-hard problem of allowing two postcondi-
tions along with one precondition, or the NP-complete
problem of one strictly positive postcondition along with
one precondition. As Bylander [84] and Hendler [86]
note, it is difficult to describe any interesting world in
propositional logic, let alone such restrictions for the
sake of tractability. We have to find a workaround. We
propose that this workaround can be, and for humans is,
context [69]–[72].

Also supporting our hypothesis is the work of Siegler,
e.g., [87], who, from a developmental point of view,
stresses how important context is in helping children
choose which skill or problem solving strategy to apply
in a certain situation. So important is this process of
choosing, he claims, that the question is not “whether
children ‘have’ a concept or strategy or theory at a
given age”, but it is rather “the set of conceptualizations
and strategies and theories that children know and the
mechanisms by which they choose among them” [87].

C. Limitations and Future Work

Overall, we provide promising results that a learning
scheme which includes background information, instead
of leaving it out, is feasible and useful for a robot when
dealing with the real world. Our work can be extended
in several directions.

The experiments were performed on real objects,
although the settings are not realistic. This limitation was
due to the interaction capabilities of iCub: iCub cannot
walk and is confined to a table-top environment. More-
over, due to its delicate hands and the limited precision of
the touch sensors on the hands, the range of objects that
can be interacted with was limited to light-weight and
convex objects. This also restricted us in the varieties of
contexts. However, LDA is shown to scale up extremely
well in natural language processing settings, where it
could be tested with huge corpora (e.g., [39], [59]) as
well in a number of other complicated real-life scenarios
including functional miRNA–mRNA regulatory modules
identification [41] and fraud detection [40]; therefore, we
believe that our framework will scale well in realistic
robotics settings.

In Incremental-LDA, we assumed that the number
of contexts can only increase in the environment, and
therefore it is not necessary to check if the context count
K can go down. We observe similar assumptions in the
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literature, e.g., [67], where the number of topics can only
increase in time. We believe that there is no reason for
a biological cognitive agent to remove learned contexts
from its system; although they might be merged as new
contexts or split into sub-contexts, the only case where
the number of contexts might decrease is when the agent
forgets learned associations.

It should also be noted that, although our current
concept web is composed of noun, adjective, and verb
concepts, a cognitive model should include spatial, tem-
poral, adverb, and social concepts as well. With the
incorporation of these types of concepts in our concept
web, contexts related to their semantics will also be able
to manifest themselves in our model.

Another plausible extension is regarding the concept
web: The current concept web is a model of long-
term memory only, with links holding information about
the robot’s experiences about the world. This long-term
memory is activated based on the current perception, yet,
there is no clear separation between short-term and long-
term memory akin to humans.
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APPENDIX

We use prototypes to represent the noun (N), adjective
(A) and verb (V) concepts, the extraction of which
is illustrated in Figure 6(a). The noun and adjective
concepts are related to the object entities, while verb
concepts are related to the changes induced on the
objects by the behaviors. Therefore, the prototypes of the
noun and adjective concepts are obtained from the entity
feature vectors e, while the verb concept prototypes are
obtained from effect feature vectors f. Each object in
the training set is labeled beforehand by supervision to
denote the concepts it is associated with: Each training
object is strictly labeled with 1 noun concept (out of
6) and 5 adjective concepts (one from each of the 5
dichotomic pairs). In addition, every applicable behavior

is applied to each training object, and the interactions are
labeled with strictly 1 verb concept.

During training, the entity and effect feature vectors
are collected from the training objects, and divided ac-
cording to the labeled concepts. For each concept, every
feature is assessed in terms of its contribution to the
concept: If the feature has a highly positive contribution
to the concept, it is indicated with a ‘+’ in the concept
prototype. ‘-’ denotes a negative contribution, and ‘*’
denotes inconsistent contribution. These contributions
are decided by clustering the features, using Robust
Growing Neural Gas (RGNG) clustering algorithm [88],
in a two dimensional space of means and variances:
The mean axis denotes the amount of the contribution,
while the variance axis denotes the consistency. Features
with positive mean and low variance are marked with
‘+’; negative mean and low variance with ‘-’; and high
variance with ‘*’. Of special interest are the features
marked with ‘*’s, which effectively distinguishes irrele-
vant features, that can be disregarded from comparisons
regarding the concept.

Prototypes for the verb concepts are extracted in a
similar manner, except that (1) they are calculated over
the effect features f, and (2) they include a ‘0’ character
for features that are unaffected by the behavior.

Eventually, we obtain 29 prototypes in total; 6 for
nouns, 10 for adjectives, and 13 for verbs. The prototypes
of the noun and adjective concepts are of length 91,
the same with the length of an entity feature vector e,
containing 66 visual, 13 audio, 6 haptic and 6 proprio-
ceptive features. The prototypes of the verb concepts are
composed of 66 characters, and denote visual features
only. The prototypes used in this study are shown in
Table VIII.

When a new object is encountered, its entity feature
vector e is compared against the noun and adjective
prototypes. Similarly, if a behavior has been applied,
the effect feature vector f is compared against the verb
concept prototypes to recognize the behavior. This com-
parison consists of finding the concepts that minimize the
Euclidean distance between the object’s feature vector
and the concept mean vector (Equation 1). The irrelevant
features of each concept, marked with ‘*’ in the concept
prototype, are excluded from this calculation.
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Erol Şahin has a B.Sc. in Electrical and
Electronics Engineering from Bilkent Univer-
sity, Turkey, in 1991, an M.Sc. in Computer
Engineering from Middle East Technical Uni-
versity (METU) in 1995, and a Ph.D. in
Cognitive and Neural Systems from Boston
University, USA, in 2000. He is working as
an Assistant Professor at the Dept. of Com-
puter Engineering at METU and is heading
the KOVAN Research Laboratory. His work
on cognitive systems focuses on how the

notion of affordances can be used at different levels of autonomous
robot control, and how the notion can be linked to mirror and canonical
neurons for developing concepts that correspond to verbs and nouns in
language (through the ROSSI project). In 2009, he has been awarded
one of the free iCub humanoid robot platforms by the RobotCub
project, to carry on his research on the topic. Dr. Sahin has also been
working on swarm robotics, and has edited two books and two special
issues on the topic.

Sinan Kalkan received his M.Sc. degree
in Computer Engineering from Middle East
Technical University, Turkey in 2003, and
his Ph.D. degree in Informatics from the
University of Göttingen, Germany in 2008.
After working as a postdoctoral researcher
at the University of Göttingen and at Middle
East Technical University, he is an assistant
professor at Middle East Technical University
since 2010. Sinan Kalkan’s research interests
include biologically motivated Computer Vi-

sion and Image Processing, and Developmental Robotics.

21


