
Option-Implied Betas, Moment Risk

Premia and Stock Returns

Fang Qiao

Submitted by Fang Qiao, to the University of Exeter as a thesis for

the degree of Doctor of Philosophy in Finance, July 2015.

This thesis is available for Library use on the understanding that it

is copyright material and that no quotation from the thesis may be

published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has

been identified and that no material has previously been submitted

and approved for the award of a degree by this or any other Univer-

sity.

Signature .............................................................

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43096541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgements

My deep and sincere gratitude goes first and foremost to my supervisor, Profes-

sor Richard Harris, for his constant encouragement, guidance and support in my

PhD research. He has walked me through all the stages of the writing of this the-

sis. Without his consistent and illuminating instruction, this thesis could not have

reached its present form.

I would also like to acknowledge Dr. Jane Shen for her help with data.

I gratefully acknowledge the funding from the Business School of the University

of Exeter that made my PhD work possible.

I am grateful to the staff at the University of Exeter Business School, the IT officers

and the librarians for their help to support my research in many different ways.

I would like to say thanks to my friends; I really enjoyed my life in Exeter with your

company.

Lastly and most importantly, I would like to thank my beloved family for all their

love, encouragement and understanding through all these years. To my parents,

who raised me with a love of science and have been a constant source of support,

and to my boyfriend, who always stands by me and encourages me with his love.

I dedicate this thesis.

2



Abstract

This thesis examines how stock returns are determined by different ex ante risk

factors implied from options; these ex ante risk factors include option-implied betas,

the variance, skew and kurtosis risk premia.

I first compare different option-implied beta measures in future stock return predic-

tion on the basis of Buss and Vilkov (2012). The option-implied beta proposed by

Buss and Vilkov (2012) (BV) is found to outperform other beta approaches includ-

ed in the research. I also propose the implied downside betas and find that the

BV implied downside beta performs best and offers an improvement over the BV

implied beta. However, the relationship between option-implied or implied down-

side betas and stock returns is not robust to firm-level variables such as firm size,

book-to-market ratio or option-implied moments. These variables are correlated

with option-implied betas and implied downside betas, which may obscure the

beta-return relationship.

Next, I investigate comprehensively whether the moment risk premia are able to

predict the cross-section of stock returns. Cross-sectionally, I find that the vari-

ance, skew and kurtosis risk premia are determined differently by firm-level and

risk factors. I also find that the moment risk premia have different effects on stock

returns. For ex post realised stock returns, there is a negative relationship with

both the variance and skew risk premia. However, the kurtosis risk premium has

a noisy and insignificant relationship with realised stock returns. The price target

expected return (PTER) and the implied cost of capital (ICC) are adopted as prox-

ies for ex ante expected stock returns. I demonstrate that there is a significantly

negative relationship between the variance and skew risk premia and expected

stock returns, while there is a significantly positive relationship between the kurto-

sis risk premium and expected stock returns. The results are robust to firm-level

and risk factors, sub-periods and different maturities.
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Finally, I investigate whether the moment risk premia are able to explain future

index returns at the aggregate stock market level; they are found to have different

impacts on index returns depending on the return measure. Both the variance

and skew risk premia are inversely related to subsequent realised S&P 500 index

returns; however, the variance risk premium has a stronger relationship than the

skew risk premium. The kurtosis risk premium has no effect on realised index re-

turns. For the index price target expected return (PTER), neither the variance risk

premium nor the skew risk premium has explanatory power with the PTER, while

the kurtosis risk premium has a robust and positive relationship with the PTER.

For the index implied cost of capital (ICC), both the variance and skew risk premia

are significantly and positively related to the ICC, while the kurtosis risk premium

has a significantly negative relationship with the ICC. However, the relationships

between the moment risk premia and the ICC are not robust to macroeconom-

ic variables. I also find that both the PTER and the ICC can be explained by

macroeconomic factors.

4



Table of Contents

1 Introduction 11
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Literature Review 20
2.1 Market Betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Traditional Market Betas . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Empirical Studies of Traditional Market Betas . . . . . . . . 22

2.1.3 Downside Betas . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4 Option-Implied Betas . . . . . . . . . . . . . . . . . . . . . 25

2.2 Realised and Risk-Neutral Moments . . . . . . . . . . . . . . . . . 26

2.2.1 Realised and Risk-Neutral Moment Measures . . . . . . . . 26

2.2.2 Volatility and Stock Returns . . . . . . . . . . . . . . . . . . 29

2.2.3 Skewness and Stock Returns . . . . . . . . . . . . . . . . . 30

2.2.4 Kurtosis and Stock Returns . . . . . . . . . . . . . . . . . . 31

2.3 The Variance, Skew and Kurtosis Risk Premia . . . . . . . . . . . 31

2.3.1 Presence of the Variance, Skew and Kurtosis Risk Premia . 31

2.3.2 The Variance Risk Premium and Stock Returns . . . . . . . 33

3 Data and Option-Implied Moments 35
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 BKM Option-Implied Moments . . . . . . . . . . . . . . . . . . . . 37

4 Option-Implied Betas and the Cross-Section of Stock Returns 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Models of Market Betas . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Option-Implied Betas . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Implied Downside Betas . . . . . . . . . . . . . . . . . . . . 49

4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Summary Statistics on Option-Implied Moments . . . . . . 50

4.3.2 Summary Statistics on Option-Implied Betas and Downside
Betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5



4.4 Option-Implied Betas and Stock Returns . . . . . . . . . . . . . . . 54

4.4.1 Portfolio Analysis of the Beta-Return Relation . . . . . . . . 54

4.4.2 Firm-Level Factors Affecting the Beta-Return Relation . . . 58

4.4.3 Fama-MacBeth Regressions . . . . . . . . . . . . . . . . . 63

4.5 Implied Downside Betas and Stock Returns . . . . . . . . . . . . . 66

4.5.1 Portfolio Analysis . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 Fama-MacBeth Regressions . . . . . . . . . . . . . . . . . 69

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Moment Risk Premia and the Cross-Section of Stock Returns 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Moments and Moment Risk Premia . . . . . . . . . . . . . 98

5.2.2 Ex ante Expected Stock Return Measures . . . . . . . . . . 102

5.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Determinants of Moment Risk Premia . . . . . . . . . . . . . . . . 108

5.4.1 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.2 Fama-MacBeth Regressions . . . . . . . . . . . . . . . . . 109

5.5 Moment Risk Premia and Realised Stock Returns . . . . . . . . . 111

5.5.1 Univariate Portfolio Analysis . . . . . . . . . . . . . . . . . 111

5.5.2 Double Portfolio Sort . . . . . . . . . . . . . . . . . . . . . . 116

5.5.3 Fama-MacBeth Regressions . . . . . . . . . . . . . . . . . 117

5.6 Moment Risk Premia and Expected Stock Returns . . . . . . . . . 119

5.6.1 Univariate Portfolio Analysis . . . . . . . . . . . . . . . . . 119

5.6.2 Fama-MacBeth Regressions . . . . . . . . . . . . . . . . . 121

5.7 Robustness Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7.1 Subperiods . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7.2 Different Maturities . . . . . . . . . . . . . . . . . . . . . . . 126

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Moment Risk Premia and Aggregate Stock Market Returns 154

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2.1 Moments and Moment Risk Premia . . . . . . . . . . . . . 159

6



6.2.2 Ex ante Expected Returns . . . . . . . . . . . . . . . . . . . 162

6.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4 Moment Risk Premia and Index Return Prediction . . . . . . . . . 166

6.4.1 Main Empirical Findings . . . . . . . . . . . . . . . . . . . . 167

6.4.2 Multiple Linear Regressions with Macroeconomic Control
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Conclusion 181
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

References 187

7



List of Figures

4.1 Plot of S&P 500 Option-Implied Moments . . . . . . . . . . . . . . 76

4.2 Plot of Betas and Returns . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Plot of Downside Betas and Returns . . . . . . . . . . . . . . . . . 79

4.4 Plot of Betas and Returns Comparing with the BV Paper . . . . . . 80

5.1 Plot of Realised Portfolio Returns Sorted by Risk Premia . . . . . . 131

5.2 Plot of Expected Portfolio Returns Sorted by Risk Premia . . . . . 132

6.1 Plot of the S&P 500 Moments and Moment Risk Premia . . . . . . 174

8



List of Tables

3.1 Number of Companies in the S&P 500 Index . . . . . . . . . . . . 41

4.1 Descriptive Statistics for Option-Implied Moments . . . . . . . . . . 81

4.2 Descriptive Statistics for Different Beta Methods . . . . . . . . . . 82

4.3 Portfolios Sorted by Different Beta Methods and MR Test . . . . . 83

4.4 Properties of Portfolios Formed on Different Betas . . . . . . . . . 84

4.5 Portfolio Returns Sorted by Firm Characteristics . . . . . . . . . . 85

4.6 Fama-MacBeth Regressions for General Betas . . . . . . . . . . . 86

4.7 Portfolio Sorts on Downside Betas and MR Test . . . . . . . . . . . 88

4.8 Fama-MacBeth Regressions for Implied Downside Betas . . . . . 89

4.9 Descriptive Statistics for Option-Implied Volatility and Skewness
(1996-2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10 Quintile Portfolio Betas and Returns from BV(2012) . . . . . . . . 92

4.11 Quintile Portfolio Betas and Returns from Replication . . . . . . . . 93

5.1 Summary Statistics andCorrelations for Moments andMoment Risk
Premia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Summary Statistics for Expected Stock Returns . . . . . . . . . . . 134

5.3 Moment Risk Premia and Firm Characteristics, Risk Factors . . . . 135

5.4 Portfolio Analysis by Moments and Risk Premia for Realised Returns138

5.5 Double-Sorted Portfolios . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6 Fama-MacBeth Regressions for Realised Returns . . . . . . . . . 142

5.7 Portfolios Sorted by Risk Premia for Expected Stock Returns . . . 143

5.8 Fama-MacBeth Regressions for Expected Returns . . . . . . . . . 144

5.9 Portfolio Analysis of Realised Returns in Subperiods . . . . . . . . 146

5.10 Portfolio Analysis of Expected Returns in Subperiods . . . . . . . . 148

5.11 Portfolio Analysis of Realised Returns for Different Maturities . . . 150

5.12 Portfolio Analysis of Expected Returns for Different Maturities . . . 152

6.1 Summary Statistics on the S&P 500 Moments and Moment Risk
Premia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.2 Correlation of Variables . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3 Results for Simple Linear Regressions . . . . . . . . . . . . . . . . 177

6.4 Results for Monthly Realised Return Regressions . . . . . . . . . . 178

6.5 Results for Expected Return Regressions . . . . . . . . . . . . . . 179

9



Abbreviations

ATM At-The-Money

CAPM Capital Asset Pricing Model

EKurt Expected Realised Kurtosis

ESkew Expected Realised Skewness

EVar Expected Realised Variance

FM regression Fama-MacBeth (1973) Regression

ICC Implied Cost of Capital

KRP Kurtosis Risk Premium

ln(BE/ME) Log of Book to Market Ratio

ln(ME) Log of Market Capitalisation

LPM Lower Partial Moment

MFIK Model-Free Implied Kurtosis

MFIS Model-Free Implied Skewness

MFIV Model-Free Implied Variance

MR Monotonicity Relation

OTM Out-Of-The-Money

PTER Price Target Expected Return

RK Realised Kurtosis

RN Risk Neutral

RR Realised Return

RS Realised Skewness

RV Realised Variance

SRP Skew Risk Premium

VRP Variance Risk Premium

10



Chapter 1

Introduction

1.1 Background

Return predictability has long been at the heart of modern finance and the corner-

stone of modern empirical asset pricing. Asset pricing models describe relations

between the ex ante risk of a security and the expectation of the security's future

return. Historically, researchers usually focus on the relationship between his-

torical risk and future realised return. The most famous model of asset pricing

is the Capital Asset Pricing Model (CAPM), introduced independently by Sharpe

(1964), Lintner (1965) and Mossin (1966). According to the CAPM, the expected

rate of stock return on a security depends primarily on its systematic risk, known

as the market beta, and the risk-return relationship is linear and positive. Since

its proposition, the CAPM has been the dominating capital equilibrium model and

it has been used widely in practical portfolio management and in academic re-

search.

The CAPM is used widely to estimate the cost of capital of firms and to evaluate

their performance. Because of its importance, the CAPM has been tested heavily

in empirical studies. Unfortunately, researchers generally reject the validity of the

CAPM model (e.g. the famous study by Fama and French, 1992). According to

the study of Fama and French (1992), beta has hardly any explanatory power for

the expected rate of return on a security. Actually, the expected rate of return

depends much more on the size of a company and the book-to-market ratio. Berk

(1995) points out that these effects can be traced back to a flawed measurement

of beta.
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The failure of the CAPM might be caused by the estimate of betas using a regres-

sion analysis of historical data. This introduces substantial statistical error into

estimates of beta that cannot reflect fully the current market conditions. These

methods use past data to estimate betas and thus assume that the future will re-

peat the patterns of the past in order to justify a simple extrapolation of current or

lagged betas. There is a widespread consensus that market beta is time-varying.

Historical betas can easily capture this by using a rolling window of historical re-

turns. Even more complicated models are built to capture the time-variation in the

betas. However, no matter how complicated models are employed, the historical

beta method cannot perform well if future patterns are different from past ones

or if past patterns are unstable. Thus, accurate measurement of market beta be-

comes increasingly important in return predictability. Researchers begin to think

how to estimate the ex ante risk of a security by employing options.

Options, as forward-looking instruments, attract researchers interest and have

been recently used for asset pricing. An option contract is defined as an asset

whose future payoff depends on the uncertain realisation of the price of an under-

lying asset. Black (1975) claims that options trading is growing and that informed

investors prefer to transact in option markets directly because of lower brokerage

charges and the ability to make leveraged bets. The likely result is that information

is reflected in option prices before it is reflected in stock prices.

Because of useful information in options, researchers use options to forecast fu-

ture volatility of the underlying assets before beta estimation; this is done bymean-

s of implied volatility. The concept of implicit volatility is proposed by Latane and

Rendleman (1976). Implied volatility is defined as the volatility of the underlying

asset that equates themarket option price to the corresponding Black and Scholes

(1973) option price. Since option prices are expected to incorporate the views of

market participants regarding potential future outcomes of the underlying asset

price, option-implied volatility is demonstrated to be a strong predictor of future

volatility in equity markets (see Poon and Granger, 2003 for a review of option-
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implied volatility). Option-implied volatility is based on the current market price

of an option instead of past observations. All option models require a volatility

forecast while the estimation of a standard deviation from a sample of data does

not require that. In this respect, options are more informative than historical stock

data.

Although standard approaches focus mainly on option-implied volatility, modelling

the third moment and even the fourth moment using options is becoming increas-

ingly important for asset pricing. Existing literature shows that investors prefer

positive skewness in return distributions (e.g. Arditti, 1967; Kraus and Litzenberg-

er, 1976; Kane, 1982; Harvey and Siddique, 2000). The literature, going back to

Kraus and Litzenberger (1976) and including the more recent study of Xing et al.

(2010), demonstrates that the asymmetry of the return distribution is important for

asset pricing. Furthermore, Conrad et al. (2013) find that option-implied skewness

and kurtosis are strongly related to future returns.

Based on option-implied moments, options could be applied to improve market

betas. For example, French et al. (1983) (FGK) first introduce the concept of

improving historical betas by using option-implied volatility. Chang et al. (2012)

(CCJV) use both option-implied volatility and skewness to estimate market be-

tas. They find that the CCJV beta estimates perform relatively well and can ex-

plain a sizeable amount of cross-sectional variation in expected returns. Buss and

Vilkov (2012) (BV)model option-implied betas using option-implied correlation and

volatility. They report that the BV beta confirms a monotonically increasing risk-

return relation consistent with the indication of the CAPM.

Besides option-implied betas, downside betas are considered in the literature to

be an efficient approach to improve historical betas. For example, Roy (1952) ar-

gues that investors usually care formore downside risk than upside gains. Markowitz

(1959) advocates replacing variance by semi-variance as a measure of risk, be-

cause semi-variance measures downside losses rather than upside gains. Down-
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side betas are indeed found to perform better than the beta from the CAPM (Hogan

and Warren, 1972; Ang et al., 2006a). The combination of downside measures

and option-implied moments introduces a potential new method to model market

betas, implied downside betas, which will be presented in this thesis.

Contrary to the CAPM, the literature regarding asset pricing shows that many risk

factors related to option-implied moments, e.g. the variance risk premium can

help explain stock returns. Variance swaps have been traded in the market. It

allows investors to speculate on or hedge risks associated with the uncertainty

about the return variance. A variance swap pays the difference between a stan-

dard estimate of the realised variance and the fixed variance swap rate. Since

a variance swap costs zero to enter, the variance swap rate represents the risk-

neutral expected value of the realised variance. As in Carr andWu (2009), a direct

estimate of the variance risk premium is the difference between the realised vari-

ance and the variance swap rate, which measures the terminal profit and loss

from a long variance swap contract and holding it to maturity. The expected sign

of the average variance risk premium should be negative. Writing variance swap-

s, receiving fixed and paying floating, is on average profitable. The variance risk

premium has been found to have predictive ability in stock returns at the aggre-

gate market level (see Bollerslev et al., 2009) as well as at the individual firm level

(see Bali and Hovakimian, 2009 and Han and Zhou, 2012). Although the third and

fourth moments (skewness and kurtosis) occupy a prominent role in stock return

predictability, skew and kurtosis swaps are not traded in the market and research

on the higher moment risk premia is very limited in the asset pricing framework.

Kozhan et al. (2013) propose the concept of 'the skew risk premium'; they pro-

vide strong empirical evidence for the co-existence of both skew and variance

risk premia in the equity market. Bali et al. (2014) investigate the cross-sectional

relation between the market's ex ante view of a stock's risk and the stock ex ante

return, and they present that the moment risk premia have a significantly positive

relationship with ex ante expected returns. There is no published literature at the

time of writing on the relationship between the skew and kurtosis risk premia and
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the cross-sectional realised stock returns, as well as the relationship between the

moment risk premia and index returns; the work presented in this thesis fills this

gap.

1.2 Research Questions

There are two main research aspects to improve the risk-return relation indicated

in asset pricing theories. The first aspect is to investigate whether option-implied

moments and their combination with downside risk measures can provide an im-

provement over historical betas. It is documented in the literature that options

contain forward-looking information and that downside measures can improve tra-

ditional betas. The second aspect is to construct the moment risk premia as the

ex ante risk contrary to the CAPM, using the difference between expected realised

moments and option-implied moments with the objective of improving the risk-

return relation. The research focuses separately on the aggregate stock market

and the individual firm level.

The research presented in this thesis addresses the following questions:

1. I compare different option-implied beta methods, named the Historical, FGK,

CCJV and BV betas. Which option-implied beta method performs best? I

construct implied downside betas. Will they outperform option-implied be-

tas? Are they robust to firm-level factors?

2. Can the moment risk premia help explain the cross-section of stock returns?

If they can, are their effects on realised returns and expected return proxies

different?

3. Can the moment risk premia predict subsequent stock returns at the aggre-

gate market level? If they can, will they have different effects on realised

and expected index returns? Are they robust to macroeconomic factors?

In order to carry out a thorough investigation of the determinants of stock returns

in Questions 1 and 2, this research adopts a portfolio analysis, which can be used

to detect a linear or nonlinear relationship. In addition, I conduct the Fama and
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MacBeth (1973) (FM) regression to examine whether option-implied betas and the

moment risk premia can still predict the cross-section of stock returns, even when

controlling for different firm-level and risk variables. In order to answer Question

3, this research uses a simple linear regression and a multiple linear regression

with macroeconomic variables.

1.3 Contributions of the Thesis

The contributions of this thesis are threefold. First, this thesis compares the His-

torical, FGK, CCJV and BV beta methods and reports that the BV beta measure

works best. Specifically, a portfolio trading strategy that sells the stocks ranked in

the bottom quintile by the BV implied beta and buys the stocks in the top quintile

by the BV implied beta earns positive profit. Only the BV beta has a monoton-

ically increasing relationship with the equally-weighted return without dividend.

This is consistent with the findings of Buss and Vilkov (2012), who show that the

BV beta has a monotonically increasing relationship with the value-weighted re-

turns. Additionally, I am the first to propose the implied downside betas based

on the downside correlation of Ang et al. (2006a) and option-implied moments.

The implied downside betas are modified on the basis of the FGK and BV betas.

The thesis shows that the BV implied downside beta performs best and offers an

improvement over the BV implied beta. In the portfolio analysis, the BV implied

downside beta gives the biggest return difference between the extreme portfolios.

Only the BV implied downside beta has a monotonically increasing relationship

with the equally-weighted return without dividend. The positive beta-return rela-

tion becomes more pronounced when using the BV downside beta. However, the

beta-return relation for the BV implied beta and the BV implied downside beta is

not robust to firm-level factors. Once firm-level control variables are included in

the FM regression, the explanatory power of the BV implied beta and the BV down-

side beta disappears. This means that option-implied betas and implied downside

betas are correlated with these firm-level control variables and this obscures the

beta-return relation.
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Secondly, this thesis first comprehensively presents that the moment risk premia

can be used to explain the cross-section of stock returns with the realised return

measure and the expected return measure. Cross-sectionally, the variance, skew

and kurtosis risk premia are determined differently by firm-level and risk factors.

This thesis first studies the determinants of the skew and kurtosis risk premia.

Most importantly, the effects of the variance, skew and kurtosis premia on stock

returns are different. To be more specific, for realised stock returns, both the vari-

ance and skew risk premia are negatively related to subsequent realised stock

returns. The skew risk premium is as important as the variance risk premium in

subsequent stock return prediction. However, the kurtosis risk premium has a

noisy and insignificant relationship with realised stock returns; the result depends

on whether the portfolio is value-weighted or equally-weighted. The negative re-

lation between the skew risk premium and stock returns is robust to firm-level and

risk variables, while the variance risk premium is not robust to firm-level and risk

control variables. The results are robust to subperiods and different maturities.

The thesis is the first work to investigate the relationship between the skew and

kurtosis risk premia and realised stock returns. Moreover, I adopt the price tar-

get expected return (PTER) and the implied cost of capital (ICC) as proxies for ex

ante expected stock returns. The variance and skew risk premia are found to be

inversely related to expected stock returns. However, the kurtosis risk premium

is found to be positively related to expected stock returns. The FM regression

shows that the relationship between the moment risk premia and expected stock

returns is robust to firm-level and risk control variables, subperiods and different

maturities.

Thirdly, this thesis investigates the explanatory power of the moment risk premia

in the aggregate market with realised and expected stock returns. For realised

index returns, the thesis documents that both the variance and skew risk premia

have an inverse relationship with subsequent realised returns in the aggregate

stock market. However, the variance risk premium is found to have a stronger

relationship than the skew risk premium. The negative relation between the vari-
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ance and skew risk premia and index returns is robust to macroeconomic factors.

For the kurtosis risk premium, I find that it cannot describe realised index returns.

This is the first study to investigate the explanatory power of the skew and kurto-

sis risk premia in aggregate stock market returns. For the ex ante expected return

proxy, this thesis is the first work to construct two types of index expected returns

using the price target expected return (PTER) and the implied cost of capital (IC-

C) of all constituents in the S&P 500 Index, respectively. The thesis examines

the relationship between the variance, skew and kurtosis risk premia and ex ante

expected returns in the aggregate stock market. Neither the variance risk premi-

um nor the skew risk premium have a robust and significant relationship with the

PTER, but the kurtosis risk premium is positively related to the PTER. For another

ex ante return measure, both the variance and skew risk premia are significantly

and positively related to the ICC, while the kurtosis risk premium has a significantly

negative relationship with the ICC. However, the relations between the momen-

t risk premia and the ICC are not robust to macroeconomic variables. Finally,

the work of this thesis tests the explanatory power of macroeconomic factors in

the aggregate stock market with the ex ante and ex post return measures. Both

the PTER and the ICC can be explained satisfactorily by macroeconomic factors,

while realised index returns cannot be described by macroeconomic factors.

1.4 Structure of the Thesis

The remainder of this thesis is organised as follows. In Chapter 2, I provide the

comprehensive literature on different risk measures and its application to stock

return prediction. Section 2.1 gives a thorough literature review on market betas,

including the traditional beta indicated from the CAPM, option-implied betas and

downside betas. Section 2.2 presents realised and risk-neutral variance, skew-

ness and kurtosis, and their relationship with stock returns. Section 2.3 describes

the literature on the variance, skew and kurtosis risk premia, and their predictabil-

ity in stock returns.
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Chapter 3 describes the data and models of option-implied variance, skewness

and kurtosis that are used in this thesis. Section 3.1 presents the data sources

and how option and equity data on the S&P 500 Index and its constituents are

collected and merged. Section 3.2 presents the formulas of risk-neutral variance,

skewness and kurtosis following the model-free method of Bakshi et al. (2003)1.

Chapter 4 reports an investigation of the relationship between option-implied be-

tas or implied downside betas and stock returns. I adopt a portfolio analysis to

study the beta-return relation and the Fama and MacBeth (1973) (FM) regres-

sion to further study whether the beta-return relation is robust to firm-level control

variables.

Chapter 5 provides a test of the variance, skew and kurtosis risk premia in stock

return prediction for individual firms. I employ both the realised return measure

and the expected return measure. The methodologies employed in the research

are a univariate portfolio analysis, a double portfolio analysis and the FM regres-

sion. This chapter also provides a robustness test for firm-level and risk factors,

subperiods and moments with different maturities.

Chapter 6 examines the variance, skew and kurtosis risk premia in stock return

prediction at the aggregate stock market level. Both the realised return measure

and the expected return measure are constructed in the thesis. This chapter em-

ploys both a simple linear regression and a multiple linear regression to test the

relationship between the variance, skew and kurtosis risk premia and index re-

turns. Macroeconomic variables are included in the multiple regression for the

robustness test.

In the last chapter, Chapter 7, I conclude my findings. I also describe the limita-

tions of the presented work and make suggestions for future work.

1The model-free risk-neutral volatility has been earlier modelled by Britten-Jones and Neuberg-
er (2000) and Dupire et al. (1994).
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Chapter 2

Literature Review

In this chapter, I review the literature on the risk-return relation within the asset

pricing framework. Understanding how stock returns are determined has been at

the centre of finance. The CAPM is the first and most famous asset pricing model

in the literature. The market betas in the CAPM are usually modelled by using

historical returns, which are essentially historical risk. However, asset pricing the-

ories actually describe that different ex ante risks of the security are able to cause

different future stock returns. Since options are forward-looking instruments, the

ex ante risks are normally evaluated by option-implied information.

The following review will start with the systematic risk, known as the market be-

tas, indicated in the CAPM. When the CAPM was first tested, they did not have

any other means to estimate betas other than with historical data. The CAPM

indicates that market beta is the only variable describing the cross-section of s-

tock return. However, the famous paper by Fama and French (1992) rejects the

CAPM. Fama and French (1992) state that the beta-return relationship disappears

and they support the size effect and the book to market effect. Due to the failure

of the CAPM, two main approaches are proposed by asset pricing researchers.

This first approach is to develop different betas by using options or using down-

side measures in order to improve traditional betas. In this thesis, I will review

traditional market betas, downside betas and option-implied betas. The second

approach is to model the ex ante risk instead of market betas, like the moment

risk premia. Return moments, especially high moments, have become popular in

asset pricing recently. I will provide a comprehensive review of the measures of

realised and option-implied moments; both of these measures contain more use-

ful information than the measures from historical data. They are found to be able
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to describe stock returns. Since there exists a difference between realised and

option-implied moments, the difference between these two measures represents

the moment risk premia. The thesis finally provides a review of the development

of the moment risk premia and their importance in asset pricing.

2.1 Market Betas

2.1.1 Traditional Market Betas

The CAPM of Sharpe (1964), Lintner (1965) and Mossin (1966) has long shaped

the way academics and practitioners think about average returns and risk. The

CAPM is built on the mean-variance framework of Markowitz (1952) whereby the

market portfolio of invested wealth is mean-variance efficient. The efficiency of the

market portfolio indicates that the relationship between beta and return is positive

and linear, and that market betas are the only factor describing the cross-section of

expected returns. The CAPM is the first co-moment model. For individual assets,

the CAPM implies the following relationship:

E(Ri) = R f +βi(E(RM)−R f ) (2.1)

where Ri denotes the return on stock i, R f is the risk-free interest rate and RM is

the market return. The market beta βi for stock i is estimated by:

βi = ρi,M
σi,t

σM,t
=

Cov(Ri,RM)

Var(RM)
(2.2)

According to the CAPM, expected asset returns are decided only by their system-

atic risk, the market betas. In this way, the CAPM can be rejected by providing

evidence that the beta-return relation disappears or other factors can be used to

describe stock returns.
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2.1.2 Empirical Studies of Traditional Market Betas

The famous and established study of Fama and MacBeth (1973) proposes a

cross-sectional regression running period by period to test the risk-return rela-

tionship.

Ri,t = αt +λt β̂i,t + εi,t (2.3)

In the regression, the coefficients α and λ have a subscript t in equation (2.3)

because they are estimated for each period. After running regressions for each

period, I obtain a series of estimated coefficients. I then calculate the time-series

average of these coefficients. More recently, the Fama-MacBeth regression has

become the accepted standard method used in the literature. The empirical re-

sults of Fama and MacBeth (1973) support the positive risk-return relationship

during the pre-1969 period, as predicted by the CAPM in the US stock market.

The CAPM has been tested extensively throughout the world equity markets and

its validity has often been questioned. The early study of Jensen et al. (1972) puts

the CAPM in doubt by finding that the expected return on an asset is not strict-

ly proportional to its beta. The positive and linear risk-return relationship is put

in doubt by some later studies (see Reinganum, 1981; Lakonishok and Shapiro,

1986; Fama and French, 1992). Among these, the most influential study was

conducted by Fama and French (1992), who provide strong evidence that the re-

lation between market beta and average return disappears during the more recent

1963-1990 period of US stock return data even when beta is the only explanatory

variable to average returns. The recent study by Wurgler et al. (2010) shows that

high beta stocks have performed substantially worse than low beta stocks in the

US markets. Apart from the US markets, the failure of the CAPM has been ob-

served in the UK stock market by Strong and Xu (1997) and Fletcher (1997), and

in the German market by Schlag and Wohlschieß (1997).

Since the late 1970s and early 1980s, empirical tests of the CAPM have shifted to
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firm-level or alternative risk variables other than market betas. The CAMP implies

that only market beta can describe the expected rate of returns. If firm-level or

other risk variables can explain the cross-section of stock returns then the CAPM

is rejected.

There is mounting evidence in the literature to support that firm-level variables

describe the cross-section of stock returns. Banz (1981) presents evidence of a

size effect in US stock returns; that is, the negative relation between firm size and

stock returns. The size effect is also found by Levis (1985) in the UK market and

Ho et al. (2000) in the Hong Kong market. Basu (1983) finds the book-to-market

effect; the book-to-market ratio has a positive relation with stock returns. Stud-

ies by Chan et al. (1991), Chan and Chui (1996) and Ho et al. (2000) provide

strong evidence of the book-to-market effect in the Japanese, UK and Hong Kong

markets, respectively. The most famous study by Fama and French (1992) con-

firms the existence of the size effect and the book-to-market effect. The current

'industry standards’ are the Fama and French (1993) three-factor model (market

risk premium, size, and book-to-market) and the Carhart (1997) four-factor mod-

el (the three factors listed above augmented by return momentum). In addition,

Amihud (2002) finds that expected market illiquidity has a positive and significant

effect on ex ante stock excess return and that unexpected illiquidity has a negative

and significant effect on contemporaneous stock return.

However, not all literature supports the size and book-to-market effect. Studies

by Chan and Chui (1996), Fletcher (1997), Levis and Liodakis (2001) and Morelli

(2007) in the UK market, Lilti and Montagner (1998) in the French market, and

Artmann et al. (2012) in the German stockmarket fail to find any size effect. Patton

and Timmermann (2010) also suggest that the size effect in expected returns is

absent from growth firms and among loser stocks in the USmarket. Artmann et al.

(2012) do not find evidence for the book-to-market effect in the German market.
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2.1.3 Downside Betas

Since the failure of the CAPM, researchers have sought a downside risk method

to improve market betas. If an asset tends to drop more in a bear market than its

increase in a bull market, this asset is to be considered unattractive by investors.

Investors who are sensitive to downside losses relative to upside gains require a

premium for holding assets that covary strongly with the market when the market

declines. When agents place greater emphasis on downside risk than upside

gains, assets with high sensitivities to downside market movements have high

average returns.

The early study of Roy (1952) argues that investors care for more downside risk

than upside gains, or simply, safety from disaster as a foremost goal. Markowitz

(1959) advocates replacing variance by semi-variance as a measure of risk, be-

cause semi-variancemeasures downside losses rather than upside gains. Hence,

in equilibrium, investors who are averse to downside losses demand greater com-

pensation, in the form of higher expected returns, for holding stocks with high

downside risk.

Empirical tests of the mean-variance CAPM show that the average returns from

low-beta (high-beta) stocks are too high (low) relative to the prediction of the CAP-

M (see, for example, Jensen et al.,1972; Fama and MacBeth,1973 and Fama and

French, 1992). Price et al. (1982) show that the historical downside betas of US

stocks differ systematically from the regular betas.

Hogan and Warren (1972) propose the semi-variance beta by employing Roy

(1952)'s Safety First rule to replace variance with semi-variance.

βi =
E(RiRM|RM ≤ θ)
E(R2

M|RM ≤ θ)
(2.4)

where θ is the threshold to define the downside market.

Ang et al. (2006a) estimate downside betas based on the conditional downside
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covariance.

βi =
Cov(Ri,RM|RM ≤ θ)

Var(RM|RM ≤ θ)
(2.5)

where θ is the threshold to define the downside market.

Bawa (1975) also develops a proxy for downside beta as the Lower Partial Mo-

ment (LPM). Bawa and Lindenberg (1977) develop a market equilibrium model

based on the LPM. In their model, the general beta in the CAPM is replaced with

the mean-lower partial moment as a measure of systematic downside risk. Harlow

and Rao (1989) examine a generalisation of the mean-semi-variance equilibrium

model, based on general LPM. Post et al. (2012) find that the mean-semi-variance

equilibrium model outperforms the other two downside models. When comparing

downside betas with traditional betas, some researchers, e.g. Post and van Vliet

(2005), Ang et al. (2006a), Tahir et al. (2013), report that downside risk based

CAPM outperforms variance based CAPM.

