
An Effective Constitutive Model for Lime Treated Soils1

V. Robin1,2, A. A. Javadi1, O. Cuisinier2, F. Masrouri22

1Computational Geomechanics Group, Department of Engineering, University of Exeter, United-Kingdom3

2LEMTA – UMR 7563 CNRS, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, Université de Lorraine,4
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Abstract6

The effect of lime on the yield stress, and more generally the presence of structure in the soil, is usually

not accounted for in the design of geotechnical structures. As a result the potential of lime treatment or

of a structured soil has not been fully exploited. This paper presents a new formulation to account for the

effect of structure on the mechanical behaviour for structured soils. A constitutive model is proposed in

the framework of the Modified Cam Clay model to describe the behaviour of lime treated soils. The new

formulation introduces a limited number of additional parameters, all of which have a physical meaning and

can be obtained from an isotropic compression test. Due to similarity in behaviour of lime treated soils

and naturally structured soils, the formulation can be applied to both types of soil. It is shown that the

proposed model can successfully reproduce the main features of both structured soils such as maximum rate

of dilation at softening and degradation at yield. The model can be applied for any structured material

regardless of the origin of cementation.
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1. Introduction9

The use of on-site materials has become a central issue for civil engineering companies, but it is some-10

times difficult to deal with all the resources available on site. For soils with low mechanical characteristics,11

lime treatment appears to be an efficient method to improve their mechanical properties and allow their use12

in geotechnical earth structures (e.g. Little, 1995). The effects of the addition of lime on the soil parameters13

such as cohesion and friction angle have been extensively studied (e.g. Brandl, 1981). Nevertheless, lime is14

still mostly used to dry soils with high water contents and increase the bearing capacity. However, it is also15

generally known that adding lime leads to a significant increase of the yield stress and modifies other me-16

chanical parameters in compacted soils. In lime-treated soils, the modification of the mechanical behaviour17

results from several physico-chemical processes associated with the increase in calcium concentration and18

pH (i.e. cation exchange, pozzolanic reactions, etc...).19
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From an economical point of view, it is becoming increasingly important to account for the properties20

of treated materials in the design of the geotechnical structures. However, despite its proven efficacy, the21

use of treated materials suffers from several major drawbacks: there is no reliable method to account for22

the structure in the calculations. At yield, and for an increasing mechanical loading, treated materials23

experience what is called the ”loss of structure”, resulting in the degradation of the structure in different24

ways. To model the behaviour of these materials, a constitutive law describing the behaviour at yield is a25

requirement.26

Some studies (Maccarini, 1987; Aversa, 1991; Leroueil and Vaughan, 1990; Liu and Carter, 2003; Flora27

et al., 2006) have shown that naturally structured soils and artificially treated materials have common28

mechanical features; artificial treatment appears to create a “structure” in the soil. In this paper, “structure”29

refers to Burland’s definition (Burland, 1990), and is seen as the combination of the fabric and the bonding of30

the soil skeleton. Fabric accounts for the arrangement of particles, which depends on the state of compaction31

and their geometry.32

Several constitutive models have been proposed for structured materials. Most of these models use the33

destructured state as reference to describe the mechanical behaviour of structured soils. Liu and Carter34

(2002) proposed a constitutive model, based on the Modified Cam Clay model (MCC), by adding three35

additional parameters to the original MCC (Roscoe and Burland, 1968). Since then, several enhancements36

(e.g. Horpibulsuk et al., 2010; Suebsuk et al., 2011) have been proposed. However, various modes of de-37

structuration have been identified, and the original formulation fails to model some of them. A number38

of other formulations have been developed (Kavvadas and Amorosi, 2000; Vatsala et al., 2001; Nova et al.,39

2003; Baudet and Stallebrass, 2004; Rouainia and Muir wood, 2000; Nguyen et al., 2014) and some of which40

give good agreement with experimental results. However, it often comes at the cost of a larger number of41

parameters, or high computational resources (e.g. mapping rule). Parameters do not always have a physical42

meaning, and some of them can be difficult to determine. All these limitations make these models difficult43

to be used in engineering practice.44

The main objective of this paper is to propose a general and simple formulation capable of fulfilling some45

fundamentals criteria regarding the degradation of the structure. This model must be capable of modelling46

any kind of degradations, and require a limited number of parameters to account for the maximum number47

of features of structured materials. These parameters should be rapidly obtained from classic experimental48

tests, and they all must have a physical meaning. To this end, the paper will focus on two aspects:49

• How can the key features of structured or lime treated materials be described?50

• How can these features be efficiently accounted for in a constitutive model?51

This paper is divided into four parts. The first part gives a review of the main characteristics of naturally52

and artificially structured materials that must be reproduced by the model. The second part introduces the53
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theoretical framework chosen for the model for lime treated soils (MLTS) and the new formulation developed54

to model the degradation of the structure. In the third part, the developed formulation is used to calculate55

the compliance matrix and obtain the stress-strain relationship. Finally, in the last part, we assess the56

suitability of the model in predicting experimental results obtained from triaxial tests on artificially (i.e.57

lime treated) and naturally structured materials.58

2. Features of structured soils59

The mechanical behaviour of naturally and artificially structured material has been extensively studied60

(Leroueil and Vaughan, 1990; Gens and Nova, 1993; Burland et al., 1996; Cotecchia and Chandler, 2000;61

