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We show that one dimensional electromagnetic waves can be constrained to propagate along a
join between two thin sheets when one surface supports TM polarised surface waves and the other
supports TE polarised surface waves. We calculate the dispersion relation of these modes and show
that they are exceptionally tightly confined to the join, with characteristic decay lengths an order of
magnitude smaller than the surface waves supported by each individual surface. We give an example
of a metasurface implementation where low frequency instances of such waves may be observed.
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Electromagnetic waves can be constrained to propa-
gate in two dimensions through tailoring the properties
of an interface between two bulk media. The surface plas-
mon polariton (SPP) [1] is the most common example,
and is a wave that is bound to an interface between me-
dia with opposite signs of permittivity. In a similar man-
ner, the magnetic analog of these waves—surface magnon
polaritons [2]—are confined to the interface between me-
dia with permeability of opposite signs. In recent years,
there has been interest in structuring interfaces on a sub–
wavelength scale, creating a so–called metasurface [3, 4].
Such structured surfaces can also support bound waves
that behave much like plasmon or magnon polaritons,
even though the constituent media have neither nega-
tive permeability or permittivity [5, 8, 9]. Sievenpiper’s
structured surface [10], for example, is ideally composed
of perfectly conducting elements, but can support sur-
face waves of both magnetic and electric polarization,
depending on the operating frequency.

In this work we investigate a new kind of electromag-
netic mode that is constrained to propagate along a line
on a flat surface. We demonstrate that there exists a so-
lution to Maxwell’s equations that is bound to the line
where three media meet, shown schematically by the red
wavy line in figure 1. The solution has some similarity
with the one dimensional propagating modes that arise
on wedge shaped surfaces [11–13], but in our case the
surface remains flat and potentially thin compared to the
free space wavelength. In particular we we will show that
the aforementioned mode is supported when we have a
top half space that is vacuum, and two surfaces joined
along x = 0 that respectively support TE and TM sur-
face waves. Whilst naturally occurring materials with
the required properties exist, it may be a simpler matter
to form them artificially and we suggest a metamaterial
design that may be appropriate.

Consider the situation sketched in the main panel of
figure 1. We have a surface that is translationally in-
variant along the z axis, so that all fields can be taken
to have only an exp(ikzz) dependence along this axis.
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FIG. 1: The diagram shows a join between two surfaces with
different surface reactances, χ− and χ+. If the reactances
are of opposite sign then a wave can be bound to the region
of space surrounding the join, with the limit of ckz/ω → ∞
occurring when χ− = −χ+. The inset shows the electric field
distribution, Ez in the ckz/ω →∞ limit (computed from (6))
in the region indicated (a).

Maxwell’s equations allow us to write the fields in the
x − y plane entirely in terms of the field components
along the z axis [15],

E‖ =
i(kz∇‖Ez − η0ω

c ẑ×∇‖Hz)
ω2

c2 − k2z

H‖ =
i(kz∇‖Hz + ω

η0c
ẑ×∇‖Ez)

ω2

c2 − k2z
. (1)

where a subscript ‖ is used to indicate a vector lying in

the x − y plane, and η0 =
√
µ0/ε0 is the impedance of

free space. Equation (1) greatly simplifies our calcula-
tion, as we need only work in terms of two unknowns
rather than six. We characterize the surface in terms of
a surface impedance, Z, which is a good description for
some metasurfaces (for example see [16]),

[E − ŷ(E · ŷ) = Zŷ×H]y=0 . (2)

Such a characterization can be a valid alternative to using
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ε and µ, although it is only in cases when the effective
index of the underlying medium is large that we may
consider Z to be a function of frequency alone [17]. For
instance, metamaterial surfaces supporting spoof surface
plasmon polaritons in the manner described in [5] are
very well described in terms of surface impedance. The
influence of surface discontinuities and dissipation on the
validity of this boundary condition is discussed for ex-
ample by Wang [6], and Senior’s text also provides a
first principles treatment [7]. In our case the impedance
boundary condition greatly simplifies the mathematical
treatment, and we will show at the end of the paper that
the same results can be obtained when the impedance
boundary condition is replaced with a dielectric medium.

Working in the limit of zero loss (Z(ω) = iχ(ω), χ real)
we combine (2) with equation (1). To simplify matters
further we also take the electrostatic limit [14] |kz| �
|ω/c|, finding [

Ez = −χ(x)

kz

∂Hz

∂x

]
y=0[

Hz = − 1

χ(x)kz

∂Ez
∂x

]
y=0

. (3)

For the configuration shown in figure 1 the reactance is
given by,

χ(x) =

{
χ− x < 0

χ+ x > 0
. (4)

The two differential equations (3) determine the field on
the surface, and in this limit the two polarizations are
entirely cross coupled by the boundary conditions.