2.1.4 Option-Implied Betas

Market betas are usually estimated by relying solely on historical stock returns.

However, serious problems arise when using historical returns to model market

betas, such as sensitivity to the realised premium in the time period used (see Mc-

Nulty et al., 2002). Instead of using only historical stock returns, researchers have

begun recently to focus on using information extracted from current option prices

to measure betas. Such forward-looking betas reflect the most recent market in-

formation and impound traders' expectations. They have the potential to improve

the performance of historical betas.

Options, as forward-looking instruments, contain predictive information about the

future stock market. For example, many studies have demonstrated that option-

implied volatility is a strong predictor of future volatility in equity markets (see

Poon and Granger, 2003 for a review). Researchers have also found recently

that option-implied high moments (skewness and kurtosis) and correlation contain
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predictive information about the stock market (see Christoffersen et al., 2011).

Based on option-implied moments, French et al. (1983) (FGK) first introduce a

hybrid estimation method to compute market betas using correlations from histor-

ical return data and the ratio of stock-to-market implied volatilities. Chang et al.

(2012) (CCJV) use both option-implied skewness and volatilities to estimate mar-

ket betas. They find that the CCJV beta estimates perform relatively well and can

explain a sizeable amount of cross-sectional variation in expected returns. Buss

and Vilkov (2012) (BV) construct the option-implied beta using option-implied cor-

relation and volatilities. They also find that the BV beta confirms a monotonically

increasing risk-return relation consistent with the indication of the CAPM.

Besides the option-implied betameasures described above, some other researcher-

s, e.g. McNulty et al. (2002), Husmann and Stephan (2007), Fouque and Koll-

man (2011), seek other ways to improve market betas using options and find that

option-implied betas outperform historical betas. For example, Siegel (1995) pro-

poses a method whereby betas can be estimated from current option prices with-

out recourse to historical capital market data. Fouque and Kollman (2011) use

a calibration technique for the beta parameter and it is calibrated from skews of

implied volatilities. These studies exploring option markets to improve traditional

beta methods find that options can improve the performance of historical betas in

the determinants of the cross-sectional return.

2.2 Realised and Risk-Neutral Moments

2.2.1 Realised and Risk-Neutral Moment Measures

The second moment of returns, known as volatility, has played an important role

in asset pricing, risk management and academic research. There are two new

model-free variance measures commonly used in the recent academic and finan-

cial market practitioner literature. The first measure is that of model-free realised
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variances. As demonstrated in the literature, these types of measure afford much

more accurate ex post observations of actual variance than the more traditional

sample variances based on daily or high-frequency data (see Andersen et al.,

2001; Barndorff-Nielsen, 2002; Andersen et al., 2003). Realised variances are

computed by summing squared returns from high-frequency data over short time

intervals during the trading day.

RVt =
N

∑
i=1

R2
t,i (2.6)

where RVt denotes the realised variance on day t, Rt,i represents the intraday

high-frequency return on day t, N is the total number of observations on day t.

The second variance measure is that of model-free implied variances, which are

computed from option prices without the use of any particular option-pricingmodel.

These measures provide the ex ante risk-neutral expectations of future variances

and they do not rely on the Black-Scholes pricing formula. The most famous

implied volatility is the VIX index, introduced by the Chicago Board Options Ex-

change (CBOE) in 1993. VIX has become the premier benchmark for US stock

market volatility. Britten-Jones and Neuberger (2000) derive a model-free im-

plied volatility under the diffusion assumption. Jiang and Tian (2005) extend the

model-free implied volatility of Britten-Jones and Neuberger (2000) to asset price

processes with jumps and they develop a simple method for implementing it using

observed option prices. Over time, the CBOE adopts this method to calculate the

VIX.

Although standard approaches to asset pricing concentrate largely on the first

and second return moments, the third and fourth return moments have recently

become increasingly important for asset pricing and risk management. There is

mounting evidence in the literature to suggest the importance of co-skewness for

both individual stocks and for the market as whole (e.g. Kraus and Litzenberg-

er, 1976; Kane, 1982; Harvey and Siddique, 2000). Additionally, investors hold

concave preferences and like positive skewness. Kraus and Litzenberger (1976),

27



Kane (1982) and Harvey and Siddique (2000) extend the mean-variance portfo-

lio theory of Markowitz (1952) to incorporate the effect of skewness on valuation.

They present a three-moment asset pricing model in which investors prefer posi-

tive skewness.

Skewness is estimated using a model-free approach in two ways, similar to vari-

ances. For the 'model-free realised skewness', Amaya and Vasquez (2010), A-

maya et al. (2011) and Choi and Lee (2014) compute realised skewness by us-

ing intraday high-frequency returns similar to the realised variance measure of

Andersen et al. (2003), which is shown in equation (2.6). Neuberger (2012) pro-

poses modelling realised skewness at long horizons that is computed from high-

frequency data and from option returns.

For the 'model-free implied skewness', the most commonly used method is that

proposed by Bakshi et al. (2003), whose method relies on a continuum of strikes

and does not incorporate specific assumptions on an underlying model. The three

moments (variance, skewness and kurtosis) can be expressed as functions of

payoffs on a quadratic, a cubic and a quartic contract. Besides the model-free

risk-neutral approach of Bakshi et al. (2003), there are also other related risk-

neutral skew proxies. For instance, Xing et al. (2010) and Atılgan et al. (2010)

use the difference between the implied volatilities of out-of-the-money (OTM) put

options and the implied volatilities of at-the-money (ATM) call options as a proxy

for skewness. Cremers andWeinbaum (2010) use the difference in implied volatil-

ities between pairs of call and put options to measure deviations from the put-call

parity.

There is limited literature on modelling kurtosis. Amaya et al. (2011) and Choi and

Lee (2014) estimate realised kurtosis similar to the realised variance measure of

Andersen et al. (2003). Bakshi et al. (2003) provide a model-free approach to

model risk-neutral kurtosis.
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2.2.2 Volatility and Stock Returns

The second return moment plays an important role in asset pricing and it has

been researched extensively in the literature. The relationship between implied

volatility and stock returns is mixed. Giot (2005) shows that there is negative

relationship between implied volatility (VIX and VXN) and stock index returns for

the S&P 100 and NASDAQ 100 indices. Conrad et al. (2013) document a negative

relation between implied volatility and subsequent returns in the cross-section.

Dennis et al. (2006) find that individual stock returns have only amodestly negative

relation with innovations in their expected volatility. However, Guo and Whitelaw

(2006), and Banerjee et al. (2007) find that market returns are positively related to

implied volatilities. Bali et al. (2014) show that option-implied volatility is positively

related to ex ante expected stock returns. Amaya et al. (2011) do not find a strong

relationship between realised volatility and next week's stock returns.

Researchers have found recently the importance of idiosyncratic volatility in stock

return determinants. If idiosyncratic risk drives returns, then the CAPM does not

hold. Results for the cross-sectional relation between idiosyncratic risk and ex-

pected stock returns are mixed. Ang et al. (2006b) measure idiosyncratic volatility

of individual stocks based on the three-factor Fama and French (1993) model and

show that stocks with low idiosyncratic risk earn high average returns. Ang et al.

(2009) show that stocks with high idiosyncratic volatility have abnormally low av-

erage returns around the world. However, Fu (2009) shows that idiosyncratic risk

varies substantially over time and indicates that the existing literature cannot i-

dentify a positive relation because the conditional idiosyncratic volatility in earlier

studies does not capture the time-varying property. Fu (2009) documents a pos-

itive relation between idiosyncratic risk and expected return when investors do

not diversify their portfolio. Bali and Cakici (2008) document that data frequency

(daily versus monthly) used to estimate idiosyncratic volatility, weighting schemes

used to compute average portfolio returns, breakpoints utilised to sort stocks in-

to quintile portfolios and exclusion of the smallest, lowest priced and least liquid
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stocks from the sample all play a crucial role in determining the existence and

significance of a cross-sectional relation between idiosyncratic risk and expected

returns.

2.2.3 Skewness and Stock Returns

Empirical studies have tested the ability of skewness or related measures to pre-

dict the cross-sectional variation in stock returns. Evidence for a relationship be-

tween risk-neutral skewness and stock returns is mixed. Atılgan et al. (2010),

Bali et al. (2011), Yan (2011) and Conrad et al. (2013) find that there exists a

theoretically consistent negative relation between risk-neutral skewness and s-

tock returns. On the contrary, Xing et al. (2010), Cremers and Weinbaum (2010),

Rehman and Vilkov (2012) and Stilger et al. (2014) favour that risk-neutral skew-

ness is positively related to future stock returns. Additionally, Chang et al. (2013)

find that stocks with high exposure to innovations in implied market skewness ex-

hibit low returns on average. Diavatopoulos et al. (2012) show that changes in

skewness have strong predictive power for future stock returns, even after con-

trolling for implied volatility. Boyer et al. (2010) document that historical-based

estimates of skewness provide poor forecasts of future skewness.

For the realised third moment, Amaya and Vasquez (2010) confirm a negative

relation between realised skewness and stock returns in the cross section. Amaya

et al. (2011) find a strong negative relationship between realised skewness and

next week's stock returns. Choi and Lee (2014) find that there exists a negative

relationship between realised daily skewness and subsequent stock returns when

there is no high-impact information release, but that the relationship becomes

positive if realised skewness is associated with such releases.

Co-skewness measures how much two random variables change together. It is

the third standardised cross central moment, related to skewness as covariance

is related to variance. Co-skewness may help explain the cross-section of stock
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returns across assets (e.g. Harvey and Siddique, 2000). Besides systematic risk,

idiosyncratic skewness is also very important to stock return prediction. Historical

and risk-neutral idiosyncratic skewness is able to explain stock returns. Boyer

et al. (2010) investigate the relation between expected idiosyncratic skewness

calculated from the Fama and French (1993) three-factor model and stock returns.

They find that expected idiosyncratic skewness and stock returns are negatively

related. Conrad et al. (2013) find that risk-neutral idiosyncratic skewness (the

constant of regression of the risk-neutral total skewness by Bakshi et al. (2003)

on the risk-neutral co-skewness by Harvey and Siddique (2000)) is negatively

related to stock returns.

2.2.4 Kurtosis and Stock Returns

Published research on kurtosis in the asset pricing framework is very limited with

only a few studies. Specifically, Conrad et al. (2013) find a positive relation be-

tween option-implied kurtosis and subsequent returns in the cross-section. Bali

et al. (2014) show that option-implied kurtosis is positively related to ex ante expect-

ed returns. Amaya et al. (2011) find a very strong positive relationship between

realised kurtosis and next week's stock returns.

2.3 The Variance, Skew and Kurtosis Risk Premia

2.3.1 Presence of the Variance, Skew and Kurtosis Risk Premia

Realised and risk-neutral variance, skewness and kurtosis are evaluated with d-

ifferent methods and using different types of data. Hence, there exist differences

between these two moment measures and the difference is called the moment

risk premia.

The presence of the variance risk premium at the aggregate market level and at

the individual stock level has already been documented extensively in the litera-
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ture. Bakshi and Kapadia (2003a) present the variance risk premium in a non-

parametric way by analysing the profits and losses from the Black-Scholes delta-

hedged positions in the S&P 500 and S&P 100 Index options. They find that the

market volatility premium is negative. Bakshi and Kapadia (2003b) show the ex-

istence of a negative market volatility risk premium in index options and individual

equity options, which is that implied volatilities exceed realised volatilities1. Bak-

shi et al. (2003) show that the skew and variance risk premia can be explained by

higher moments of the distribution of log returns. Bakshi and Madan (2006) link

the variance risk premium, the departure between the risk-neutral and physical in-

dex volatility, with higher order moments of the return distribution and investor risk

aversion. They also find that the variance risk premium is positive when investors

are risk averse and when the physical index distribution is negatively skewed and

leptokurtic. The findings of Bakshi and Madan (2006) are in line with the results

of Jiang and Tian (2005) and Bollerslev et al. (2011), who find that the risk-neutral

index volatility generally exceeds the physical return volatility. Carr andWu (2009)

propose a direct and robust method to quantify the variance risk premium by us-

ing the difference between the realised variance and the synthetic variance swap

rate. V RP = (RVt,T − SWt,T ) ∗ 100, where RV is the realised variance and SW is

the variance swap rate. They show that this measure is, on average, negative

for a range of stock market indices, which indicates that market variance risk is

indeed priced. Todorov (2010) identifies and investigates the temporal variation

in the market variance risk premium using 5-minute high frequency data on the

S&P 500 Index. The variance risk is manifest in two salient features of financial

returns: stochastic volatility and jumps. Konstantinidi and Skiadopoulos (2014)

find that a deterioration of the economy and of the trading activity increases the

variance risk premium.

Additional evidence for the presence of the variance risk premium is also avail-

1Jackwerth and Rubinstein (1996) provide an explanation of why implied volatilities exceed
realised volatilities. Market volatility tends to increase when stock market falls. When options
are added to a market portfolio, this will help hedge market risk. Hence, this is consistent with a
negative volatility risk premium.
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able from a fully parametric estimation of the pricing kernel2. For example, Bates

(2000), Pan (2002) and Eraker (2004) analyse the variance risk premium in con-

junction with the return risk premium by estimating various parametric option pric-

ing models with either Bayesian methods or efficient methods of moments. Most

recently, Kimmel et al. (2007) propose a maximum likelihood method for estimat-

ing stochastic volatility dynamics and the volatility risk premium based on closed-

form approximations to the true likelihood function of the joint observations on the

underlying asset and option prices.

Based on the definition of the variance risk premium by Carr and Wu (2009),

Kozhan et al. (2013) propose the skew risk premium, which is defined as the

excess return from a skew swap. xst = rskewt/skewt − 1, where xst is the excess

return from a skew swap, rskewt is realised skewness and skewt is the skew swap

rate. Kozhan et al. (2013) provide strong empirical evidence for the co-existence

of both skew and variance risk premia in the equity market. They find that aver-

age realised skew is substantially smaller (in absolute terms) than average implied

skew, pointing to the existence of a skew risk premium. Implied skew is negative

throughout the sample period, and realised skew is on average negative. So the

writer of a skew swap who receives fixed and pays floating generally receives and

pays negative amounts and on average loses money. The average excess return

from a skew swap is -42.1%.

2.3.2 The Variance Risk Premium and Stock Returns

The variance risk premium exists and has predictive power for returns in the ag-

gregate market and among individual firms.

The variance risk premium is found to be able to predict stock returns at the ag-

gregate market level. Specifically, Bollerslev et al. (2009) find that the variance

risk premium, defined as the difference between risk-neutral and realised vari-

2The pricing kernel is estimated as the ratio of risk-neutral distributions and physical distribu-
tions.

33



ance, has explanatory power to the post-1990 aggregate stock market returns.

They support that high values of the variance risk premium can predict high future

index returns. Drechsler and Yaron (2011) demonstrate that the variance risk pre-

mium, defined as the difference between the squared VIX index and the expected

realised variance, is useful for measuring agents' perceptions of uncertainty and

the risk of influential shocks to the economic state vector. They show conditions

under which the variance risk premium displays significant time variation and fu-

ture return prediction. Bollerslev et al. (2011) detect significant evidence for the

temporal variation in the volatility risk premium, which is directly linked to macro-

finance state variables by applying a small-scale Monte Carlo experiment. They

find that the volatility risk premium could predict future stock market returns for

the S&P 500 Index. Bekaert and Hoerova (2014) decompose the squared VIX

into two components, which are the conditional variance and the variance risk

premium. They find that the variance risk premium predicts stock returns while

conditional stock market variance predicts economic activity and has a relatively

high predictive power for financial instability.

The variance risk premium also has predictive power for stock returns at the indi-

vidual stock level. Bali and Hovakimian (2009) propose the volatility spread (sim-

ilar to the variance risk premium) as the realised-implied volatility spread. They

find a significantly negative relation between the volatility spread and the cross-

section of stock returns. However, Han and Zhou (2012) estimate the variance

risk premium as the difference between risk-neutral variance and realised vari-

ance and they show that the variance risk premium is positively related to the

cross-section of stock returns. Bali et al. (2014) show that the variance, skew and

kurtosis risk premia are positively related to ex ante expected stock returns.

The variance risk premium is able to explain stock returns in the global market.

Bollerslev et al. (2014) define a 'global' variance risk premium and find stronger

stock return predictability. Londono (2014) provide empirical evidence that the US

variance risk premium has predictive power for international stock returns.
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Chapter 3

Data and Option-Implied Moments

3.1 Data

I use the daily data of the S&P 500 Index and its constituents for a sample period

from January 4, 1996 to December 31, 2012; a total of 4,278 trading days. The

S&P 500 Index serves as a proxy for the US market.

The constituents of the S&P 500 Index are obtained from COMPUSTAT year by

year. The total number of companies (including additions and deletions) in the

index from 1996 to 2012 is reported in the second column of Table 3.1. The fi-

nancial statement data, such as book value of common equity and balance-sheet

deferred taxes, that are used in this thesis are also from COMPUSTAT. They are

quarterly data, so I fill in the other months for each quarter. The daily S&P 500 In-

dex and stock prices on its constituents are obtained from the Center for Research

in Security Prices (CRSP). Holding period return, return without dividends, num-

ber of shares outstanding and share volume are also taken from CRSP. Holding

period period is calculated on the basis of total returns from the asset or portfolio,

i.e. income plus changes in value. The index weights for each day are computed

using closing market capitalisation of all current index components from the pre-

vious day. It is the percentage of the market value of all securities used, which is

downloaded from index data. For stocks, firm size is measured by market capi-

talisation, which is equal to equity price multiplying by shares outstanding. Daily

option data on the S&P 500 Index and its constituents with all maturities are ob-

tained fromOptionMetrics. This database contains data for all US exchange-listed

equities and market indices, as well as for all listed US index and equity options. I

extract secid, date, exdate, last date, call or put flag, strike price×1000, best bid,
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best offer, volume, open interest rate, implied volatility and delta. For European

options, implied volatilities are calculated using mid-quotes and the Black-Scholes

formula. For American options, a binomial tree approach that takes into account

the early exercise premium is employed. Treasury bills, as a proxy for risk-free

interest rates, are obtained from CRSP Treasuries Database.

After obtaining the constituents of the S&P 500 Index from COMPUSTAT, stock

data fromCRSP and option data fromOptionMetrics, I merge these three databas-

es. First, I merge stock data with index constituents (COMPUSTAT) and delete

stock data which are not in the index period. Second, I merge the combined stock

data with option data. After merging these three databases, I obtain the number

of companies in the index with both option and stock data, which is reported in the

fourth column of Table 3.1. The percentage of companies with both option and

stock data is provided in the last column of Table 3.1.

Sorted by secid or PERMNO, I obtain a total number of 922 companies with both

option and stock data in the data sample from 1996 to 2012. From Table 3.1, it

can be seen that the companies in the S&P 500 Index with both option and stock

data compose above 90% of all constituents. This percentage generally increases

from 92.68% in 1996 to 100% in 2012. At each time point, there are exactly 500

firms. Over a period of time (one year), the number of companies in the S&P 500

Index exceeds 500 because of additions and deletions of firms in the index. From

the difference between Column 2 and Column 3 in Table 3.1, I find that some firms

are added to and removed from the S&P 500 Index in the same year.

I delete the data that do not meet some standards. As in Bakshi et al. (1997), Bak-

shi et al. (2003), Jiang and Tian (2005) and Chang et al. (2012), I use the average

of the bid and ask quotes for each option contract. I filter out average quotes less

than $3/8. These prices may not reflect true option value due to proximity to tick

size. I also filter out quotes that do not satisfy standard no-arbitrage conditions.

For calls, I require the bid price to be less than the spot price and the offer price to
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be at least as large as the spot price minus the strike price. For puts, I require the

bid price to be less than the strike price and the offer price to be at least as large

as the strike price minus the spot price. I eliminate in-the-money options because

they are less liquid and more expensive than out-of-the-money (OTM) and at-the-

money (ATM) options. Following Jiang and Tian (2005), in-the-money options are

defined as put options with K/S ≥ 1.03 and call options with K/S ≤ 0.97. Around

60% of original option data that do not meet the standards are dropped for the

S&P 500 index.

3.2 BKM Option-Implied Moments

Option-implied moments (including variance, skewness and kurtosis) are extract-

ed from option data with the model-free approach. I follow the formulas presented

in Bakshi and Madan (2000) and Bakshi et al. (2003). Bakshi and Madan (2000)

show that the continuum of characteristic functions of risk-neutral return density1

and the continuum of options are equivalent classes of spanning securities. Any

payoff function with bounded expectation can be spanned by OTM European calls

and puts. Based on this insight, Bakshi et al. (2003) formalise a mechanism to

extract the variance, skewness and kurtosis of the risk-neutral return density from

a contemporaneous collection of OTM calls and puts. Their method relies on a

continuum of strikes and does not incorporate specific assumptions on an under-

lying model. The three moments can be expressed as functions of payoffs on a

quadratic, a cubic and a quartic contract.

Let the τ−period return be given by the log price relative:

R(t,τ) = ln[S(t + τ)]− ln[S(t)]. (3.1)

1A theoretical risk-neutral density is defined as the density for which theoretical European option
prices are the discounted expectations of final payoffs. According to Breeden and Litzenberger
(1978), the risk-neutral density is the second derivative of the call function C with respect to the
strike price K, f (x) = erT ∂ 2C

∂K2 .
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Define the quadratic, cubic and quartic contracts with the following payoffs:

H[S] =


R(t,τ)2, quadratic contract

R(t,τ)3, cubic contract

R(t,τ)4, quartic contract

(3.2)

Let EQ denote the expected value operator under the risk-neutral measure. The

variance, skewness and kurtosis under the risk-neutral measure are defined as

VAR =EQ[(R−EQ[R])2],

SKEW =
EQ[(R−EQ[R])3]

VAR3/2 ,

KURTOSIS =
EQ[(R−EQ[R])4]

VAR2 ,

(3.3)

Following BKM, I define the 'Quad', 'Cubic' and 'Quartic' contracts as having a

payoff function equal to the squared, cubic and quartic returns, respectively, for a

give maturity τ. The fair values of these contracts are given by:

Quad =e−rτEQ[R2],

Cubic =e−rτEQ[R3],

Quartic =e−rτEQ[R4]

(3.4)

The prices of the Quadratic, Cubic and Quartic contracts are given by:

Quad =
∫ ∞

S

2(1− ln(K/S))
K2 C(τ,K)dK +

∫ S

0

2(1+ ln(S/K))

K2 P(τ,K)dK

Cubic =
∫ ∞

S

6ln(K/S)−3(ln(K/S))2

K2 C(τ,K)dK −
∫ S

0

6ln(S/K)+3(ln(S/K))2

K2 P(τ,K)dK

Quartic =
∫ ∞

S

12(ln(K/S))2 −4(ln(K/S))3

K2 C(τ,K)dK

+
∫ S

0

12(ln(K/S))2 +4(ln(K/S))3

K2 P(τ,K)dK

(3.5)

where C(τ,K) and P(τ,K) are call and put prices with the underlying strike price

K which expire in the τ period. S and K are the underlying stock price and strike

price, respectively .

Substituting these expressions into the variance, skewness and kurtosis formulas,
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I then calculate the risk-neutral three moments:

VAR =erτQuad −µ2

SKEW =
erτCubic−3µerτQuad +2µ3

VAR3/2

KURTOSIS =
erτQuartic−4µerτCubic+6µerτQuad −3µ3

VAR2

(3.6)

where

µ = erτ −1− erτQuad
2

− erτCubic
6

− erτQuartic
24

(3.7)

In order to calculate the integrals in the formulas precisely, I need a continuum of

option prices. In practice, I do not have a continuum of option prices across mon-

eyness and I therefore have to make a number of choices regarding implementa-

tions. I approximate them from available option data; as in Carr and Wu (2009)

and Jiang and Tian (2005), for each maturity, I interpolate implied volatilities using

a cubic interpolation across moneyness levels (K/S) to obtain a continuum of im-

plied volatilities. The cubic interpolation is only effective for interpolating between

the maximum and minimum available strike price. For moneyness levels below

or above the available moneyness level in the market, I simply extrapolate the

implied volatility of the lowest or highest available strike price. In other words, the

volatility function is assumed to be constant beyond the maximum and minimum

strike prices. Jiang and Tian (2005) point out that extrapolation may be neces-

sary in empirical applications as the range of available strike prices may not be

sufficiently large on all trading days. This extrapolation procedure introduces an

approximation error that is different from the truncation error2. The approximate

error is positively related to maturity and negatively related to truncation interval.

For the risk-free interest rate, I also interpolate to obtain interest rates with different

maturities.

After implementing the interpolation-extrapolation technique, I extract a fine grid

of 1000 implied volatilities for moneyness levels (K/S) between 1/3 and 33. Then

2Truncation errors are present when the tails of the distribution are ignored.
3This moneyness range covers about 98% of the risk-neutral probability.
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I convert these implied volatilities into call and put option prices based on the

following rule: moneyness levels less than 100% (K/S ≤ 1) are used to gener-

ate put prices and moneyness levels greater than 100% (K/S ≥ 1) are used to

generate call prices. This fine grid of option prices is then used to compute the

option-implied moments by approximating the Quad, Cubic and Quartic contracts

using numerical integration. It is important to note that this procedure does not

assume that the Black-Scholes model prices options correctly; it merely provides

a translation between option prices and implied volatilities.
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Table 3.1. Number of Companies in the S&P 500 Index
The table presents descriptive statistics for the number of companies in the S&P 500 Index year
by year from 1996 to 2012. Column 2 reports the number of firms in the S&P 500 Index, obtained
from Compustat for each year. For each year, some companies appear in the S&P 500 Index
more than once. Sorted by 'gvkey', the number of unique firms in the S&P 500 Index is shown in
Column 3. The number of firms with both option and equity data available sorted by PERMNO or
secid is reported in Column 4. The percentage of firms with both option and equity data available
is shown in Column 5. The percentage in Column 5 is obtained by using the data in Column 4
divided by the data in Column 3.

Year No. of firms
No. of unique
firms

No. of firms with
both option and stock
prices

Percentage of firms
with both option and
stock prices

1996 539 519 481 92.68%
1997 531 526 495 94.11%
1998 537 533 512 96.06%
1999 545 540 515 95.37%
2000 555 552 524 94.93%
2001 532 529 505 95.46%
2002 526 522 507 97.13%
2003 520 508 497 97.83%
2004 526 519 508 97.88%
2005 536 516 505 98.45%
2006 530 529 519 98.11%
2007 536 536 528 98.51%
2008 534 534 529 99.06%
2009 525 523 522 99.81%
2010 523 516 514 99.61%
2011 521 518 517 99.81%
2012 517 516 516 100.00%
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Chapter 4

Option-Implied Betas and the Cross-Section of

Stock Returns

4.1 Introduction

TheCAPM, introduced independently by Sharpe (1964), Lintner (1965) andMossin

(1966), indicates that the relationship between market beta and stock return is

positive and linear, and that market betas are the only factor describing the cross-

section of expected returns. It has been tested extensively throughout the world

equity markets and its validity has often been questioned. For example, the fa-

mous study of Fama and French (1992) proves that the relation between market

beta and average return disappears during the more recent 1963-1990 period of

US stock return data even when beta is the only explanatory variable to average

returns. Since there exist serious problems when historical stock return is used

to model market betas, such as sensitivity to the realised premium in the time

period used (see McNulty et al., 2002), two commonly used methods arise to im-

prove the measures of traditional market betas: using option-implied moments

and introducing market downside measures.

The first method is to consider option-implied moments to improve traditional be-

tas. Many studies have demonstrated that option-implied volatility is a strong pre-

dictor of future volatility in equity markets (see Poon and Granger, 2003). Recent

research also finds that option-implied highmoments (skewness and kurtosis) and

correlation contain predictive information about the stock market (see Christof-

fersen et al., 2011). Based on option-implied moments, French et al. (1983) (FGK)

first introduce a hybrid estimation method to compute market betas using corre-

lations from historical return and the ratio of stock-to-market implied volatilities.
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Chang et al. (2012) (CCJV) use both option-implied skewness and volatility to es-

timate market betas. They find that the CCJV beta estimates perform relatively

well and could explain a sizeable amount of cross-sectional variation in expect-

ed returns. Buss and Vilkov (2012) (BV) construct the option-implied beta using

option-implied correlation and volatility. They report that the BV beta confirm-

s a monotonically increasing risk-return relation consistent with the indication of

the CAPM. Besides the option-implied beta measures described above, other re-

searchers, e.g. McNulty et al. (2002), Husmann and Stephan (2007), Fouque and

Kollman (2011), find alternative methods to improve market betas using options

and they find that options can indeed improve the performance of historical betas.

The second common and efficient way to improve the general market betas is

modelling downside market betas. An early study by Roy (1952) argues that in-

vestors care more for downside risk than upside gains or, put more simply, safety

from disaster as foremost goal. Markowitz (1959) advocates replacing variance

by semi-variance as a measure of risk, because semi-variance measures down-

side losses rather than upside gains. Empirical tests of the mean-variance CAPM

show that the average returns from low-beta (high-beta) stocks are too high (low)

relative to the prediction of the CAPM (see, for example, Jensen et al.,1972; Fama

and MacBeth,1973 and Fama and French, 1992). Price et al. (1982) show that

the historical downside betas of US stocks differ systematically from the regu-

lar betas. Researchers propose different ways to measure downside betas. For

example, Hogan and Warren (1972) propose the semi-variance beta by replac-

ing variance with semi-variance. Bawa (1975) and Bawa and Lindenberg (1977)

develop and extend a proxy for downside beta as the LPM. Ang et al. (2006a)

estimate downside betas based on the conditional downside covariance.

In this study, I use options on the S&P 500 Index and its constituents to construct

option-implied moments and then option-implied betas. I try to test whether option

prices contain important information for the underlying equities to improve tradi-

tional betas. A portfolio sorting exercise is performed in order to compare the four
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beta methods: the Historical beta, the FGK beta by French et al. (1983), the C-

CJV beta by Chang et al. (2012) and the BV beta by Buss and Vilkov (2012). I

sort the stocks into quintiles on the basis of ranked betas for each beta method at

the end of each month and then calculate both the value-weighted and equally-

weighted portfolio returns in the next month. Based on the implied beta methods

and the downside correlation of Ang et al. (2002), this is the first study to pro-

pose implied downside betas, including the FGK and BV implied downside betas.

I investigate whether the combination of option-implied moments and downside

measures can improve the general implied beta methods. I also test whether the

beta-return relation is affected by firm-level factors using a portfolio analysis and

the Fama and MacBeth (1973) (FM) regression. These factors include firm size,

book-to-market ratio, momentum, option-implied volatility, skewness, kurtosis, the

variance risk premium and illiquidity. To my knowledge, this is the first research

to study whether option-implied betas or implied downside betas can be affected

systematically by firm-level variables.

The reason for exploring whether firm-level factors can help option-implied betas

explain the cross-section of stock returns is twofold. First, previous research has

found that firm-level factors can help predict stock returns. It is well known that

there exist the firm size effect of Banz (1981), the book-to-market effect of Basu

(1983), the momentum effect of Jegadeesh and Titman (1993), the predictive a-

bility of option-implied moments (see, e.g. Bali and Murray, 2010; Conrad et al.,

2013) and the variance risk premium effect of Bali and Hovakimian (2009) and

Bollerslev et al. (2009). Second, these firm characteristics may explain option-

implied betas because option-implied betas are constructed by option-implied mo-

ments and recent research in risk-neutral moments demonstrates that some firm

characteristics are related to option-implied moments. For example, Dennis and

Mayhew (2002) investigate the relative importance of various firm characteristics

(e.g. implied volatility, firm size, trading volume, leverage and beta) in explain-

ing risk-neutral skewness implied from option prices. Hansis et al. (2010) find

that risk-neutral moments (variance, skewness, and kurtosis) are well explained

44



cross-sectionally by a number of firm characteristics. Buss and Vilkov (2012) just

provide evidence that the relation between option-implied betas, especially the

BV beta and returns, is robust to the variance risk premium and option-implied

skewness, but they do not study the impact of other firm characteristics, e.g. firm

size or book-to-market ratio.

The main contributions of this chapter are summarised as follows. First, I com-

pare the Historical, FGK, CCJV and BV beta methods and find that the BV beta

measure works best. A portfolio trading strategy that sells the stocks ranked in

the bottom quintile by the BV implied beta and buys the stocks in the top quintile

by the BV implied beta earns positive profit. This is consistent with the findings of

Buss and Vilkov (2012), who find that the BV beta has a monotonically increasing

relation with the value-weighted returns. Second, I first develop implied downside

betas and show that the BV implied downside beta performs best, offering an im-

provement over the BV implied beta. The return difference between the extreme

portfolios for the BV downside beta is greater than other implied downside betas

and the BV beta. However, the beta-return relation for the BV implied beta and the

BV implied downside beta is not robust to firm-level factors. Once firm-level con-

trol variables are included in the FM regression, the explanatory power of the BV

beta and the BV downside beta disappears. This means that option-implied betas

and implied downside betas are correlated with these firm-level control variables

and this, in turn, obscures the beta-return relation.

This study contributes to the literature that examines the relation between market

betas and stock returns. First, the research complements the paper of Buss and

Vilkov (2012), who compared these four beta methods using a portfolio analysis

based on options on the S&P 500 Index and its constituents from January 1996 to

December 2009. Second, this research contributes to the literature on downside

betas. Some studies, e.g. Post and van Vliet (2005), Ang et al. (2006a) and

Tahir et al. (2013), report that downside risk based CAPM outperforms variance

based CAPM. For instance, Post and van Vliet (2005) support that the mean-
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semivariance CAPM strongly outperforms the traditional mean-variance CAPM in

terms of its ability to explain the cross-section of US stock returns. Tahir et al.

(2013) test the beta and the downside based CAPM empirically and find that the

downside based CAPM is a strong contender compared to the CAPM for the risk-

return relationship.

The rest of this chapter is organised as follows. In Section 4.2, I present the cal-

culation of four different beta methods, which are the Historical, FGK, CCJV and

BV betas, as well as the downside beta methods, including the Historical, FGK

and BV implied downside betas. Section 4.3 provides an overview of the data and

a summary of option-implied moments and betas. Section 4.4 discusses the em-

pirical result for testing the risk-return relation with different implied beta methods.

Section 4.5 presents the empirical result for the relation between different implied

downside beta methods and returns. Section 4.6 summarises the main findings

of this chapter.

