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Abstract

Active vibration control (AVC) using inertial mass actuators has been shown to have great potential to mitigate vibrations
and to allow the construction of increasingly slender structures leading to significant material savings. Until now, experimental
applications have mainly involved the use of SISO (single-input single-output) rather than MIMO (multiple-input multiple-
output) strategies. Recently, the authors have proposed a MIMO vibrationcontrol methodology based on the velocity-output-
feedback concept that considers the dynamics of the inertial actuatorsand other important issues in human-induced vibrations.
This paper details the experimental implementation carried out on an indoorin-service walkway. The experimental programme
undertaken involved frequency walking tests, walking tests, heel-drop tests and continuous whole-day in-service monitoring.
These measurements enabled the assessment of the vibration control performance, which has been shown to be excellent.

I. I NTRODUCTION

Improvements in design methods are leading to lighter and slender pedestrian that usually satisfy ultimate limit state
criteria but have the potential of attracting complaints coming from excessive human-induced vibrations. Active vibration
control (AVC) via inertial mass actuators has been shown to significantly reduce the level of response, allowing structures
to satisfy vibration serviceability limits. Up to now, applications mainly involve the use of SISO (single-input single-output)
strategies based on collocated control (i.e., the pair sensor/actuator are placed physically at the same point) ratherthan
MIMO (multiple-inputs multiple-outputs) strategies. This is due to the fact that SISO control strategies are easier todesign
and, unconditional stability and good vibration reductionperformance can be achieved under the absence of actuator and
sensor dynamics [1]. Although the inclusion of actuator andsensor dynamics makes the stability conditional and degrades
the vibration reduction performance, there exist SISO control strategies that mitigate these problems (see for example [2],
[3]).

In the case of floor structures, most of the vibration modes are usually locally spatially distributed with closely spaced
natural frequencies. This means that there is no single location that can be used to control all the significant modes. Under
these circumstances, MIMO control can achieve a better tradeoff between energy consumption and vibration reduction
performance, as it was shown in [4], where an optimal placement of actuators and sensors for MIMO control of floor
vibrations was presented. The algorithm consists of minimising a performance index (PI) in order to find simultaneouslyan
optimal location of a predefined number of actuator/sensor (A/S) pairs and the feedback gains of direct velocity feedback
(DVF) control. The main conclusion of this work is that a MIMOcontrol is more appropriate than SISO and a multi-SISO
control. In addition, the algorithm proposed in [4] considers the force/stroke saturation of actuators and a high frequency
model of the floor structure, showing that a MIMO control is robust to this saturation and spillover effects.

Recently, the authors have proposed a MIMO vibration control methodology for human-induced vibration based on the
velocity-output-feedback concept [5]. This strategy is based on the idea presented in [4] but includes important issues that
are important for a successful implementation, such as the dynamics of the inertial actuators, including force and stroke
saturation, and the lossy integrators needed to obtain the velocity from the accelerometers. The inclusion of these dynamics
is a key point since they significantly affect the stability of the overall system.

This paper details the experimental implementation carried out on an indoor walkway sited at the recently constructed
award winning Forum building at the University of Exeter (Exeter, UK). The experimental programme undertaken involved
frequency responses tests, walking tests, heel-drop testsand continuous whole-day in-service monitoring. These measurements
enabled the assessment of vibration control performance, which has been shown to be excellent. The cumulative distribution
function of the response factor has been used to assess the performance of the control system for the whole-day monitoring.
Additionally, the vibration dose value (VDV) and the maximum transient vibration value (MTVV) have been computed for
comparison.
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This work is organised as follows. Section 2 summarises the control scheme used and the design methodology. Section
3 provides the description of the test structure and Section4 describes the experimental implementation of the design
methodology on this structure. The main conclusions of the paper are given in Section 5.

II. CONTROL STRATEGY

A. Control scheme

The general scheme shown in Fig. 1 used to define an optimal DVFMIMO control from the proposed optimisation design
process. The dynamics included in Fig. 1 are grouped into thefollowing blocks:
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Fig. 1. General control scheme.

1) The structure:modelled byn vibration modes. The inputs are the force generated byp actuators (us) andr perturbations
(ws). The accelerations measured by a set of accelerometers atq different locations (ya) are considered as control outputs.

2) Lossy integrators:needed to obtain the velocity from the accelerometers. The lossy integrators are considered as
ideal integrators plus high-pass filters [6]. Thus, each lossy integrator carries out the magnitude and phase shift of anideal
integrator at frequencies above the cut-off frequency of the high-pass filter whilst removing any DC component and avoiding
unnecessary high sensitivity to stroke saturation at low frequencies.