Malandraki and Toll, 2001; Cuisinier et al., 2008, 2011; Consoli et al., 2011; Oliveira, 2013; Robin et al.,62

2014a) and some specific features have been identified. Several studies have pointed out that naturally and63

artificially structured soils have a similar mechanical behaviour. In this section, we identify the key features64

common to naturally and artificially structured soils that should be properly reproduced by a model.65

2.1. Naturally structured soils66

It has been shown that naturally structured soils have a higher yield stress compared to the destructured67

state (Burland et al., 1996), the latter being usually considered as the reference state. For the same stress68

state, a higher yield stress leads to a higher void ratio at yield compared to the destructured state, called69

the additional void ratio ∆e. Once plastic deformations take place, one can observe that the additional70

void ratio decreases. Depending on the material, the additional void ratio can quickly or slowly decrease71

until the material reaches a normal compression line (ncl), which can correspond to the ncl of the reference72

state (ncld), or a different one, parallel to the reference ncl but vertically translated along the v axis (nclr)73

(Baudet and Stallebrass, 2004; Callisto and Rampello, 2004; Suebsuk et al., 2011). More generally, 4 modes74

of degradation can be identified (Figure 1):75

Mode 1: Destructuration takes place immediately at yield. The additional void ratio progressively de-76

creases until it converges toward the destructured state (Yong and Nagaraj, 1977; Lagioia and Nova,77

1995).78

Mode 2: Destructuration takes place immediately at yield, but it does not converge toward its destructured79

state. A different ncl appears parallel to the destructured state, but a residual additional void ratio80

still remains (Burland et al., 1996; Rampello and Callisto, 1998).81

Mode 3: No significant destructuration is observed immediately after yield. The process of degradation is82

initiated later on for a higher effective mean stress and the additional void ratio completely disappears83

(Callisto and Rampello, 2004).84
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Mode 4: No destructuration is observed immediately after yield. The process of degradation is initiated85

later on for a higher effective mean stress. However, a residual additional void ratio remains (Rotta86

et al., 2003).87
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Figure 1: The four different modes of destructuration in structured soils – ncld: Normal compression line of the destructured

state, url: Unloading-reloading line.

Additionally, the volumetric behaviour of naturally structured soils was compared with the destructured88

state by Leroueil and Vaughan (1990) on heavily overconsolidated specimens from drained triaxial test89

results. They identified two different mechanisms taking place. While the maximum rate of dilation was90

measured before the peak of the deviatoric stress for the destructured soil, it was observed after the peak91

of the deviatoric stress for structured soils. This is due to the structure, which binds soil particles together.92

To allow the particles to move freely, the structure has to be degraded first to release particles (Leroueil and93

Vaughan, 1990).94

2.2. Lime treated soils95

Several studies have shown that addition of lime leads to an increase of the yield stress compared to the96

untreated state (Tremblay et al., 2001; Ahnberg, 2007). As for naturally structured soils, the additional void97

ratio appears to decrease at yield, i.e. the degradation of the artificial structure takes place. Robin et al.98

(2014a) have assessed the mechanical behaviour of a lime treated silt under isotropic loading (Figure 2). It99

can be seen that the mode of degradation depends on the amount of lime. For 0.5% in lime, the additional100

void ratio completely disappears at high stress states (Mode 3), when it is not the case for 1% lime treated101

specimens (Mode 4). This latter reaches a different ncl compared to the untreated specimen. Details about102

the samples and experimental conditions can be found in Robin et al. (2014a).103
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Figure 2: Isotropic consolidation curves obtained from specimens of silt treat at 0.5% and 1% in lime – Arrows mark the yield

stress p′y , ncld: Normal compression line of the destructured state, nclr: Normal compression line of the residual state (Robin

et al., 2014a).

The maximum rate of dilation at shear for specimens experiencing softening also appears after the104

peak for artificially structured soils, which indicates that the same kind of mechanism is taking place. This105

common feature was pointed out by Leroueil and Vaughan (1990), and was also observed for the lime treated106

specimens from the current study (Figure 3).107
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Figure 3: Drained triaxial results on (a) untreated and (b) lime treated soils – Stars mark the location where the rate of dilation

is maximum (Robin et al., 2014a).

The influence of a lime treatment on the cohesion and the friction angle has been studied by several108

authors (Wissa et al., 1965; Balasubramaniam et al., 2005). Both cohesion and friction angle appear to109

increase with the amount of lime. The slope of the critical state line is directly related to the friction angle,110

and the increase of cohesion, which increases the tensile strength, has an influence on the shape of the yield111

function. Therefore, in the framework the critical state theory, these features should be accounted for in the112

model.113
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2.3. Summary114

Based on the previous observations, a model for lime treated soils might be suitable for naturally struc-115

tured soils, and therefore should be able to reproduce the four modes of destructuration and account for the116

following features:117

• The cohesion increases following pozzolanic reactions,118

• The yield stress increases for lime treated soils compared to the reference state,119

• At yield, there exists an additional void ratio compared to the reference state,120

• At yield, degradation of the structure takes place, which follows one of the four modes identified121

previously,122

• Overconsolidated specimens at shear show a maximum rate of dilation after the peak, describing the123

degradation of the structure,124

• The friction angle is modified due to the effects of the chemical reactions on the texture of the soil,125

and therefore the critical state as well.126

3. Theoretical framework of the model127

The model proposed in this paper was developed in the framework of the Modified Cam Clay model128