4.2 Models of Market Betas

4.2.1 Option-Implied Betas

There are four beta models used in this study: Historical, FGK, CCJV and BV

betas. The calculation of the four different beta methods is described as follows.

Historical Beta

Sharpe (1964), Lintner (1965) andMossin (1966) independently propose theCAP-

M, which asserts that the expected return for any individual asset is a positive

function of only three variables: beta (the covariance of asset return and mar-

ket return), the risk-free rate and the expected market return. The relationship is

shown below:

E(Ri) = R f +βi(E(RM)−R f ) (4.1)
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where Ri denotes the return on stock i, R f is the risk-free interest rate and RM is

market return.

Let P denote the probability distribution function under the physical measure. The

Historical beta is usually calculated using the following formula:

β His
iM = ρi,M

σP
i,t

σP
M,t

(4.2)

where σP
i,t and σP

M,t are the stock and index return standard deviations from histori-

cal data, respectively, and ρi,M is the correlation between stock and index returns.

Traditionally, the Historical beta is calculated using the historical rolling-window

method. The window length is 180 days or 126 trading days.

FGK Beta

French et al. (1983) (FGK) first introduce a hybrid estimation method using option-

implied volatility to improve the performance of beta forecasts. Let Q denote the

probability function under the risk-neutral measure.

β FGK
iM = ρi,M

σQ
i,t

σQ
M,t

(4.3)

where σQ
i,t and σQ

M,t are the option-implied volatility for stock i and index, respec-

tively, and ρi,M is the correlation between historical stock and index returns.

CCJV Beta

Chang et al. (2012) (CCJV) suppose a one-factor model and assume zero skew-

ness of the market return residual to propose a new market beta method by using

both option-implied volatility and option-implied skewness.

βCCJV
iM = (

SKEW Q
i,t

SKEW Q
M,t

)1/3 σQ
i,t

σQ
M,t

(4.4)

where σQ
i,t and σQ

M,t are the option-implied volatility for stock i and index, respec-

tively. SKEW Q
i,t and SKEW Q

M,t are the option-implied skewness on stock i and index,

respectively. ( SKEW Q
i,t

SKEW Q
M,t
)1/3 serves as a proxy for the risk neutral correlation.
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BV Beta

Buss and Vilkov (2012) (BV) propose a new way to model the option-implied beta

by combining option-implied correlation with option-implied volatility.

First, I have one identifying restriction: the observed implied variance of the mar-

ket index (σQ
M,t)

2 equals the implied variance of a portfolio of all market index

constituents i = 1, ...,N:

(σQ
M,t)

2 =
N

∑
i=1

N

∑
j=1

ωiω jσQ
i,tσ

Q
j,tρ

Q
i j,t , (4.5)

where σQ
i,t denotes the implied volatility of stock i in the index and ωi represents

the index weights.

Empirically, I use stock returns in the market index constituents to identify N×(N−

1)/2 physical correlations ρP
i j,t and then transfer these into implied correlations

ρQ
i j,t

1.

ρQ
i j,t = ρP

i j,t −αt(1−ρP
i j,t), (4.6)

where ρP
i j,t is the expected correlation under the physical measure and αt denotes

the parameter to be identified.

Substituting the option-implied correlation in equation (4.6) into restriction (4.5), I

obtain the following formula to compute αt :

αt =−
(σQ

M,t)
2 −∑N

i=1 ∑N
j=1 ωiω jσQ

i,tσ
Q
j,tρ

P
i j,t

∑N
i=1 ∑N

j=1 ωiω jσQ
i,tσ

Q
j,t(1−ρP

i j,t)
, (4.7)

After estimating option-implied volatility and correlation, I then compute the BV

1Buss and Vilkov (2012) identify that the transfer must satisfy two technical conditions and two
empirical observations. The two technical conditions are that (i) all correlations ρQ

i j,t do not exceed
one, and (ii) the correlation matrix is positive definite. Furthermore, the implied correlations are
consistent with two empirical observations: (i) the implied correlation ρQ

i j,t is higher than the cor-
relation under the physical measure ρP

i j,t , (ii) the correlation risk premium is larger in magnitude
for pairs of stocks that provide higher diversification benefits (i.e., low or negatively correlated s-
tocks), and hence are exposed to a higher risk of losing diversification in bad times characterised
by increasing correlations. The second empirical observation is supported by the negative cor-
relation between the correlation under the objective measure and the correlation risk premium in
Stathopoulos et al. (2012)
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beta as:

β BV
iM,t =

σQ
i,t ∑N

j=1 ω jσQ
j,tρ

Q
i j,t

(σQ
M,t)

2
, (4.8)

4.2.2 Implied Downside Betas

In this subsection, I show how to model implied downside betas. I find three ways

to model implied downside betas (Historical, FGK and BV downside betas). I

do not find an approach to construct the CCJV downside beta. The CCJV beta

is constructed from option-implied volatility and skewness (see equation (4.4)).

Modelling option-implied volatility or skewness does not require the use of histori-

cal stock returns. However, historical stock returns are needed to model downside

betas or correlations. Therefore, it is impossible to construct a downside analogue

of the CCJV beta due to its estimated nature.

For the Historical downside beta, I follow the semi-variance beta approach of

Hogan and Warren (1972). The computation of historical downside betas is as

follows:

β D−His
θ =

E(RiRM|RM ≤ θ)
E(R2

M|RM ≤ θ)
(4.9)

where the numerator is the second lower partial co-movement between the stock

excess return Ri and the market excess return RM; it measures the co-movements

with the market during market downturns. The threshold, θ is used to define the

downside market.

The principle for modelling implied downside betas is based mainly on modelling

downside correlations. Ang et al. (2002) decompose downside betas into a condi-

tional correlation term and a ratio of conditional total volatility to conditional market

volatility. The downside correlation is given by:

ρ−
θ = corr{Ri,RM|RM ≤ θ}= E(RiRM|RM ≤ θ)√

E(R2
i |RM ≤ θ)E(R2

M|RM ≤ θ)
(4.10)
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Following Ang et al. (2002), I combine downside correlations and option-implied

volatility to obtain implied downside betas. I substitute the historical correlation of

the FGK beta in equation (4.3) by the downside correlation in equation (4.10) to

obtain the FGK implied downside betas.

β D−FGK
θ = ρ−

θ
σQ

i,t

σQ
M,t

(4.11)

For the BV beta method, I use individual stock returns satisfying (Ri|RM,t ≤ θ) to

calculate the physical downside correlations ρ−
θ and then obtain the BV implied

downside beta following equations (4.5)-(4.8) in Section 4.2.1.

4.3 Data

I employ daily options on the S&P 500 Index and its constituents from January

1996 to December 2012; a total of 4,278 trading days. The S&P 500 Index serves

as a proxy for the US market. The option data are taken from OptionMetrics. The

daily S&P 500 Index and stock prices on its constituents are obtained from the

Center for Research in Security Prices (CRSP). The financial statement data that

are used in this thesis, such as book value of common equity and balance-sheet

deferred taxes, are also from COMPUSTAT; they are quarterly data, so I fill in the

missing months for each quarter.

4.3.1 Summary Statistics on Option-Implied Moments

Option-implied moments are calculated following the formulas in Bakshi et al.

(2003). The detail of the BKM method is described in Section 3.2.

I choose the 180-day VAR and SKEW contracts to construct option-implied betas.

For each day, I calculate the risk-neutral moments using options with different

maturities for each stock. In each calculation, I require that a minimum of two

OTM calls and two OTM puts with different strikes have valid prices. If insufficient

data are available, the observation is discarded. When using daily options with
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all maturities, I can in principle obtain daily option-implied volatility, skewness and

kurtosis with various maturities for each stock. I then interpolate linearly to get

the 180-day VAR, SKEW and KURTOSIS, using both contracts with maturity in

more than 180 days and contracts with maturity in less than 180 days. If there

is only one maturity in a particular day then I do not interpolate and I use this to

represent the 180-day VAR, SKEW and KURTOSIS on that day. The choice of a

180-day horizon is, to some extent, based on a trade-off between option liquidity

that is largest for options with 30-90 days to maturity and the relevant horizon for

firm risk, which is arguably considerably longer (see Chang et al., 2012).

Table 4.1 presents summary statistics for option-implied volatility, skewness and

kurtosis for the sample period January 1996 to December 2012. It reports the

number of observations, average, standard deviation and median as well as 25th

and 75th percentiles of option-implied moments for both the S&P 500 Index and

its constituents. The average S&P 500 Index volatility is 0.2422 and the average

stock volatility is 0.3934. It is obvious that the average S&P 500 Index volatility is

less than the average stock volatility. This is because stocks in the S&P 500 Index

are not correlated perfectly. The average S&P 500 Index skewness is -1.5342;

more negative than the average stock skewness (-0.4417). This shows that the

distribution of both index and stock returns is negatively skewed. The average

S&P 500 Index kurtosis is 7.1139 and the average stock kurtosis is 3.5738. The

average S&P 500 Index kurtosis is much greater than the average stock kurtosis.

The average kurtosis for both index and stock is greater than 3, which indicates

that the distribution of both index and stock returns has high peaks. Overall, the

risk-neutral distribution of index return is more skewed and fat-tailed than the stock

risk-neutral distribution.

Figure 4.1 displays some properties of the S&P 500 implied moments from Jan-

uary 1996 to December 2012. It is obvious that the S&P 500 Index option-implied

volatility fluctuates between 0 and 0.6. The market becomes more volatile in re-

cent years. Volatility peaks at 0.6 around the year 2008. The S&P 500 Index
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option-implied skewness is always negative from 1996 to 2012; it becomes more

negative after 2008. The S&P 500 Index option-implied kurtosis always fluctuates

above 3. The index kurtosis becomes even higher in recent years, since 2008.

From the shapes and outliers of the figures, I see that these three risk-neutral

moments are correlated. This means that the risks associated with risk-neutral

moments may be correlated with each other.

4.3.2 Summary Statistics on Option-Implied Betas and Downside

Betas

In this subsection, I compute option-implied betas and implied downside betas

discussed in Section 4.2 by applying daily data on the S&P 500 Index and its

constituents from January 1996 to December 2012.

Traditionally, historical betas are calculated using historical rolling windows. In this

test, the Historical beta is calculated using daily stock and index returns with a re-

spective rolling-window length of 180 days (previous 126 trading days). For the

FGK beta, the historical correlation is calculated using stock and index returns with

the rolling-window length of 180 days (previous 126 trading days). Option-implied

volatility is calculated following the BKM method. I put the historical correlations

and the option-implied stock-to-market volatility ratio into equation (4.3) to calcu-

late the FGK beta for each stock. For the CCJV beta, I compute option-implied

volatility and skewness by the BKM method and put them into equation (4.4) to

calculate the CCJV beta. For the BV beta, I first estimate option-implied volatility

following the BKM method. I then compute correlations under the physical mea-

sure using daily returns with a respective rolling-window length of 180 days. The

correlations under the risk-neutral measure are computed following equation (4.6)

after calibrating the only unknown parameter αt from equation (4.7). The BV beta

is then computed from equation (4.8). The calculation of downside betas is very

similar to general betas; the only difference is that when measuring downside be-

tas, I use stock or index returns in market downturns. Following the computation
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procedure of different beta methods, I obtain the daily Historical, FGK and BV be-

tas, as well as the downside betas for most stocks from the first trading day of July

1996 to the last trading day of December 2012. I obtain the daily CCJV beta from

the first trading day of January 1996 to the last trading day of December 2012.

Table 4.2 reports descriptive statistics for different betamethods. Panel A presents

summary statistics for general beta methods. I find that, for all these four beta

methods, the average and the value-weighted average of betas are around unity.

Both the mean and the value-weighted mean of the Historical beta are about 0.5%

higher than 1. Both the mean and the value-weighted mean of the FGK beta are

about 15% less than 1. For the CCJV beta, the mean and the value-weighted

mean are about 3% greater than 1. The mean and the value-weighted mean of

the BV beta are about 7% greater than 1. The Historical, FGK and CCJV betas

have median less than 1 and the BV beta has median around 1. Panel B report-

s summary statistics for downside betas. The average of the Historical and BV

downside betas is slightly greater than unity. The mean of the Historical down-

side betas is 1.0081 and the mean of the BV downside beta is 1.0976. For the

FGK downside beta, the average is less than 1 (0.6506). For option-implied betas

and downside betas, the market value-weighted average of all betas is not one,

because risk-neutral volatility is used to estimate betas.

Panel C of Table 4.2 provides the correlation coefficients of different beta methods.

The general betas are highly correlated with the downside betas. The correlation

between the Historical beta and the Historical downside beta is 0.9229. The cor-

relation between the FGK (BV) beta and the FGK (BV) downside beta is 0.7378

(0.8759). The Historical beta has a high correlation with the FGK beta, with the

correlation of 0.7271. The FGK beta is highly correlated with the BV beta with the

correlation of 0.7458. Similarly, for the downside measures the Historical down-

side beta is highly correlated with the FGK downside beta, as is the FGK downside

beta with the BV downside beta. The correlations are around 0.63.
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4.4 Option-Implied Betas and Stock Returns

As discussed in Section 4.3.2, the calculation of the four beta methods is differ-

ent and summary statistics confirm that there is a variety among these four beta

methods. I investigate whether different beta methods could cause differences in

the risk-return relationship. Alternatively, I find out which beta method gives better

performance in terms of the positive and linear beta-return relationship. In order

to investigate this, I sort the stocks into quintile portfolios based on the values

of market betas discussed in Section 4.4.1. To see whether betas are related to

firm-level variables, I adopt a portfolio analysis shown in Section 4.4.2. In Sec-

tion 4.4.3, I conduct the Fama and MacBeth (1973) regression to examine further

whether market betas can still predict stock returns, when controlling for different

firm-level variables.

4.4.1 Portfolio Analysis of the Beta-Return Relation

Before doing the analysis, I replicate the paper of Buss and Vilkov (2012) using

the same sample and sample period; the result is shown in the appendix to this

chapter. The replication result is very close to the result shown in BV's original

paper and it demonstrates that the results of this research are valid.

In order to study the risk-return relation, I perform the portfolio sortingmethodology

similar to the early study of Jensen et al. (1972) and the recent study of Buss and

Vilkov (2012). I sort the individual securities in the S&P 500 Index into five groups

at the end of each month, and separately for each beta method, according to their

pre-ranked betas. The pre-ranked betas are estimated using previous 180-day

(126-trading day) daily returns at the end of month t. Jensen et al. (1972) and

Fama and French (1992) use at least 24 months of 5-year monthly returns to

calculate pre-ranked betas. Similar to them, I use 180-day rolling-window returns

to calculate the Historical, FGK and BV betas. For example, I begin by estimating

the coefficient beta for a half-year period from January 1996 to June 1996 for all
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equities listed on the S&P 500 Index at the beginning of July 1996. These stocks

are then ranked from low to high on the basis of the values of estimated pre-

ranked betas and are assigned to five portfolios with equal number of securities;

the 20% of the stocks with the smallest betas are assigned to the first portfolio,

the 20% of the stocks with the biggest betas are assigned to the fifth portfolio and

so on. For the CCJV beta, the pre-ranked beta is the implied beta calculated at

the end of the month. After constructing the portfolios based on the pre-ranked

betas, I calculate the value-weighted and equally-weighted averages of betas,

the annualised value-weighted and equally-weighted average of return without

dividend, holding period return2, for each beta methodology, for each portfolio

in the next month t+1. The entire process is repeated for each month after July

1996 until December 2012. Finally, I calculate the time-series means of betas and

realised returns.

The CAPM implies a monotonically increasing pattern in the stock return ranked

by their market beta. In order to test the monotonically increasing beta-return

relation, I adopt the monotonicity relation (MR) test method proposed by Patton

and Timmermann (2010). The null hypothesis is based on the sign of the return

spread between the fifth portfolio (highest beta) and the first portfolio (lowest beta),

termed the 5-1 return spread. If the 5-1 return spread is negative, I test whether

the beta-return relation is monotonically decreasing. If the 5-1 return spread is

positive, I test whether the beta-return relation is monotonically increasing. The

MR test result is decided by p-values. If the MR p-value is less than 5% and

5-1 return spread is positive (negative), it means that there is a monotonically

increasing (decreasing) risk-return relation.

Table 4.3 provides a summary of the mean expected betas and the mean realised

return for the beta-sorted quintile portfolios from January 1996 to December 2012.

Panel A reports the time-series average of portfolio betas and returns sorted on

2I include return without dividend and holding period return in the analysis. They are down-
loaded from CRSP directly. Return without dividend has excluded dividends, while holding period
return is a total return, which includes dividends.
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the Historical beta. For the value-weighted portfolios, the 5-1 return spread is

3.545% for return without dividend and 2.174% for holding period return. For

the equally-weighted portfolios, the 5-1 return spread is 6.014% for return without

dividend, 4.574% for holding period return. This is consistent with Fama and Mac-

Beth (1973) and Jensen et al. (1972), who find evidence to support the positive

risk-return relationship as predicted by the CAPM. However, the t-statistics of the

5-1 return spread do not exceed the 10% level threshold, which means that the

positive beta-return relation is not significant.

Panel B presents quintile portfolio performance sorted on the FGK beta measure.

For both the value-weighted and equally-weighted portfolios, a long-short portfolio

buying the stocks in the highest beta quintile and shorting the stocks in the lowest

beta quintile produces positive average returns. For the value-weighted portfolios,

the average is 2.376% per year for return without dividend and 1.097% per year

for holding period return. For the equally-weighted portfolios, the average return

is 5.577% for return without dividend and 4.422% for holding period return. The

t-statistics of the return difference between the fifth and first portfolio are in the

range of 0.15 to 0.65 for both the value-weighted and equally-weighted portfolios,

which are less than the 10% significance level.

Panel C reports quintile portfolios sorted on the CCJV beta method. I find that the

5-1 return spread is negative for both the value-weighted and equally-weighted

portfolios. The most negative return spread is -3.012% for the equally-weighted

holding period return and the least negative return spread is -0.518% for the value-

weighted return without dividend. The t-statistics of the 5-1 return spread for the

CCJV beta indicate that the negative return difference is not significant. Chang

et al. (2012) run a cross-section regression of stock returns on the CCJV betas

year by year and find that for some years the slopes of the CCJV beta are negative.

The results for the portfolio analysis sorted on the basis of the BV beta are shown

in Panel D. On a value-weighted basis, the portfolio return without dividend in-
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creases by 6.241% per year from 4.644% in the first portfolio to 10.884% in the

fifth portfolio and the portfolio holding period return increases by 4.470% per year.

On a equally-weighted basis, the portfolio return spread is 6.669% for return with-

out dividend and 5.014% for holding period return. The t-statistics vary between

0.6 and 1, less than the 10% significance level.

I perform a formal monotonicity test of the risk-return relation, applying the non-

parametric technique of Patton and Timmermann (2010). The result for the MR

test with p-values obtained from time-series block bootstrapping3 is shown in the

last column of Table 4.3. From the MR test, I find that all MR p-values are greater

than 10% except for the equally-weighted return without dividend for the BV beta

method, whose MR p-value is 0.093. There is no significant evidence to support

the existence of a monotonically increasing relation between all betas and return-

s. Buss and Vilkov (2012) find that there is a monotonically increasing relation

between the BV beta and the value-weighted returns. Here, I find a monotonically

increasing relation between the BV beta and the equally-weighted returns without

dividend at the 10% significance level. Although the finding is slightly different

from Buss and Vilkov (2012) in the weighting scheme, it still confirms the result of

Buss and Vilkov (2012) that the BV implied beta performs best.

To summarise, Table 4.3 shows that the relationship between the Historical, FGK,

BV betas and returns is positive, but it is not significant as indicated from the p-

values of the 5-1 spread, which are greater than 10%. More importantly, the BV

betamethod gives the biggest value-weighted and equally-weighted return spread

between the extreme portfolios (including return without dividend and holding pe-

riod return). For example, the return spread of the BV beta is about 2.7% greater

than that of the Historical beta and 3.9% greater than that of the FGK beta for the

value-weighed return without dividend. The findings are consistent with Buss and

Vilkov (2012), who find that the BV beta has the biggest 5-1 return spread.

3Block bootstrapping actually means resampling the sample data.
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Figure 4.2 shows that all beta methods display a noisy beta-return relation across

different quintiles for the value-weighted return without dividend. For the value-

weighted portfolios, the return difference between the extreme quintile portfolios

is more pronounced for the BV and Historical betas rather than for the FGK and C-

CJV beta methods. The 5-1 return spread for the FGK and CCJV betas is 2.376%

and -0.518%, respectively. For the Historical and BV betas, the average 5-1 re-

turn difference is 3.545% and 6.241%, respectively. The return spread of the BV

beta is more pronounced than that of the Historical beta. The return difference of

the BV beta is about 2.70% greater than that of the Historical beta. The plot of the

BV beta and the value-weighted returns shows that the pattern is closest to linear

compared with the Historical, FGK and CCJV betas. The equally-weighted return

for both the Historical and BV beta methods displays a monotonically increasing

risk-return relation, but the MR test in the last column of Table 4.3 proves that

only the BV beta has a monotonically increasing risk-return relation at the 10%

significance level.

Overall, the results in Table 4.3 and Figure 4.2 indicate that the positive relation

between market beta risk and returns is much more pronounced for the BV beta,

consistent with the findings of Buss and Vilkov (2012).

4.4.2 Firm-Level Factors Affecting the Beta-Return Relation

In Section 4.4.1, I use the portfolio analysis to examine the risk-return relation for

the historical and option-implied betas. In this subsection, I perform a robustness

test to see whether the beta-return relationship is affected by other factors related

to firm characteristics or option-implied moments. If there is a difference in the

distribution of these characteristics across beta-sorted portfolios for the different
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beta methods, then the risk-return relation may be not robust4. Buss and Vilkov

(2012) show that the risk-return relation for the BV beta cannot be explained by the

variance risk premium and option-implied skewness. In this subsection, I use the

portfolio analysis to test whether betas have a clear pattern with firm size, book-

to-market ratio, option-implied volatility, skewness and kurtosis, and the variance

risk premium.

Banz (1981) may be the first empirical paper to present evidence of a size ef-

fect in US stock returns; that there is a negative relation between firm size and

stock returns to be specific. Basu (1983) documents the book-to-market effect

that book-to-market ratio has a positive relation with returns. Fama and French

(1992) confirm that the size effect and the book-to-market effect do indeed exist.

The reason for including volatility is that Ang et al. (2006b) show that high historical

volatility strongly predicts low subsequent returns. The evidence for the explana-

tory power of implied skewness to stock return is provided by recent studies (Xing

et al., 2010; Cremers and Weinbaum, 2010; Rehman and Vilkov, 2012; Conrad

et al., 2013). Some researchers also find the effect of implied kurtosis on returns

(Diavatopoulos et al., 2012; Bali et al., 2014). In terms of the variance risk pre-

mium, Bali and Hovakimian (2009) find a significantly negative relation between

expected returns and the realised-implied volatility spread.

The calculation of firm size and book-to-market ratio follows Fama and French

(1992). Firm size, ln(ME) is the log of the market capitalisation from the previous

day. Market capitalisation, ME is equal to stock price multiplying shares outstand-

ing. Book-to-market ratio is equal to ln(BE/ME), where BE is the book value of

common equity plus balance-sheet deferred taxes. Implied volatility, skewness

and kurtosis are calculated following the BKM method. As in Carr and Wu (2009),

4Buss and Vilkov (2012) identify three conditions to determine whether the beta-return relation
is robust to these factors. The three conditions are shown as follows: (i) there must be a sizeable
difference and clear pattern in the average characteristic value of the beta-sorted portfolios, (ii)
there must be strong differences in the average characteristic value of the portfolios across beta
methodologies, and (iii) the return pattern arising from the predictive power of a given characteristic
and the beta-return relation for each beta must work in the same direction. Importantly, all three
conditions must be satisfied to give rise to a spurious risk-return relation
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the variance risk premium (VRP) is defined as the difference between the realised

variance and the variance swap rate, which measures the terminal profit and loss

from a long variance swap contract and holding it to maturity. The expected sign

of the average variance risk premium should be negative. Writing variance swap-

s, receiving fixed and paying floating, is on average profitable. The variance risk

premium is defined as the difference between realised and implied variance.

V RP(t) = σ2
P(t)−σ2

Q(t) (4.12)

where σ2
P(t) and σ2

Q(t) denote the realised and implied variances on day t, respec-

tively.

As in Merton (1980) and Andersen et al. (2003), the realised physical (annualised)

variance is computed in a model-free manner, using daily stock returns.

σ2
P(t) =

252
21

20

∑
i=0

(R(t − i)−R)2 (4.13)

Table 4.4 shows the average firm characteristics and option-impliedmoments from

1996 to 2012 for portfolios formed on different beta methods. Panel A presents

the portfolio result based on the Historical beta. The 5-1 spread for option-implied

volatility, skewness and the variance risk premium is positive and significant at the

5% level. However, the relation between the Historical beta and option-implied

skewness is significantly negative. I also find that the Historical beta has a mono-

tonically increasing relationship with option-implied volatility and a monotonically

decreasing relationship with option-implied kurtosis. From the results in Panel B,

I find that the FGK beta is negatively correlated with firm size, option-implied kur-

tosis. The relationships are monotonic. The FGK beta has a positive relationship

with book-to-market ratio, option-implied volatility, skewness and the variance risk

premium. The findings in Panel C report that the CCJV beta is significantly and

negatively related to firm size and option-implied skewness. It has a monotoni-

cally decreasing relation with option-implied skewness. However, the CCJV be-

ta has a monotonically increasing relation with option-implied volatility. Panel D

presents that there is a significantly positive relationship between the BV beta and
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book-to-market ratio, option-implied volatility and skewness, while there is a neg-

ative relationship between the BV beta and firm size, and option-implied kurtosis.

The relationship between the BV beta and firm size, book-to-market ratio, option-

implied volatility and kurtosis is monotonic. Overall, I see clear patterns of betas

with some of these factors. Thus, the beta-return relationship may be blurred by

these factors.

Since I can see clear patterns between betas and some of these factors when port-

folios are sorted by the different beta methods in Table 4.4, next I check whether

these factors have a significant relationship with returns. The procedure is similar

to the portfolio analysis for the beta-return relation in Section 4.4.1. At the end

of each month, I calculate firm-level variables, including firm size, book-to-market

ratio, option-implied volatility, skewness, kurtosis and the variance risk premium.

I sort the individual securities in the S&P 500 Index into five groups at the end

of each month and separately for each variable, according to the value of these

factors. After constructing the portfolios based on these variables, I calculate the

annualised value-weighted and equally-weighted return without dividend, holding

period return for each variable, for each portfolio in the next month t+1. The entire

process is repeated for each month in the whole sample period. Finally, I calculate

the time-series average of realised returns.

Table 4.5 reports quintile portfolios formed on firm-level factors from January 1996

to December 2012. Panel A reports that the relation between firm size and re-

turns is negative and significant at the 10% level. The MR p-value shows that the

size-return relation decreases monotonically at the 10% significance level. This

is consistent with the size effect by Banz (1981) and Fama and French (1992).

However, the negative relationship between firm size and return is only signifi-

cant at the 10% level. This is because the firms in the sample are the constituents

of the S&P 500 Index, which are relatively big companies. Panel B presents the

results for the portfolio analysis based on book-to-market ratio. The relation be-

tween book-to-market ratio and returns is positive. For both the value-weighted
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and equally-weighted returns, the 5-1 return spread is not significant at the 10%

level. The MR p-value shows that the relationship between book-to-market ra-

tio and return is not monotonically increasing. The spread t-statistics and MR

p-value in Panel C show that option-implied volatility has no significant and posi-

tive relationship with returns. In Panel D, I find that there exists a significant and

positive relation between option-implied skewness and stock returns, consistent

with Xing et al. (2010), Cremers and Weinbaum (2010) and Rehman and Vilkov

(2012). However, the findings are in contrast to Conrad et al. (2013) and Bali

and Murray (2010), who find that option-implied skewness is negatively related

to future stock returns. Panel E shows that option-implied kurtosis is negatively

related to both the value-weighted and equally-weighted returns, but the 5-1 re-

turn spread is not significant at the 10% level. The MR p-value shows that the

kurtosis-return relation is not monotonic. For portfolios sorted by the variance risk

premium, shown in Panel F, the 5-1 return spread is negative and significant for

both the value-weighted and equally-weighted returns at the 10% significance lev-

el. The MR test shows that there is a monotonically decreasing pattern between

the variance risk premium and the value-weighted returns at the 1% significance

level. The findings are in line with the result of Bali and Hovakimian (2009), who

find a significantly negative relation between expected returns and the realised-

implied volatility spread.

I have a close look at the explanation of the negative relationship between the

CCJV beta and stock returns shown in Table 4.3. The CCJV beta is composed

by option-implied skewness and volatility. From Table 4.4, I find a monotonically

decreasing relationship between the CCJV beta and option-implied skewness.

From Panel C of Table 4.5, I find that there exists a positive relationship between

option-implied skewness and stock returns. When skewness is more negative,

the CCJV beta becomes bigger; the portfolio returns become smaller. Therefore,

the negative beta-return relationship can be explained by the skewness-return

relationship.
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Overall, the portfolio analysis in Table 4.5 shows that firm size, option-implied

skewness and the variance risk premium have a significant relationship with re-

turns. Firm size and the variance risk premium are negatively related to returns,

while option-implied skewness is positively related to returns. From Table 4.4, I

find that all beta methods are linked to some of the firm factors.

4.4.3 Fama-MacBeth Regressions

Through the portfolio analysis, I can see a simple picture of how average port-

folio returns vary across the spectrum of betas and other variables. However,

the portfolio analysis has its own potential pitfalls to test the risk-return relation

(see Fama and French, 2008). For example, portfolio sorts are clumsy for ex-

amining the functional form of the relationship between average returns and the

variables. Therefore, I adopt the Fama and MacBeth (1973) (FM) regression to

test further whether the risk-return relationship is robust to firm-level variables.

I perform a cross-sectional regression of the value-weighted returns on one or

more explanatory variables monthly. I then calculate the time-series average of

the cross-sectional regression coefficients. In addition to enabling control of mul-

ticollinearity among the explanatory variables, the slope coefficients from the re-

gression analysis can also be interpreted as the risk premia associated with taking

one unit of risk associated with each of the risk variables.

I include additional control variables, except betas, in the month-by-month FM re-

gression. The reason for including firm size, book-to-market ratio, option-implied

volatility, skewness and kurtosis, and the variance risk premium in the FM re-

gression is shown in Section 4.4.2. Besides these, I also include momentum and

illiquidity in the regression. Momentum is the cumulative daily return over the pre-

vious six months. Illiquidity is defined as the average ratio of the daily absolute

return to the (dollar) trading volume on that day, |Riyd| /VOLDiyd, where Riyd is the

return on stock i on day d of year y and VOLDiyd is the respective daily volume in

dollars. This follows Amihud (2002), who finds that expected market illiquidity has
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a positive and significant effect on ex ante stock excess return and that unexpected

illiquidity has a negative and significant effect on contemporaneous stock return.

The standard FM regression has two stages. Before the two stages, I first sort

the stocks into quintile portfolios according to the pre-ranked betas at the end

of month t, for each beta methodology. I then calculate the annualised value-

weighted average of stock returns in the next month t + 1. I also calculate the

average beta, firm size, book-to-market ratio, option-implied volatility, skewness,

kurtosis, the variance risk premium, momentum and illiquidity at the end of month

t. In the first stage, I estimate the following regression in the cross section for

each month t:

rp,t+1 = γ0.t + γ1,tβp,t +ϕ ′
t Zp,t + εp,t (4.14)

where rp,t+1 is the portfolio return for portfolio p in month t +1, βp,t is the portfolio

betas for portfolio p in month t and Zp,t are other explanatory variables for portfolio

p in month t.

After obtaining a time series of slope coefficients, the second stage of the standard

FM regression is to calculate the time-series average of these coefficients. With

the FM regression, I can easily examine the significance of the predictability of

betas; I can also control for several firm characteristics at the same time.

Table 4.6 presents the results for the FM regressions of the value-weighted port-

folio returns on different betas and firm-level variables. In the first regression of

each panel, betas are the only explanatory variable. I find that the coefficients

of all beta methods are positive but not always significant. The coefficient of the

FGK beta in Regression 1 of Panel B is 0.1256 with a t-statistic of 1.73. The co-

efficient of the BV beta in Regression 1 of Panel D is 0.1826 with a t-statistic of

2.28. The coefficients of the FGK, BV betas are significant at the 10% and 5%

levels, respectively.

In order to separate the predictive power of betas from other control variables, I
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consider these control variables in the FM regression. Panel A shows that when

the Historical beta is the only independent variable in Regression 1, the coefficient

of the Historical beta is 0.0826, which is not significant. When adding all other

control variables in the FM regression (Regressions 2-4), the Historical beta still

has no explanatory power to returns. The coefficients of the Historical beta even

become negative (see Regression 2), but they are insignificant. This result is

consistent with Fama and French (1992), who find that the beta-return relation is

very flat even when beta is the only explanatory variable. In Panel B, the FGK beta

coefficient is 0.1256 in Regression 1 and significant at the 10% level. I find that

the significant coefficient of the FGK beta disappears when other control variables

are included in the FM regression (Regressions 2-4). In Regression 1 of Panel C,

I find that the coefficient of the CCJV beta is 0.1009 (but insignificant) when only

beta is included in the FM regression. However, when other control variables are

added in Regressions 2-4, the coefficient of the CCJV beta becomes significantly

negative. From Regression 1 of Panel D, I find that when the BV beta is the only

explanatory variable in the FM regression it gives a positive coefficient of 0.1826,

which is significant at the 5% level. The BV beta outperforms other beta methods.

This is consistent with the portfolio analysis result in Table 4.3, which gives the

biggest 5-1 spread. However, this positive relation for the BV beta does not persist

when other explanatory variables are allowed in the FM regression indicated from

Regressions 2-4 in Panel D. When including option-implied volatility, skewness,

kurtosis and the variance risk premium, the coefficient of the BV beta becomes

significantly negative (see Regression 3 of Panel D). When including all control

variables, the coefficient of the BV beta becomes insignificantly negative (see

Regression 4 of Panel D).

I now interpret the FM regression result in Table 4.6. When beta is the only ex-

planatory variable to returns, the relation between the BV beta and returns is sig-

nificantly positive and it outperforms other beta methods. However, the positive

BV beta and return relation disappears when other control variables are included

in the FM regression. From Table 4.4, I find that all beta methods have clear pat-
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terns with some of the control variables included in the FM regression in Table 4.6.