When the two reactances are equal in magnitude and
opposite in sign, χ+ = −χ− = χ, equation (3) has a
solution which is bound to the line x = y = 0,

Ez(y = 0) = E0e
−|kz||x|eikzz

Hz(y = 0) = E0
sign(kz)

χ
e−|kz||x|eikzz, (5)

This is somewhat reminiscent of the electrostatic limit of
a surface plasmon, where the field decays at an equal rate
on each side of a planar interface between two media with
permittivity of equal magnitude and opposite sign [1],
although we emphasize that in this case the decay is away
from the line x = y = 0.

The full spatial dependence of the field can be recon-
structed from (5) by writing it as an expansion of the
following form,

E = eikzz
∫ ∞
−∞

dk

2π
E(k)êe−κ(k)yeikx

H =
sign(kz)

χ
E (6)

where κ(k) =
√
k2 + k2z and ê = (c/ω)[kx̂ + iκ(k)ŷ +

kzẑ]. Equating (6) with (5) at y = 0 then enables us to

find the expansion coefficient,

E(k) =
2ωE0/c

k2 + k2z
. (7)

The inset of figure 1 shows a plot of Ez in this limit. The
energy per unit length contained in the mode above the
surface is then given by,

E

L
=
ε0
4

∫ ∞
0

dy

∫ ∞
−∞

dx
[
|E|2 + c2|B|2

]
=
ε0E

2
0

πk2z

(
1 +

η20
χ2

)
which is finite despite the fact that the field (6) diverges
as one approaches the line where the two surfaces meet.
Through changing the magnitude of χ one changes the
balance of energy in the mode. For small χ the energy is
almost entirely contained in the magnetic field, and for
large χ the energy is mostly in the electric field. As we
are working in the limit of kz � ω/c, the momentum per
unit length above the surface is zero, which can be seen
immediately from (6), because the electric and magnetic
fields are proportional to one another.

FIG. 2: The numerically calculated mode index of the one-
dimensional bound mode supported at the join between sur-
faces with opposite signs of reactance for various combinations
of χ− and χ+. Inset: the time averaged E-field for the mode
when χ− = −0.05 and χ+ = 2.

The above theoretical argument indicates the existence
of a mode that is bound to the line where two surfaces of
opposite reactance meet, with a dispersion relation that
is such that kz →∞ as χ+ → −χ−. To verify this theo-
retical argument we performed an eigenmode analysis of
the above configuration using Comsol multiphysics [18].
In figure 2 we show the mode index (n = kzc/ω) of these
one-dimensional bound waves for various combinations
of χ+ and χ− and demonstrate that as kz →∞ the dis-
persion of the mode asymptotically approaches the con-
dition χ− = −χ+ as predicted. Also shown inset in fig-
ure 2 is the time-averaged electric field of the mode in the
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x− y plane when we are away from this asymptotic limit
χ−(ω) = −0.05 and χ+(ω) = 2, corresponding to a mode
index of 1.3. The mode is clearly still bound to the join
between the surfaces but extends further in space, and
there is now an asymmetry in the positive and negative
x-directions which arises whenever χ− 6= −χ+ .

Analysis of the fields also indicates the extreme de-
gree of confinement exhibited by these modes. For the
field plot shown inset in figure 2 the decay lengths (de-
fined as the distance over which the field magnitude
falls by a factor e) are Lx− = λ0/83, Lx+

= λ0/22,
and Ly = λ0/60 where λ0 is the free-space wavelength
given by 2πc/ω. Thus the field confinement of these one-
dimensional bound modes can be an order of magnitude
greater than their two-dimensional equivalents, which
typically decay over length scales of the order of λ0/2
for similar values of impedance.

We also examined the effect of dissipation on this
mode, finding that when the field is poorly confined to
the join the effect of dissipation is relatively small. For
example when χ+ = 2.0 + 0.1i and χ− = −0.05 + 0.0025i
(arbitrarily choosing Im[χ] = Re[χ]/20), we obtain a
mode index of n = 1.296 + 0.02i. However, if we choose
χ− = −1.5+0.075i) such that we are closer to the asymp-
totic limit and the mode is more confined to the join, the
mode index becomes n = 9.158 + 3.17i, indicating a far
greater degree of dissipation. This is similar to the dis-
persion of SPPs, where absorption also prevents the mode
from propagating as the asymptotic limit is approached.
Another similarity to SPPs is that the dispersion relation
of the mode is rather sensitive to the bounding dielectric.
For example taking vacuum as the surrounding medium
and χ− = −0.2 + 0.01i we obtain n = 1.473 + 0.042i,
but even increasing the permittivity of the dielectric by
just 0.1 increases the mode index to n = 1.530 + 0.043i.
This degree of sensitivity is similar to that of SPPs, but
the decreased modal volume may make these systems of
interest to the sensing community. We also note that this
sensitivity is much more pronounced close to the asymp-
totic limit, but that in this region the losses will tend to
be large.