(MCC) to model the key features of lime treated soils previously identified. The new parameters introduced129

to model the degradation have all a physical meaning and can be determined from an isotropic compression130

test (Robin et al., 2014b). We present in this section a new formulation to model the four modes of131

degradation in structured soils under isotropic loading. This will then be used as a hardening rule for the132

determination of the compliance matrix.133

3.1. Modelling the structure and its degradation under isotropic loading134

To model the degradation of the structure under isotropic loading, we propose the framework given135

in Figure 4. We introduce the primary yield stress pIy, which corresponds to the apparition of plastic136

deformations. To describe the stress states for which the degradation of the structure takes place (hatched137

area in Figure 4), we also introduce the degradation stress pIIy . In the case of an immediate degradation138

of the structure at yield (modes 1 & 2 in Figure 1), which can happen for some structured soils, we have139

pIIy = pIy. The additional void ratio ∆ei at pIy quantifies the initial additional void ratio at yield. ∆ec is140

measured at an effective mean stress above which the additional void ratio remains constant (p′ � pIIy ).141

By setting the parameters as given in Table 1, this framework is capable of describing the four modes of142

degradation.143
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In this study, the structure is quantified through the additional void ratio in comparison to the ncld and144

is assumed to be made of two components. The first one, referred to as the available structure, corresponds145

to the part of structure that will be available during the process of destructuration (∆ei − ∆ec). The146

second one, referred to as the residual structure, corresponds to the persisting additional void ratio at high147

effective mean stress (∆ec at p′ � pIy). The latter can be the consequences of chemical reactions, e.g. a lime148

treatment, which leads to a permanent modification of the fabric of the soil (Robin et al., 2014a).149
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Figure 4: General framework of the degradation of structured soils – ∆ei: Initial additional void ratio, ∆ec: Residual addi-

tional void ratio, pIy : Primary yield stress, pIIy : degradation stress, hatched area: degradation of the structure, ncld: Normal

compression line of the destructured state, nclr: Normal compression line of the residual state, url: Unloading-reloading line.

Table 1: Conditions on the parameters pIIy and ∆ec for the 4 modes of degradation

Parameters
Values

Mode 1 Mode 2 Mode 3 Mode 4

pIIy pIy pIy > pIy > pIy

∆ec 0 > 0 0 > 0

3.1.1. Mathematical Formulation150

To model these four mechanisms, a flexible formulation using all the parameters previously introduced is

required. Richards’s equation (Richards, 1959) for the sigmoid provides many degrees of freedom to control

the shape of the function. This function is frequently used for the modelling natural phenomenons where

there exists a threshold above which a process is activated, in this case the degradation. This equation can

be written as follows:

∀p′ ∈
[
pIy,+∞

[
π(p′) = 1− 1

1 + e−β(p
′−pIIy )

(1)
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where pIIy [Pa] corresponds to the position of the inflection point (π′′(pIIy ) = 0) and describes the stress151

state for which the degradation occurs (hatched area in Figure 4), and β [Pa−1] describes the rate of152

degradation.153

Therefore, we have

∀p′ ∈ R 0 ≤ π(p′) ≤ 1 (2)

3.1.2. Scaling of π154

The function π is scaled to ensure that ∀β, ∀pIIy π(pIy) = 1, which leads to the following final formulation:

∀p′ ∈
[
pIy,+∞

[
π(p′) =

eβp
I
y + eβp

II
y

eβp′ + eβp
II
y

(3)

which verifies π(pIy) = 1 and lim
p′→+∞

π(p′) = 0.155

The ability to control the rate of degradation at yield of this formulation is demonstrated in Figure 5. It156

can be seen that the function π can either slowly decrease with a low β or quickly with a high β as p′ gets157

close to pIIy .158
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Figure 5: π values as a function of pIIy and β – pIy=100 kPa, pIIy =200 kPa.
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3.1.3. Relationship between the specific volume and the effective mean stress for structured soils159

The presence of structure can be accounted for in the relationship between the specific volume and the

effective mean stress (v : p′ relationship) using the following general formulation:

∀p′ ∈ R∗+ v(p′) = Nλ − λ ln(p′) + ∆e(p′) (4)

with Nλ the intercept on the reference normal compression line ncld and λ the slope of the reference ncl160

in v : ln(p′) plane.161

Using the function π (Equation 3), the equation for the additional void ratio is given by:162

∀p′ ∈
[
pIy,+∞

[
∆e (p′) = (∆ei −∆ec) ·

[
eβp

I
y + eβp

II
y

eβp′ + eβp
II
y

]
+ ∆ec (5)

which fulfils the boundary value problems:

∆e(p′) =

 ∆ei if p′ = pIy

∆ec if p′ → +∞
(6)

Introducing Equation 5 in Equation 4 gives the final equation of the specific volume for structured soils

at yield:

∀p′ ∈
[
pIy,+∞

[
vs(p

′) = Nλ − λ ln(p′) + (∆ei −∆ec) ·
[
eβp

I
y + eβp

II
y

eβp′ + eβp
II
y

]
+ ∆ec (7)

3.1.4. Determination of β163

β can be directly determined from the results of an isotropic compression test. Practically, β is related164

to the gradient ξ on the v : p′ curve at p′ = pIIy (Figure 6). For consistency and stability, the function vs for165

the specific volume in the v : p′ plane must be strictly monotonic decreasing on
[
pIy,+∞