For the BV beta in particular, there is a relationship with firm size, book-to-market

ratio, option-implied volatility and kurtosis. When I add option-implied moments

and the variance risk premium in Regression 3 of Panel D, the coefficient of option-

implied volatility becomes significant. The only possible explanation for this is that

betas are correlated with other explanatory variables and this obscures the rela-

tion between betas and stock return. This can also be demonstrated by previous

research in the cross-sectional analysis of option-implied moments, which find-

s option-implied moments can be explained by firm characteristics (Dennis and

Mayhew, 2002; Hansis et al., 2010; Taylor et al., 2009).

4.5 Implied Downside Betas and Stock Returns

In this section, I examine whether the risk-return relation is improved when us-

ing implied downside betas. I include the Historical, FGK and BV downside beta

methods in this section. The construction of implied downside betas follows Ang

et al. (2002), who decompose downside betas into a conditional correlation term

and a ratio of conditional total volatility to conditional market volatility. The com-

putation of downside betas follows the formulas given in Section 4.2.2. In order

to demonstrate the predictability of downside betas, I conduct a portfolio analysis

in Section 4.5.1 and the FM regression in Section 4.5.2.

4.5.1 Portfolio Analysis

In order to study the downside risk-return relation, I perform a portfolio sorting

methodology similar to the procedure described in Section 4.4.1. I sort the individ-

ual securities in the S&P 500 Index into five groups at the end of each month and

separately for each downside beta method, according to their pre-ranked down-

side betas. Portfolio 1 includes firms with the lowest downside betas and portfo-

lio 5 contains firms with the highest downside betas. I then calculate the value-

weighted and equally-weighted downside betas, the annualised value-weighted
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and equally-weighted return without dividend and holding period return5 for each

beta methods, for each portfolio in the next month. The procedure is repeated for

all months. Finally, I calculate the time-series average of implied downside betas

and realised returns.

Table 4.7 provides a summary of the mean downside betas and the mean realised

returns for the downside beta sorted quintile portfolios. The table shows that the 5-

1 return spread is positive for the Historical, FGK and BV downside beta methods

in most cases. Taking the value-weighted return without dividend as an exam-

ple, the 5-1 return spread is 3.401% for the Historical downside beta in Panel A,

0.443% for the FGK downside beta in Panel B and 7.260% for the BV downside

beta in Panel C. The portfolio sorting method shows that there is a positive re-

lationship between the Historical, FGK, BV downside betas and returns. From

the t-statistics of these 5-1 return spreads, I find that none of them exceeds the

10% significance level. More importantly, I find that the BV implied downside be-

ta gives the biggest value-weighted and equally-weighted return spread between

the extreme portfolios, which is consistent with the result for general beta methods

presented in Table 4.3.

From the MR test in the last column of Table 4.7, I find that all MR p-values

are greater than 10% for the value-weighted returns, which means that there is

no monotonically increasing relation between all downside betas and the value-

weighted returns. However, there exist some monotonically increasing relations

for the equally-weighted portfolios. For example, the Historical downside beta

gives an MR p-value of 0.085 (less than 10%) for returns without dividend in Pan-

el A; this means that there exists a monotonically increasing relation between the

Historical downside beta and the equally-weighted return without dividend at the

10% significance level. The BV downside beta gives an MR p-value of 0.042

(less than 5%) for return without dividend and 0.066 (less than 10%) for holding

5I include return without dividend and holding period return in the analysis. They are down-
loaded from CRSP directly. Return without dividend has excluded dividends, while holding period
return is a total return, which includes dividends.
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period returns. There exists a monotonically increasing relation between the BV

downside beta and the equally-weighted return without dividend at the 5% sig-

nificance level and a monotonically increasing relation between the BV downside

beta and the equally-weighted holding period return at the 10% significance level.

Compared with the Historical and FGK downside beta methods, the monotonically

increasing relation between the BV downside beta and return is more pronounced.

I now have a close look at the comparison of the BV implied downside beta with

the BV implied beta. The BV implied downside beta performs better than the

BV beta in terms of the positive, significant and linear beta-return relation. More

specifically, the BV downside beta gives an average 5-1 return spread of 7.260%

for the value-weighted return without dividend in Panel C of Table 4.7, which is

1.02% greater than that of the BV implied beta (6.241%) shown in Panel D of

Table 4.3. The MR test for the BV implied beta gives an MR p-value of 0.093 for

the equally-weighted return without dividend in Panel D of Table 4.3. Panel C of

Table 4.7 gives an MR p-value of 0.042 for the BV implied downside beta. The

monotonically increasing relation between the BV downside beta and the equally-

weighted returns becomes more significant. The result that the BV downside beta

outperforms the BV beta is consistent with published research in downside stock

markets (e.g. Ang et al.,2006a; Post and van Vliet,2005). For instance, Post and

van Vliet (2005) find that the mean semivariance CAPM strongly outperforms the

traditional mean variance CAPM in terms of its ability to explain the cross-section

of US stock returns.

Figure 4.3 shows that all downside beta methods display a noisy beta-return re-

lation across different quintile portfolios for the value-weighted returns. For the

value-weighted portfolios, the return difference between the extreme quintile port-

folios is more pronounced for the BV downside beta rather than for the Historical

and FGK downside beta methods. The FGK downside beta method gives the flat-

test beta-return relation with 0.443% return spread, while the BV downside beta

displays a relatively increasing risk-return relation to some extent with 7.260% re-
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turn spread. The equally-weighted quintile portfolio returns for the historical and

BV downside beta methods display a monotonically increasing risk-return relation

and the MR test proves that the Historical and BV downside betas indeed have a

monotonically increasing risk-return relation at the 10% significance level.

Overall, the results in Table 4.7 and Figure 4.3 indicate that the BV downside

beta outperforms the Historical, FGK downside beta methods. Additionally, the

BV downside beta offers an improvement over the BV beta. The positive relation

between market beta risk and returns is much stronger and more pronounced for

the BV downside beta than the general BV beta method.

4.5.2 Fama-MacBeth Regressions

After the portfolio analysis sorted on the basis of downside betas in Section 4.5.1,

I run the month-by-month FM regression in this subsection. Except for different

downside betas, it includes the control variables: firm size, book-to-market ratio,

option-implied volatility, skewness, kurtosis, the variance risk premium, momen-

tum and illiquidity.

Table 4.8 presents the results for the FM regression of the value-weighted return-

s on different downside betas and other control variables. The first regression

in each panel shows the result for the FM regression on only downside betas.

When doing regressions on only downside betas, I find that the coefficients of all

downside beta methods are positive but they are not always significant. Only the

coefficient of the BV downside beta in Regression 1 of Panel C (0.2187 with a

t-statistic of 2.31) is significant at the 5% level. This is consistent with the portfolio

analysis result in Table 4.7, which gives the biggest 5-1 spread of 7.260% per year.

However, this positive relation for the BV downside beta is not robust when other

explanatory variables are allowed in Regressions 2-4 in Panel C. When option-

implied volatility, skewness, kurtosis and variance risk premium are also included,

the coefficient of the BV downside beta becomes negative and insignificant (see
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Regression 3 of Panel C). When all control variables are included, the slope of the

BV downside beta becomes significantly negative (see Regression 4 of Panel C).

The only possible explanation to this is that the BV downside beta is correlated

with other explanatory variables and this obscures the relation between the BV

downside beta and returns.

Therefore, the FM regression confirms that the BV downside beta outperforms the

Historical and FGK downside beta methods in terms of the positive beta-return

relation. However, this kind of positive relationship disappears when other control

variables are included in the cross-sectional FM regression.

4.6 Conclusion

On the basis of previous research of Buss and Vilkov (2012), this research investi-

gates further the relationship between option-implied betas and implied downside

beta, and stock returns using the portfolio analysis and the FM regression.

Consistent with Buss and Vilkov (2012), I find that the BV beta outperforms other

beta methods, giving the biggest positive 5-1 return spread through the portfolio

analysis. A long-short portfolio buying the stocks in the highest BV beta quintile

and shorting the stocks in the lowest BV beta quintile produces positive average

returns. The BV beta has a monotonically increasing relationship with the equally-

weighted return without dividend at the 10% significance level, while there is no

monotonically increasing or decreasing relationship between other betas and s-

tock returns for both the value-weighted and equally-weighted portfolios.

This thesis is the first to propose to combine the downside correlation of Ang et al.

(2002) and the option-implied moments of Bakshi et al. (2003) to measure option-

implied downside betas following the previous implied beta methods of FGK and

BV. When sorting the stocks on downside betas, I find that the BV downside beta

performs best, giving the biggest 5-1 return spread compared with the Historical
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and FGK downside betas. The MR test shows that the BV downside beta is more

pronounced in terms of the monotonically increasing beta-return relationship than

the Historical and FGK downside betas. The BV downside beta has a monotoni-

cally increasing relationship with the equally-weighted return without dividend and

holding period returns at the 5% and 10% significance levels, respectively.

Additionally, the BV downside beta can improve the performance of the BV beta in

terms of the beta-risk relation. The BV downside beta gives 1.02% bigger 5-1 re-

turn spread than that of the general BV beta for the value-weighted return without

dividend. The MR test shows that the monotonically increasing beta-return rela-

tion becomesmore significant when using downside measures. The BV downside

beta has a monotonically increasing relationship with the equally-weighted return

without dividend and holding period returns at the 5% and 10% significance lev-

els, respectively. The BV beta only has a monotonically increasing relationship

with the equally-weighted return without dividend at the 10% significance level.

I find, however, that the beta-return relation for option-implied betas and implied

downside betas is not robust to firm characteristics. The positive beta-return re-

lation for the BV beta and the BV downside beta disappears when other control

variables are included in the FM regression. For example, when option-implied

betas or implied downside betas are the only explanatory variables in the cross-

sectional FM regression, the coefficients of the BV beta and the BV downside beta

are significant and positive. When considering other control variables, I find that

the coefficients of the BV beta and the BV downside beta become insignificant

or even negative. Overall, I find that the BV beta and the BV downside beta are

correlated with other explanatory variables and that this obscures the relationship

between betas and returns.
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Appendix: Results for Replicating Buss and Vilkov (2012)

Data Comparison

In order to compare the results of this study with Buss and Vilkov (2012), I provide

the result for the replication of Buss and Vilkov (2012). It is necessary to point out

the similarities and differences between this analysis and the original paper. The

S&P 500 Index and its constituents are used in both studies. The sample period

ranges from January 4, 1996 to December 31, 2009. I use the same data dealing

standard. I select OTM options (puts with deltas strictly larger than -0.50 and calls

with deltas smaller than 0.5). I estimate option-implied moments with the same

time horizon of one year. Risk-neutral moments are computed following the same

method of Bakshi et al. (2003).

There are some aspects that Buss and Vilkov (2012) do not describe in their pa-

per. First, Buss and Vilkov (2012) do not identify the risk-free interest rate used

to estimate option-implied moments. In this replication, I use treasury bills from

CRSP as a proxy for the risk-free interest rate. Second, Buss and Vilkov (2012)

do not clarify how to calculate option-implied volatility with one year to maturity. I

compute the option-implied moments with various maturities on each day. I then

use linear interpolation to get the 365-day VAR, SKEW and KURTOSIS, using

both contracts with maturity more than 365 days and contracts with maturity less

than 365 days. If there is just one maturity in one day, I do not interpolate and I

use this to represent the 365-day VAR, SKEW and KURTOSIS for that day.

There exist some data differences between the replication and Buss and Vilkov

(2012). The number of firms that have both stock and option data in the S&P

500 Index available to collect is different from the description by Buss and Vilkov

(2012). Sorted by PERMNO, Buss and Vilkov (2012) have a total of 950 firms in

their data, which exceeds 500 because of index additions and deletions. I obtain

the constituents of the S&P 500 Index from COMPUSTAT. Sorted by gvkey, I get
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908 companies from January 4, 1996 to December 31, 2009. I then use the firms

from COMPUSTAT to collect stock data from CRSP and option data from Option-

Metrics. For firms with stock data available, I have a total of 897 names sorted

by PERMNO. When applying the same data filtering role as in Buss and Vilkov

(2012), i.e. selecting OTM options (puts with deltas strictly larger than -0.5 and

calls with deltas smaller than 0.5), Buss and Vilkov (2012) obtain 373 in 1996 to

483 in 2009 out of 500 stocks in the S&P 500 Index. I obtain more than 450 in

1996 and 496 stocks at the beginning of 2009. This may be because the database

has updated in recent years.

Table 4.9 presents descriptive statistics for option-implied volatility and skewness

for the sample period January 1996 to December 2009. It reports the number of

observations, average, standard deviation and median as well as 25th and 75th

percentiles of option-implied volatility and skewness for both the S&P 500 Index

and stocks. I Winsorise the variables, stock implied volatility and skewness, at the

1% and 99% levels following Ang et al. (2006a). For example, if an observation

for stock option-implied volatility is extremely large and above the 99th percentile

of all the firms' implied volatility, I replace the firm's option-implied volatility with

the implied volatility corresponding to the 99th percentile. The same procedure

applies to option-implied skewness. From Table 4.9, I find that the average S&P

500 Index volatility is 0.2378 and the average stock volatility is 0.3708. It is clear

that the average S&P 500 Index volatility is less than the average stock volatility.

The average S&P 500 Index skewness is -0.9608; this is more negative than the

average stock skewness (-0.3804). This shows that the distribution of both index

and stock return is negatively skewed.

Portfolio Analysis

Table 4.10 provides a summary of themean expected betas and themean realised

returns for the beta-sorted quintile portfolios from the paper of Buss and Vilkov

(2012). From the 5-1 return spread and the monotonicity test, I confirm that there
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is a monotonically increasing relation between the BV beta and returns.

Based on the collected option data in this study from January 1996 to December

2009, I perform a portfolio analysis. I sort the individual securities in the S&P

500 Index into five groups at the end of each month and separately for each beta

method, according to their pre-ranked betas. The pre-ranked betas are estimated

using previous one-year daily stock returns at the end of month t (at least 40% of

365-day daily returns). For example, I begin by estimating the coefficient beta for

the one-year period from January 1996 to December 1996 for all equities listed

on the S&P 500 Index at the beginning of January 1997. These stocks are then

ranked from low to high on the basis of the estimated pre-ranked betas and are

assigned to five portfolios with equal number of securities: the 20% of the stocks

with the smallest betas to the first portfolio, the 20% of the stocks with the biggest

betas to the fifth portfolio and so on. After constructing the portfolios based on

the pre-ranked betas, I calculate the value-weighted betas, the annualised value-

weighted return without dividend for each beta method, for each portfolio in the

next month t+1. The procedure is repeated for the whole sample. Then I calculate

the time-series average of the value-weighted betas, the value-weighted return

without dividend in the next month t+1.

For some trading days and firms, option and stock data are available but risk-

neutral moments may not be available after a series of data dealing and calcula-

tion. I use risk-neutral moments to calculate option-implied betas. For the portfolio

analysis, I just use the available implied betas at the end of the month or I fill in

the missing implied betas (stock data available at this day) at the end of the month

for maximum of ten times. The portfolio sorting result with beta filling and without

beta filling is shown in 4.11.

Table 4.11 provides a summary of the mean expected betas and the mean re-

alised returns for the beta-sorted quintile portfolios for the replication from 1996 to

2009. I find that, for all methods, the difference between replicated quintile betas
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and betas from Buss and Vilkov (2012) is very small. For the quintile portfolio

returns, the biggest difference for the BV beta is 1.79%, the biggest difference for

the Historical beta is 1% and the biggest difference for the FGK beta is 1.03%. I

conclude that there are two main reasons for the difference of the quintile portfo-

lio return. The first reason is data differences, which I have described above; the

number of companies I collect data for is slightly different from Buss and Vilkov

(2012) because of database updating. The interpolation method to calculate the

one-year option-implied moments may exist difference. The risk-free rate prox-

y may be different. The second reason is the sensitivity of the portfolio sorting

method; I use daily arithmetic return in the portfolio sort, while I report annualised

return, which is equal to daily return multiplying by 252. Daily returns are very s-

mall and sensitive. Once annualised, a small difference has the potential to cause

large changes.

Figure 4.4 compares the portfolio result for the replication with the result in Buss

and Vilkov (2012). I find that the linear shapes for all beta methods in the replica-

tion are similar to the shapes from the original paper. This shows that the repli-

cation is very close to the paper and it indicates that the results of this study are

reasonable and valid.
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Figure 4.1. Plot of S&P 500Option-ImpliedMoments This figure plots option-implied
volatility, skewness and kurtosis for the S&P 500 Index from January 1996 to December 2012.
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(b) Panel B: FGK Beta
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(d) Panel D: BV Beta

Figure 4.2. Plot of Betas and Returns The figure shows the annualised return without
dividend of the five quintile portfolios sorted by pre-ranked betas over the sample period from Jan-
uary 1996 to December 2012. At the end of each month, I sort the stocks into quintiles based
on their pre-ranked betas. The first portfolio then contains the stocks with the lowest beta, while
the last portfolio contains the stocks with the highest beta. I then compute the annualised value-
weighted and equally-weighted realised return without dividend over the next month for each quin-
tile portfolio, month and beta methodology. Exact numerical values for the betas and returns of
each portfolio are shown in Table 4.3. The four panels present the results for four different beta
methods. The returns are expressed in percentages.
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(b) Panel B: FGK Downside Beta
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(c) Panel C: BV Downside Beta

Figure 4.3. Plot of Downside Betas and Returns The figure shows the annualised
return of the five quintile portfolios sorted by pre-ranked downside betas over the sample period
from January 1996 to December 2012. At the end of each month, I sort the stocks into quintiles
based on their pre-ranked downside betas. The first portfolio then contains the stocks with the
lowest downside market beta, while the last portfolio contains the stocks with the highest down-
side market beta. I then compute the annualised value-weighted and equally-weighted realised
returns without dividend over the next month for each quintile portfolio, month and downside beta
methodology. Exact numerical values for the returns and betas of each portfolio are shown in
Table 4.7. The three panels present the results for different downside beta methods. The returns
are expressed in percentages.
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(b) Panel B: FGK Beta
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(c) Panel C: BV Beta

Figure 4.4. Plot of Betas and Returns Comparing with the BV Paper The figure
shows the annualised realised return of the five quintile portfolios sorted by pre-ranked betas over
the sample period from January 1996 to December 2009. At the end of each month, I sort the
stocks into quintiles based on their pre-ranked betas. The first portfolio then contains the stocks
with the lowest beta, while the last portfolio contains the stocks with the highest beta. I then
compute the annualised value-weighted returns over the next month for each quintile portfolio,
month and beta methodology. Exact numerical values for the returns and betas of each portfolio
could be found in Table 4.10 and Table 4.11. The three panels present the results for different beta
methods. The returns are expressed in percentages. The figures on the left hand side are the
original figures from Buss and Vilkov (2012) and the figures on the right hand side are the figures
from the replication. Note: the figure plots the quintile portfolios with beta filling.
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Table 4.1. Descriptive Statistics for Option-Implied Moments
The table reports descriptive statistics on risk-neutral moments: volatility, skewness and kurtosis
for the S&P 500 Index and its constituents from January 1996 to December 2012. Risk-neutral mo-
ments are calculated following the model-free procedure of Bakshi et al. (2003). The table reports
the number of observation, mean, median, standard deviation and 25th and 75th percentiles.

Observation Mean StDev
25th

Percentile Median
75th

Percentile
S&P 500 Volatility 4,278 0.2422 0.0713 0.1934 0.2338 0.2810
S&P 500 Skew 4,278 -1.5342 0.4333 -1.7882 -1.5165 -1.2222
S&P 500 Kurtosis 4,278 7.1139 2.7082 5.2367 6.5108 8.3001
Stock Volatility 1,683,646 0.3934 0.1760 0.2760 0.3526 0.4600
Stock Skew 1,683,646 -0.4417 0.4035 -0.6586 -0.4318 -0.1975
Stock Kurtosis 1,683,646 3.5738 1.1391 3.0026 3.2660 3.7450
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Table 4.2. Descriptive Statistics for Different Beta Methods
The table provides summary statistics for the general beta methods and the downside beta meth-
ods. The sample period is from January 1996 to December 2012. For each day, I compute, for
each methodology separately, the daily betas for all stocks in the S&P 500 Index. The table reports
the number of observation, mean, value-weighted mean, standard deviation and the 25th, 50th
and 75th percentiles. Panel A reports summary descriptives for the general beta methods. Panel
B presents summary statistics for the downside beta methods. Panel C provides the correlations
of different betas.

Observation Mean
Weighted
Mean StDev

25th
Percentile Median

75th
Percentile

Panel A: General Betas
Historical 1,964,655 1.0046 1.0050 0.5029 0.6739 0.9373 1.2555
FGK 1,612,617 0.8476 0.8483 0.4082 0.5779 0.8045 1.0586
CCJV 1,531,197 1.0323 1.0329 0.4086 0.7643 0.9770 1.2314
BV 1,612,617 1.0732 1.0734 0.3891 0.8207 1.0162 1.2655

Panel B: Downside Betas
Historical 1,964,655 1.0081 1.0086 0.4990 0.6782 0.9425 1.2600
FGK 1,612,949 0.6506 0.6511 0.3566 0.4089 0.6224 0.8601
BV 1,612,949 1.0974 1.0976 0.3708 0.8456 1.0310 1.2800

Panel C: Correlations of Betas
Historical FGK CCJV BV His D FGK D

FGK 0.7271
CCJV 0.1934 0.4187
BV 0.6887 0.7458 0.3762
His D 0.9229 0.6714 0.1909 0.6460
FGK D 0.5266 0.7378 0.2939 0.5348 0.6267
BV D 0.5420 0.6057 0.4279 0.8759 0.5920 0.6299
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Table 4.3. Portfolios Sorted by Different Beta Methods and MR Test
The five quintile portfolios are sorted by pre-ranked betas over the sample period from January
1996 to December 2012. At the end of each month, I sort the stocks into quintiles based on their
pre-ranked betas. The first portfolio then contains the stocks with the lowest beta, while the last
portfolio contains the stocks with the highest beta. I then compute the annualised value-weighted
and equally-weighted realised returns over the next month for each quintile portfolio, month and
beta methodology. The table reports the time-series average of the value-weighted and equally-
weighted betas and portfolio returns, as well as the 5-1 portfolio return spread, separately for
each methodology. In addition, the table provides t-statistics and p-values for the 5-1 spread to
test whether the spread is significant or not. It also provides p-values, obtained from time-series
block bootstrapping, for the Patton and Timmermann (2010) MR test. In this table, v-beta, e-
beta denotes the value-weighted, equally-weighted betas, respectively. v-rwd, v-hpr represents
the value-weighted return without dividend and holding period return, respectively. e-rwd, e-hpr
denotes the equally-weighted return without dividend and holding period return, respectively. The
returns are expressed in percentages.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: Historical Beta

v-beta 0.470 0.732 0.928 1.169 1.643 1.172 - - -
e-beta 0.464 0.732 0.929 1.165 1.713 1.249 - - -
v-rwd 4.110 7.342 5.792 8.284 7.656 3.545 0.567 0.285 0.490
v-hpr 6.680 9.598 7.664 9.913 8.854 2.174 0.349 0.363 0.608
e-rwd 6.844 8.639 10.273 12.510 12.858 6.014 0.895 0.185 0.131
e-hpr 9.403 10.711 12.042 14.113 13.978 4.574 0.682 0.248 0.170

Panel B: FGK Beta
v-beta 0.411 0.624 0.783 0.967 1.283 0.872 - - -
e-beta 0.408 0.634 0.794 0.969 1.343 0.934 - - -
v-rwd 4.483 6.238 8.499 8.309 6.859 2.376 0.349 0.363 0.251
v-hpr 6.935 8.305 10.333 9.869 8.032 1.097 0.164 0.435 0.301
e-rwd 6.629 8.513 11.220 13.699 12.207 5.577 0.817 0.207 0.288
e-hpr 8.874 10.299 12.887 15.207 13.297 4.422 0.648 0.258 0.337

Panel C: CCJV Beta
v-beta 0.617 0.787 0.919 1.090 1.419 0.801 - - -
e-beta 0.695 0.834 0.956 1.114 1.457 0.762 - - -
v-rwd 6.969 6.060 7.589 7.952 6.450 -0.518 0.089 0.465 0.498
v-hpr 9.576 8.067 9.295 9.259 7.502 -2.074 0.358 0.360 0.406
e-rwd 9.443 10.405 11.379 9.970 7.804 -1.640 0.301 0.382 0.424
e-hpr 11.824 12.229 12.972 11.288 8.811 -3.012 0.554 0.290 0.344

Panel D: BV Beta
v-beta 0.644 0.848 1.000 1.189 1.537 0.893 - - -
e-beta 0.658 0.862 1.010 1.195 1.620 0.963 - - -
v-rwd 4.644 6.584 9.893 8.645 10.884 6.241 0.838 0.201 0.325
v-hpr 7.315 8.529 11.525 10.066 11.785 4.470 0.602 0.274 0.366
e-rwd 6.647 9.131 10.616 12.537 13.316 6.669 0.940 0.173 0.093
e-hpr 9.171 10.976 12.238 13.973 14.185 5.014 0.708 0.240 0.129
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Table 4.4. Properties of Portfolios Formed on Different Betas
The table provides the average characteristics related to firms and option-implied moments for
quintile portfolios sorted on the pre-ranked betas, over the sample period from January 1996 to
December 2012. At the end of each month, the five portfolios are formed based on the pre-ranked
betas. For each quintile portfolio, month and methodology, I compute the average of ln(ME),
ln(BE/ME), option-implied moments and the variance risk premium for all stocks at the time when
portfolios are sorted. The table reports the time-series means of these statistics for all quintile
portfolios, as well as the 5-1 portfolio spread, separately for each methodology. In addition, the
table provides t-statistics and p-values for the 5-1 spread to test whether the spread is significant
or not. It also provides p-values, obtained from time-series block bootstrapping, for the Patton and
Timmermann (2010) MR test.

1 2 3 4 5 5-1 t-stat t-pval MR-pval
Panel A: Historical Beta

ln(ME) 2.327 2.271 2.246 2.297 2.285 -0.042 0.337 0.368 0.594
ln(BE/ME) -7.931 -7.924 -7.909 -7.885 -7.901 0.030 0.333 0.369 0.311
MFIV 0.305 0.328 0.354 0.397 0.517 0.212 11.300 0.000 0.000
MFIS -0.410 -0.422 -0.430 -0.422 -0.359 0.051 1.912 0.028 0.566
MFIK 4.014 3.837 3.627 3.481 3.232 -0.781 9.842 0.000 0.000
VRP -0.008 -0.007 -0.003 0.005 0.046 0.054 1.749 0.040 0.228

Panel B: FGK Beta
ln(ME) 2.560 2.516 2.498 2.473 2.372 -0.188 1.795 0.036 0.063
ln(BE/ME) -8.089 -8.006 -7.965 -7.924 -7.930 0.159 2.081 0.019 0.210
MFIV 0.301 0.327 0.357 0.405 0.536 0.234 11.926 0.000 0.000
MFIS -0.402 -0.421 -0.427 -0.428 -0.372 0.030 1.283 0.100 0.946
MFIK 3.970 3.723 3.644 3.508 3.261 -0.709 9.419 0.000 0.000
VRP -0.002 -0.002 0.004 0.004 0.035 0.038 1.316 0.094 0.237

Panel C: CCJV Beta
ln(ME) 2.644 2.639 2.610 2.501 2.307 -0.338 4.776 0.000 0.153
ln(B/M) -8.007 -8.037 -8.032 -8.021 -8.013 -0.005 0.109 0.457 0.403
MFIV 0.287 0.319 0.356 0.407 0.515 0.228 18.283 0.000 0.000
MFIS -0.329 -0.433 -0.480 -0.520 -0.596 -0.267 17.947 0.000 0.000
MFIK 3.485 3.387 3.422 3.443 3.494 0.009 0.157 0.438 0.995
VRP 0.006 0.004 0.002 0.001 0.005 -0.001 0.080 0.468 0.306

Panel D: BV Beta
ln(ME) 2.796 2.619 2.530 2.393 2.082 -0.714 12.268 0.000 0.000
ln(BE/ME) -8.124 -8.009 -7.959 -7.921 -7.905 0.219 3.511 0.000 0.046
MFIV 0.269 0.317 0.357 0.416 0.568 0.298 20.423 0.000 0.000
MFIS -0.429 -0.439 -0.434 -0.417 -0.330 0.100 4.886 0.000 0.423
MFIK 3.995 3.738 3.627 3.524 3.222 -0.773 8.231 0.000 0.000
VRP 0.001 -0.001 0.000 0.005 0.033 0.032 1.190 0.117 0.620
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Table 4.5. Portfolio Returns Sorted by Firm Characteristics
The five quintile portfolios are sorted by firm-level factors over the sample period from January
1996 to December 2012. At the end of each month, I sort the stocks into quintiles based on these
factors. I then compute the value-weighted and equally-weighted realised returns over the next
month. The time-series average of the value-weighted and equally-weighted portfolio returns is
reported in this table. In addition, the table provides t-statistics and p-values for the 5-1 spread to
test whether the spread is significant or not. It also provides p-values, obtained from time-series
block bootstrapping, for the Patton and Timmermann (2010) MR test. v-rwd, v-hpr represents
the value-weighted return without dividend and holding period return, respectively. e-rwd, e-hpr
denotes the equally-weighted return without dividend and holding period return, respectively. The
returns are expressed in percentages.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: Firm Size

v-rwd 13.016 9.751 8.999 7.188 6.007 -7.009 1.459 0.072 0.045
v-hpr 14.722 11.572 10.927 8.994 7.931 -6.791 1.413 0.079 0.056
e-rwd 14.839 10.412 9.881 8.324 7.701 -7.139 1.559 0.060 0.057
e-hpr 16.526 12.227 11.808 10.141 9.537 -6.988 1.526 0.064 0.068

Panel B: Book-to-Market Ratio
v-rwd 6.449 5.713 6.837 8.145 6.777 0.328 0.067 0.473 0.279
v-hpr 7.945 7.401 8.958 10.563 9.322 1.377 0.286 0.388 0.251
e-rwd 8.863 7.639 8.661 10.893 13.608 4.745 1.095 0.137 0.300
e-hpr 10.286 9.071 10.392 12.853 16.092 5.806 1.336 0.091 0.301

Panel C: Option-Implied Volatility
v-rwd 4.919 8.093 9.290 8.843 10.082 5.163 0.677 0.249 0.185
v-hpr 7.590 9.994 10.758 9.988 10.795 3.205 0.421 0.337 0.230
e-rwd 6.587 9.934 10.795 12.623 12.147 5.560 0.777 0.218 0.206
e-hpr 9.257 11.861 12.357 13.904 12.904 3.647 0.511 0.305 0.256

Panel D: Option-Implied Skewness
v-rwd 4.584 7.644 7.820 9.219 10.213 5.630 1.462 0.072 0.046
v-hpr 6.385 9.473 9.690 10.846 12.104 5.720 1.494 0.068 0.042
e-rwd 5.434 9.046 10.035 13.295 14.257 8.823 2.196 0.014 0.018
e-hpr 7.246 10.776 11.683 14.743 15.818 8.573 2.138 0.016 0.015

Panel E: Option-Implied Kurtosis
v-rwd 8.465 9.198 10.812 5.155 5.665 -2.800 0.547 0.292 0.379
v-hpr 9.714 10.730 12.507 7.176 7.701 -2.013 0.394 0.347 0.426
e-rwd 12.918 15.002 10.943 6.171 7.032 -5.886 1.233 0.109 0.301
e-hpr 14.056 16.417 12.575 8.171 9.043 -5.013 1.052 0.146 0.298

Panel F: Variance Risk Premium
v-rwd 19.201 15.224 9.096 5.617 -9.573 -28.774 4.306 0.000 0.000
v-hpr 20.249 16.758 10.981 7.730 -7.527 -27.776 4.137 0.000 0.001
e-rwd 13.170 13.552 12.301 10.342 3.108 -10.062 1.646 0.050 0.149
e-hpr 14.234 15.085 14.094 12.324 4.871 -9.363 1.531 0.063 0.236
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Table 4.7. Portfolio Sorts on Downside Betas and MR Test
The five quintile portfolios are sorted by pre-ranked downside betas over the sample period from
January 1996 to December 2012. At the end of each month, I sort the stocks into quintiles based
on their pre-ranked downside betas. The first portfolio then contains the stocks with the low-
est downside beta, while the last portfolio contains the stocks with the highest downside beta.
I then compute the value-weighted and equally-weighted realised returns over the next month.
The time-series average of the value-weighted and equally-weighted portfolio returns is reported
in this table. In addition, the table provides t-statistics and p-values for the 5-1 spread to test
whether the spread is significant or not. It also provides p-values, obtained from time-series block
bootstrapping, for the Patton and Timmermann (2010) MR test. Note: v-rwd, v-hpr represents
the value-weighted return without dividend and holding period return, respectively. e-rwd, e-hpr
denotes the equally-weighted return without dividend and holding period return, respectively. The
returns are expressed in percentages.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: Historical Downside Beta

v-beta 0.473 0.738 0.934 1.174 1.641 1.169 - - -
e-beta 0.468 0.739 0.936 1.167 1.712 1.244 - - -
v-rwd 4.812 6.601 6.158 8.310 8.213 3.401 0.549 0.291 0.232
v-hpr 7.383 8.809 8.057 9.940 9.407 2.025 0.328 0.371 0.333
e-rwd 6.788 8.801 9.996 12.132 13.410 6.622 0.979 0.164 0.085
e-hpr 9.325 10.897 11.777 13.767 14.485 5.160 0.763 0.223 0.118

Panel B: FGK Downside Beta
v-beta 0.266 0.465 0.603 0.764 1.026 0.760 - - -
e-beta 0.258 0.472 0.610 0.766 1.066 0.807 - - -
v-rwd 6.043 5.762 6.665 9.268 6.485 0.443 0.076 0.470 0.448
v-hpr 8.322 7.757 8.506 10.909 7.786 -0.537 -0.092 0.537 0.513
e-rwd 8.139 8.636 10.268 13.210 11.886 3.747 0.622 0.267 0.259
e-hpr 10.125 10.452 11.973 14.831 13.051 2.926 0.486 0.314 0.323

Panel C: BV Downside Beta
v-beta 0.692 0.878 1.016 1.200 1.540 0.848 - - -
e-beta 0.710 0.891 1.029 1.212 1.632 0.923 - - -
v-rwd 4.384 7.695 8.536 8.206 11.643 7.260 0.939 0.174 0.145
v-hpr 7.065 9.620 10.060 9.572 12.461 5.395 0.700 0.242 0.166
e-rwd 6.479 9.013 10.675 11.933 14.030 7.551 1.068 0.143 0.042
e-hpr 9.067 10.898 12.262 13.340 14.858 5.791 0.820 0.206 0.066
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Table 4.9. Descriptive Statistics for Option-Implied Volatility and Skewness
(1996-2009)
This table reports the data descriptive statistics on risk-neutral moments: volatility and skewness
for the S&P 500 Index and its constituents from January 1996 to December 2009. Risk-neutral
moments are calculated using the model-free procedure in Bakshi et al. (2003). The table reports
the number of observations, average, median, standard deviation and 25th and 75th percentiles.