For the sake of simplicity, the flexible structure and the integrators are grouped so that the output of the resulting system is
ys, which is the velocity atq locations. Thus, the standard state-space representationof the model for this flexible structure
is represented as follows:

ẋs = Asxs+Bs1us+Bs2ws (1)

ys = Csxs.

If model (1) is defined in modal coordinates, the state-spacematrices are as follows [7]:

As =

[

0 I
−Ω2 −2ZΩ

]

, Bs1 =

[

0
Φu

]

, (2)

Bs2 =

[

0
Φw

]

, Cs =
[

Φy 0
]

,

whereΩ is a n×n diagonal matrix formed by the natural frequencies ([ω1, · · · ,ωn]), Z is a n×n diagonal matrix formed by
the damping ratios ([ζ1, · · · ,ζn]) andΦu, Φy andΦw are matrices with dimensionsn× p, q×n andn× r, respectively. Each
kth column of Φu and Φw and each row ofΦy is formed by thekth modal shape values at the positions of the actuators
(Φu), perturbations (Φw) and sensors (Φy).

The high-pass filters utilised in this work are second-orderButterworth high-pass filters with cut-off frequency equalto
ωI . The chosen value ofωI is the result of the tradeoff between the resonance frequency of actuator, since small values of
ωI increase the risk of stroke saturation, and the first vibration mode of the structure, since higher values ofωI reduce the
damping imparted by a DVF controller. The state-space modelof each high-pass filter is as follows:

ẋI = AIT xI +BIT ys (3)

yI = CIT xI +DIT ys,

being the matricesAIT = diag(AI , · · · ,AI ), BIT = diag(BI , · · · ,BI ), CIT = diag(CI , · · · ,CI ) and DIT = diag
(

ω4
I , · · · ,ω4

I

)

block diagonal, whereAI , BI andCI are defined as follows [8]:

AI =

[

0 1
−ω2

I −2
√

2ωI

]

, BI =

[

0
1

]

, CI =
[

−ω4
I −2

√
2ω3

I

]

. (4)



3) The control gain matrix and the required low-pass filters:required to guarantee the finite gain property of the control
loop at high frequencies, avoiding spillover problems [9].The control gain matrix (K) in a general form is defined as:

K =











K11 K12 · · · K1q

K21 K22 · · · K2q
...

...
.. .

...
Kp1 Kp2 · · · Kpq











, (5)

in which Kpq is the control gain applied at control inputp due to control outputq.
The low-pass filters to avoid spillover problems [9] are defined as follows:

ẋLP = ALPT xLP+BLPT yI (6)

yLP = CLPT xLP,

being the matricesALPT = diag(ALP, · · · ,ALP), BLPT = diag(BLP, · · · ,BLP) andCLPT = diag(CLP, · · · ,CLP) block diagonal,
whereALP, BLP andCLP are defined as follows [8]:

ALP =

[

0 1
−ω2

LP −2
√

2ωLP

]

, BLP =

[

0
1

]

, CLP =
[

ω2
LP 0

]

, (7)

The value ofωLP, which is the cut-off frequency, must be sufficiently high when compared with the controlled vibration
mode with the maximum resonance frequency.

4) The saturation nonlinearity:models the actuator force limitation, which is limited by the maximum power amplifier
input. This maximum value can be decreased to reduce the riskof stroke saturation but also reducing the actuator performance.
The outputs of the saturation block, which are the command voltage inputs of thep actuators, are denoted byûA.

5) The inertial-mass actuators:considered are inertial actuators that generate forces through acceleration of an inertial
mass to the structure on which it is placed. The linear behaviour of the actuator can be closely described as a third-order
dynamic model [10]. Thus, the state space model of thep actuators is as follows:

ẋA = AAT xA+BAT ûA (8)

yA = CAT xA,

being the matricesAAT = diag(AA, · · · ,AA), BAT = diag(BA, · · · ,BA) and CAT = diag(CA, · · · ,CA) block diagonal, where
AA, BA andCA are defined as follows [10]:

AA =





0 0 εωA

1 0 ω2
A+2ζAωAε

0 1 ε +2ζAωA



 , BA =





0
0
gA



 , CA =
[

0 0 1
]

, (9)

where the actuator is defined bygA > 0, its damping ratioζA and natural frequencyωA. The value ofε models the low-pass
properties of the actuator. The actuator in this work is an APS Dynamics Model 400 electrodynamic shaker that has been
identified obtaining the following parameters:ωA = 13.2 rad/s (2.1 Hz),ζA = 0.5, gA = 12000 andε = 47.1.