[
, which imposes166

β ≥ 0.167
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Figure 6: Physical meaning of β – ncld: Normal compression line of the destructured state, nclr: Normal compression line of

the residual state, url: Unloading-reloading line.
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Calling ξ the gradient of the specific volume curve at p′=pIIy , the appropriate value for β is obtained by

solving the following equation:(
dv

dp′

)
p′=pIIy

= ξ ⇔ −1

4

(
1 + eβ(p

I
y−pIIy )

)
× β(∆ei −∆ec)−

λ

pIIy
= ξ (8)

There is no analytical solution to this equation, known as the Lambert W function, due to the non-168

linearity in β. However, this equation can be solved graphically or numerically using methods such as the169

Newton-Raphson algorithm (Corless et al., 1996).170

3.1.5. Suitability of the formulation171

The v : p′ relationship (Equation 7) is used to demonstrate the ability of the formulation to describe172

the four modes (Figure 7). Parameters used for the simulations are given in Table 2. The influence of173

the parameters β (Figure 8) and the degradation stress pIIy (Figure 9) is assessed and the case pIy = pIIy is174

considered in Figure 10.175

Figure 8 shows that it is possible to describe the mode 3. Changing the value of β permits to achieve176

different rates of degradation. In this figure, a non-zero ∆ec was chosen (∆ec > 0), but mode 4 can be177

achieved by setting ∆ec = 0. The influence of pIIy is shown in Figure 9. One can see that this parameter178

controls the initiation of the process of degradation, and is successful in describing modes 2 and 4. As179

previously, modes 1 and 3 can be achieved by setting ∆ec = 0. Finally, the case pIy = pIIy is considered in180

Figure 10. This case corresponds to an immediate loss of structure at yield. This case does not lead to any181

instabilities of the formulation.182
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Figure 7: Possibility of the formulation to model the four modes – ncld: Normal compression line of the untreated state, url:

Unloading-reloading line.

Table 2: Model parameters used for simulations of the four modes in Figure 7

Mode pIy (kPa) pIIy (kPa) ∆ei ∆ec β (kPa−1)

Mode 1 600 600 0.104 0.0 0.025

Mode 2 600 600 0.104 0.026 0.02

Mode 3 600 900 0.104 0.0 0.025

Mode 4 600 900 0.104 0.052 0.02

12



6.2 6.4 6.6 6.8 7.0 7.2

ln p′

1.40

1.45

1.50

1.55

S
p
ec
ifi
c
v
o
lu
m
e
v
(−

)

ncld

nclr

url

∆ei −∆ec

β = 0

β = 0.0125

β = 0.025

β = 0.05

β = 0.1

β = 0.6
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Figure 10: Influence of β: pIIy = pIy = 600 kPa, ∆ec >0 – Mode 2.

3.2. Yield function f183

The addition of lime leads to an increase of the cohesion and the friction angle compared to the untreated184

soil. Therefore, the equation of the MCC for the yield function f is not sufficient in its original form. One185

way to account for the increase of cohesion is to consider it as an increase of the tensile strength (e.g.186

Suebsuk et al. (2010)). This can be modelled by expanding the yield function in the negative stress domain187

(Figure 11). The parameter pb (< 0) is introduced to control the expansion of the yield function due to the188

increase of the cohesion and is directly obtained from the equation of the CSL. The critical state line does189

not necessarily pass through the origin anymore.190
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Figure 11: Theoritical yield function for lime treated soils.

The equation chosen for the yield function can therefore be expressed as:

f ≡ q2 + M2(p′ − pIy)(p′ − pb) ≡ 0 (9)

3.3. Plastic potential g191

The choice of the formulation for the plastic potential g is a major issue in the constitutive modelling of

soils. The use of non-associated potentials gives a more accurate description of the real behaviour but comes

at the cost of additional parameters with, in most of the cases, no straightforward physical meaning and

whose values can rarely be determined from experimental results. This study aims to develop a model based

on meaningful parameters determined from classic experimental tests. To this end, always in the framework

of the Modified Cam Clay modem, this model assumes that lime treated materials follow an associated flow

rule and therefore

g ≡ f ⇒ g ≡ q2 + M2(p′ − pIy)(p′ − pb) (10)

which leads to the following flow rule for lime treated materials:

δεpp
δεpq

=
∂g/∂p′

∂g/∂q
=
M2(p′ − pb)

2p′η
− p′η

2(p′ − pb)
(11)

with η = q/p′. The suitability of this hypothesis will be verified in the Model evaluation section.192

3.4. Summary of the model parameters193

Using the sigmoid equation, a new formulation has been developed to model the degradation of structure194

at yield for lime treated soils (Equation 7). This formulation has the significant advantage to rely on only195

4 additional parameters to the original MCC (β, pIIy , ∆ei and ∆ec), which all have a physical meaning and196

can all be determined from an isotropic consolidation test performed on the lime treated material. To model197
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the influence of the cohesion on the deviatoric behaviour the parameter pb, directly related to the equation198

of the CSL, was introduced. As a conclusion, the following 6 parameters appear to be relevant to account199

for the effects of a lime treatment on the mechanical behaviour of a material:200

201

pIy : Primary yield stress

pIIy : Degradation stress

∆ei : Additional void ratio at pIy

∆ec : Additional void ratio for p′ → +∞

β : Rate of degradation

pb : Tensile strength due to the increase of the cohesion

202

4. Stress-strain relationship203

4.1. Elastic behaviour204

It is assumed that only elastic deformation occurs for stress states lying within the yield surface. Ac-

cording to the Modified Cam Clay model, the elastic volumetric increments are given by