Observation Mean StDev
25th

Percentile Median
75th

Percentile
S&P 500 Volatility 3,520 0.2378 0.0744 0.1812 0.2311 0.2691
S&P 500 Skew 3,520 -0.9608 0.3307 -1.1301 -0.9691 -0.8286
Stock Volatility 1,243,943 0.3708 0.1410 0.2691 0.3394 0.4369
Stock Skew 1,243,943 -0.3804 0.2736 -0.5587 -0.3784 -0.1854
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Table 4.10. Quintile Portfolio Betas and Returns from BV(2012)
This table provides the mean expected beta and the annualised mean realised return for the five
quintile portfolios sorted on the expected market betas, over the sample period from January 1996
to December 2009. At the end of each month, I sort, for each beta methodology, the stocks in-
to quintiles based on their expected market beta. The first portfolio thereby contains the stocks
with the lowest expected market betas, and the last portfolio contains the stocks with the highest
expected market betas. For each quintile portfolio, month and methodology, I then compute the
value-weighted expected portfolio market beta and the annualised value-weighted realised return
over the next month. I only include a stock in the sorting procedure if its expected beta is available
for all approaches within a certain group (Daily, Monthly, CCJV). The table reports the time-series
means of the expected betas and the realised returns for each methodology. In addition, the table
provides p-values, obtained from time-series block bootstrapping, for the Patton and Timmerman-
n (2010) MR test of the hypotheses for monotonically increasing and monotonically decreasing
relations between expected betas and returns.

1 2 3 4 5 5-1 H0: increasing H0: decreasing
Panel A: Historical Daily

Expected Beta 0.48 0.71 0.88 1.09 1.52 1.04 - -
Realised Return 4.50 4.94 4.99 7.05 5.09 0.60 0.40 0.31

Panel B: BV Option-Implied Daily
Expected Beta 0.66 0.83 0.96 1.12 1.45 0.79 - -
Realised Return 4.15 4.82 5.58 6.54 9.72 5.57 0.71 0.05

Panel C: FGK Daily
Expected Beta 0.40 0.59 0.72 0.88 1.19 0.78 - -
Realised Return 3.79 3.82 5.60 5.56 6.34 2.55 0.40 0.07
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Table 4.11. Quintile Portfolio Betas and Returns from Replication
The table provides the mean expected beta and the annualised mean realised return for the five
quintile portfolios sorted on different beta measures, over the sample period from January 1996
to December 2009. At the end of each month, I sort, for each beta methodology, the stocks
into quintiles based on their expected market beta. The first portfolio thereby contains the stocks
with the lowest expected market betas, and the last portfolio contains the stocks with the highest
expected market betas. For each quintile portfolio, month and methodology, I then compute the
value-weighted expected portfolio market beta and the annualised value-weighted realised return
over the next month. The table reports the time-series means of the expected betas and the
realised returns for each methodology. In addition, the table provides p-values, obtained from
time-series block bootstrapping, for the Patton and Timmermann (2010) MR test.

1 2 3 4 5 5-1 MR p-val
Panel A: Historical Daily

Expected Beta 0.49 0.72 0.89 1.13 1.59 1.11 -
Realised Return 3.50 5.59 4.03 7.39 6.00 2.50 0.43

Panel B: BV Option-Implied Daily
(No data filling)

Expected Beta 0.69 0.84 0.97 1.14 1.43 0.74 -
Realised Return 3.17 4.66 7.84 6.74 8.95 5.79 0.27
(Data filling)

Expected Beta 0.70 0.86 0.99 1.16 1.47 0.78 -
Realised Return 3.44 4.88 7.37 7.46 11.37 7.94 0.12

Panel C: FGK Daily
(No data filling)

Expected Beta 0.41 0.59 0.73 0.89 1.16 0.75 -
Realised Return 3.18 5.02 6.02 4.81 5.46 2.28 0.30
(Dta filling)

Expected Beta 0.42 0.60 0.74 0.90 1.18 0.77 -
Realised Return 3.65 4.63 6.63 5.56 6.85 3.20 0.32

93



Chapter 5

Moment Risk Premia and the Cross-Section of

Stock Returns

5.1 Introduction

Variance swaps have been traded in the market. It allows investors to speculate

on or hedge risks associated with the uncertainty about the return variance. A

variance swap pays the difference between a standard estimate of the realised

variance and the fixed variance swap rate. Since a variance swap costs zero to

enter, the variance swap rate represents the risk-neutral expected value of the

realised variance. As in Carr and Wu (2009), a direct estimate of the variance

risk premium is the difference between the realised variance and the variance

swap rate, which measures the terminal profit and loss from a long variance swap

contract and holding it to maturity. The expected sign of the average variance risk

premium should be negative. Writing variance swaps, receiving fixed and paying

floating, is on average profitable.

The variance risk premium has become increasingly important for asset pricing;

it has been demonstrated to be able to predict future stock returns by the existing

literature. For example, Bali and Hovakimian (2009) find that the realised-implied

volatility spread, named the volatility risk premium, has a significantly negative

relationship with stock returns. However, Han and Zhou (2012) estimate a stock's

variance risk premium as the difference between risk-neutral variance and ex-

pected realised variance, and they support that high values of the variance risk

premium can predict high future stock returns.

Unlike the variance risk premium, skew and kurtosis swaps are not traded in the

94



market. The skew and kurtosis risk premia in asset pricing have not been studied

extensively. Kozhan et al. (2013) are the first to propose the skew risk premium

and to provide strong empirical evidence for the co-existence of both skew and

variance risk premia in the equity market. Kozhan et al. (2013) find that the skew

risk premium accounts for the slope in the implied volatility curve in the S&P 500

market and that skew risk is tightly related to variance risk. In the existing litera-

ture, both the variance risk premium and the slope of the implied volatility curve

are found to be able to predict future stock returns (e.g. Xing et al., 2010; Yan,

2011), but no literature provides evidence on a direct relation between the skew

and kurtosis risk premia and individual realised stock returns. Additionally, Bali

et al. (2014) find that the volatility, skewness and kurtosis risk premia are each

positively related to expected returns. Except for these two studies, no previous

research focuses on the predictive ability of the skew and kurtosis risk premia on

stock returns.

The study of the moment risk premia presented in this thesis is motivated by sev-

eral previous studies of the variance risk premium (see e.g. Bali and Hovakimian,

2009; Han and Zhou, 2012). I first study comprehensively a direct relation be-

tween the moment risk premia and the cross-section of stock returns. I define the

moment risk premia as the difference between expected realised moments and

risk-neutral moments. The calculation of realised moments follows Andersen and

Bollerslev (1998), Andersen et al. (2003), Amaya et al. (2011) and Choi and Lee

(2014). The computation of risk-neutral moments follows the model-free method

of Bakshi et al. (2003).

The most relevant literature studies for this chapter are Han and Zhou (2012)

and Bali et al. (2014). The research complements Han and Zhou (2012). I add

another two risk premium measures, named the skew and kurtosis risk premia,

as well as another return measure, named ex ante expected stock returns. The

study also complements Bali et al. (2014), who investigate the cross-sectional

relation between the market's ex ante view of a stock's risk and the stock ex ante
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return. I modify their methodology for the moment risk premia. I include two more

return measures, ex post realised stock returns and the implied cost of capital in

the study, neither of which are used by Bali et al. (2014).

I employ daily options on the S&P 500 Index constituents from 1996 to 2012 for

the empirical analysis. I examine the relationship between the moment risk pre-

mia and individual stock returns. I perform the test procedures as follows: I adopt

a portfolio analysis to examine the cross-sectional relation between the variance,

skew and kurtosis risk premia and stock returns. I also use the cross-sectional

Fama and MacBeth (1973) (FM) regression to see whether the relationship be-

tween the moment risk premia and stock returns is robust to firm-level and risk

variables. Finally, I perform a robustness test in subperiods, using moments with

different maturities.

The main contributions of this chapter are now summarised. Firstly, the variance,

skew and kurtosis risk premia are found to be determined differently by firm-level

and risk factors. The study complements Han and Zhou (2012), who investigate

only the determinant of the variance risk premium. This is the first work to study

the determinants of the skew and kurtosis risk premia.

Secondly, I find that both the variance and skew risk premia are related negatively

to subsequent realised stock returns. The skew risk premium is as important as

the variance risk premium in subsequent stock return prediction. However, the

kurtosis risk premium has a noisy and insignificant relationship with realised stock

returns; the result depends on whether the portfolio is value-weighted or equally-

weighted. The FM regression shows that the negative relation between the skew

risk premium and stock returns is robust to firm-level and risk variables, while the

variance risk premium is not robust to firm-level and risk control variables. The

results are robust to subperiods and different maturities.

The results for the negative cross-sectional relation between the variance risk pre-
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mium and ex post realised stock returns are consistent with Bali and Hovakimian

(2009), who indicate a negative and significant relationship between stock returns

and the realised-implied volatility spread. These results are also in line with em-

pirical evidence presented by Han and Zhou (2012), who define the variance risk

premium as the difference between risk-neutral variance and realised variance,

and who support the positive relation between the variance risk premium and s-

tock returns. I define the variance risk premium as the difference between realised

and risk-neutral variance, which is opposite to Han and Zhou (2012). Therefore,

the result of a negative relation between the variance risk premium and realised

stock returns that is found in this research is consistent with Bali and Hovakimian

(2009) and Han and Zhou (2012). To the best of my knowledge, I am the first to

perform such an investigation for the relationship between the skew and kurtosis

risk premia and realised stock returns.

Thirdly, I adopt the price target expected return (PTER) and the impled cost of

capital (ICC) as measures of ex ante expected stock returns. The variance and

skew risk premia are found to have a negative and significant relationship with ex

ante expected stock returns. However, the kurtosis risk premium is found to be

positively related to expected stock returns. The FM regression shows that the

negative relation between the moment risk premia and expected stock returns is

robust to firm-level and risk control variables. It is also robust to subperiods and

different maturities.

For ex ante expected stock returns, the results for the variance and skew risk pre-

mia are consistent with Bali et al. (2014), who show that the PTER is positively

related to both the volatility and skew risk premia. Their volatility and skew risk pre-

mia are calculated in a different way to the measure used in this study. Bali et al.

(2014) use the difference between risk-neutral measures and realised measures,

while I use the difference between realised measures and risk-neutral measures.

The result for the relation between the kurtosis risk premium and expected stock

returns is inconsistent with the result of Bali et al. (2014). In order to test the rela-
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tionship between the volatility, skew and kurtosis risk premia and expected stock

returns, Bali et al. (2014) run the FM regression of stock returns on the volatility,

skew and kurtosis risk premia and on the control variables. In this study, I employ

a univariate portfolio analysis for each moment risk premium. I also perform the

FM regression separately for each risk premium. Different from Bali et al. (2014),

I also add the ICC. The focuses of Bali et al. (2014) and this study are different.

Bali et al. (2014) concentrate mainly on the relation between option-implied mo-

ments and expected stock returns, while I study the relation between the moment

risk premia and stock returns.

The remainder of the chapter is organised as follows. Section 5.2 shows the cal-

culation of realised and risk-neutral moments, as well as the moment risk premia.

It also describes two ex ante expected return measures: the PTER and the ICC.

Section 5.3 discusses the data and summary statistics used in this study. Section

5.4 investigates how the moment risk premia are determined by firm-level and risk

factors. Section 5.5 analyses the cross-sectional relation between the variance,

skew and kurtosis risk premia and ex post realised stock returns. Section 5.6 in-

vestigates the relationship between the variance, skew and kurtosis risk premia

and ex ante expected stock returns. Section 5.7 reports the robustness test result

with subperiods and different maturities. Section 5.8 concludes the main findings

of this study.

5.2 Methodology

5.2.1 Moments and Moment Risk Premia

In this section, I calculate realised and risk-neutral moments (variance, skewness

and kurtosis) using the model-free method. This section also describes the ap-

proaches to compute the variance, skew and kurtosis risk premia.
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BKM Risk-Neutral Moments

Risk-neutral moments are calculated following the formulas given in Bakshi et al.

(2003). The detail of the BKM method is described in Section 3.2.

I choose a maturity of 30 days for risk-neutral volatility, skewness and kurtosis.

For each day, I calculate risk-neutral moments using options with different maturi-

ties for each stock. In each calculation, I require that a minimum of two OTM calls

and two OTM puts have valid prices. If insufficient data are available, the obser-

vation is discarded. This may introduce a selection bias, but the interpolation for

obtaining a continuum of strikes require a minimum of two OTM calls and two OT-

M puts. When using daily options with all maturities, I can in principle obtain daily

option-implied volatility, skewness and kurtosis with various maturities for each

stock. I then interpolate linearly to get the 30-day VAR, SKEW and KURTOSIS,

using both contracts with maturity more than 30 days and contracts with maturity

less than 30 days. If the risk-neutral moment is with only one maturity in a par-

ticular day, I do not interpolate and use this to represent the 30-day VAR, SKEW

and KURTOSIS on that day. There are some outliers for risk-neutral moments for

stocks. I Winsorise risk-neutral moments following Ang et al. (2006a). For exam-

ple, if an observation for the risk-neutral variance of a stock is extremely large and

above the 99th percentile of all the firms' risk-neutral variance, I replace the firm's

risk-neutral variance with the risk-neutral variance corresponding to the 99th per-

centile. The same is done for firms with the risk-neutral variance below the 1%-tile

of all the firms' risk-neutral variance. I take the same Winsorising procedure for

risk-neutral skewness and kurtosis.

Realised Moments

The well-known daily realised variance (Andersen and Bollerslev, 1998; Andersen

et al., 2003) is obtained by summing squares of intraday high-frequency returns.

In this thesis, realised variance is calculated by summing squares of daily returns.
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RVt =
N

∑
i=1

R2
t,i (5.1)

where RVt denotes the realised variance at time t.

An appealing characteristic of this variance measure compared with other esti-

mation methods is its model-free nature (see Andersen et al., 2001; Barndorff-

Nielsen, 2002 for details).

Following Amaya et al. (2011) and Choi and Lee (2014), I construct realised skew-

ness as 1

RSt =

√
N ∑N

i=1 R3
t,i

RV
3
2

t

(5.2)

where RSt denotes the realised skewness at time t.

The measure of realised kurtosis is computed as

RKt =
N ∑N

i=1 R4
t,i

RV 2
t

(5.3)

where RKt denotes the realised kurtosis at time t.

Since the moment risk premia measure the terminal profit and loss from a long

moment swap contract, the realised moments in equations (5.1), (5.2) and (5.3)

are historical measures, which cannot represent future realised moments. Risk-

neutral moments carry traders' expectations regarding the distribution of future

returns, which are not contained in historical estimates. Following Drechsler and

Yaron (2011) and Han and Zhou (2012), I calculate expected future realised mo-

ments using regression specifications that include risk-neutral moments in addi-

tion to historical realised moments. I adopt a multiple linear regression model

to estimate the expected moments under the physical measure with lagged risk-

neutral moments and historical realised moments. I run the following regressions

1Compared with the realised skewness by Neuberger (2012), the measure adopted in this the-
sis is easier. For modelling realised skewness with a short time horizon, this measure is effective.
The realised skewness of Neuberger (2012) is better for modelling the long-horizon realised skew-
ness.
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with one-year of past data:

RVt = α1 +β1MFIVt−1 + γ1RVt−1 + εv
t

RSt = α2 +β2MFISt−1 + γ2RSt−1 + εs
t

RKt = α3 +β3MFIKt−1 + γ3RKt−1 + εk
t

(5.4)

where MFIV , MFIS and MFIK are the risk-neutral variance, skewness and kur-

tosis following the formula of Bakshi et al. (2003), respectively.

I take the physical expected variance EVart , the physical expected skewness

ESkewt and the physical expected kurtosis, EKurtt for each firm as the fitted value

from the regressions:

EVart ≡ R̂V t+1 = α̂1 + β̂1MFIVt + γ̂1RVt

ESkewt ≡ R̂St+1 = α̂2 + β̂2MFISt + γ̂2RSt

EKurtt ≡ R̂Kt+1 = α̂3 + β̂3MFIKt + γ̂3RKt

(5.5)

In this chapter, I use daily data instead of high-frequency data to calculate realised

moments. The 30-day realised physical (annualised) variance, skewness and kur-

tosis are computed using previous one-month daily stock returns. For example,

RVt is computed by summing squares of daily returns in the previous month and

is then annualised by multiplying by 252/20 in my analysis. I obtain daily realised

and risk-neutral variance, skewness and kurtosis.

Moment Risk Premia

After calculating expected realised moments and risk-neutral moments, I then

compute the moment risk premia, which are the difference between these two

measures.

V RPt = EVart −MFIVt

SRPt = ESkewt −MFISt

KRPt = EKurtt −MFIKt

(5.6)

After obtaining the daily variance, skew and kurtosis risk premia, I select only the
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observations from the end of each month to represent the monthly variance, skew

and kurtosis risk premia. I also select realised and risk-neutral moments observed

at the end of each month.

The measure of the variance risk premium is similar to that in Carr and Wu (2009),

who measure the variance risk premium as the difference between the realised

variance and the variance swap rate. Their realised variance is estimated from

daily stock returns. Since the variance swap rate is the risk-neutral expectation

of realised variance, their measure of the variance risk premium is essentially

the same as my measure. However, the measure used in this study has a dif-

ferent definition with that given in Bollerslev et al. (2009), Han and Zhou (2012)

and Drechsler (2013), who model the variance risk premium as the difference be-

tween implied variance and realised variance. Their measure is essentially the

measure used in this research multiplied by minus one. Using this directly ob-

servable proxy for the moment risk premia has the obvious advantage of being

simple to implement and completely model-free.

5.2.2 Ex ante Expected Stock Return Measures

In this section, I present two methods to calculate ex ante expected stock returns.

The first method is to use the PTER and the second method is to use the ICC.

Price Target Expected Return

The first measure of ex ante expected return is based on analyst price targets. For

each analyst price target, the price target-based expected return (PrcT gtER) is

calculated by dividing analyst price targets (PrcT gt) by the market price of stock at

the end of the month during which the price target was announced (MonthEndPrc),

minus 1.2 To ensure good data quality, I remove observations where either the

2The end-of-month stock price is taken from CRSP. The analyst price target data are from
I/B/E/S unadjusted Detail History database. They are matched by 'gvkey' and the end-of-month
date. If the date of price target is in month t, then it is matched with the stock price at the end of
month t.
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announcement date or month-end stock price is missing or non-positive. In order

to calculate the expected future return for stock i at the end of month t, I take the

average of all price target implied expected returns from price targets announced

during the given month. Therefore, the expected future return for stock i in month

t is calculated as:

PT ERi,t =
∑

ni,t
j=1 PrcT gtER j

ni,t
(5.7)

where ni,t is the number of analyst price targets for stock i announced duringmonth

t and

PrcT gtER j =
PrcT gt j

MonthEndPrc
−1. (5.8)

The PTER measure may be up biased, because it is based on analysts' future

forecasting of stock prices. Analysts are more likely to follow the stocks that have

high investment potentials and report high price targets. In most cases, the re-

ported price targets are normally higher than the current stock price.

As in Bali et al. (2014), the PTER measure displays several advantages. First, it

is consistent with the definition of ex ante expected return as the expected future

security value (analyst price target) divided by the current stock price (month-end

stock price). The current stock price is easily observable, but the expected future

stock price cannot be observed directly. Here, an analyst price target represents

the estimate of the expected future security value. Second, compared with the ICC

(described in the next subsection), the PTER measure is simple, easily calculated

and largely free from assumptions that afflict alternative measures. The ICC relies

on the assumptions of the future growth rate of the firm's earnings or the firm's

future return on equity, while the PTER does not require such assumptions. Third,

I use a time horizon of one year for the PTER. It is flexible enough to account for

term structure variation in the risk and expected return profile of a stock, whereas

the ICC measure requires that the expected rate of return on a stock should be

constant for all future periods.
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In addition to the conceptional appeal of the PTER, substantial previous literature

indicates that price targets are the most informative component of analyst report-

s. Asquith et al. (2005) find that the market reaction to price target revisions is

stronger than that of an equal percentage change in earnings forecasts. Price

target revisions also contain new information even in the presence of earnings

revisions and stock recommendations. Bradshaw (2002) shows that price targets

reflect analysts' valuations of securities. Overall, these research results support

the use of price targets over earnings and growth forecasts.

Implied Cost of Capital

The calculation of the implied cost of capital follows Gebhardt et al. (2001). Con-

ceptually, the ICC is found by solving for the discount rate (r) that equates the

current book value of equity plus the present value of expected future earnings to

the current stock price. Algebraically, the ICC is the value r that solves:

Pt = Bt +
11

∑
i=1

FROEt+i − r
(1+ r)i Bt+i−1 +

FROEt+12 − r
r(1+ r)11 Bt+11 (5.9)

where Bt is the book value of equity divided by the number of shares outstanding

in the current month t and FROEt+i is the forecast return on equity (ROE) for the

period t + i. The last term in equation (5.9) is the infinite summation of forecast

earnings for year t + 12 and after. The assumption in this term is that return on

equity remains constant for year t +12 and after.

For each month and individual stock, I solve the ICC by finding the value of r that

equates the stock price (Pt) on the date that I/B/E/S releases their earnings fore-

cast summary data (the third Thursday of each month) to the right hand side of

equation (5.9). I obtain I/B/E/S analysts' one-year-ahead (FEPSt+1) and two-year-

ahead (FEPSt+2) EPS forecast, as well as an estimate of the long-term growth

rate (Ltg). I use the mean one- and two-year-ahead EPS forecasts (FEPSt+1 and

FEPSt+2). In addition, I use the long-term growth rate to compute a three-year-

ahead earnings forecast: FEPSt+3 = FEPSt+2(1+Ltg). For the first three years,

FROEt+i is computed as FEPSt+i/Bt+i−1 for i= 1,2,3, where FEPSt+i is the I/B/E/S
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mean forecasted EPS for year t + i and Bt+i−1 is the book value per share for the

last fiscal year for which earnings have been announced, taken from COMPU-

STAT. Beyond the third year, I forecast FROE using a linear interpolation to the

industry median ROE. I categorise the firms in the S&P 500 Index into ten indus-

tries by the GICS sector. Thus, FROEt+i = FROEt+3 +
i−3

9 (ROEMedian −FROEt+3)

for i = 4,5...12. Industry median return on equity is taken to be the median return

on equity for all firms in the same industry.

The book value per share at time t, Bt is taken from COMPUSTAT. As it is impos-

sible to know the value of Bt+1, it is calculated as Bt+1 = Bt +FEPSt+1 −FDPSt+1,

where FDPSt+1 is the forecasted dividend per share for year t +1, estimated us-

ing the current dividend payout ratio (k). Alternatively, Bt+1 can be expressed as

Bt +FEPSt+1(1− k), where k is the proportion of earnings paid out as dividend-

s, calculated as the ratio of actual dividends from the most recent fiscal year to

earnings over the same time period. The dividends per share and earnings per

share used for calculating the dividend payout ratio are taken from COMPUSTAT.

I divide the dividends paid by 6% of total assets3 for firms experiencing negative

earnings as in Gebhardt et al. (2001). If the payout ratio value, k, is less than zero

(greater than one), I assign the payout ratio a value of zero (one). If dividend infor-

mation is missing from COMPUSTAT, I assign k a value of zero. Bt+i is calculated

similarly for year t +2 through t +11, which is Bt+i = Bt+i−1(1+FROEt+i(1−k)) for

i = 2,3...11. The payout ratio k is held constant.

5.3 Data

5.3.1 Data

I employ options on the S&P 500 Index constituents for a total of 4,278 trading

days in the sample period from January 1996 to December 2012.

3The long-run return-on-total assets in the US is approximately 6%, so I use 6% of total assets
as a proxy for normal earnings levels when current earnings are negative.
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The constituents of the S&P 500 Index are obtained from COMPUSTAT and the

daily option data are obtained from OptionMetrics. I retain only options with ex-

piration days of at least one week but no more than 700 days. In other words,

I exclude options that mature within one week and more than 700 days. Daily

equity data are taken from CRSP. After merging these three database, I have

a total number of 922 companies with both option and stock data in the sample

period sorted by PERMNO. Treasury bills, as a proxy for risk-free interest rates,

are obtained from CRSP Treasuries database. The financial statement data that

are used in this thesis, such as book value of common equity and balance-sheet

deferred taxes, are also from COMPUSTAT; they are quarterly data, so I fill in the

missing months for each quarter.

Analyst price target data are obtained from the Institutional Brokers Estimate Sys-

tem (I/B/E/S) unadjusted detail price target database. I take all price targets for the

firms in the S&P 500 Index with a target horizon of twelve months where both the

firm's base currency and the currency of the estimate are USD. The price target

data cover the period from March 1999 through to December 2012.

I use data from the I/B/E/S summary history/summary statistics to obtain earn-

ings forecasts for the next three years. I/B/E/S analysts supply a one-year-ahead

(FEPSt+1) and a two-year-ahead (FEPSt+2) earnings per share (EPS) forecast, as

well as an estimate of the long-term growth rate (Ltg). It also releases a one-year-

ahead (FBPSt+1) and a two-year-ahead (FBPSt+2) book value per share (BPS)

forecast. The data sample period is from January 1996 to December 2012. The

I/B/E/S earnings forecast summary data are released on the third Thursday of

each month.
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5.3.2 Summary Statistics

Summary Statistics for Moments and Moment Risk Premia

Table 5.1 provides summary statistics on realised and risk-neutral moments and

the moment risk premia and their correlations. In Panel A, its shows summary

statistics on moments. The average expected realised variance is 0.1843 and the

average risk-neutral variance is 0.1862. The average expected realised variance

is less than the average risk-neutral variance, pointing to the existence of a neg-

ative variance risk premium for the S&P 500 Index constituents. The average of

the variance risk premium is -0.0039. For the third moment, the average expected

realised skewness is 0.1185, while the average risk-neutral skewness is negative

with the value of -0.4555, indicating the existence of a positive skew risk premi-

um. The mean of the skew risk premium is 0.5817. For the fourth moment, the

average expected realised kurtosis is 3.3646 and the average risk-neutral kurtosis

is 3.3564. It is obvious that the difference between the two kurtosis measures is

small. The average of the kurtosis risk premium is 0.0038. Panel B shows the cor-

relations of realised moments and the moment risk premia. Realised variance has

a weak correlation with realised skewness, while the correlation between realised

variance and realised kurtosis is relatively high, which is 0.2556. The correlation

between realised skewness and kurtosis is 0.1392. The variance risk premium

has a weak correlation with the skew risk premium and the correlation is 0.0302.

The correlation between the variance risk premium and the kurtosis risk premium

is 0.3044. The correlation between the skew risk premium and the kurtosis risk

premium is 0.0157.

The result that realised variance is less than risk-neutral variance shown in Table

5.1 is in line with the results presented in the previous literature (see, e.g. Bakshi

and Kapadia, 2003a; Carr and Wu, 2009; Egloff et al., 2010; Kozhan et al., 2013;

Drechsler, 2013). The result that risk-neutral skewness is more negative than re-

alised skewness is consistent with the findings of Bakshi et al. (2003) and Kozhan
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et al. (2013). Unlike the variance and skew risk premia, there is no existing liter-

ature that specifies the sign of the kurtosis risk premium.

Summary Statistics for Expected Stock Returns

Table 5.2 reports descriptive statistics for ex ante expected stock returns, including

the PTER and the ICC. The PTER and the ICC are Winsorised at the 1% level.

The mean value of the PTER is 16.90% with a time horizon of twelve months.

The average of the ICC is 8.21%. The reason for the high PTER might be that

analysts are more likely to follow the stocks that have high investment potentials,

be positive about futuremarkets and prefer to report high future stock price targets.

In most cases, the reported price targets are normally higher than the current

stock price. The standard deviation of the ICC is much smaller than the standard

deviation of the PTER. This is because the ICC is smoothed, which is calculated

by solving for the discount rate (r) that equates the current book value of equity

plus the present value of expected future earnings to the current stock price.

5.4 Determinants of Moment Risk Premia

5.4.1 Control Variables

Stock returns are found to be affected by firm-level and risk factors. For example,

some previous literature supports that there exist a firm size effect of Banz (1981),

the book-to-market effect of Basu (1983), the momentum effect of Jegadeesh and

Titman (1993), exposure to idiosyncratic volatility of Ang et al. (2006b), exposure

to co-skewness of Friend and Westerfield (1980) and exposure to illiquidity risk of

Amihud (2002). All of these factors imply different impacts on the cross-section

of stock returns. Therefore, I adopt firm-level and risk factors in this study to see

whether they are related to the moment risk premia.

The calculation of firm size and book-to-market ratio follows Fama and French
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(1992). Firm size, ln(ME) is the log of the market capitalisation from the previous

day. Market capitalisation (ME) is equal to stock price multiplying shares outstand-

ing. Book-to-market ratio is equal to ln(BE/ME). BE is the book value of common

equity plus balance-sheet deferred taxes. The market beta, β is estimated from

the CAPM using previous one-year daily returns. Idiosyncratic Volatility, IdioVol

is the standard deviation of residuals from a regression of stock excess return on

market excess return, the size (SMB) and book-to-market (HML) factors of Fama

and French (1993).4 Idiosyncratic Volatility is calculated using one year's worth

of daily return data. The calculation of risk-neutral co-skewness, CoSkew follows

Harvey and Siddique (2000). Momentum is the cumulative daily stock returns

over previous one month. Illiquidity is defined as the average ratio of the daily

absolute return to the (dollar) trading volume on that day, |Riyd| /VOLDiyd, where

Riyd is the return on stock i on day d of year y and VOLDiyd is the respective daily

volume in dollars.

5.4.2 Fama-MacBeth Regressions

In order to better understand and compare the moment risk premia, I perform

the cross-sectional Fama and MacBeth (1973) regressions of the moment risk

premia on firm characteristics and risk factors. The firm characteristics and risk

factors include firm size, book-to-market ratio, momentum, illiquidity, market beta,

idiosyncratic volatility and co-skewness.

Table 5.3 shows the results for FM regressions with dependent variables of the

variance risk premium (Panel A), the skew risk premium (Panel B) and the kurtosis

risk premium (Panel C). Panel A examines the relationship between the variance

risk premium and these firm-level control variables and risk factors. When I ex-

plore these independent variables , Models 1, 2, 5 and 6 demonstrate that the vari-

ance risk premium has significantly positive relations with β , IdioVol, ln(BE/ME)

and Momentum, while the variance risk premium is significantly and negatively re-
4Daily market excess return, SMB, HML and the risk free rate are taken from the website of

Kenneth R. French. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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lated to Illiquidity detected in Model 7. When incorporating all of these variables

in one regression in Model 8, I find that the variance risk premium is positively re-

lated to all of these variables. Panel B shows the relationship between the skew

risk premium and these independent factors. I find that the skew risk premium can

be explained by most of these variables. When regressing the skew risk premium

with each of these variables separately, I see that the skew risk premium is posi-

tively and significantly correlated with firm size ln(ME) (Model 4), Momentum (Mod-

el 6) and Illiquidity (Model 7), but negatively and significantly related to β (Model

1), IdioVol (Model 2) and ln(BE/ME) (Model 5). When all of these independent

variables are included in the regression (Model 8), the skew risk premium is neg-

atively related to risk factors and positively related to firm characteristics. In Panel

C, when regressing the kurtosis risk premium on these variables, I find that all of

the coefficients are significant at the 5% level. The kurtosis risk premium is sig-

nificantly and positively related to β (Model 1), IdioVol (Model 2) and ln(BE/ME)

(Model 5), while it has a significant and negative relation with Coskew (Model 3),

ln(ME) (Model 4), Momentum (Model 6) and Illiquidity (Model 7). When including

all of these variables in the FM regression in Model 8, I find that the kurtosis risk

premium is still significantly correlated with these variables.

To summarise, the results show that firm-level variables and risk factors have

different impacts on the variance, skew and kurtosis risk premia. The variance

risk premium is positively related to most of these firm-level and risk factors. The

skew risk premium has mixed determinants, being associated negatively with risk

factors and associated positively with firm-level variables. The determinants of

the kurtosis risk premium are also mixed. It is positively related to most of the

risk factors, while it is inversely related to most of firm-level factors. Since the

determinants of moment risk premia are different and these control variables are

found to be able to predict stock returns, the moment risk premia might have

different impacts on stock returns.
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5.5 Moment Risk Premia and Realised Stock Returns

In Section 5.4 I found that the variance, skew and kurtosis risk premia are deter-

mined by firm-level variables and risk factors differently. Therefore, their effects

on stock returns might be different. In this section, I test whether the variance,

skew and kurtosis risk premia can predict subsequent realised stock returns. If

they have predictive ability to stock returns, I study whether their effects on stock

returns are different.

5.5.1 Univariate Portfolio Analysis

At the end of month t from January 1996 to December 2012, I rank all the stocks

in the S&P 500 Index from low to high on the basis of the variance risk premium.

I sort these pre-ranked stocks into quintile portfolios. The first quintile portfolio

contains the stocks with the lowest variance risk premium, while the fifth quintile

portfolio contains the stocks with the highest variance risk premium. After con-

structing the portfolios based on the variance risk premium, I then calculate the

value-weighted and equally-weighted monthly returns for each day, for each port-

folio in the next month t+1. The entire procedure is repeated for all securities

listed, for each month in the sample, generating a series of the value-weighted

and equally-weighted monthly returns. Finally, I calculate the time-series average

of the value-weighted and equally-weighted portfolio returns.

Similarly, I take the same procedure for the univariate portfolio analysis based

on expected realised moments, risk-neutral moments, the skew and kurtosis risk

premia. The result for the portfolio analysis sorted by these variables is shown in

Table 5.4.