Thus, the state equation of the closed-loop system is obtained from Fig. 1 and Eqs. (1)-(9), and results in








ẋs

ẋI

ẋLP

ẋA









=









As 0 0 −BS1CAT

BIT Cs AIT 0 0
BLPT DIT Cs BLPT CIT ALPT 0

0 0 BAT KCs AAT

















xs

xI

xLP

xA









(10)

+









Bs

0
0
0









ws.

The eigenvalues of the 2(n+2q+ p)×2(n+2q+ p) state-space matrix are considered into the restrictions defined in the

design. These eigenvalues (i.e., the poles of the closed-loop system) are denoted byζCLτ ωCLτ ± jωCLτ

√

1−ζ 2
CLτ

, where

τ ∈ [1, · · · ,2(n+2q+ p)] and j is the imaginary unit.



B. Human vibration perception

The vibration that can be perceived by a human depends on the direction of incidence to the human body, the frequency
content of the vibration (for a given amplitude) and the duration of sustained vibration, among other factors. Thus, frequency
weighting functions are applied in order to account for the different acceptability of vibrations for different directions and
body positions [11]. These have been included in current floor design guidelines such as the SCI guidance [12]. According
to ISO 2631 [11], for z-axis vibration and standing and seating, the frequency weighting function (Wk) is a filter with
the frequency response shown in Fig. 2. Moreover, sustainedvibrations are penalised in the control design, giving more
importance to transient vibration of long-duration than those of short-duration. This is taken into account by multiplying the
system response by an exponential time weighting (i.e.,eαt), whereα > 0 adds a constraint in the relative stability of the
controlled system. Note that sustained states are penalised more heavily asα is increased. Therefore, the human vibration
perception is considered in the controller design by weighting the state vector of the structurexs = [xs1, · · · ,xs2n] (see (1))
as follows:

xsWl
=
(

eαtxsl (t)
)

∗gFW(t), l ∈ [1, · · · ,2n], (11)

where (*) denotes the convolution process andgFW(t) is the impulse response function of a system with the frequency

Fig. 2. Frequency weighting functionWk (thicker curve) and its asymptotic definition (thinner curve) [11].

response function (FRF) shown in Fig. 2. Note that the time and frequency weighted vectorxsW is only used to calculate the
PI used to derive the optimal A/S locations and the gain matrix. In other words, the weighting functions are not included
in the closed-loop system of Fig. 1.

C. Controller design

The design process is based on the minimisation of a PI related to the dissipation energy of the whole structure due to
the AVC action for a given excitation. The PI, which is calculated by using the time and frequency weighted structure states
of (11), is defined as follows:

J(K,Λ) =
1
2

∫ t f

0
xT

sW(K,Λ)QxsW(K,Λ)dt, (12)

where the matrixQ is a 2n×2n positive definite matrix and is taken as [4]

Q =





















ω2
1φ2

1,max · · · 0 0 · · · 0
...

...
...

...
. ..

...
0 · · · ω2

nφ2
n,max 0 · · · 0

0 · · · 0 φ2
1,max · · · 0

...
...

...
...

. ..
...

0 · · · 0 0 · · · φ2
n,max





















, (13)

in which φk,max is the maximum value of thekth modal shapeφk. Note that the displacement states are weighted by the
natural frequencies, thus making the displacement states comparable to the velocity states. The variableΛ contains the
locations of a set ofp actuators andq sensors. Finally, the value oft f is the simulation time to obtain the PI, which must
be large enough to achieve the steady state ofJ(K,Λ) (i.e., the weighted vectorxsW

∼= 0).
The proposed design methodology is divided into the following steps:



Step 1: Select a set of structure nodes where thep actuators andq sensors can be placed to define each possible combination
for actuator and sensors. The set of these possible values for Λ is denoted byΛPI .

Step 2: Define the following restrictions to minimise the PIJ= (K,Λ): i) Λ∈ΛPI , ii) 0 ≤α ≤mink (ζkωk) , ∀k∈ [1, · · · ,n],
where the upper limit ofα (mink (ζkωk)) guarantees that the system simulation converges to zero, iii) the closed-
loop system defined in Eq. (10) is stable (i.e., the possible values forK are thus defined) and iv) the damping
corresponding to the lower closed-loop poles of the actuator dynamics has to be greater than a minimum value
denoted asζstroke, which is a minimum closed-loop damping to reduce the risk ofstroke saturation.