δεep = κ
δp′

vp′
(12)

δεeq =
δq

3G
(13)

with G the shear modulus. As recommended by several authors (e.g. Liu and Carter (2002); Muir Wood205

(2004)), Poisson’s ratio ν is assumed constant in this model, although it is known to lead to thermodynamic206

discrepancies under cyclic loading (Zytynski et al., 1978).207

4.2. Plastic behaviour208

4.2.1. Compliance matrix for hardening case209

The general plastic stress:strain relationship is given by
δεpp

δεpq

 =
−1[

∂f

∂p′0

[
∂p′0
∂εpp

∂g

∂p′
+
∂p′0
∂εpq

∂g

∂q

]]

∂f

∂p′
∂g

∂p′
∂f

∂q

∂g

∂p′

∂f

∂p′
∂g

∂q

∂f

∂q

∂g

∂q

 ·

δp′

δq

 (14)

The new formulation of the v : p′ relationship given by Equation (7) is now used as the new hardening210

rule. For the sake of simplicity, it was assumed that hardening is only controlled by the plastic volumetric211

strains (f(σ, εpp)). The volumetric plastic strains for lime treated soils is therefore expressed as212
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δεpp =

[(
M2(2p′ − p′0 − pb) + 6q

M2(p′ − pb)

)(
∂p′0
∂εpp

)−1]
· δp′ (15)

and the deviatoric plastic strains can be calculated using the flow rule:

δεpq =

[
M2(p′ − pb)

2p′η
− p′η

2(p′ − pb)

]−1
· δεpp (16)

4.2.2. Compliance matrix for softening case213

Lime treated specimens experiencing softening at shear show a maximum rate of dilatation after the214

peak due to the degradation of the structure. The modelling of these features without introducing additional215

parameters is a delicate issue. The Structure Cam Clay model (Liu and Carter, 2002) has a formulation for216

the softening case, but which can lead to contraction of the material at softening. More recently Yang et al.217

(2014) have proposed a simple formulation based on the SCCM, but although promising does not lead to218

accurate predictions of the behaviour.219

If Equation (5) is used to model the softening behaviour on
]
0, pIy

]
, the formulation leads to ∆e ≥ ∆ei220

and no degradation of the structure is modelled. To model the softening behaviour, we propose a new221

softening rule in the same framework as the one chosen for the hardening case, where the degradation of222

the structure is described by the sigmoid equation. To avoid the addition of meaningless parameters, an223

automatic procedure is proposed based on experimental considerations.224

Since ∆ec arises from the lime treatment and modifies the texture of the soil, it is assumed that the

material converges toward the same nclr as under isotropic loading. Based on experimental observations

(Robin et al., 2014a) the inflexion point, called pIIy,s, was chosen as the intersection of the url and the nclr

(Figure 12) and is given by

pIIy,s = exp

(
Nλ −Nκ + ∆ec

λ− κ

)
(17)

which does not require any additional parameter. This leads to the following expression of the softening

rule:

∀p′ ∈
]
0, pIy

]
vs(p

′) = Nλ − λ ln(p′) + (∆ei −∆ec) ·
[
e−βsp

I
y + e−βsp

II
y,s

e−βsp′ + e−βspIIy,s

]
+ ∆ec (18)
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Figure 12: Modelling of the behaviour at yield for softening case.

The parameter βs describes the rate of destructuration and is calculated automatically. During the

post-yield behaviour, the maximum rate of dilation is observed right after the deviatoric stress reaches its

maximum. This is due to the structure experiencing an extensive degradation. Such feature can be modelled

by using as βs, the maximum rate of degradation β0, leading to vs monotonically decreasing (not strictly). In

this case, the first derivative being zero only for a single effective mean stress (which is not necessarily pIIy,s).

This method presents the advantage that β0 can easily be determined graphically or numerically. However,

for consistency and numerical stability, vs is preferred to be strictly monotonic decreasing on
]
0, pIy

]
. For

this purpose, we introduced a constant α such that

βs = α× β0 (19)

the bijection (one-to-one correspondence) being ensured by α ∈]0, 1[. Practically, α can control the225

smoothness of the process of destructuration. In this model, α is arbitrarily set to 0.9, which ensures a226

bijective function and an appropriate rate of degradation at yield (Figure 12).227

This two-step method is the simplest and most reliable way to calculate βs, simply because the deter-228

mination of β0 is independent of the stress state and does not require information about the gradient at229

pIIy,s, which can not be determined from experimental results, and may lead to numerical instabilities. The230

suitability of this method will be demonstrated during the Model evaluation section.231

The strain-strain relationship for the softening case is obtained by introducing Equation 18 into Equa-232

tion 14. Such softening rule respects the associated potential hypothesis.233
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5. Model evaluation234

The robustness of the model for lime treated soils (MLTS) is assessed in predicting the behaviour of235

artificially and naturally structured materials under isotropic loading and drained paths for different con-236

fining pressures. As a first step, we assess the suitability of an associated flow rule for the modelling of lime237

treated soils using the experimental results from Robin et al. (2014a). Then, the model is used to predict238

the behaviour of silt specimens treated with different lime contents (0.5%, 1%, 2%, and 5% CaO) (Robin239

et al., 2014a). The model is finally tried out on naturally structured specimens of calcarenite (Lagioia and240