In order to test whether the risk-return relations are monotonic, I adopt the mono-

tonicity relation (MR) test method proposed by Patton and Timmermann (2010).

The null hypothesis is based on the sign of the return spread between the fifth
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portfolio and the first portfolio, named the 5-1 return spread. For example, if the

5-1 return spread is negative, I test whether the relation is monotonically decreas-

ing. If the 5-1 return spread is positive, I test whether the relation is monotonically

increasing. The MR test result is decided by p-values. If the MR p-value is less

than 5%, it means that there is a monotonically increasing or decreasing risk-

return relation. The result for the MR test with p-values obtained from time-series

block bootstrapping is shown in the last column of Table 5.4.

Table 5.4 provides a summary of the portfolio analysis from January 1996 to De-

cember 2012. Panel A shows the results from sorting portfolios on expected re-

alised variance. The 5-1 return spread for the value-weighted portfolios is 0.078%

per month with a t-statistic of 0.142, which is not statistically significant. For the

equally-weighted portfolios, the 5-1 return spread is 0.266% per month with a t-

statistic of 0.466, which is not statistically significant. The MR test shows that

there is no monotonic relation between expected realised variance and returns.

The results for the portfolio analysis sorted by risk-neutral variance are shown in

Panel B. I find that the 5-1 return spreads for both the value-weighted and equally-

weighted portfolios are positive, being 0.433% per month for the value-weighted

returns and 0.455% per month for the equally-weighted returns. The t-statistics

show that the 5-1 return spread is not statistically significant for both the value-

weighted and equally-weighted portfolios. The MR test supports that there is no

monotonically increasing or decreasing relation between risk-neutral variance and

stock returns.

Panel C reports the portfolio returns sorted by the variance risk premium. For the

value-weighted portfolios, I find that there is a negative and statistically significant

average return difference between the extreme quintile portfolios. The average

return difference between the fifth portfolio and the first portfolio is -0.807% per

month. The t-statistic for the 5-1 return spread exceeds the threshold of the 1%

significance level. For the equally-weighted portfolios, the relation between the

variance risk premium and stock returns is negative and significant. The portfo-
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lio return decreases by -0.439% per month from 1.102% per month for the first

portfolio to 0.662% per month for the fifth portfolio. The t-statistic of the 5-1 return

spread is 1.664, which is significant at the 5% level. The MR test gives a p-

value of 0.001 for the value-weighted returns and 0.176 for the equally-weighted

returns, demonstrating that there is a monotonically decreasing relationship be-

tween the variance risk premium and the value-weighted returns. The negative

relation between the variance risk premium and stock returns is in line with Bali

and Hovakimian (2009), who provide strong evidence that there is a negative and

significant relationship between stock returns and the realised-implied volatility

spread.

In Panel D, portfolios are sorted by expected realised skewness. The 5-1 re-

turn spread is -0.234% per month for the value-weighted returns and -0.322%

per month for the equally-weighted returns. The t-statistic shows that the value-

weighted portfolio return spread is insignificant, while the equally-weighted port-

folio return spread is significant at the 5% level. The MR test proves that the

relation between expected realised skewness and stock returns is not monotonic

for both the value-weighted and equally-weighted portfolios. The negative relation

between realised skewness and stock returns is consistent with the findings of A-

maya and Vasquez (2010), Amaya et al. (2011) and Choi and Lee (2014). Panel

E reports portfolios sorted by risk-neutral skewness. Risk-neutral skewness has

a positive relationship with stock returns. For the value-weighted portfolios, the

5-1 return spread is 0.545% per month with a t-statistic of 1.915, which is sta-

tistically significant at the 5% level. For the equally-weighted portfolios, the 5-1

return spread is 0.955% per month with a t-statistic of 3.170, which is statistical-

ly significant at the 1% level. The MR test shows that only the relation between

risk-neutral skewness and the equally-weighted returns is monotonic at the 1%

significance level. The positive relation between risk-neutral skewness and stock

returns is consistent with Rehman and Vilkov (2012), Stilger et al. (2014) and Bali

et al. (2014), who use the BKM risk-neutral skewness measure and find the same

result. However, the result is different from Conrad et al. (2013); this might be
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because I use a different sample size and a longer sample period.

Panel F provides a summary of the portfolio returns sorted by the skew risk pre-

mium. For both the value-weighted and equally-weighted portfolios, a long-short

portfolio buying the stocks in the highest SRP quintile and shorting the stocks in the

lowest SRP quintile produces huge negative average returns, being -0.429% per

month for the value-weighted portfolios with a t-statistic of 1.632. It means that the

negative 5-1 return spread is significant the 10% level. For the equally-weighted

portfolios, it is -0.649% per month with a t-statistic of 2.830, which is significant at

the 1% level. From the MR test, I find that all MR p-values are greater than 5% for

both the value-weighted and equally-weighted portfolio returns. This means that

there is no monotonically decreasing relation between the skew risk premium and

the value-/equally-weighted returns.

Panel G shows portfolios sorted by expected realised kurtosis. Expected realised

kurtosis has a negative but insignificant relation with the value-weighted returns,

while it has a positive but insignificant relationship with the equally-weighted re-

turn. The return difference between the extreme portfolios is -0.287% per month

with a t-statistic of 1.272 for the value-weighted returns, and is 0.014% per month

with a t-statistic of 0.096 for the equally-weighted returns. Amaya et al. (2011)

document a positive relation between realised kurtosis and stock returns. For

portfolios sorted by risk-neutral kurtosis (Panel H), I find that risk-neutral kurto-

sis is significantly and negatively related to both the value-weighted return and

the equally-weighted return. The 5-1 return spread is -0.605% per month for the

value-weighted portfolios and is -0.809% for the equally-weighted portfolios. The

result for the negative relation between risk-neutral kurtosis and stock returns is

consistent with Conrad et al. (2013).

Panel I shows the result for portfolios sorted by the kurtosis risk premium. The

relation between the kurtosis risk premium and stock returns is mixed. The return

spread between the extreme portfolio is -0.011% per month, negative but insignif-
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icant for the value-weighted returns, while the return spread is 0.402% per month,

positive and significant for the equally-weighted returns.

To summarise, the relationship between realised/risk-neutral variance and stock

returns is not significant. There is a negative relation between realised skewness

and stock returns, while the relationship between risk-neutral skewness and stock

returns is positive. There is a negative relationship between the variance risk

premium and stock returns and the relationship is significant for both the value-

weighted and equally-weighted portfolios. There is also a negative and significant

relationship between the skew risk premium and subsequent stock returns. The

relationship of the kurtosis risk premium with stock returns is mixed; it is negative

for the value-weighted returns and positive for the equally-weighted returns.

Figure 5.1 plots the value-weighted and equally-weighted quintile portfolio return-

s sorted by the variance risk premium (Panel A), the skew risk premium (Pan-

el B) and the kurtosis risk premium (Panel C). Panel A shows that the variance

risk premium has a monotonically decreasing relationship with the value-weighted

portfolio returns. The average monthly return decreases from around 1.002% per

month for quintile 1 to 0.195% per month for quintile 5. For the equally-weighted

portfolios there is a linearly decreasing relation between the variance risk premium

and stock returns. Panel B shows that the skew risk premium has a decreasing

relationship with both the value-weighted and equally-weighted portfolio returns.

Specifically, the average value-weighted monthly return decreases from around

0.631% per month for quintile 1 to 0.202% per month for quintile 5. The average

equally-weighted monthly return drops from 1.070% per month for quintile 1 to

0.421% per month for quintile 5. In Panel C, I see that the pattern between the

kurtosis risk premium and stock return is mixed. For the value-weighted portfo-

lio, the returns in the extreme portfolios are very close, being 0.385% in the first

portfolio and 0.375% in the fifth portfolio. For the equally-weighted portfolio, the

kurtosis risk premium has a monotonic increasing relationship with stock returns.

The return increases from 0.507% for quintile 1 to 0.909% for quintile 5.
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In summary, Table 5.4 and Figure 5.1 shed light on a significantly and mono-

tonically negative relationship between the variance and skew risk premia and

stock returns. The skew risk premium is as important as the variance risk premi-

um in subsequent realised stock return prediction. The relationship between the

kurtosis risk premium and stock returns is mixed, depending on whether the port-

folio is value-weighted or equally-weighted. The kurtosis risk premium has a flat

relationship with the value-weighted returns, while it has a significantly positive

relationship with the equally-weighted returns.

5.5.2 Double Portfolio Sort

I investigate the relation between the moment risk premia and subsequent stock

returns, while controlling for variation in firm characteristics and return moments,

using two-way portfolio sorts. At the end of each month, I first sort the stocks

into quintile portfolios based independently on firm size, book-to-market ratio, re-

alised moments and risk-neutral moments. I then form portfolios based on the

intersection of rankings of the moment risk premia. For each of the 25 portfolios

formed, I calculate the average monthly returns in the next month. The procedure

is repeated for each month. Finally, I calculate the time-series average of these

portfolio returns.

Table 5.5 presents summary statistics on two-way sorted portfolios. Panel A re-

ports results for the double portfolio sort on the variance risk premium. I observe

that, holding firm size constant, the variance risk premium still remains a nega-

tive relation with subsequent stock returns for all levels of firm size and, holding

book-to-market ratio constant, the return differential in the extreme VRP portfolios

is negative for all five cases. In nine out of the ten cases, holding realised or risk-

neutral variance constant gives a negative return differential in the extreme VRP

portfolios.

In Panel B, portfolios are sorted by other factors first and then sorted by the skew
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risk premium. The skew risk premium continues to be negatively related to subse-

quent stock returns for all levels of firm size and book-to-market ratio, holding firm

size and book-to-market ratio constant. The return differential across the extreme

SRP portfolios is negative for all of the ten portfolios when holding realised and

risk-neutral skewness constant.

Panel C presents the double portfolio sorts on other factors first and then on the

kurtosis risk premium. When holding firm size, book-to-market ratio and realised

kurtosis constant, the difference between the extreme portfolios remains positive

for all cases. When sorting by risk-neutral kurtosis first, two out of the five cases

are positive.

To summarise, the results for the two-way portfolio analysis in Table 5.5 are in line

with the results in Table 5.4 for the univariate portfolio analysis. When controlling

for firm size, book-to-market ratio and realised/risk-neutral moments, I find that

the relation between the moment premia and subsequent stock returns remains.

5.5.3 Fama-MacBeth Regressions

The portfolio analysis described above demonstrates the relationship between the

moment risk premia and realised stock returns. An alternative approach to exam-

ine the determinants of individual stock returns is the firm-level cross-sectional

Fama and MacBeth (1973) (FM) regression. The purpose for using the FM re-

gression is to test whether the significant relation between the moment risk pre-

mia and stock returns persists or not once I control for various cross-sectional

effects. Besides the variance, skew and kurtosis risk premia, I include additional

control variables in the month-by-month FM regression. These variables contain

market beta (β ), idiosyncratic volatility (IdioVol), coskewness (CoSkew), firm size

(ln(ME)), book-to-market ratio (ln(BE/ME), momentum and illiquidity. The rea-

sons to include these variables and their calculation are described in Section 5.4.
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For eachmonth, I perform the cross-sectional regression of monthly realised stock

returns on themoment risk premia, individual firm-level variables and risk factors. I

then calculate the time-series average of the slope coefficients of the independent

variables. With the FM regression, I can easily examine the significance of the

predictability of the moment risk premia, as well as control for firm characteristics

and risk factors. The FM regression model is given as follows:

ri,t+1 = γ0.t + γ1,tV RPi,t + γ2,tSRPi,t + γ3,tKRPi,t +ϕ ′
t Zi,t + εi,t (5.10)

where ri,t+1 is the individual realised stock return for stock i in month t +1. V RPi,t ,

SRPi,t and KRPi,t are the variance, skew and kurtosis risk premia for stock i ob-

served at the end of month t, respectively; Zi,t are other explanatory factors for

individual stock i in month t, including firm-level and risk factors.

Table 5.6 provides the time-series averages of the slope coefficients from the

monthly cross-sectional regressions and the t-statistics generated based on the

time-series standard deviation of the coefficient estimates. When including only

the variance risk premium in the regression of Model 1, I find that the slope of the

variance risk premium is -0.0075 with a t-statistic of -0.73, which is not statistically

significant. Model 2 specifies the result for performing a regression of subsequent

realised stock returns on the skew risk premium only. The slope of the skew risk

premium is -0.0024 with a t-statistic of -2.56, which is significant at the 5% lev-

el. In Model 3, I run a regression on the kurtosis risk premium and find that the

coefficient is 0.0006, which is not statistically significant. When performing a re-

gression on the variance, skew and kurtosis risk premia, I find that the coefficient

of the variance risk premium in Model 4 remains negative but is statistically in-

significant; the slope of the skew risk premium is -0.0017, which is significant at

the 5% level and the coefficient of the kurtosis risk premium is 0.0012, which is

significant at the 5% level. When risk factors (β , IdioVol,CoSkew) are added in the

regression (Model 5), the coefficient of the skew risk premium becomes -0.0014,

which is significant at the 10% level. The coefficient of the kurtosis risk premium

is still significantly positive. I obtain a similar result when including firm-level vari-
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ables in the regression (see Model 6). In Model 7, I include all firm-level variables

and risk factors in the regression and find that the significantly positive coefficient

of the kurtosis risk premium remains. The slope of the variance risk premium is

negative and insignificant. The slope of the skew risk premium is -0.0014 and is

significant at the 10% level.

Overall, the FM regression results in Table 5.6 show that the negative relation

between the variance risk premium and stock returns is not robust to these firm-

level variables and risk factors. However, the negative relation between the skew

risk premium and stock returns is robust to firm characteristics and risk factors.

The kurtosis risk premium exhibits a robust and positive relationship with stock

returns when firm-level and risk factors are included.

5.6 Moment Risk Premia and Expected Stock Returns

I have explored the relationship between the moment risk premia and realised

stock returns in Section 5.5. The variance and skew risk premia exhibit similar

negative effects on realised stock returns, while the effect of the kurtosis risk pre-

mium on realised stock returns is mixed. In this section, I investigate whether the

moment risk premia have explanatory power to ex ante expected stock returns.

5.6.1 Univariate Portfolio Analysis

I begin the analysis on the PTER and the ICCwith the portfolio analysis to examine

the relationship between the variance, skew and kurtosis risk premia and ex ante

expected stock returns. At the end of each month from March of 1999 through to

December of 2012, I sort all the stocks in the S&P 500 Index for which valid val-

ues of the PTER are available into five groups based on the ascending ordering of

the variance, skew and kurtosis risk premia. I then calculate the equally-weighted

average PTER for each of the five portfolios, as well as the expected return differ-

ence between the fifth and the first portfolios. Finally, I calculate the time-series

119



average of the equally-weighted portfolio returns. I perform the same portfolio

analysis for the ICC for each month from January of 1996 through to December

of 2012.

The time series averages of the equally-weighted portfolio expected returns, using

both the PTER and the ICC, are presented in Table 5.7. Panel A shows the result

for the portfolio analysis on the variance risk premium. There is a negative relation

between the variance risk premium and ex ante expected returns, including the

PTER and the ICC. The 5-1 return spread for the PTER is -2.019%with a t-statistic

of 2.646, which is significant at the 1% level . The 5-1 return spread for the ICC

is -0.229%, with a t-statistic of 1.101. The MR test reports that the decreasing

relation between the variance risk premium and ex ante expected stock returns is

not monotonic for the PTER and the ICC.

The result for the portfolio analysis on the skew risk premium is presented in Panel

B. I find that there is a monotonically decreasing relationship between the skew

risk premium and ex ante expected returns. Specifically, the 5-1 return spread for

the PTER is -5.766% with a t-statistic of 10.316, which is significant at the 1%

level. The result for the ICC is remarkably similar. The 5-1 return spread for the

ICC is -0.811% with a t-statistic of 5.472, which is significant at the 1% level. The

MR test gives p-values of 0 for both the PTER and the ICC, which shows that

there is a monotonically decreasing relation between the skew risk premium and

ex ante expected returns.

Panel C reports the results of the portfolio analysis on the kurtosis risk premium.

The kurtosis risk premium has a monotonically increasing relationship with ex ante

expected returns. For the PTER, the 5-1 return spread is 4.372% with a t-statistic

of 6.060. For the ICC, the 5-1 return spread is 1.215% with a t-statistic of 6.177.

The p-values of the MR test are zero, which means that there is a monotonical-

ly decreasing relation between the kurtosis risk premium and ex ante expected

returns.
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Figure 5.2 plots the expected quintile portfolio returns sorted by the variance risk

premium (Panel A), the skew risk premium (Panel B) and the kurtosis risk pre-

mium (Panel C). Panel A shows that, sorted by the variance risk premium, the

portfolio returns drop from above 21% in quintile 1 to around 15% in quintile 4,

and then increase to 19% in quintile 5 for the PTER. For the ICC, the average ex-

pected quintile portfolio returns decrease from around 8.4% for quintile 1 to 7.6%

for quintile 4 and then ascend to 8% for quintile 5. Panel B displays a linearly

decreasing relationship between the skew risk premium and expected returns.

Specifically, the average quintile portfolio return for the PTER decreases from

around 21% for quintile 1 to above 15% for quintile 5. The average quintile ICC

drops from around 8.5% for quintile 1 to 7.6% for quintile 5. In Panel C, the pat-

terns between the kurtosis risk premium and expected returns are monotonically

increasing. For the PTER, the portfolio return increases from 15.2% in quintile 1

to 19.5% in quintile 5. For the ICC, the portfolio return increases from 7.3% in the

first portfolio to 8.5% in the fifth portfolio.

In summary, Table 5.7 and Figure 5.2 shed light on the relation between the vari-

ance, skew and kurtosis risk premia and expected stock returns. The relation be-

tween the variance risk premium and expected stock returns is negative but noisy.

There is a monotonically decreasing relation between the skew risk premium and

expected stock returns. However, the kurtosis risk premium has a monotonically

increasing relationship with expected stock returns.

5.6.2 Fama-MacBeth Regressions

The portfolio analysis has shown that the variance, skew and kurtosis risk premia

have different relationships with expected stock returns. In order to test whether

the relationships are robust to firm-level and risk factors, I employ the firm-level

cross-sectional Fama and MacBeth (1973) (FM) regressions to control for these

factors. In other words, the purpose for using the FM regression is to test whether

the significant relationship between the moment risk premia and expected stock
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returns persists once I control for various cross-sectional effects. Besides the

variance, skew and kurtosis risk premia, I include additional control variables in

the month-by-month FM regressions. These variables contain market beta, id-

iosyncratic volatility, coskewness, firm size, book-to-market ratio, momentum and

illiquidity.

Table 5.8 provides the time-series averages of the slope coefficients from the

monthly cross-sectional regressions and the t-statistics generated based on the

time-series standard deviation of the coefficient estimates. Panel A shows the re-

sult for the FM regression using the PTER. The results are highly consistent with

the portfolio analysis presented in Table 5.7. From Model 1, I find that the slope

of the variance risk premium is -0.0507 with a t-statistic of -2.80, which is statisti-

cally significant, when the variance risk premium is the only explanatory variable.

When only the skew risk premium is included in the regression, the coefficient of

the skew risk premium in Model 2 is -0.0299 with a t-statistic of -15.85, which is

statistically significant at the 1% level. In Model 3, where I only perform the re-

gression on the kurtosis risk premium, the coefficient is 0.0077 with a t-statistic of

8.46. When I test the effect of the combination of the variance, skew and kurtosis

risk premia (Model 4), the coefficients of the variance and skew risk premia are

still significantly negative and the coefficient of the kurtosis risk premium is still

significantly positive. When risk factors and the moment risk premia are included

in Model 5, the slopes of both the variance and skew risk premia remain negative

and are statistically significant. The slope of the kurtosis risk premium is still sig-

nificantly positive. Model 6 shows that the slopes of the variance and kurtosis risk

premia are still significant when I include firm-level variables in the regression. In

Model 7, I include all control variables in the regression. The variance and kurto-

sis risk premia still have significant coefficients, while the coefficient of the skew

risk premium becomes insignificant.

Panel B shows the result for the FM regression of the ICC. When comparing the

PTER with the ICC, I find that the FM regression result is very similar. When either
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the variance, skew or kurtosis risk premium is the only regressor, the coefficients

of the variance and skew risk premia are negative and statistically significant and

the coefficient of the kurtosis risk premium is significantly positive. When firm-

level and risk variables are included in the regression (Models 5, 6 and 7), the

coefficients of the variance and skew risk premia remain significantly negative

and the slope of the kurtosis risk premium remains significantly positive.

Overall, the FM regression results in Table 5.8 show that the relationships between

the variance, skew and kurtosis risk premia and ex ante expected stock returns are

robust to these firm-level and risk factors.

5.7 Robustness Test

In order to confirm that the results presented in Section 5.5 and Section 5.6 are

truly due to a cross-sectional relation between the moment risk premia and stock

returns, I perform a robustness test. In other words, in this section, I explore further

the relationship between the moment risk premia and stock returns by adopting

several analyses that control for the effects of other potential determinants of these

relations. First, I check for market downturns by analysing the relation between the

moment risk premia and stock returns in different subperiods that contain different

market conditions. Next, I compute the moment risk premia using realised and

risk-neutral moments with different maturities in order to check whether the results

are driven by different times to expiration.

5.7.1 Subperiods

The whole sample period is from January 1996 to December 2012. This sample

period contains two financial crises. The first financial crisis is the stock market

downturn of 2002, which began in 2000 and had a sharp drop in stock prices

during 2002. The second financial crisis is the sub-prime crisis of 2008, which

started in August of 2007. To verify that the results are not driven by the particular
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circumstances in this sample period, I repeat the portfolio analysis in four subpe-

riods: 1996-1999, 2000-2002, 2003-2006, 2007-2012. The period of 2000-2002

contains the stock market downturn. The period of 2003-2006 is the recovery

and economic boom period. The period of 2007-2012 experienced the sub-prime

crisis. In each subperiod, I perform the portfolio analysis for each risk premium

measure and for each return method.

Realised Stock Returns

In each subperiod, I sort the stocks into quintile portfolios on the basis of the

moment risk premia at the end of each month. I then calculate both the value-

weighted and equally-weighted monthly returns in the next month. Finally, I calcu-

late the time-series average of the value-weighted and equally-weighted portfolio

returns. The procedure is repeated for each subperiod.

Table 5.9 reports summary statistics on the portfolio analysis of realised stock re-

turns in subperiods. Panel A presents the results for the quintile portfolios sorted

by the variance risk premium. The 5-1 return spread between the extreme port-

folios is negative for both the value-weighted and equally-weighted returns and

for all subperiods. For the value-weighted portfolios, the 5-1 return spread varies

from -0.231% per month in the subperiod of 2003-2006 to -1.992% per month in

the subperiod of 1996-1999. The t-statistics show that the 5-1 return spread is

significant at the 5% level for two out of the four subperiods. The MR test shows

that the relationship between the variance risk premium and stock returns is not

monotonic in most cases. For the equally-weighted portfolio returns, the 5-1 re-

turn spread is negative for all five cases, ranging from -0.079% per month in the

subperiod of 2003-2006 to -0.929% per month in the subperiod of 1996-1999. The

results for the MR test indicate that there is no monotonically decreasing relation-

ship between the variance risk premium and the equally-weighted returns for all

of the four subperiods at the 5% significance level.
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Panel B reports the results for the quintile portfolios sorted on the skew risk pre-

mium. The 5-1 return spread between the extreme portfolios is negative for both

the value-weighted and equally-weighted returns and for three out of the four sub-

periods. During the subperiod of 1996-1999, the 5-1 return spread is positive. It

is 0.832% for the value-weighted portfolios and 0.172% for the equally-weighted

portfolios. For the other three subperiods, the 5-1 return spread is negative, vary-

ing from -0.421% per month to -1.604% per month and the t-statistics range from

1.482 to 3, greater than the threshold of the 10% significance level. The biggest

5-1 return spread occurs in the subperiod 2000-2002 for both the value-weighted

and equally-weighted portfolio returns.

In Panel C, portfolios are sorted by the kurtosis risk premium. During the subperi-

od of 1996-1999, the 5-1 return spread is negative for both the value-weighted and

equally-weighted returns. In the subperiods of 2003-2006 and 2007-2012, the re-

turn differential between the extreme portfolios is positive and significant. The MR

test shows that the relationship between the kurtosis risk premium and realised

stock returns is linear in the subperiod of 2007-2012, while it is not monotonic in

other subperiods.

Overall, Table 5.9 shows that there is a negative relationship between the vari-

ance and skew risk premia and subsequent stock returns for most subperiods.

The kurtosis risk premium has a mixed relationship with realised stock returns.

Therefore, the result is generally robust to subperiods.

Expected Stock Returns

In each subperiod, I sort the stocks into quintile portfolios on the basis of the

moment risk premia at the end of eachmonth. I then calculate expected returns for

each portfolio. Finally, I calculate the time-series average of the equally-weighted

portfolio returns. The procedure is repeated for each subperiod.

Table 5.10 reports summary statistics on the portfolio analysis of expected stock
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returns in subperiods. Panel A shows the results for the quintile portfolios sorted

by the variance risk premium. The return difference between the fifth and the first

portfolios is negative for both the PTER and the ICC in all subperiods. The return

difference is statistically significant for the subperiods 2000-2002 and 2003-2006.

The MR test shows that there is no monotonic relationship between the variance

risk premium and expected stock returns for all subperiods. Panel B reports the

results for quintile portfolios sorted by the skew risk premium. The 5-1 return

spread between the extreme portfolios is negative and statistically significant for

both the PTER and the ICC for all four subperiods. During the subperiod of 2000-

2002, the 5-1 return spread is most negative (-7.886%) for the PTER. The biggest

5-1 return spread of the ICC occurs in the subperiod of 2007-2012, with a spread

value of -1.113%. The MR test gives p-values of zero or close to zero for most of

the subperiods. In Panel C, portfolios are sorted by the kurtosis risk premium. It

is clear that the 5-1 return spread is significant and positive for all subperiods.

Overall, the result in Table 5.10 for the relationships between the moment risk

premia and expected stock returns are robust to subperiods.

5.7.2 Different Maturities

The methodology of Bakshi et al. (2003) allows estimation of risk-neutral mo-

ments using different maturities. I have used a linear interpolation to obtain the

30-day risk-neutral moments in the previous analysis. Next, I choose three dif-

ferent longer horizons (60-day, 90-day and 180-day maturities) to estimate risk-

neutral/realised moments in order to perform a robustness test. I investigate

whether the relationship between the moment risk premia and realised/expected

returns is robust to different time horizons.
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Realised Stock Returns

Table 5.11 provides a summary of the portfolio returns sorted by the variance,

skew and kurtosis risk premia with different time horizons. Panel A reports the re-

sults from sorting portfolios by the variance risk premium with different maturities.

For both the value-weighted and equally-weighted portfolios, a long-short portfo-

lio (buying the stocks in the highest variance risk premium quintile and shorting

the stocks in the lowest variance risk premium quintile) produces negative aver-

age monthly returns in the range of -0.30% to -0.82% per month that are highly

significant. The t-statistics range from 0.7 to 2.1 and the MR test shows that the

negative relationship between the variance risk premium and stock returns is not

monotonic for both the value-weighted and equally-weighted portfolios, for most

of the maturities.

In Panel B, quintile portfolios are sorted on the basis of the skew risk premium with

different maturities. For the 60-day maturity, the 5-1 return spread is -0.492% per

month for the value-weighted portfolios and is -0.601% per month for the equally-

weighted portfolios. When using the 90-day maturity, I find that the 5-1 return

spread is -0.644% per month for the value-weighted portfolios and is -0.555%

per month for the equally-weighted portfolios. For the 180-day maturity, there is

-0.572% return differential among the extreme portfolios for the value-weighted

portfolios and -0.511% 5-1 return spread for the equally-weighted portfolios. The

t-statistics prove that the 5-1 return spreads for all of these threematurities are sta-

tistically significant at the 5% level. The MR test gives p-values greater than 10%

for all maturities except the 180-day maturity with the equally-weighted return.

Panel C presents quintile portfolios sorted by the kurtosis risk premium with dif-

ferent maturities. For the 60-day maturity and the 180-day maturity, the 5-1 return

spreads are -0.060% per month and -0.174% per month, respectively. For the 90-

day maturity, the 5-1 return spread is 0.162% per month. The 5-1 return spread

for the equally-weighted return is positive for all of the maturities, ranging from
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0.185% to 0.367%.

Table 5.11 summarises that the negative relationship between the variance and

skew risk premia and realised stock returns remains even when different matu-

rities are selected to estimate risk-neutral/realised variance and skewness. The

relationship between the kurtosis risk premium and realised stock returns is still

mixed and insignificant even if I select different maturities.

Expected Stock Returns

Table 5.12 reports the result for the portfolio analysis sorted by the moment risk

premia with different time horizons (60-day, 90-day and 180-day). The results

of the portfolio analysis on the variance risk premium with different maturities are

shown in Panel A. When sorted by the variance risk premium, the return difference

between the extreme portfolios is negative for the PTER and the ICC for all cases.

The return difference is statistically significant for the PTER, but it is not statistically

significant for the ICC for all maturities. The MR test shows that the decreasing

relationship between the variance risk premium and expected stock returns is not

linear for all maturities. In Panel B, I sort portfolios on the basis of the skew risk

premium with different maturities. For both the PTER and the ICC, the 5-1 return

spreads are negative for all maturities. The t-statistics range from 5 to 9. The

MR test shows that the negative relationship between the skew risk premium and

expected stock returns is monotonic for all of the three maturities, because all of

the MR p-values are zero. Panel C shows portfolios sorted on the kurtosis risk

premium. The 5-1 return spread is positive and ranges from 1.1 to 4; it is also

significant for all of the maturities. The t-statistics of the 5-1 spread range from

3 to 6.7. The MR test gives p-values around zero, which means that the positive

relationship between the kurtosis risk premium and expected returns is monotonic.

In summary, Table 5.12 demonstrates that the result for the relationship between

themoment risk premia and expected stock returns is robust to different maturities.
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5.8 Conclusion

This study explores the direct relation between the moment risk premia and stock

returns. I begin by comparing the explanatory power of the moment risk premia

for ex post realised and ex ante expected return prediction. Ex ante expected return

is proxied by the PTER and the ICC. The moment risk premia are defined as the

difference between expected realised moments and risk-neutral moments. I find

that the variance risk premium is negative, consistent with the previous literature

(see, e.g. Bakshi and Kapadia, 2003a; Carr and Wu, 2009; Egloff et al., 2010;

Kozhan et al., 2013). The skew risk premium is found to be positive, in line with

Bakshi et al. (2003) and Kozhan et al. (2013), who find that realised skewness is

greater than risk-neutral skewness. The kurtosis risk premium is slightly greater

than zero. There is no existing literature providing the sign of the kurtosis risk

premium.

I examine the determinants of the variance, skew and kurtosis risk premia cross-

sectionally, and find that they are affected differently by firm-level characteristics

(e.g. firm size, book-to-market ratio, momentum and illiquidity) and risk factors

(e.g. market beta, idiosyncratic volatility and co-skewness). The variance risk

premium is determined mainly by the positive effect of these firm-level and risk

factors. The determinants of the skew risk premium are mixed; it is associated

negatively with risk factors and associated positively with firm-level variables. The

determinants of the kurtosis risk premium are also mixed; it is positively related

to most of the risk factors, while it is inversely related to most of the firm-level

factors. I provide the first research on the determinants of the skew and kurtosis

risk premia.

For ex post realised stock returns, I find that both the variance and skew risk premia

have a negative relation with subsequent realised stock returns, while the kurtosis

risk premium has a mixed and insignificant relation with subsequent realised stock

returns. The negative relation between the variance risk premium and subsequent
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stock returns is consistent with the results of Bali and Hovakimian (2009). The

current findings for the skew and kurtosis risk premia have not been reported

in earlier studies. I provide the first investigation for the cross-sectional relation

between the skew and kurtosis risk premia and realised stock returns.

Expected stock returns are related negatively to both the variance and skew risk

premia, which is consistent with the result of Bali et al. (2014). On the contrary, I

find that the kurtosis risk premium has a robust and positive relation with expected

stock returns, which is inconsistent with Bali et al. (2014).

The robustness test shows that the relation between the moment risk premia and

stock returns is robust to firm characteristics and risk factors. It is also robust to

subperiods and different maturities.
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(a) Panel A: The Variance Risk Premium
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(b) Panel B: The Skew Risk Premium
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(c) Panel C: The Kurtosis Risk Premium

Figure 5.1. Plot of Realised Portfolio Returns Sorted by Risk Premia The figure
shows the average monthly realised return of the five quintile portfolios sorted by the variance,
skew and kurtosis risk premia over the period January 1996 to December 2012. At the end of
each month, I sort the stocks into quintile portfolios based on their moment risk premia. The
first portfolio then contains the stocks with the lowest risk premia, while the last portfolio contains
the stocks with the highest risk premia. I then compute the value-weighted and equally-weighted
monthly returns over the next month for each quintile portfolio and for each month. The exact
numerical values of the portfolio returns could be found in Panel C, F and I of Table 5.4.
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(c) Panel C: The Kurtosis Risk Premium

Figure 5.2. Plot of Expected Portfolio Returns Sorted by Risk Premia The
figure shows the average expected returns of the five quintile portfolios sorted by the variance risk
premium (Panel A), the skew risk premium (Panel B) and the kurtosis risk premium (Panel C).
At the end of each month, I sort the stocks into quintile portfolios based on their variance, skew
and kurtosis risk premia. The first portfolio then contains the stocks with the lowest risk premia,
while the last portfolio contains the stocks with the highest risk premia. I then compute equally-
weighted expected returns for each quintile portfolio and for each month. Table 5.7 shows the
exact numerical values of the portfolio returns.
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Table 5.2. Summary Statistics for Expected Stock Returns
The table provides summary statistics on ex ante expected stock returns, including the PTER and
the ICC for the constituents in the S&P 500 Index. The sample period for the PTER is from March
1999 to December 2012. The sample period for the ICC is from January 1996 to December
2012. The PTER and the ICC are Winsorised at the 1% level. The table reports the number of
observations, average, median, standard deviation and 25th and 75th percentiles.