It is simple to translate the description of these sur-
faces in terms of impedance into one in terms of ε and µ
in the case where εyy = µyy =∞ (no power propagation
below the surface), εxx = εzz = ε‖, and µxx = µzz = µ‖.
For a large surface thickness the surface impedance is
given by Z =

√
µ‖/ε‖. A positive or negative reac-

tance then implies respectively media with either neg-
ative ε‖/positive µ‖ or negative µ‖/positive ε‖. One can
obtain ε‖ < 0 and µyy = εyy = ∞ at microwave fre-
quencies or below through drilling deep, sub–wavelength
holes in a metal [5]. The opposite case of µ‖ < 0 and
µyy = εyy = ∞ can be obtained (for example) through
filling these holes with a material with µ < 0 [5] (see be-
low). We also note that these impedance boundaries can
be tolerably approximated by isotropic media with large
negative values of permittivity and permeability.

We now demonstrate that these modes can be sup-

FIG. 3: The numerically calculated mode index of the one-
dimensional bound mode supported at the join between
grounded anisotropic media where ε⊥ = µ⊥ = 1 × 106 and
µ−‖ = ε+‖ = 1, for various combinations of ε−‖ and µ+‖.
The dotted lines indicate the expected asymptotic limits when
Z− = −Z+ as given by (8). Top: d = λ0/30 (inset: the
time-averaged E-field (top) and time-averaged H-field (bot-
tom) when ε−‖ = −0.5 and µ+‖ = −2). Bottom: d = 2λ0/3.

ported on a relatively thin structured material. In this
case the form of the relative impedance as a function of
ε‖ and µ‖ becomes a little more complicated, but can
be simplified by placing the material slabs onto perfectly
conducting ground planes, in which case the relationship
becomes,

Zi(ω) = −i
√
µ‖

ε‖
tan

(√
µ‖ε‖ωd/c

)
(8)

where d is the thickness of the slab.
Equation (8) indicates that the impedance of a

grounded slab of the previously described material de-
pends critically upon its thickness, and we might expect
the modes supported by such systems to be significantly
modified when that thickness becomes small. This is
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indeed the case, and we demonstrate this for the one-
dimensional mode by plotting the numerically calculated
mode index for various combinations of ε−‖ and µ+‖
(where the sign in the subscript indicates the medium
on either side of x = 0), and two thicknesses (figure 3).
When the slab thickness is much smaller than the free
space wavelength the high mode index limits (indicated
by the dotted lines in the figure) tend to µ+‖ = −1,
regardless of the value of ε−‖. However, when the thick-
ness is increased, and the influence of the tan term in
(8) becomes negligible, Z ≈

√
µ‖/ε‖ and the asymptotic

limits occur when ε−‖ = 1/µ+‖ as anticipated from the
argument in terms of surface impedance.

Also shown inset in figure 3 are the time-averaged E-
and H-field profiles in the x − y plane of the mode sup-
ported at the join between grounded layers of thickness
d = λ0/30 and ε−‖ = −0.5 and µ+‖ = −2. Whilst the
H-field profile demonstrates the distribution one might
expect for an impedance boundary description (the fields
are invariant in the z-direction below the boundary),
the influence of the conducting ground plane on the
E-field distribution is clear. However, it is important
to note that one only requires a slab thickness of the
order of the free space wavelength for the character of
the mode to mimic that of the impedance boundary
model. It is clear from this that the use of slabs of
appropriately designed metamaterials, such as the hole
arrays described previously, may be one potential route
to observing these bound one-dimensional modes. We
note however that it will only be possible to explore
the dispersion of the mode up to the limit where the
metamaterial structure begins to become comparable
in size to the decay length. For example, if we were
to realise the reactance through drilling a × a holes
per unit area A in a metal and fill some of them

with a magnetic material, the reactance would be [19]

χ = −(a2/A)µ0µω/
√
π2/a2 − µω2/c2. The sign of χ

only depends on the sign of the permeability of the
magnetic material filling the holes. For low frequencies
one may therefore be able to realise small reactances of
opposite signs that support this mode, with the effective
medium approximation remaining valid up until some
point when χ+ ∼ −χ−, when the decay length becomes
comparable to a.

We have demonstrated the existence of a new type of
bound one-dimensional electromagnetic wave localised
at the join between two surfaces that are described
by reactances of opposite sign. The mode can be
exceptionally tightly confined, with characteristic decay
lengths an order of magnitude smaller than those of
the two-dimensional bound waves supported by the
individual surfaces. We have also calculated the disper-
sion characteristics of these modes and described a low
frequency, thin layer implementation in which the media
are described by effective properties similar to those
of common metamaterials. Although the investigation
of this mode will be difficult at large wavevectors, it
may be possible to experimentally investigate at low
frequencies far away from the asymptotic limit.
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