Step 3: Define the system perturbance to assess the controller performance. Note that the design of optimal controllers
for unknown disturbances is not trivial since prescribed disturbances are needed within the design process. The
solution adopted in this work, similar to that used in [4], isto approximate the influence of zero initial conditions
and a spatially distributed, but temporally impulsive, disturbance force by an appropriate initial condition and zero
disturbance force. This is achieved by introducing a non-zero initial condition to the velocity states of the structure.
Thus, the system perturbance is defined asxs(0) = [xs1 = 0, · · · ,xsn = 0,xsn+1 = ẋs1(0), · · · ,xs2n = ẋsn(0)], where
each value of ˙xsk(0) is obtained as follows:

ẋsk(0) = F0φk,max, (14)

whereF0 represents the impulse loading applied to a particular vibration mode. Note that the impulsive force is
applied to the point of maximum amplitude of each vibration mode, creating thus an extreme scenario for the
initial disturbance. It is expected that the control systemwill perform successfully under other loading conditions.

Step 4: Find the values ofΛ and K that minimiseJ(K,Λ) of Eq. (12). Operationally, the Step 4 is divided into the
following substeps:

Step 4.1: The values ofJ are obtained for eachΛ ∈ ΛPI as follows:

JΛ = min
K

J(K,Λ), (15)

where eachJΛ is calculated by using the MATLAB functionfminsearch, which minimises the function defined by
the simulation of the control scheme of Fig. 1 with the initial conditions defined by Eq. (14), and the restrictions
(ii), (iii) and (iv) of Step 2.

Step 4.2: The final values ofK andΛ are those corresponding to the minimum value ofJΛ, which is denoted asJOP and
is defined as follows:

JOP = min
Λ

JΛ. (16)

III. STRUCTURE DESCRIPTION

The test structure, which is a walkway sited in the University of Exeter Forum Building (Fig. 3), is approximately 15 m
long and 2.7 m wide, as shown in Fig. 4. It was decided that a test grid of 39 test points (TP) would be used (13 x 3 rows)
to carry out an experimental modal analysis (EMA) to obtain the structure model (1)-(2). The excitation was provided by an
APS Dynamics model 113 shaker, which was placed sequentially at TPs 4 and 7. The acceleration response was monitored
by 13 QA-750 accelerometers. Thus, a total of six measurement setups were taken for the modal test: three sets with roving
accelerometers for two actuator positions. The FRFs between the structure acceleration and the input force were obtained
using a continuous random excitation with frequency band 0-8 Hz. The FRF data obtained were analysed to determine the
structural modal properties. Here, the multiple referencepolynomial method was used for curve fitting the FRF data.

The properties of the first four modes obtained are presentedin Table I and the mode shapes are shown in Fig. 5. The
good accuracy of the model can be observed in Fig 6, which shows a comparison between the experimental point accelerance
FRF at TP 7 and its regenerated counterpart based on the estimated modal properties. From Table I, it can be observed that
the first vibration mode might be excited by the third harmonic of walking excitation (pacing frequency of 2.1 Hz).

TABLE I

MODAL PROPERTIES FOR THE FIRST FOUR VIBRATION MODES OF THE WALKWAY.

Mode Number Natural Damping Modal φk,max
(bending or Frequency Ratio Mass
torsional) (Hz) (%) (Tonnes) (m)
1 (bending) 6.3 1.0 15 66.5·10−6

2 (torsional) 10.5 0.9 10 98.5·10−6

3 (bending) 14.6 2.1 39 25.6·10−6

4 (bending) 20.5 2.5 12 84.8·10−6



(a) General view.
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(b) Walking area.

Fig. 3. Forum walkway (University of Exeter).
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Fig. 4. Test grid for the EMA.
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(d) Fourth Vibration mode (bending).

Fig. 5. Mode shapes of the first four vibration modes.
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IV. V IBRATION CONTROL PERFORMANCE

The control strategy presented in Section II has been designed to cancel vibrations on the structure described in Section
III. Two A/S pairs have been used of this purpose. The designed methodology presented in subsection IIC is now followed.
Thus, the following designed parameters have been considered:

• The structural nodes considered in Step 1 are the 39 TPs used to identify the structure dynamics (Fig. 4).
• The restrictions for Steps 2 and 3 used to set the optimisation problem are:α = 0.25, F0 = 2670 N (which is the

normalised maximum force of an idealised heel-drop excitation).
• The configuration of the control scheme to find the gain matrixK consists of setting (see Fig. 1): (i) the actuator

saturation voltage which was chosen to be 2 V (this is the maximum allowable value to avoid force saturation of the
actuator) and (ii) the cut-off frequency for the high and low-pass filter which were chosen as 2 and 30 Hz, respectively.
The high-pass filter at low frequencies reduces the sensitivity of the actuator to stroke saturation and the low-pass filter
at high frequencies avoids instabilities due to high-frequency components.