Nova, 1995). For both cases, the additional parameters to the Modified Cam Clay were determined from a241

single isotropic compression test performed on the structured specimens (Table 3).242

Table 3: Values of the model parameters

Parameters

[CaO] Calcarenite

Robin et al. (2014a)
Lagioia and Nova (1995)

0.5% 1% 2% 5%

M
C

C

pIy (kPa) 255 600 1260 1900 2300

Nλ (-) 1.95 1.99 1.97 2.00 3.76

λ (-) 0.08 0.08 0.08 0.08 0.23

κ (-) 0.019 0.032 0.014 0.015 0.020

M (-) - 1.15 1.22 1.42 1.42

E (kPa) - 45000 55000 70000 77000

M
L
T

S

pIIy (kPa) 1200 1000 2200 3500 2300

∆ei (-) 0.027 0.065 0.129 0.159 0.134

∆ec (-) 0.0 0.046 0.109 0.136 0.0

pb (kPa) - -41.8 -120.3 -144.7 -25.6

β (kPa−1) 0.020 0.035 0.020 0.020 0.047

MCC: Modified Cam Clay model, MLTS: Model for Lime Treated Soils.

5.1. Associated flow rule hypothesis243

In this section, we assess the validity of an associated flow rule for lime treated soils. Plastic strain244

increment vectors from drained triaxial tests performed on specimens treated with 1%, 2%, and 5% in245

lime were determined. The yield loci values were normalized with respect to the primary yield stress pIy.246
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Figure 13 shows that it seems reasonable to assume that plastic strain increment vectors are normal to247

the yield surface. The hypothesis of an associated flow rule for the modelling of lime treated soils appears248

therefore suitable.249
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Plastic increment

Figure 13: Vectors of plastic strain increment plotted at yield points obtained from drained triaxial tests on lime treated

specimens.

5.2. Lime treated specimens250

5.2.1. Isotropic consolidation251

The new formulation to model the degradation of the structure at yield (Equation 7) was applied on252

lime treated specimens. Two sets of experimental results of isotropic compressions tests were used to verify253

the general nature of the formulation. The first set was treated with 0.5% CaO and follows the mode 3254

(∆ec = 0), and the second with 1% CaO and follows the mode 4 (∆ec > 0) (Figure 14). For the two sets the255

parameter β was determined from the gradient of the curve at p′=pIIy using the Newton-Raphson algorithm.256

The use of the sigmoid equation appears very appropriate to model the degradation experienced at yield257

by lime treated materials. For both concentrations in lime, there is a very good agreement between the258

experimental results and the model. The degradation is initiated at the right effective mean stress and with259

the correct rate, and both sets converge toward the correct normal compression line.260
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Figure 14: Validation of the formulation on 0.5% and 1% lime treated specimens – ncld: normal compression line of the

untreated state, nclr: normal compression line of the residual state.

5.2.2. Shear behaviour261

No additional parameters to the MCC are required by this model to describe the degradation of the262

structure at shear apart from pb that is derived from the equation of the CSL. The model was applied on263

lime treated specimens along different drained stress paths and confining pressures (Figures 15-17). Three264

concentrations in lime were tested to consider various degrees of structure: 1%, 2% and 5% CaO.265

The yield loci and the convergence toward the critical state appear satisfactory modelled for all the lime266

contents tested. They confirm the appropriateness of the equation of the yield function f and the suitability267

of the parameter pb to account for the influence of the lime treatment on the cohesion and the critical state.268

For both hardening and softening cases, the volumetric deformations are very accurately predicted by269

the model. This supports the assumption of the volumetric deformations being mostly controlled by the270

structure. The evolution of the specific volume for the softening case is particularly accurate (Figure 18).271

The model is successful to reproduce the dilation post-yield of the specimens and the maximum rate of272

dilation after the deviatoric stress peak, which is one of the key features of structured soils.273

The framework chosen for the softening case appears suitable and very powerful. The assumptions made274

to calculate automatically in the background the parameters pIIy,s and βs (Figure 12) are therefore relevant275

and successful to reproduce the majority of the main features of behaviour of lime treated soils, and that276

using only information from isotropic test results. It also ensures that the material experiences dilation at277

yield for samples in the dry side.278

The MLTS appears very satisfactory to model the key features of lime treated soils considering the279

limited number of parameters and the straightforwardness of their determination. Nevertheless, the model280
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tends to deviate from the experimental results during the post-yield stage before converging back toward281

the critical state at high axial strains for some samples subjected to a high preconsolidation pressure (600282

kPa in Figure 15, 900 kPa in Figure 16). In this model, potentials f and g are associated and hardening283

is controlled by the plastic volumetric deformations εpp only (f(σ, εpp)). This has for consequences to reflect284

the degradation of the structure on the deviatoric stress. However, lime treated specimens experiencing285

hardening do not show any sign of this phenomenon for any of the concentrations tested. This might come286

from the fact that the contribution of εpq was neglected in this model, and/or that the ‘amount’ of structure287

is too low to significantly affect the stresses.288

For samples in the dry side, the model predicts larger values for the yield loci than what is experimentally289

observed. One of the known limitations of the MCC is that it overestimates the values in such situation;290

the fact that we extended the yield function in the tensile domain with pb amplifies this feature.291
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Figure 15: Comparison between experimental results and the model of drained triaxial tests performed on lime treated specimens

with 1% CaO (Robin et al., 2014a).
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Figure 16: Comparison between experimental results and the model of drained triaxial tests performed on lime treated specimens

with 2% CaO (Robin et al., 2014a).
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Figure 17: Comparison between experimental results and the model of drained triaxial tests performed on lime treated specimens

with 5% CaO (Robin et al., 2014a).
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Figure 18: Comparison between drained triaxial results and the model of the specific volume for different lime contents (Robin

et al., 2014a).