Observation Mean StDev 25th Percentile Median 75th Percentile
PTER 64,001 0.1690 0.1913 0.0648 0.1387 0.2342
ICC 85,467 0.0821 0.0567 0.0620 0.0803 0.0986
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Table 5.4. Portfolios Analysis by Moments and Risk Premia for Realised
Returns
The five quintile portfolios are sorted by realised/ risk-neutral variance, skewness and kurtosis, as
well as risk premia over the sample period from January 1996 to December 2012. At the end of
each month, I sort the stocks into quintile portfolios based on risk premia. The first portfolio then
contains the stocks with the lowest risk premia, while the last portfolio contains the stocks with
the highest risk premia. I then compute the value-weighted and equally-weighted monthly returns
over the next month for each quintile portfolio, month and risk premium. The table reports the
time-series average of the value-weighted and equally-weighted portfolio returns. The row '5-1'
refers to the average monthly return on an arbitrage portfolio with a long position in portfolio 5 and
a short position in portfolio 1. In addition, the table provides t-statistics and p-values for the 5-1
return spread to test whether the spread is significant. It also provides p-values, obtained from
time-series block bootstrapping, for the Patton and Timmermann (2010) MR test of the hypothesis
for monotonically increasing or decreasing relationships between risk premia and stock returns.
The parameters v-return and e-return represent the value-weighted and equally-weighted stock
returns, respectively.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: Expected Realised Variance

v-return 0.435 0.654 0.566 0.497 0.513 0.078 0.142 0.444 0.242
e-return 0.588 0.825 0.835 0.891 0.854 0.266 0.466 0.320 0.188

Panel B: Risk-Neutral Variance
v-return 0.383 0.716 0.673 0.813 0.816 0.433 0.713 0.238 0.186
e-return 0.538 0.782 0.928 1.047 0.994 0.455 0.777 0.219 0.184

Panel C: The Variance Risk Premium
v-return 1.002 0.794 0.470 0.365 0.195 -0.807 2.386 0.009 0.001
e-return 1.102 0.907 0.764 0.554 0.662 -0.439 1.664 0.048 0.176

Panel D: Expected Realised Skewness
v-return 0.543 0.530 0.602 0.428 0.309 -0.234 1.035 0.150 0.139
e-return 0.985 0.765 0.811 0.765 0.664 -0.322 1.854 0.032 0.118

Panel E: Risk-Neutral Skewness
v-return 0.258 0.608 0.698 0.914 0.802 0.545 1.915 0.028 0.293
e-return 0.296 0.688 0.977 1.076 1.251 0.955 3.170 0.001 0.001

Panel F: The Skew Risk Premium
v-return 0.631 0.696 0.455 0.500 0.202 -0.429 1.632 0.051 0.091
e-return 1.070 1.042 0.707 0.750 0.421 -0.649 2.830 0.002 0.186

Panel G: Expected Realised Kurtosis
v-return 0.501 0.470 0.659 0.570 0.213 -0.287 1.272 0.102 0.545
e-return 0.746 0.787 0.873 0.823 0.760 0.014 0.096 0.462 0.132

Panel H: Risk-Neutral Kurtosis
v-return 0.932 0.951 0.625 0.491 0.327 -0.605 1.728 0.042 0.075
e-return 1.169 1.175 0.823 0.756 0.360 -0.809 2.339 0.010 0.050

Panel I: The Kurtosis Risk Premium
v-return 0.385 0.395 0.859 0.461 0.375 -0.011 0.040 0.484 0.990
e-return 0.507 0.719 0.963 0.887 0.909 0.402 1.785 0.037 0.241
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Table 5.6. Fama-MacBeth Regressions for Realised Returns
The table shows the results for the Fama and MacBeth (1973) regressions of average monthly
stock returns on risk premia, firm characteristics and risk factors. The set of these factors includes
the variance risk premium (V RP), the skew risk premium (SRP) and the kurtosis risk premium (KRP),
market beta (β ), idiosyncratic volatility (IdioVol), coskewness (CoSkew), log of market capitalisation
(ln(ME)), log of book-to-market-ratio (ln(BE/ME)), return momentum (Momentum) and illiquidity.
The sample period is from January 1996 to December 2012. I report the time-series average of
the slope coefficients of the independent variables and t-statistics (shown in brackets). Note: *, **
and *** denote the 10%, 5% and 1% significance levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
V RP -0.0075 -0.0109 -0.0054 -0.0122 -0.0070

(-0.73) (-0.93) (-0.63) (-1.21) (-0.86)
SRP -0.0024** -0.0017** -0.0014* -0.0015* -0.0014*

(-2.56) (-1.87) (-1.84) (-1.82) (-1.94)
KRP 0.0006 0.0012** 0.0010*** 0.0008** 0.0008**

(1.29) (2.50) (2.71) (2.15) (2.26)
β 0.0015 0.0023

(0.41) (0.67)
IdioVol 0.0006 -0.0002

(0.39) (-0.15)
CoSkew 0.0000 0.0000

(-1.00) (-0.71)
ln(ME) -0.0018* -0.0021**

(-1.81) (-2.47)
ln(BE/ME) 0.0005 0.0004

(0.44) (0.37)
Momentum 0.0084 0.0066

(0.62) (0.57)
Illiquidity -0.0530 -0.0680

(-0.76) (-1.17)
Constant 0.0086** 0.0095** 0.0084** 0.0099** 0.0051 0.0183 0.0154

(2.35) (2.28) (2.09) (2.58) (1.40) (1.61) (1.54)
Ad j−R2 0.0209 0.0064 0.0064 0.0346 0.1097 0.0946 0.1487
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Table 5.7. Portfolios Sorted by Risk Premia for Expected Stock Returns
The five quintile portfolios are sorted by the variance, skew and kurtosis risk premia. At the end
of each month, I sort the stocks into quintile portfolios based on risk premia. The first portfolio
then contains the stocks with the lowest risk premia, while the last portfolio contains the stocks
with the highest risk premia. I then compute the equally-weighted expected stock returns for each
quintile portfolio, month and risk premia. The table reports the time-series average of the equally-
weighted portfolio returns. The row '5-1' refers to the average ex ante expected stock returns
on an arbitrage portfolio with a long position in portfolio 5 and a short position in portfolio 1. In
addition, the table provides t-statistics and p-values for the 5-1 return spread to test whether the
spread is significant. It also provides p-values, obtained from time-series block bootstrapping,
for the Patton and Timmermann (2010) MR test of the hypothesis for monotonically increasing or
decreasing relations between risk premia and stock returns.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: The Variance Risk Premium

PTER 21.197 17.572 15.784 15.431 19.177 -2.019 2.646 0.004 1.000
ICC 8.421 7.898 7.668 7.631 8.191 -0.229 1.101 0.135 0.984

Panel B: The Skew Risk Premium
PTER 21.055 18.609 17.267 16.769 15.279 -5.776 10.316 0.000 0.000
ICC 8.455 8.021 7.846 7.779 7.644 -0.811 5.472 0.000 0.000

Panel C: The Kurtosis Risk Premia
PTER 15.176 17.192 18.125 18.918 19.548 4.372 6.060 0.000 0.000
ICC 7.329 7.767 7.953 8.184 8.544 1.215 6.177 0.000 0.000
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Table 5.8. Fama-MacBeth Regressions for Expected Returns
The table shows the results for the Fama and MacBeth (1973) regression of average monthly
returns on risk premia, firm characteristics and risk factors. The set of these factors includes the
variance risk premium (V RP), the skew risk premium (SRP), the kurtosis risk premium (KRP), mar-
ket beta (β ), idiosyncratic volatility (IdioVol), co-skewness (CoSkew), log of market capitalisation
(ln(ME)), log of book-to-market-ratio (ln(BE/ME)), return momentum (Momentum) and illiquidity.
The sample period is from January 1996 to December 2012. I report the time-series average of
the slope coefficients of the independent variables and the t-statistics (shown in brackets). Note:
*, ** and *** denote the 10%, 5% and 1% significance levels, respectively.

Panel A: Price Target Expected Return
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

V RP -0.0507*** -0.0983*** -0.0726*** -0.0578*** -0.0359**
(-2.80) (-4.93) (-4.06) (-3.30) (-2.16)

SRP -0.0299*** -0.0275*** -0.0271*** -0.0021 -0.0019
(-15.85) (-14.80) (-15.68) (-1.20) (-1.18)

KRP 0.0077*** 0.0073*** 0.0052*** 0.0036*** 0.0022***
(8.46) (8.60) (7.31) (6.11) (3.99)

β 0.0455*** 0.0428***
(7.90) (8.58)

IdioVol 0.0135*** 0.0229***
(5.48) (10.79)

CoSkew -0.0001*** -0.0001
(-2.86) (-1.57)

ln(ME) -0.0011 0.0072***
(-0.88) (5.75)

ln(BE/ME) 0.0098*** 0.0076***
(7.05) (6.08)

Momentum -0.5598*** -0.5674***
(-23.89) (-29.23)

Illiquidity -1.1362*** -0.6646***
(-8.15) (-4.88)

Constant 0.1725*** 0.1965*** 0.1795*** 0.1880*** 0.1032*** 0.2604*** 0.1281***
(30.82) (30.31) (30.68) (30.51) (16.63) (17.89) (9.50)

Ad j−R2 0.0258 0.0242 0.0116 0.0583 0.1309 0.1804 0.2341
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Table 5.8---Continued
Panel B: Implied Cost of Capital

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
V RP -0.0074** -0.0227*** -0.0210*** -0.0103*** -0.0119***

(-2.45) (-6.31) (-6.25) (-3.60) (-4.33)
SRP -0.0045*** -0.0040*** -0.0034*** -0.0012** -0.0008*

(-6.65) (-5.82) (-5.85) (-2.54) (-1.83)
KRP 0.0023*** 0.0022*** 0.0015*** 0.0009*** 0.0007***

(8.95) (11.93) (6.99) (4.51) (2.67)
β 0.0043** 0.0030*

(2.24) (1.68)
IdioVol 0.0074*** 0.0054***

(10.25) (7.51)
CoSkew 0.0001*** 0.0001***

(7.36) (5.64)
ln(ME) -0.0028*** -0.0020***

(-10.35) (-8.08)
ln(BE/ME) 0.0190*** 0.0186***

(54.04) (68.13)
Momentum -0.0359*** -0.0397***

(-8.96) (-8.84)
Illiquidity -0.2368*** -0.1873***

(-7.62) (-6.50)
Constant 0.0784*** 0.0824*** 0.0799*** 0.0810*** 0.0661*** 0.2409*** 0.2253***

(96.19) (59.78) (79.25) (64.63) (39.68) (60.54) (98.14)
Ad j−R2 0.0218 0.0149 0.0177 0.0528 0.1091 0.3288 0.3493
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Table 5.9. Portfolio Analysis of Realised Returns in Subperiods
The five quintile portfolios are sorted by the moment risk premia over the following sample sub-
periods: 1996-1999, 2000-2002, 2003-2006 and 2007-2012. At the end of each month, I sort the
stocks into quintile portfolios based on their risk premia. The first portfolio contains the stocks with
the lowest risk premia, while the last portfolio contains the stocks with the highest risk premia. I
then compute the value-weighted and equally-weighted monthly returns over the next month for
each quintile portfolio, month, subperiod and risk premium measure. The table reports the time-
series average of the value-weighted and equally-weighted portfolio returns for each subperiod.
The row '5-1' refers to the average monthly return on an arbitrage portfolio with a long position in
portfolio 5 and a short position in portfolio 1. In addition, the table provides t-statistics and p-values
for the 5-1 return spread to test whether the spread is significant or not. It also provides p-values,
obtained from time-series block bootstrapping, for the Patton and Timmermann (2010) MR test
of the hypothesis for monotonically increasing or decreasing relations between risk premia and
returns. In this table, v-return and e-return represent the value-weighted and equally-weighted
stock returns, respectively.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: The Variance Risk Premium

1996---1999
v-return 3.557 2.294 1.578 2.011 1.565 -1.992 2.344 0.010 0.880
e-return 2.387 1.714 1.374 1.299 1.458 -0.929 2.897 0.002 0.284
2000---2002

v-return -1.355 -0.951 -1.061 -1.241 -1.689 -0.333 0.251 0.401 0.217
e-return -0.262 -0.151 -0.065 -0.194 -1.159 -0.897 0.903 0.183 0.196
2003---2006

v-return 1.725 1.245 1.018 0.782 1.494 -0.231 0.635 0.263 0.951
e-return 1.976 1.422 1.356 1.289 1.896 -0.079 0.281 0.389 0.983
2007---2012

v-return 0.578 0.567 0.462 0.148 -0.241 -0.818 1.719 0.043 0.039
e-return 0.709 0.752 0.602 0.177 0.461 -0.247 0.519 0.302 0.405

Panel B: The Skew Risk Premium
1996---1999

v-return 1.247 2.089 2.247 2.403 2.078 0.832 1.878 0.030 0.572
e-return 1.379 1.969 1.439 1.897 1.552 0.172 0.461 0.322 0.990
2000---2002

v-return -0.511 -0.831 -1.547 -1.212 -1.980 -1.470 1.484 0.069 0.241
e-return 0.413 0.058 -0.565 -0.550 -1.191 -1.604 1.810 0.035 0.087
2003---2006

v-return 1.390 1.255 1.153 0.977 0.970 -0.421 1.482 0.069 0.007
e-return 1.764 1.824 1.551 1.456 1.344 -0.421 1.689 0.046 0.112
2007---2012

v-return 0.467 0.462 0.219 0.189 -0.037 -0.504 1.763 0.039 0.023
e-return 0.920 0.686 0.523 0.432 0.147 -0.773 2.939 0.002 0.000
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Table 5.9---Continued
1 2 3 4 5 5-1 t-stat t-pval MR-p

Panel C: The Kurtosis Risk Premium
1996---1999

v-return 2.511 1.879 2.174 1.773 1.465 -1.045 1.948 0.026 0.652
e-return 1.899 1.510 1.831 1.555 1.430 -0.469 1.484 0.069 0.864
2000---2002

v-return -1.247 -1.509 -0.159 -1.455 -1.862 -0.615 0.672 0.251 0.996
e-return -0.992 -0.274 0.197 -0.259 -0.517 0.475 0.788 0.215 0.633
2003---2006

v-return 0.714 1.095 1.512 1.168 1.385 0.672 1.894 0.029 0.683
e-return 1.201 1.483 1.796 1.586 1.865 0.663 1.939 0.026 0.729
2007---2012

v-return 0.044 0.218 0.366 0.380 0.416 0.373 1.050 0.147 0.029
e-return 0.185 0.421 0.472 0.785 0.847 0.662 1.560 0.059 0.043
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Table 5.10. Portfolio Analysis of Expected Returns in Subperiods
The five quintile portfolios are sorted by risk premia over the following sample subperiods: 1996-
1999, 2000-2002, 2003-2006 and 2007-2012. At the end of each month, I sort the stocks into
quintile portfolios based on their risk premia. The first portfolio then contains the stocks with the
lowest risk premia, while the last portfolio contains the stocks with the highest risk premia. I
then compute the equally-weighted expected returns for each quintile portfolio, month, subperiod
and risk premium measure. The table reports the time-series average of the equally-weighted
portfolio returns for each subperiod. The row '5-1' refers to the average monthly return on an
arbitrage portfolio with a long position in portfolio 5 and a short position in portfolio 1. In addition,
the table provides t-statistics and p-values for the 5-1 return spread to test whether the spread is
significant. It also provides p-values, obtained from time-series block bootstrapping, for the Patton
and Timmermann (2010) MR test of the hypothesis for monotonically increasing or decreasing
relationships between risk premia and returns.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: The Variance Risk Premium

1996---1999
PTER 28.560 23.892 20.680 21.640 25.795 -2.765 1.063 0.144 1.000
ICC 6.722 6.299 6.107 6.161 6.457 -0.265 1.751 0.040 0.999
2000---2002

PTER 34.847 24.123 21.089 21.182 30.613 -4.234 3.903 0.000 1.000
ICC 8.041 7.372 7.203 7.262 7.706 -0.334 1.478 0.070 0.988
2003---2006

PTER 14.498 13.562 12.337 11.455 12.855 -1.643 2.578 0.005 1.000
ICC 8.049 7.832 7.564 7.417 7.637 -0.413 4.866 0.000 0.999
2007---2012

PTER 17.890 16.091 14.793 14.371 16.837 -1.053 0.730 0.233 0.969
ICC 9.731 9.021 8.772 8.718 9.718 -0.013 0.025 0.490 0.927

Panel B: The Skew Risk Premium
1996---1999

PTER 27.717 25.101 22.633 22.229 21.856 -5.861 7.633 0.000 0.000
ICC 6.874 6.417 6.194 6.104 6.086 -0.788 7.489 0.000 0.000
2000---2002

PTER 31.470 26.214 25.394 25.376 23.584 -7.886 6.170 0.000 0.019
ICC 8.125 7.544 7.340 7.266 7.274 -0.850 4.926 0.000 0.054
2003---2006

PTER 15.229 13.728 12.321 12.290 10.833 -4.396 10.073 0.000 0.008
ICC 7.972 7.752 7.539 7.588 7.627 -0.345 3.797 0.000 0.330
2007---2012

PTER 18.893 17.177 15.789 14.758 13.191 -5.703 6.190 0.000 0.000
ICC 9.761 9.262 9.152 9.030 8.649 -1.113 3.160 0.001 0.000
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Table 5.10---Continued
1 2 3 4 5 5-1 t-stat t-pval MR-p

Panel C: The Kurtosis Risk Premium
1996---1999

PTER 21.760 22.442 23.618 24.970 26.198 4.439 4.607 0.000 0.000
ICC 5.762 6.256 6.347 6.481 6.860 1.098 6.103 0.000 0.000
2000---2002

PTER 21.888 24.301 26.708 28.946 30.218 8.330 6.138 0.000 0.000
ICC 6.635 7.217 7.512 7.845 8.394 1.759 9.484 0.000 0.000
2003---2006

PTER 12.230 12.827 12.747 13.179 13.416 1.186 2.625 0.004 0.083
ICC 7.493 7.588 7.650 7.773 7.986 0.493 3.445 0.000 0.000
2007---2012

PTER 12.907 15.847 16.732 16.928 17.429 4.522 4.465 0.000 0.026
ICC 8.382 8.944 9.202 9.494 9.867 1.485 3.341 0.000 0.000
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Table 5.11. Portfolio Analysis of Realised Returns for Different Maturities
The five quintile portfolios are sorted by risk premia for different maturities over the sample period
from January 1996 to December 2012. At the end of each month, I sort the stocks into quintile
portfolios based on their risk premia. The first portfolio then contains the stocks with the low-
est risk premia, while the last portfolio contains the stocks with the highest risk premia. I then
compute the value-weighted and equally-weighted monthly returns over the next month for each
quintile portfolio, month and risk premium measure. The table reports the time-series average
of the value-weighted and equally-weighted portfolio returns. The row '5-1' refers to the average
monthly return on an arbitrage portfolio with a long position in portfolio 5 and a short position in
portfolio 1. In addition, the table provides t-statistics and p-values for the 5-1 return spread to test
whether the spread is significant or not. It also provides p-values, obtained from time-series block
bootstrapping, for the Patton and Timmermann (2010) MR test of the hypothesis for monotonically
increasing or decreasing relations between risk premia and returns. In this table, v-return and
e-return represent the value-weighted and equally-weighted stock returns, respectively.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: The Variance Risk Premium

60-day Maturity
v-return 0.990 0.754 0.365 0.472 0.167 -0.823 2.117 0.017 0.350
e-return 1.188 0.890 0.574 0.701 0.635 -0.552 1.778 0.038 0.632
90-day Maturity

v-return 0.867 0.555 0.459 0.490 0.408 -0.459 1.194 0.116 0.079
e-return 1.048 0.783 0.707 0.695 0.756 -0.293 0.943 0.173 0.116
180-day Maturity

v-return 0.546 0.747 0.546 0.511 0.233 -0.313 0.724 0.234 0.455
e-return 0.911 0.998 0.725 0.776 0.604 -0.308 0.791 0.214 0.242

Panel B: The Skew Risk Premium
60-day Maturity

v-return 0.668 0.460 0.561 0.586 0.176 -0.492 2.206 0.014 0.254
e-return 1.082 0.762 0.897 0.763 0.481 -0.601 2.978 0.001 0.503
90-day Maturity

v-return 0.712 0.601 0.501 0.614 0.068 -0.644 2.900 0.002 0.285
e-return 1.026 0.942 0.673 0.873 0.470 -0.555 2.873 0.002 0.647
180-day Maturity

v-return 0.599 0.728 0.676 0.516 0.027 -0.572 2.400 0.008 0.283
e-return 1.012 0.960 0.800 0.736 0.501 -0.511 2.060 0.020 0.013
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Table 5.11---Continued
1 2 3 4 5 5-1 t-stat t-pval MR-p

Panel C: The Kurtosis Risk Premium
60-day Maturity

v-return 0.447 0.648 0.564 0.422 0.387 -0.060 0.237 0.406 0.540
e-return 0.588 0.836 0.856 0.792 0.914 0.326 1.590 0.056 0.184
90-day Maturity

v-return 0.342 0.764 0.594 0.360 0.505 0.162 0.802 0.211 0.701
e-return 0.615 0.842 0.850 0.696 0.982 0.367 1.960 0.025 0.554
180-day Maturity

v-return 0.587 0.508 0.638 0.208 0.413 -0.174 0.749 0.227 0.473
e-return 0.715 0.789 0.942 0.669 0.900 0.185 0.923 0.178 0.957
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Table 5.12. Portfolio Analysis for Expected Returns for Different Maturities
The five quintile portfolios are sorted by risk premia for different maturities over the sample period
from January 1996 to December 2012. At the end of each month, I sort the stocks into quintile
portfolios based on their risk premia. The first portfolio then contains the stocks with the lowest
risk premia, while the last portfolio contains the stocks with the highest risk premia. I compute the
equally-weighted expected returns for each quintile portfolio, month and risk premium measure.
The table reports the time-series average of the equally-weighted portfolio returns. The row '5-
1' refers to the average ex ante expected return on an arbitrage portfolio with a long position in
portfolio 5 and a short position in portfolio 1. In addition, the table provides t-statistics and p-
values for the 5-1 return spread to test whether the spread is significant or not. It also provides
p-values, obtained from time-series block bootstrapping, for the Patton and Timmermann (2010)
MR test of the hypothesis for monotonically increasing or decreasing relations between risk premia
and returns.

1 2 3 4 5 5-1 t-stat t-pval MR-p
Panel A: The Variance Risk Premium

60-day Maturity
PTER 21.085 17.417 15.567 15.376 19.657 -1.428 1.745 0.040 1.000
ICC 8.343 7.857 7.706 7.614 8.274 -0.070 0.299 0.383 0.992
90-day Maturity

PTER 21.224 17.396 15.684 15.387 19.424 -1.801 1.949 0.026 0.999
ICC 8.378 7.840 7.656 7.640 8.288 -0.090 0.395 0.346 0.988
180-day Maturity

PTER 21.345 17.615 15.742 15.389 18.413 -2.932 2.578 0.005 0.998
ICC 8.404 7.869 7.663 7.695 8.149 -0.255 1.255 0.105 0.950

Panel B: The Skew Risk Premium
60-day Maturity

PTER 20.987 18.625 17.617 16.376 15.453 -5.534 9.030 0.000 0.000
ICC 8.515 8.019 7.850 7.716 7.634 -0.881 5.054 0.000 0.000
90-day Maturity

PTER 21.012 18.762 17.508 16.439 15.308 -5.704 9.241 0.000 0.000
ICC 8.601 8.035 7.796 7.701 7.602 -0.999 5.586 0.000 0.000
180-day Maturity

PTER 20.456 19.187 17.591 16.344 15.067 -5.388 7.751 0.000 0.000
ICC 8.666 8.036 7.841 7.667 7.515 -1.151 6.479 0.000 0.000
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Table 5.12---Continued
1 2 3 4 5 5-1 t-stat t-pval MR-p

Panel C: The Kurtosis Risk Premium
60-day Maturity

PTER 15.452 17.513 18.121 18.681 19.376 3.924 5.328 0.000 0.001
ICC 7.341 7.726 8.001 8.228 8.459 1.118 6.659 0.000 0.000
90-day Maturity

PTER 15.729 17.536 18.186 18.453 19.191 3.462 4.985 0.000 0.004
ICC 7.325 7.747 8.030 8.130 8.530 1.205 6.094 0.000 0.000
180-day Maturity

PTER 16.509 17.508 17.773 18.265 18.633 2.123 3.189 0.001 0.001
ICC 7.381 7.713 7.964 8.077 8.620 1.239 6.279 0.000 0.000
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Chapter 6

Moment Risk Premia and Aggregate Stock Market

Returns

6.1 Introduction

The presence of the variance risk premium at the aggregate market level has al-

ready been documented extensively in the literature. Bakshi and Kapadia (2003a)

propose a nonparametric way to present the variance risk premium by analysing

the profits and losses from the Black-Scholes delta-hedged positions in the S&P

500 and S&P 100 index options. They find that the market volatility premium is

negative. Bakshi and Kapadia (2003b) show the existence of a negative market

volatility risk premium in index options and individual equity options. It has also

been documented by Carr and Wu (2009) that there exists a negative average

variance risk premium for the S&P 500 index. The negative sign of the variance

risk premium indicates that variance buyers are willing to accept a negative aver-

age excess return to hedge away upward movements in stock market volatility. In

other words, investors dislike increases in market volatility. Jackwerth and Rubin-

stein (1996) also provide an explanation of why implied volatilities exceed realised

volatilities. Market volatility tends to increase when stock market falls. When op-

tions are added to a market portfolio, this will help hedge market risk. Hence, this

is consistent with a negative volatility risk premium.

Increases in market volatility are less desirable and command high returns as

compensation. The variance risk premium is indeed found to help predict future

stock market returns at the aggregate market level (see Bollerslev et al., 2009;

Drechsler and Yaron, 2011; Bollerslev et al., 2011). Specifically, Bollerslev et al.

(2009) find that the variance risk premium, defined as the difference between
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risk-neutral variance and realised variance, has explanatory power to post-1990

aggregate stock market returns. They support that high values of the variance

risk premium can predict high future index returns. Drechsler and Yaron (2011)

demonstrate that the variance risk premium, defined as the difference between the

squared VIX index and the expected realised variance, is useful for measuring a-

gents' perceptions of uncertainty and the risk of influential shocks to the economic

state vector. They show conditions under which the variance risk premium dis-

plays significant time variation and future return prediction. Bollerslev et al. (2011)

detect significant evidence for the temporal variation in the volatility risk premium,

which is directly linked to macro-finance state variables by applying a small-scale

Monte Carlo experiment. They find that the volatility risk premium can help predict

future stock market returns for the S&P 500 index.

Although standard approaches to asset pricing concentrate largely on the second

moment, the third or even the fourth moment of returns have recently become

increasingly important for asset pricing and risk management. There is mounting

evidence in the literature to suggest the importance of skewness for both individ-

ual stocks and for the market as whole (e.g. Kraus and Litzenberger, 1976; Kane,

1982; Harvey and Siddique, 2000). Additionally, investors hold concave prefer-

ences and like positive skewness1. Bali and Murray (2010) confirm that assets

with higher (lower) systematic skewness are more (less) desirable and command

lower (higher) expected returns.

Since the importance of the third moment, Kozhan et al. (2013) propose the con-

cept of 'the skew risk premium', which is modelled using skew swaps. They pro-

vide strong empirical evidence for the co-existence of both skew and variance risk

premia in the equity market. They find that the skew risk premium accounts for

the slopes in the implied volatility curve in the S&P 500 market and that skew risk

is tightly related to variance risk. The slope of implied volatility is found to have
1Kraus and Litzenberger (1976), Kane (1982) and Harvey and Siddique (2000) extend the

mean-variance portfolio theory of Markowitz (1952) to incorporate the effect of skewness on valu-
ation. They present a three-moment asset pricing model in which investors prefer positive skew-
ness.
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significant predictive power for future stock returns in the previous research. For

instance, Atılgan et al. (2010) and Xing et al. (2010) define the shape of the volatil-

ity smirk as the difference between the implied volatilities of OTM puts and ATM

calls. Atılgan et al. (2010) document a significantly negative link between volatility

smirks and expected future returns for the S&P 500 index. Xing et al. (2010) find

that stocks with the steepest volatility smirks underperform stocks with the least

pronounced volatility smirks. Yan (2011) shows that there is a negative predictive

relation between the slope of the implied volatility smile and stock returns.

Motivated by previous research in the variance risk premium in the aggregate

stock market by Bollerslev et al. (2009) and the recently proposed skew risk pre-

mium measure by Kozhan et al. (2013), I first study a direct relation between the

skew and kurtosis risk premia and stock returns at the aggregatemarket level. The

most relevant paper about the variance risk premium in aggregate stock market

return prediction is by Bollerslev et al. (2009). I extend this paper by adding an-

other two risk premium measures, named the skew and kurtosis risk premia, and

by adding another return measure, ex ante expected returns.

In this chapter, I define the moment risk premia as the difference between ex-

pected realised moments and risk-neutral moments. The calculation of realised

moments follows Amaya et al. (2011) and Choi and Lee (2014). The computation

of risk-neutral moments follows the model-free method of Bakshi et al. (2003).

The definitions of the moment risk premia are motivated by models of the vari-

ance risk premium proposed in previous research. For instance, Bali and Hov-

akimian (2009) propose the volatility spread (similar to the variance risk premium)

as the realised-implied volatility spread. Carr and Wu (2009) propose using the

difference between the realised variance and the synthetic variance swap rate to

quantify the variance risk premium. On the contrary, Bakshi and Madan (2006)

formalise the departure between risk-neutral and physical index return volatilities,

termed the volatility spread (similar to the variance risk premium). Bollerslev et al.

(2011), define the volatility risk premium as the difference between actual S&P 500
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option-implied volatilities (the VIX index) and high-frequency five-minute-based re-

alised volatilities. Bollerslev et al. (2009), Drechsler and Yaron (2011) andHan and

Zhou (2012) model the variance risk premium as the difference between implied

and realised variances. Using this directly observable proxy for the moment risk

premia has the obvious advantage of being simple to implement and completely

model-free.

I employ daily options on the S&P 500 Index from 1996 to 2012 for the empiri-

cal analysis. I test directly the relationship between the moment risk premia and

aggregate stock market returns. I perform the following test procedures. First-

ly, I adopt a monthly linear regression to examine the relationship between the

moment risk premia and subsequent index returns. I use two return measures:

ex post realised index returns and ex ante expected index returns. Secondly, I

include macroeconomic factors, such as inflation, GDP and bond risk premia in

the regressions to investigate whether the relationship between the moment risk

premia and index returns is robust to these factors.

The contributions of this chapter are summarised as follows. Firstly, I investigate

the explanatory power of the variance, skew and kurtosis risk premia with ex post

realised returns. I document that both the variance and skew risk premia have

a negative relationship with subsequent realised returns in the aggregate stock

market. However, the variance risk premium has a stronger relationship than the

skew risk premium. The negative relationship between the variance and skew risk

premia and index returns is robust to macroeconomic factors. For the kurtosis risk

premium, I find that it cannot describe realised index returns. I provide the first

study on the relationship between the skew and kurtosis risk premia and realised

index returns.

Secondly, for ex ante expected returns, I am the first to construct the index expect-

ed returns using the price target expected return (PTER) and the implied cost of

capital (ICC) of all constituents in the S&P 500 Index. It is the first study to investi-
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gate the relationship between the moment risk premia and ex ante expected stock

returns in the aggregate stock market. For the PTER measure, I find that neither

the variance risk premium nor the skew risk premium has a robust and significant

relationship with expected return, but that the kurtosis risk premium is positively

related to the PTER. For another ex ante return measure, both the variance and

skew risk premia are significantly and positively related to the ICC, while the kur-

tosis risk premium has a significant negative relationship with the ICC. However,

these relationships for the ICC are not robust to macroeconomic variables.

Finally, I test the explanatory power of macroeconomic factors in the aggregate

stock market with the ex ante and ex post return measures. I find that both the

PTER and the ICC can be explained by macroeconomic factors, while realised

index return cannot be described by macroeconomic factors.

The result contributes to the literature that examines the relationship between the

variance risk premium and realised returns in the aggregate stock market. The re-

sults for the negative relationship between the variance risk premium and realised

index returns are consistent with empirical evidence presented in Bollerslev et al.

(2009), who find that the variance risk premium is able to explain a non-trivial

fraction of the time-series variation in post-1990 aggregate stock market returns.

Bollerslev et al. (2009) define the variance risk premium as the difference between

risk-neutral variance and realised variance, and they support a positive relation

between the variance risk premium and subsequent index returns. In this empiri-

cal analysis, I define the variance risk premium as the difference between realised

variance and risk-neutral variance, which is opposite to the definition of Bollerslev

et al. (2009). Therefore, the negative relation between the variance risk premium

and realised index returns that is documented in this study is consistent with the

findings of Bollerslev et al. (2009).

The remainder of the chapter is organised as follows. Section 6.2 shows the cal-

culation of realised and risk-neutral moments, as well as the moment risk premia.
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It also describes two ex ante expected return measures for index, which are the

PTER and the ICC. Section 6.3 describes the data used in the empirical analysis.

Section 6.4 shows the test of the relationship between the moment risk premia

and index returns. Section 6.5 concludes the main findings of this chapter.

6.2 Methodology

6.2.1 Moments and Moment Risk Premia

In this section, I calculate realised and risk-neutral moments (variance, skewness

and kurtosis) using the model-free method. I then describe the approaches to

compute the variance, skewness and kurtosis risk premia.

Risk-Neutral Variance, Skewness and Kurtosis

I follow the model-free approach of Bakshi et al. (2003) to compute the risk-neutral

variance, skewness and kurtosis of the S&P 500 Index. The detail of the BKM

approach is described in Section 3.2.

In this chapter, the time horizon of risk-neutral moments is 30 days. For each day,

I calculate risk-neutral moments using options on the S&P 500 Index with different

maturities. In each calculation, I require that a minimum of two OTM calls and two

OTM puts have valid prices. If insufficient data are available, the observation is

discarded. When using daily options with all maturities, I can in principle obtain

daily option-implied volatility, skewness and kurtosis with various maturities. I then

interpolate linearly to obtain the 30-day VAR, SKEW and KURTOSIS using both

contracts with maturity more than 30 days and contracts with maturity less than

30 days. If risk-neutral moment is with only one maturity on a particular day, I do

not interpolate and use this to represent the 30-day VAR, SKEW and KURTOSIS

on that day.
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Realised Variance, Skewness and Kurtosis

The well-known daily realised variance (see Andersen and Bollerslev, 1998; An-

dersen et al., 2003) is obtained by summing squares of intraday high-frequency

returns.