The optimization process describes in Step 4 is then run. Theminimum value of the PI isJOP = 5.695·10−2 for the A/S
pairs placed at TPs 7 and 8 withK11 = 755 andK22= 741. For this particular structure,K12 was -2, which influence on the
control scheme is very small, and then it can be neglected in the practical implementation.

A. Frequency response tests

The AVC system was assessed firstly by carrying out FRF-basedtests. The actuators were placed at TPs 7 and 8, an
excitation shaker was placed at TP 7 and several accelerometers were distributed along the structure. Fig. 7 shows the
experimental FRFs with and without control between TP 4, 7 and 10 and TP 7. The maximum reduction achieved was
almost 30 dB for the first vibration mode and 17 dB for the second one. Apart from the less sensitive to excitation, the
maximum values of the FRF magnitude has decreased in such a way that is much more difficult to excite the structure by
pedestrian excitations. It is important to observe that thecontrolled structure is not sensitive to excitation close to the natural
frequency of the actuator. That is, the controlled system isinsensitive to stroke saturation.
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B. Time history tests

The structure vibration level was measured by carrying out single pedestrian tests of walking at 2.1 Hz in such a way that
the first vibration mode of the structure was excited by the third harmonic of walking. The tests consist of walking from
one side to the other and back again. The pacing frequency wascontrolled using a metronome set to 126 beats per minute.
Fig. 8 shows an example ofWk weighted response acceleration time histories (includingthe 1-s running RMS acceleration)
for an uncontrolled and controlled test. The maximum transient vibration value (MTVV) calculated from the maximum
value of running RMS acceleration is used to compared results. MTVV value was reduced by approximately 85 % for
the controlled test. The response factor (R-factor is usually used) to assess the vibration serviceability of structures. This



R-factor is obtained by dividing the MTVV by 0.005 m/s2. Then R-factor for the uncontrolled test was 20.4 and 3.2 forthe
controlled test.
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Fig. 8. Experimental results. Walking at 2.1 Hz (126 bpm).

The performance was also tested by using heel-drop excitations, which is an impulsive excitation useful in evaluation of
floor structures. A heel-drop excitation is the force created by a person standing on their toes and suddenly dropping to
their heels to hit the floor. Fig. 9 shows an example of performance. It can be observed that 17 signal cycles are needed to
reduce the acceleration level under 0.05 m/s2; however, only 2 signal cycles are needed for the controlledcase.

C. Whole day monitoring

Continuous whole-day monitoring tests were also carried out to assess the vibration reduction under real in-service loading.
The acceleration was measured from 10:00 am to 17:00 pm during two working days, one day without and one with the
AVC system working (see Fig. 10). The R-factor and the VDV areused to quantify the vibration reduction. The cumulative
distribution of the R-factor is shown in Fig. 11 for TPs 4, 7 and 10 for the controlled and uncontrolled case. The proportion
of time that the acceleration was over an R-factor of 4 was 20 %without control, whereas the inclusion of the control
decreases this value to an impressive 0.2 %.

For walking activities are, by their nature, not continuous, i.e., they are intermittent. Thus, for intermittent vibrations,
the cumulative VDV is generally accepted to be a reliable quantity in determining perceptive tolerance levels [12]. Fig.
12 shows the cumulative distribution of the VDV for the same TPs and with and without control. Considering 7 hours of
continuous monitoring, the VDV is reduced from 0.467 to 0.159 m/s1.75 and for 16 hours, the VDV is reduced from 1.270
to only 0.432 m/s1.75.

V. CONCLUSIONS

This work has presented the experimental implementation ofa MIMO AVC on an in-service structure. The AVC method-
ology has been recently proposed by the authors and has considered the most important issues that have to be taken into
account in a successful implementation. This point has beendemonstrated by undertaking an experimental programme
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Fig. 9. Experimental results. Heel drop.

involving frequency responses tests, walking tests, heel-drop tests and continuous whole-day in-service monitoring. All the
tests carried out have demonstrated the AVC capacity of reducing vibration. As an example, the cumulative R-factor for a
whole-day monitoring was computed. The portion of time thatan R-factor of 4 was exceeded was approximately 20 %.
This value was reduced to an impressive 0.2 % when the AVC system was working.

ACKNOWLEDGMENT

The authors acknowledge the financial support provided by the Fundacíon Caja Madrid through the grant “II Convocatoria
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