5.3. Naturally structured soils292

Although the formulation was originally designed for lime treated soils, there are several common features293

of behaviour between artificially and naturally materials that could also make it suitable for the latter.294

5.3.1. Isotropic consolidation295

The suitability of the formulation to model the degradation of naturally structured soils under isotropic296

loading is verified using the results from Lagioia and Nova (1995) on natural calcarenite (Figure 19). Likewise297

the lime treated specimens, calcarenite experiences a degradation of the structure at yield but that occurs298

immediately at yield (pIy = pIIy ) and at a very high rate. Again, β was solved numerically using the Newton-299

Raphson procedure. There is no information about the behaviour of the destructured calcarenite under300

isotropic loading, and therefore no information is given about the value of the residual void ratio ∆ec.301

However, Lagioia and Nova (1995) considered that calcarenite converges toward the ncl of the destructured302

state. Thus, it is assumed that calcarenite has no residual void ratio (∆ec = 0) and follows the mode 1.303

The parameters used for the simulations are given in Table 3.304

Though the origin of the cementation is different, the MLTS appears suitable to model naturally struc-305

tured materials under isotropic loading. As for the lime treated specimens, the degradation is initiated at306

the right effective mean stress and at the correct rate till it reaches the normal compression line of the307

destructured state.308
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Figure 19: Validation of the formulation on natural calcarenite (after Lagioia and Nova (1995)) – ncl: normal compression line.

5.3.2. Shear behaviour309

The model is now tried to reproduce the behaviour of samples naturally structured calcarenite at shear310

submitted to drained triaxial tests. The parameter pb was determined from the equation of CSL given in311

Lagioia and Nova (1995).312

For samples of calcarenite experiencing hardening (Figure 20) the MLTS gives a very good agreement313

with the experimental results of the yield loci and the convergence toward the critical state. At yield, the314

degradation of the structure seems to affect the deviatoric stress, which is successfully described by model.315

The specific volume at yield (Figure 21) is accurately modelled and the trends of the volumetric deformations316

(Figure 20) are satisfactory, although the values appear underestimated at large deformations.317

For samples experiencing softening (Figure 22) the MLTS gives an accurate prediction of the yield loci318

and the convergence toward the critical state. However, samples revealed an unusual behaviour in the319

framework of the MCC and the critical state theory regarding the volumetric deformations. It is generally320

accepted that for the softening case samples experience dilation at yield. However, the calcarenite seems to321

behave differently and keeps contracting at yield, although the deviatoric stress decreases.322
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Figure 20: Comparison between experimental results and the model of drained triaxial tests performed on calcarenite and

experiencing hardening (Lagioia and Nova, 1995).
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Figure 21: Comparison between the experimental results and the model for the specific volume (Lagioia and Nova, 1995)
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Figure 22: Comparison between experimental results and the model of drained triaxial tests performed on calcarenite and

experiencing sofening (Lagioia and Nova, 1995).

30



5.4. Discussion: influence of the initial void ratio on the degradation mode323

The MLTS can successfully reproduce a large number of features of both lime treated soils and naturally324

structured soils. However, the model deviates from the experimental results for 1) lime treated specimens325

subjected to high preconsolidation pressures experiencing hardening, and 2) samples of calcarenite experi-326

encing softening. In this section, we propose a hypothesis to explain these limitations using the initial void327

ratio of the material.328

During the early post-yield stage, the degradation of the structure seems to affect the stress:strain329

response for samples of calcarenite experiencing hardening, but not for the lime treated specimens. Fur-330

thermore, for the softening case, lime treated specimens experience dilation, as predicted by the critical331

state theory, but this is not the case for the samples of calcarenite, which experience contraction despite the332

decrease of deviatoric stress at yield.333

For the calcarenite, the initial additional void ratio at yield ∆ei and the range of stresses are similar to334

those measured on lime treated soils with 5% CaO. The only difference between the two materials lies in335

the initial specific volume (around 1.6 for the lime treated specimens and 2.2 for the calcarenite). When336

the calcarenite starts yielding, the structure is rapidly degraded due to the brittleness of the material.337

Lagioia and Nova (1995) stated that some softening could take place under isotropic loading, and explained338

that the plateau of the deviatoric stress is associated with debonding. However, what was interpreted as339

softening under isotropic loading is more likely to be collapse since the specific volume decreases during the340

destructuration. Once the particles are released from the cementation, they immediately collapse and start341

filling the voids as the axial deformation increases. During this stage, there is no effective friction inside the342

material and therefore no additional deviatoric stress is necessary to increase the axial deformation. The343

effective friction is restored once the particles are close enough and the porosity is significantly reduced,344

which leads to an increase of the deviatoric stress followed by convergence toward the critical state. This345

mechanism also explains why samples experiencing softening do not have a dilatant behaviour at yield as346

predicted by the critical state theory. The dilation process is the direct result of the interlocking of the347

particles; in the case of the calcarenite, the fast degradation of the structure leads to the collapsing of the348

particles and therefore to the contraction of the sample. Although the deviatoric stress decreases at yield,349

since there is no interlocking of the particles, there is no dilation of the sample.350