RVt =
N

∑
i=1

R2
t,i (6.1)

where RVt denotes the realised variance at time t and Rt,i represents the daily

return on day i.

An appealing characteristic of this variance measure compared with other esti-

mation methods is its model-free nature (see Andersen et al., 2001; Barndorff-

Nielsen, 2002 for details).

Following Amaya et al. (2011) and Choi and Lee (2014), I construct realised skew-

ness as 2

RSt =

√
N ∑N

i=1 R3
t,i

RV
3
2

t

(6.2)

where RSt denotes the realised skewness on day t.

The measure of realised kurtosis is computed as

RKt =
N ∑N

i=1 R4
t,i

RV 2
t

(6.3)

where RKt denotes the realised kurtosis at time t.

Since themoment risk premiameasure the terminal profit and loss from a longmo-

ment swap contract, the realised moments in equations (6.1), (6.2) and (6.3) are

historical measures, which cannot represent the future realised moments. Risk-

neutral moments carry traders' expectations regarding the distribution of future

returns, which is not contained in historical estimates. Following Drechsler and

2Compared with the realised skewness by Neuberger (2012), the measure adopted in this
thesis is easy and simple to implement. For modelling realised skewness with a short time horizon,
this measure is effective. The measure proposed by Neuberger (2012) is better to model the long-
horizon realised skewness.
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Yaron (2011) and Han and Zhou (2012), I calculate expected future realised mo-

ments using regression specifications that include risk-neutral moments in addi-

tion to historical realised moments. I adopt a multiple linear regression model to

estimate the expected realised moments under the physical measure with lagged

risk-neutral moments and historical realised moments. I run the following regres-

sions with one-year of past data:

RVt = α1 +β1MFIVt−1 + γ1RVt−1 + εv
t

RSt = α2 +β2MFISt−1 + γ2RSt−1 + εs
t

RKt = α3 +β3MFIKt−1 + γ3RKt−1 + εk
t

(6.4)

where MFIVt , MFISt and MFIKt are the model-free implied variance, skewness

and kurtosis on day t following the formula of Bakshi et al. (2003), respectively.

RVt , RSt and RKt denote the realised variance, skewness and kurtosis on day t,

respectively.

I take the physical expected variance, EVart , the physical expected skewness,

ESkewt and the physical expected kurtosis, EKurtt , as the fitted value from the

regressions:

EVart ≡ R̂V t+1 = α̂1 + β̂1MFIVt + γ̂1RVt

ESkewt ≡ R̂St+1 = α̂2 + β̂2MFISt + γ̂2RSt

EKurtt ≡ R̂Kt+1 = α̂3 + β̂3MFIKt + γ̂3RKt

(6.5)

In this chapter, I use daily index data instead of high-frequency data to calculate

realised variance, skewness and kurtosis. The 30-day realised physical (annu-

alised) variance, skewness and kurtosis are computed using previous one-month

daily S&P 500 index returns. For example, RVt is computed by summing squares

of daily returns in the previous one month and it is then annualised by multiplying

by 252/20 in the analysis. I thus obtain daily realised and risk-neutral variance,

skewness and kurtosis for each day.
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The Variance, Skew and Kurtosis Risk Premia

After calculating expected realised moments and option-implied moments, I then

compute the moment risk premia, which are the difference between these two

measures.

V RPt = EVart −MFIVt

SRPt = ESkewt −MFISt

KRPt = EKurtt −MFIKt

(6.6)

After obtaining the daily variance, skew and kurtosis risk premia, I select only the

observations at the end of each month to represent the monthly variance, skew

and kurtosis risk premia. I also select realised and risk-neutral moments observed

at the end of each month.

6.2.2 Ex ante Expected Returns

In this section, I present two approaches to calculate ex ante expected returns

at the aggregate stock market level. The first method is to use the PTER. The

second measure is to employ the ICC.

In the literature, the PTER and the ICC are not used for indices. The data used

for estimating ex ante expected returns of the S&P 500 Index, such as price target

and earnings forecast, are not available from the I/B/E/S database. No analysts

post a price target for indices. The data for stocks are, however, available in the

database. In order to calculate expected returns in the aggregate stock market,

I first compute the expected returns for each constituent in the S&P 500 Index. I

then calculate the value-weighted expected returns for all constituents.

The estimation of the PTER and the ICC for each constituent is described in Sec-

tion 5.2.2.
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6.3 Data

I employ options on the S&P 500 Index for a sample period from January 1996

to December 2012; a total of 4,278 trading days. The S&P 500 Index serves

as a proxy for the US market. The daily index option data are obtained from

OptionMetrics. I only retain options with expiration days of at least one week but

no more than 700 days. In other words, I exclude options that mature within one

week and more than 700 days. Daily index and stock data are taken from CRSP.

Treasury bills, as a proxy for risk-free interest rates, are obtained from the CRSP

Treasuries database.

The constituents of the S&P 500 Index are obtained from COMPUSTAT. Analyst

price target data for the firms in the S&P 500 index are taken from the I/B/E/S

unadjusted detail price target database. Since there are no available price target

data for the S&P 500 Index, I take all price targets of the firms in the S&P 500

Index with a target horizon of 12 months where both the firm's base currency and

the currency of the estimate are in USD. The price target data cover the period

from March 1999 to December 2012.

I use data from the I/B/E/S summary history/summary statistics to obtain earnings

forecasts for the S&P 500 constituents for the next three years. I/B/E/S analysts

supply a one-year-ahead (FEPSt+1) and a two-year-ahead (FEPSt+2) earnings per

share (EPS) forecast, as well as an estimate of the long-term growth rate (Ltg). It

also releases a one-year-ahead (FBPSt+1) and a two-year-ahead (FBPSt+2) book

value per share (BPS) forecast. The data sample period is from January 1996 to

December 2012. The I/B/E/S earnings forecast summary data are released on

the third Thursday of each month.

The macroeconomic data are taken from different sources. Specifically, the CPI

data are from the website of the US Bureau of Labor Statistics. The GDP data are

obtained from the US Bureau of Economic Analysis. Treasury bills and bonds,
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Moody Seasoned Baa corporate bonds are from Federal Reserve H15. The data

sample period is from January 1996 to December 2012.

Figure 6.1 plots realised and risk-neutral moments and the moment risk premia.

Panel A plots the monthly time series of expected realised variance, risk-neutral

variance and their differences. During 2004-2008, the two variance time series

are very flat and low. Both of the variance measures become somewhat higher

during the 2009-2010 part of the sample. The fluctuation of the two measures

generally coincides. Risk-neutral variance is generally above expected realised

variance, which is consistent with earlier empirical evidence; the spread between

expected realised and risk-neutral variance is almost always negative.

Panel B plots the monthly time series of expected realised skewness, risk-neutral

skewness, and their differences. Both of the skewness measures keep in the

same general variation level during the sample period. There are no distinct spikes

in any subperiods. Expected realised skewness is distributed around zero, while

risk-neutral skewness fluctuates below expected realised skewness, indicating

that the difference between expected realised and implied skewness is positive.

Panel C plots the monthly time series of expected realised kurtosis, risk-neutral

kurtosis and the kurtosis risk premium. Compared with risk-neutral kurtosis, ex-

pected realised kurtosis is very smoothed. Risk-neutral kurtosis becomes more

volatile after 2008; there are even some distinct spikes. From the distribution

of expected realised and risk-neutral kurtosis, I find that risk-neutral kurtosis is

distributed above expected realised kurtosis, which indicates that the difference

between expected realised and risk-neutral kurtosis is positive.

Basic summary statistics for moments, the moment risk premia and ex ante expect-

ed returns are given in Table 6.1. Panel A reports summary statistics for expected

realised and risk-neutral moments and the moment risk premia for the S&P 500

Index. I find that the average expected realised variance is 0.0429 and the av-
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erage risk-neutral variance is 0.0610. It is obvious that the average risk-neutral

variance is higher than the average expected realised variance for the S&P 500

Index, which points out the existence of a negative variance risk premium. The

average variance risk premium for the S&P 500 Index is -0.0202, which is more

negative than the average variance risk premium for the stocks. For the third mo-

ment, the average expected realised skewness is -0.0020 and the average risk-

neutral skewness is -1.6788. The average risk-neutral skewness is more negative

than the expected realised skewness, indicating the existence of a positive skew

risk premium for the S&P 500 Index. The average skew risk premium is 1.6904.

For the fourth moment, the average expected realised kurtosis is 2.9671 and the

average risk-neutral kurtosis is 9.5801. The average kurtosis risk premium is -

6.7627.

Panel B presents summary statistics for ex ante expected returns of the S&P 500

index, including the PTER and the ICC. Themean PTER is 0.1482, while themean

ICC is 0.0658. The standard deviation of the ICC is 0.0170, which is much smaller

than the standard deviation of the PTER. This is because the ICC is smoothed,

which is calculated by solving for the discount rate (r) that equates the current

book value of equity plus the present value of expected future earnings to the

current stock price.

The result that expected realised variance is less than risk-neutral variance shown

in Panel A of Table 6.1 and Figure 6.1 is in line with the previous literature (see,

e.g. Bakshi and Kapadia, 2003a; Carr and Wu, 2009; Egloff et al., 2010; Kozhan

et al., 2013; Drechsler, 2013, ). The result that risk-neutral skewness is more

negative than expected realised skewness is consistent with Bakshi et al. (2003)

and Kozhan et al. (2013). The result of the kurtosis risk premium has not been

reported in the existing literature. I provide the first study.

I investigate whether the index's moment risk premia or index returns are correlat-

ed with macroeconomic factors. I use CPI to represent inflation. GDP is the real
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GDP level, representing the economic output. The term structure of spread, T S is

measured as the difference in the yields to maturity for the 10-year Treasury Bond

and the 1-month Treasury Bill. The default risk premia (DRP) is defined as the dif-

ference in the yields to maturity between Moody's BAA and the 10-year Treasury

bonds.

Table 6.2 reports the correlations of these variables at the aggregate market lev-

el. From the second column, I find that realised index returns are negatively cor-

related with most of these variables. The third column reports that the PTER

has a relatively weaker correlation with the variance risk premium (the correlation

is 0.0299) or the skew risk premium (the correlation is -0.1036) compared with

macroeconomic variables. The PTER has a stronger correlation with the kurtosis

risk premium compared with the variance and skew risk premia. In the fourth col-

umn, I find a similar result for the ICC. Compared with macroeconomic variables,

the ICC seems to have a weaker correlation with the variance risk premium (the

correlation is 0.0771) and the skew risk premium (the correlation is 0.1508). The

kurtosis risk premium exhibits a stronger correlation than the variance and skew

risk premia.

6.4 Moment Risk Premia and Index Return Prediction

In this section, I examine the predictive power of the variance, skew and kurtosis

risk premia for index returns. The forecasts of index returns are based on the lin-

ear regressions of the S&P 500 Index returns on a different set of lagged predictor

variables. I focus on discussing the estimated slope coefficients and their statisti-

cal significance as determined by robust t-statistics. I also report the explanatory

power of regressions as measured by the corresponding adjusted R2s.
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6.4.1 Main Empirical Findings

I begin by reporting the results in Table 6.3 for the key return regressions with

dependent variables of subsequent realised returns and expected returns. These

linear regressions provide a simple and effective way to detect the relation be-

tween the moment risk premia and index returns.

Simple linear regression formulas for subsequent realised returns are shown be-

low:

rt+1 = α1 + γ1V RPt + ε1,t

rt+1 = α2 + γ2SRPt + ε2,t

rt+1 = α3 + γ3KRPt + ε3,t

(6.7)

Simple linear regression formulas for ex ante expected returns are shown below:

ert = α4 + γ4V RPt + ε4,t

ert = α5 + γ5SRPt + ε5,t

ert = α6 + γ6KRPt + ε6,t

(6.8)

where rt+1 is the realised index return in month t +1 and ert is the expected index

return (the PTER or the ICC) in month t, which represents the forecasted index

returns in the future. The variance, skew and kurtosis risk premia in month t are

denoted by V RPt , SRPt and KRPt , respectively.

Table 6.3 reports the results for simple linear regressions of monthly index returns

on the variance, skew and kurtosis risk premia. Panel A presents the regression-

s with the explanatory variable of the variance risk premium. When regressing

monthly realised index returns on the variance risk premium, I find that the coeffi-

cient of the variance risk premium is -0.3756 with a t-statistic of -3.99. The robust

t-statistic for testing the estimated slope coefficient associated with the variance

risk premium exceeds the one sided 1% significance level. I find that the vari-

ance risk premium is negatively related to subsequent realised index returns at
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the 1% significance level. The adjusted R2 is equal to 7.23%. Bollerslev et al.

(2009) find that the variance risk premium is able to explain a nontrivial fraction

of the time-series variance in post-1990 aggregate stock market returns with high

(low) premia predicting high (low) future returns based on the S&P 500 Index data.

They estimate the variance risk premium as the difference between implied and

realised variances, which is opposite to the variance risk premium method used

in this thesis. Therefore, the negative relation between the variance risk premium

and subsequent index returns documented in this study is consistent with Boller-

slev et al. (2009). When the dependent variable is the PTER, the slope of the

variance risk premium is 0.0423, which is statistically insignificant. For the ICC,

the regression of the ICC on the variance risk premium gives a slope coefficient

of 0.0792, which is positive and statistically significant at the 5% level.

The regression result with the explanatory variable of the skew risk premium is

provided in Panel B. When the dependent variable is monthly realised index re-

turn, the coefficient of the skew risk premium is -0.0077, which is statistically sig-

nificant at the 10% level. The adjusted R2 is 0.97%. When regressing the PTER

on the skew risk premium, the slope is -0.0071 with a t-statistic of -1.40. With the

dependent variable of the ICC, the regression gives the coefficient of 0.0031 with

a t-statistic of 1.97, which is significant at the 5% level.

Panel C shows the linear regression of index returns on the kurtosis risk premium.

When regressing realised index return on the kurtosis risk premium, the coefficient

is 0.0006, which is statistically insignificant. When the dependent variable is the

PTER, the slope is 0.0013 with a t-statistic of 2.32, which is significant at the 5%

level. With the dependent variable of the ICC, I find that the slope is -0.0006,

which is statistically significant at the 1% level.

I have a further look at the comparison of the variance, skew and kurtosis risk pre-

mia in return prediction with different return measures. For realised index returns,

the predictive power of the variance risk premium is stronger than the skew and
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kurtosis risk premia. The variance risk premium has a more significant coefficien-

t and a bigger value of the adjusted R2 than the skew and kurtosis risk premia.

For the PTER, neither the variance risk premium nor the skew risk premium has

explanatory power, while the kurtosis risk premium has a positive and significant

relation with the PTER. With the return measure of the ICC, both the variance

and skew risk premia have positively explanatory power, while the kurtosis risk

premium is significantly and negatively related to the ICC .

In summary, from Table 6.3, I find that at the aggregate market level, both the

variance and skew risk premia have a negative and significant relationship with

future realised index returns. The variance risk premium has a stronger relation-

ship than the skew risk premium, but the kurtosis risk premium cannot describe

realised index returns. For ex ante expected returns, neither the variance risk pre-

mium nor the skew risk premium can predict the PTER, while the kurtosis risk

premium is positively and significantly related to the PTER. Additionally, the vari-

ance and skew risk premia are significantly and positively related to the ICC, while

the kurtosis risk premium has an inverse and significant relationship with the ICC.

6.4.2 Multiple Linear Regressions withMacroeconomic Control Vari-

ables

Index returns may be affected by macroeconomic factors, e.g. economic output

(GDP level), inflation (price indices). Dating back to Chen et al. (1986), who find

that stock returns can be influenced by a set of economic state variables, many s-

tudies have tried to show reliable associations between macroeconomic variables

and security returns. The literature, e.g. Flannery and Protopapadakis (2002) has

documented that aggregate stock returns are negatively related to inflation and to

money growth. Chen et al. (1986) identify five potential macroeconomic factors:

the growth rate of Industrial Production, Expected Inflation, Unexpected Inflation,

a bond Default Risk Premium, and a Term Structure Spread. I include some of

these macroeconomic factors in the regressions to see whether they can help pre-
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dict future index returns. The factors used in the analysis include Inflation (CPI),

the real GDP level, a Term Structure of Spread (the difference in the yields to ma-

turity for the 10-year Treasury Bond and the 1-month Treasury Bill), the Default

Risk Premia (the difference in the yields to maturity between Moody's BAA and

the 10-year Treasury bonds).

Multiple linear regression formulas for subsequent realised index returns are give

as follows:

rt+1 = γ0 + γ1RPt +ϕ ′
1Zt + εt (6.9)

where RPt denotes the variance, skew or kurtosis risk premium observed in month

t and Zt are macroeconomic factors in month t.

Multiple linear regression formulas for ex ante expected returns are given as fol-

lows:

ert = θ0 +θ1RPt +ϕ ′
2Zt + e6,t (6.10)

where RPt denotes the variance, skew or kurtosis risk premium observed in month

t and Zt are macroeconomic factors in month t.

Table 6.4 reports the results for multiple linear regressions of monthly realised in-

dex returns on expected realised and risk-neutral moments, the moment risk pre-

mia, as well as macroeconomic variables. When regressing monthly realised in-

dex returns on expected realised and risk-neutral moments independently (Model-

s 1-6), I find that expected realised or risk-neutral moments cannot predict monthly

realised index returns. Model 7 includes the explanatory variables of the variance

risk premium and macroeconomic factors in the linear regression. I find that the

coefficient of the variance risk premium remains significantly negative and the

value is -0.3567, with a t-statistic of -3.66. In Model 8, the coefficient of the skew

risk premium is -0.0082, which is still negative and significant at the 10% level,

when including macroeconomic variables in the regression. In Model 9, I regress

monthly realised index returns on the kurtosis risk premium and macroeconomic
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factors. The coefficient on the kurtosis risk premium is insignificant. From Model

7 to Model 9, I also find that macroeconomic factors have almost no relationship,

or a very week relationship, with realised index returns.

The regression results for ex ante expected returns are shown in Table 6.5. Panel

A reports the regressions with the dependent variable of the PTER. From Mod-

els 1-4, I find that expected realised, risk-neutral variance and skewness have

significant and positive relationships with the PTER. From Models 5 and 6, the

coefficients of expected realised and risk-neutral kurtosis are significantly nega-

tive. When regressing on the variance risk premium and macroeconomic factors

(Model 7), I find that the PTER still has no relationship with the variance risk premi-

um. When including the skew risk premium and the macro control variables in the

regression (Model 8), I see that the coefficient of the skew risk premium becomes

negative and significant. In Model 9, I find that the significantly positive relation-

ship between the kurtosis risk premium and the PTER is robust to macroeconomic

factors. The coefficient of the kurtosis risk premium is 0.0011, which is statistically

significant at the 5% level. From Models 7-9, I see that coefficients of macroeco-

nomic factors are significant, which means that the PTER can be explained by

macroeconomic variables.

Panel B of Table 6.5 provides multiple regressions with the dependent variable

of the ICC. When expected realised and risk-neutral moments are contained in

the regressions independently (Models 1-6), the slope coefficients of expected

realised and risk-neutral variance and risk-neutral kurtosis are significantly posi-

tive, while the slope coefficient of risk-neutral skewness is significantly negative.

When running regressions on the variance, skew and kurtosis risk premia and

macroeconomic factors (Models 7-9), I find that the coefficient of the variance risk

premium is positive, but insignificant. The skew risk premium has a significant

and negative coefficient, while the slope of the kurtosis risk premium is significant

and positive. Interestingly, I find that most of the coefficients of macroeconomic

variables are statistically significant from Models 7-9.
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Overall, the results in Table 6.4 and Table 6.5 show that realised index returns

cannot be described by the moments, while expected index returns can be ex-

plained by expected realised and risk-neutral moments. Realised index returns

are mainly negatively related to the variance risk premium. There is also a weak-

ly negative relationship between the skew risk premium and subsequent realised

index returns. The kurtosis risk premium has no explanatory power with realised

index returns; this is robust to macroeconomic factors. For expected index return-

s, the variance and skew risk premia have no relationships with the PTER, while

the kurtosis risk premium is positively related to the PTER. The result is robust to

macroeconomic factors. The PTER is explained mainly by macroeconomic fac-

tors. The relationships between the variance, skew and kurtosis risk premia and

the ICC are not robust to macroeconomic variables.

6.5 Conclusion

I first explore the direct relation between the moment risk premia (the difference

between expected realised moments and risk-neutral moments) and subsequent

returns in the aggregate stock market.

I find that the variance risk premium is negative, which is documented in the pre-

vious literature (see, e.g. Bakshi and Kapadia, 2003a; Carr and Wu, 2009; Egloff

et al., 2010; Kozhan et al., 2013). The skew risk premium is found to be positive,

which is in line with the findings of Bakshi et al. (2003) and Kozhan et al. (2013). I

find that the kurtosis risk premium is positive, which is not reported in the literature.

In the aggregate stock market, the variance risk premium can predict subsequent

realised index returns. The relationship between the variance risk premium and

index returns is negative and robust to macroeconomic variables. This is consis-

tent with the findings of Bollerslev et al. (2009).

I also find that the skew risk premium is inversely related to subsequent realised
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index returns, but that it has a weaker relation compared with the variance risk

premium. Moreover, the kurtosis risk premium has no relationship with realised

index return. This is the first research to explore the predictive ability of the skew

and kurtosis risk premia on aggregate market returns.

I am the first to investigate the explanatory power of the variance, skew and kurto-

sis risk premia on ex ante expected returns in the aggregate stock market. For the

first ex ante expected return measure, neither the variance risk premium nor the

skew risk premium is able to explain the PTER, while the kurtosis risk premium is

found to have a robust and positive relationship with the PTER. For the second ex

ante expected return measure, I find that both the variance and skew risk premia

are positively related to the ICC when the variance or skew risk premium is the

only explanatory variable. I also find that the kurtosis risk premium is inversely

and significantly related to the ICC. However, these relationships are not robust

to macroeconomic variables.

Finally, both the PTER and the ICC are found to be explained by macroeconomic

variables, while realised index returns cannot be described by macroeconomic

factors.
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(b) Panel B: The Skew Risk Premium
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(c) Panel C: The Kurtosis Risk Premium

Figure 6.1. Plot of the S&P 500 Moments and Moment Risk Premia The figure
plots expected realised and risk-neutral moments, as well as the moment risk premia from January
1996 to December 2012. The second, third and fourth moments are shown in Panel A, B and C,
respectively.
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Table 6.1. Summary Statistics on the S&P 500 Moments and Moment Risk
Premia
Panel A reports descriptive statistics on realised and risk-neutral moments and the moment risk
premia for the S&P 500 Index from January 1996 to December 2012. Panel B provides summary
statistics for the PTER and the ICC of the S&P 500 Index. The S&P 500 Index expected return is
constructed by the value-weighted expected returns from the index constituents. The data sample
for the PTER is fromMarch 1999 to December 2012. The sample period for the ICC is from January
1996 to December 2012. The table reports the mean, median, standard deviation, 25th and 75th
percentiles.

Panel A: S&P 500 Moments and Moment Risk Premia
Observation Mean StDev 25th Percentile Median 75th Percentile

EVar 4,028 0.0429 0.0706 0.0125 0.0233 0.0439
MFIV 4,278 0.0610 0.0638 0.0286 0.0447 0.0688
VRP 4,028 -0.0202 0.0312 -0.0307 -0.0187 -0.0091
ESkew 4,028 -0.0020 0.4834 -0.3169 -0.0168 0.2967
MFIS 4,278 -1.6788 0.6003 -1.9685 -1.6214 -1.3057
SRP 4,028 1.6904 0.7546 1.2428 1.6676 2.0817
EKurt 4,028 2.9671 0.8588 2.4014 2.7753 3.3126
MFIK 4,278 9.5801 6.7129 6.5615 8.3011 10.7255
KRP 4,028 -6.7627 6.8377 -7.9743 -5.5843 -3.6537

Panel B: S&P 500 Expected Returns
Observation Mean StDev 25th Percentile Median 75th Percentile

PTER 166 0.1482 0.0491 0.1144 0.1332 0.1770
ICC 204 0.0658 0.0170 0.0470 0.0708 0.0797
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Table 6.3. Results for Simple Linear Regressions
The table shows the results for simple linear regressions of monthly index returns on the variance
risk premium (VRP, Panel A), the skew risk premium (SRP, Panel B) and the kurtosis risk premi-
um (KRP, Panel C). The dependent variables are subsequent realised index returns, the PTER
or the ICC, respectively. The table reports the estimated coefficients and the t-statistics of the
independent variables. The t-statistics are shown in brackets. *, ** and *** denote the 10%, 5%
and 1% significance levels, respectively.

Panel A: The Independent Variable is the Variance Risk Premium
RR PTER ICC

Constant -0.0024 0.1489*** 0.0688***
(-0.65) (35.27) (51.74)

VRP -0.3756*** 0.0423 0.0792**
(-3.99) (0.40) (2.35)

ad j−R2 0.0723 -0.0051 0.0231
Panel B: The Independent Variable is the Skew Risk Premium

RR PTER ICC
Constant 0.0176** 0.1601*** 0.0622***

(2.14) (17.23) (21.91)
SRP -0.0077* -0.0071 0.0031**

(-1.71) (-1.40) (1.97)
ad j−R2 0.0099 0.0058 0.0148

Panel C: The Independent Variable is the Kurtosis Risk Premium
RR PTER ICC

Constant 0.0090** 0.1570*** 0.0636***
(1.86) (29.49) (38.70)

KRP 0.0006 0.0013** -0.0006***
(1.21) (2.32) (-3.13)

ad j−R2 0.0025 0.0259 0.0437
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Chapter 7

Conclusion

7.1 Conclusion

This thesis examines whether the ex ante risk measures related to options can ex-

plain stock returns. The risk measures employed in this thesis are option-implied

betas and the moment risk premia.

I first investigate, in Chapter 4, whether options and downside risk can improve

the risk-return relationship implied by the CAPM by using a portfolio analysis and

the FM regression. I compare the historical beta and three option-implied betas,

named the FGK, CCJV and BV betas, which are modelled using option-implied

moments. Consistent with Buss and Vilkov (2012), the BV beta outperforms oth-

er beta methods; the BV beta gives the biggest positive high-low return spread

through the portfolio analysis. A long-short portfolio buying stocks in the highest

BV beta quintile and shorting stocks in the lowest BV beta quintile produces pos-

itive average returns. The BV beta has a monotonically increasing relation with

the equally-weighted returns. The thesis is the first work to propose implied down-

side betas, which are defined as the combination of downside risk measures with

option-implied betas. Implied downside betas include the FGK and BV downsid-

e betas. The BV downside beta performs best among implied downside betas.

It offers an improvement of the BV beta for the beta-return relationship. The B-

V downside beta gives a bigger high-low return spread than the BV beta. The

monotonic relation between beta and the equally-weighted return becomes more

pronounced. However, the robustness test shows that the implied (downside)

beta-return relation is not robust to firm characteristics. The positive beta-return

relation for the BV beta and the BV downside beta disappears when other control
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variables are included in the FM regression.

In Chapter 5, I estimate the moment risk premia as the difference between ex-

pected realised moments and risk-neutral moments. The variance risk premium

is found to be negative, while the skew risk premium is found to be positive. The

kurtosis risk premium is slightly greater than zero; no existing literature provides

the sign of the kurtosis risk premium. I examine the determinants of the variance,

skew and kurtosis risk premia, and find that they are affected differently by firm-

level characteristics (e.g. firm size, book-to-market ratio, momentum and illiquid-

ity) and risk factors (e.g. market beta, idiosyncratic volatility and co-skewness).

I investigate the explanatory power of the moment risk premia and find that their

effects on realised and expected stock returns are different. For ex post realised

stock returns, I find that both the variance and skew risk premia have a negative

relation with subsequent realised stock returns, while the kurtosis risk premium

has a mixed and insignificant relationship with subsequent realised stock returns,

which relies on whether the portfolio is value-weighted or equally-weighted. The

findings for the skew and kurtosis risk premia have not been reported by earlier s-

tudies. For ex ante expected stock returns, both the variance and skew risk premia

are negatively related to expected stock returns, but the kurtosis risk premium has

a positive relation with expected stock returns. The robustness test shows that

the relationship between the moment risk premia and stock returns is robust to

firm characteristics and risk factors, subperiods, and different maturities.

In Chapter 6, I investigate whether the moment risk premia can explain stock re-

turns in the aggregate stock market. The moment risk premia are defined as the

difference between expected realised moments and risk-neutral moments. For

the realised return measure, I find that both the variance and skew risk premi-

a are inversely related to subsequent realised index returns, but the skew risk

premium has a weaker relation compared with the variance risk premium. The

kurtosis risk premium is found to have no relationship with realised index return.

The negative relation between the variance risk premium and index returns stil-
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l persists when I add macroeconomic variables in the regression. I provide the

first study to examine the relationship between the skew and kurtosis risk premia

and realised index returns. Moreover, I am the first to investigate the explanatory

power of the variance, skew and kurtosis risk premia on ex ante expected returns

in the aggregate stock market. For the first ex ante expected return measure, I

find that neither the variance risk premium nor the skew risk premium can explain

the PTER, while the kurtosis risk premium is found to have a robust and positive

relationship with the PTER. For the second ex ante expected return measure, both

the variance and skew risk premia are positively related to the ICC when the vari-

ance or skew risk premium is the only explanatory variable. I also find that the

kurtosis risk premium is inversely and significantly related to the ICC. However,

the relationships between the moment risk premia and the ICC are not robust to

macroeconomic variables. Interestingly, I also find that both the PTER and the

ICC can be explained by macroeconomic variables. The findings for the skew

and kurtosis risk premia have not been reported by earlier studies. I provide the

first investigation for the relationship between the skew and kurtosis risk premia

and index returns with ex post realised returns and ex ante expected returns.

7.2 Limitations

There are several limitations to this research. Firstly, I mainly consider some rep-

resentative firm-level and risk factors in the FM regression in this thesis; these

variables are commonly used by researchers. However, many firm-level and risk

factors are found to be able to explain the cross-section of stock returns in the

literature. This thesis does not test whether the risk-return relationship is robust

to other firm-level and risk factors.

The moment risk premia used in Chapters 5 and 6 are constructed from realised

moments. In order to make the calculation simple and easy to implement, I use

daily data instead of intraday high-frequency data to estimate realised variance,

skewness and kurtosis. The daily data could possibly be changed to high-frequency
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data following Bollerslev et al. (2009), who use 5-minute return to estimate realised

variance; this makes the calculation more complicated.

For the option and equity sample used in this research, I only employ firms in

the S&P 500 index. This is because the estimation of the BV beta in Chapter

4 should be based on the index implied volatility and the implied volatility from

the constituents. Therefore, I collect option data on the S&P 500 index and its

constituents. The data sample is used in the whole thesis. In Chapter 5, the

sample could be expanded to all US exchange-listed equities available from the

OptionMetrics database.

In Chapter 6, when I investigate the relationship between the moment risk premia

and stock return at the aggregate market level, I adopt only the S&P 500 index

to represent the US market. The S&P 500 index is based on the market capi-

talisations of 500 large companies having common stock listed on the NYSE or

NASDAQ. The fact is that the S&P 500 index could not fully represent the US

market. In order to have a deep look at the relationship between the moment

risk premia and index return in the aggregate market, more index data could be

adopted in the thesis.

7.3 Future Research

The directions for future research are addressed as follows.

In Chapter 4, I only compare three option-implied beta methods with the histor-

ical beta. Conditional betas could be added in the research to compare further

the performance of option-implied betas with conditional betas. For example, Ja-

gannathan and Wang (1996) prove that the conditional CAPM may hold even

though stocks are mispriced by the unconditional CAPM. In the conditional CAPM,

conditional market betas are time-varying. Therefore, this research could further

compare option-implied betas with conditional betas to see which beta method
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performs better.

Option-implied betas could be considered as ex ante risk because they are con-

structed from option-implied moments. The asset pricing theory states the re-

lationship between ex ante risk and ex ante stock returns. In Chapter 5, I have

estimated ex ante stock returns based on the PTER and the ICC. Future research

could focus on studying the relationship between option-implied betas and the

cross-section of expected stock returns.

In Chapter 5, I only briefly describe the determinants of the variance, skew and

kurtosis risk premia. Future research could concentrate on the cross-sectional

relation between the variance, skew and kurtosis risk premia and firm-level risk

factors. This is because the moment risk premia are constructed from option-

implied moments and, in turn, option-implied moments are found to be determined

by firm-level and risk factors cross-sectionally. For example, Hansis et al. (2010)

investigate that option-implied moments (variance, skewness and kurtosis) are

well explained cross-sectionally by a number of firm characteristics. Furthermore,

Taylor et al. (2009) investigate the association of various firm-specific and market-

wide factors with risk-neutral skewness implied by the prices of individual stock

options.

Although the determinants of stock returns have been investigated extensively

and heavily, the literature on the determinants of option returns is limited. Recent-

ly, researchers have shifted to studying how option returns are derived. Option

returns could be explained by the variance risk premium (Bernales and Chen,

2014), idiosyncratic volatility (Cao and Han, 2013), risk-neutral skewness (Bal-

i and Murray, 2010; Boyer and Vorkink, 2014), risk-neutral co-skewness (Chen

et al., 2011), and call-put implied volatility spreads (Doran et al., 2013). No ex-

isting research studies whether the skew and kurtosis risk premia are priced in

option returns. Thus, another future direction would be to explore whether the

moment risk premia describe option returns.
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Since option returns have nonlinear payoff and an asymmetric distribution, skew-

ness should play a very important role in determining option returns. Risk-neutral

skewness is indeed found to be priced in options and stocks. Total skewness

is constructed by co-skewness and idiosyncratic skewness. The importance of

co-skewness in option pricing has been studied by Chen et al.. For idiosyncrat-

ic skewness, Barberis and Huang (2007) and Mitton and Vorkink (2007) devel-

op models in which investors have similar preference for idiosyncratic skewness.

Boyer et al. (2010) find that expected idiosyncratic skewness and stock returns

are significantly and negatively related. Conrad et al. (2013) find that risk-neutral

idiosyncratic skewness is negatively related to stock returns. Conrad et al. (2013)

first model the risk-neutral co-skewness of Harvey and Siddique (2000) and then

regress the time series of total skewness on co-skewness to estimate risk-neutral

idiosyncratic skewness. The effect of risk-neutral idiosyncratic skewness on op-

tion returns has not been investigated comprehensively in the existing literature.

Future research could focus on studying whether risk-neutral idiosyncratic skew-

ness is priced in options.
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