For the lime treated specimens of this study, the initial conditions were chosen to match those used351

on-site and obtained from the Proctor compaction test (Robin et al., 2014a). In these conditions, the void352

ratio is too low to generate a noticeable collapse in the material, and the destructuration is a slower process.353

The degradation of the structure takes place but particles are already in contact, which maintains a friction354

between them and leads to increase in the deviatoric stress with the axial deformation. Therefore, the355

degradation of the structure is not observed directly on the stress:strain response. If the conditions imply356

strain softening, interlocking happens and therefore dilation, which is observed on the experimental results357
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and properly reproduced by the MLTS.358

In light of these observations, it appears that the initial void ratio has a higher impact on the behaviour359

of the material than the degree and the origin of cementation. As matter of fact, the mode of degradation of360

a large number of structured materials seems to be closely related to the initial void ratio (Table 4). Further361

work must be carried out to identify the parameters responsible for the different behaviours. Nevertheless,362

the MLTS appears to reproduce the main features of behaviour of lime treated soils, and is also successful363

in modelling the main trends that are observed in naturally structured soils.364

Table 4: Correlation between the initial void ratio and the mode of degradation

Origin of
Material vi (-) Study

structure

Mode 1
Natural Pisa clay 2.8 Callisto and Calabresi (1998)

Artificial St-Alban clay 6.0 Tremblay et al. (2001)

Mode 2
Natural Louiseville clay 3.0 Lapierre et al. (1990)

Artificial Louiseville clay � 3 Tremblay et al. (2001)

Mode 3
Natural Corinth marl 1.6 Anagnostopoulos et al. (1991)

Artificial Silt 1.6 Robin et al. (2014a)

Mode 4
Natural Vallericca clay 1.8 Callisto and Rampello (2004)

Artificial Sandstone <1.6 Rotta et al. (2003)

vi: initial specific volume.

6. Conclusion365

A new model in the framework of the Modified Cam Clay model was developed for lime treated soils.366

In order to introduce only relevant parameters, the most important features of lime treated materials and367

naturally structured soils that should be reproduced by a model were identified. Experimental results reveal368

that both naturally and artificially cemented soils have a very similar mechanical behaviour at yield.369

To account for the effects of structure on the behaviour of soils, a new formulation was developed based370

on Richards’s equation. Only 4 new additional parameters to the MCC were introduced: the degradation371

stress pIIy , the rate of degradation β, the additional void ratio at pIy, and the additional void ratio ∆ec at372

p′ → +∞. The power of this model is that all the additional parameters have a physical meaning and can be373

determined from a single isotropic consolidation test performed on the structured material. A transparent374
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and powerful procedure was developed for the softening rule. The two parameters required by the sigmoid375

function to model the degradation are automatically determined from the 4 parameters obtained from the376

isotropic tests.377

The model was applied for lime treated soils and naturally structured samples of calcarenite. The378

formulation is in good agreement with the experimental results and the main trends are properly reproduced.379

The formulation proposed as softening rule is successful to model the dilation observed on lime treated380

samples at yield and the maximum rate of dilation after the peak, one of the most representative features381

of structured soils. However, the results on the calcarenite have risen interesting considerations for the382

modelling of the structured materials in general, naturally or artificially.383

The initial porosity appeared to be the key parameter controlling the influence of the mode of structure384

degradation on the mechanical behaviour of lime treated specimens and the calcarenite. Once the material385

starts yielding the degradation of the bonding structure takes place, and therefore the release of the particles.386

Depending on the initial void ratio, the material can either experience dilation (particles are in contact and387

expand due to the interlocking) or collapse until particles start interacting again. This can lead to reduction388

of volume even for heavily over consolidated samples.389

Further work must be carried out to develop a model capable of accounting for the influence of the initial390

void ratio on the post-yield behaviour.391

Appendix A. Notation392

Symbol Definition

CSL Critical State Line

E Young’s modulus

f yield function

g plastic potential

G shear modulus

M slope of critical state line

MCC Modified Cam Clay Model

MLTS Model for Lime Treated Soils

ncl normal compression line

ncld normal compression line of the destructured state

nclr normal compression line of the residual state
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Symbol Definition

nclmcc normal compression line of modified Cam Clay model

Nλ specific volume at p′ = 1 kPa

p′ effective mean stress

pb tensile stress

pIy primary yield stress

pIIy degradation stress

pIIy,s degradation stress for softening case

q deviatoric stress

url unloading-reloading line

v specific volume

vs specific volume for the structured soil

α parameter of bijection for softening case

β rate of degradation

βs rate of degradation for softening case

β0 rate of degradation for monotonic decreasing function vs

∆ec residual additional void ratio at p′ → +∞

∆ei initial additional void ratio at p′ = pIy

εp, ε
e
p, ε

p
p total, elastic, and plastic volumetric strains

εq, ε
e
q, ε

p
q total, elastic, and plastic deviatoric strains

κ elastic stiffness parameter for changes in effective mean stress

λ plastic stiffness parameter for changes in effective mean stress

ξ gradient of the curve (v : p′) at p′ = pIIy

σ1, σ3 axial, radial stress
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