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Abstract 

 

Protoporphyrin IX (PpIX)-induced photodynamic therapy (PDT) is being utilised 

within dermatological practice as a topical method of localised ablation of non-

melanoma skin cancer/precancer.  Standardised protocols have been implemented 

to good effect when the disease remains superficial but improvement is required to 

widen the application of this light activated drug therapy to treat thicker or acrally 

located conditions.  As innate haem biosynthesis is exploited to accumulate the light 

sensitive PpIX from a topically applied inert prodrug (aminolaevulinic acid; ALA), this 

pathway can be further manipulated through the concurrent administration of an iron 

chelating agent to hyper-accumulate PpIX by temporarily reducing its iron dependent 

conversion to haem. 

 

A topical preparation of ALA was applied to normal rat skin with or without the 

hydroxypyridinone iron chelator, CP94.  Image analysis quantification of tissue 

fluorescence following excision indicated that ALA plus CP94 produced 29.0% more 

fluorescence than ALA alone (p < 0.09), peaking at 5 hours.  Furthermore, 

fluorescence spectroscopy of frozen skin samples from each treatment group were 

characteristic of PpIX (maxima 636 +/- 2 nm), indicating that topical CP94 

administration elevated PpIX levels without significantly producing any other 

fluorescent species.  When PDT efficacy was considered post irradiation, a 

substantial three-fold increase in effect was observed 4 days after treatment when 

the iron chelator CP94 was co-administered topically with the prodrug (p < 0.07).   

 

It has therefore been established that the hydroxypyridinone CP94, is topically active 

within normal rat skin, effectively chelating iron to elevate PpIX accumulation and 

thus improve PDT efficacy. 
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Introduction 

 

Protoporphyrin IX (PpIX)-induced photodynamic therapy (PDT) is used clinically as a 

topical method of localised ablation of certain non-melanoma skin cancers and 

precancers [1].  This light activated drug treatment requires a photosensitising agent 

(in this case aminolaevulinic acid (ALA)-induced PpIX), light of a specific wavelength 

(635 nm) and molecular oxygen [2] in order to work.  When combined concurrently 

in sufficient amounts these three components result in the production of reactive 

oxygen species (ROS) and oxidative stress [3], which damages cellular components 

producing cell death via necrosis, apoptosis and/or autophagy depending on the 

dose parameters utilised [4].  Excellent cosmetic results also make PpIX-induced 

PDT particularly suitable for many dermatological applications [5].   

 

ALA-PDT was first introduced experimentally in 1987 [6], with the first clinical 

treatments being reported in 1990 [7].  Extensive clinical trials have since been 

conducted on many malignant and non-malignant skin conditions.  Within the clinical 

dermatology setting, topical PpIX-PDT now involves the application of a cream 

formulation to the area to be treated.  This cream contains a PpIX precursor, usually 

ALA or its methyl ester (MAL).  The area is then covered with a light-occluding 

dressing for a number of hours (usually 3 h) during which time the precursor is 

absorbed into the lesion and converted via haem biosynthesis to produce the 

naturally occurring photosensitiser, PpIX.  Endogenously applied ALA therefore acts 

as a substrate for the production of haem and its precursors whilst avoiding the 

negative feedback loop that haem has on its own production.  The intermediate 

immediately preceding haem in the haem biosynthesis pathway is PpIX and this 

accumulates following ALA administration because the last step of haem 

biosynthesis (the insertion of ferrous iron into the porphyrin ring of PpIX by 

ferrochelatase to form haem) [8] is relatively slow.  This conversion is the secondary 

rate limiting step of the pathway.  The primary rate limiting step of haem biosynthesis 

being the formation of ALA by ALA synthase which is bypassed by exogenous ALA 

administration.   
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Once PpIX accumulation has occurred within the tumour cells in this manner (it 

should be noted that haem biosynthesis tends to be upregulated in diseased cells 

and so occurs faster in tumours than in the normal surrounding tissues), visible light 

matching both the absorption spectrum of the photosensitiser (PpIX) and the 

optimum wavelength for tissue transmission is applied to the tumour.  Normally red 

light of the wavelength 635 nm is utilised in dermatology for all but the most 

superficial lesions and is frequently delivered using a LED array [9].  PpIX absorbs 

energy from the light and type-I or type-II reactions proceed to produce cellular 

damage, which if sufficient can be cytotoxic [10].   

  

Substantial subsets of skin tumours still exist clinically that are relatively difficult to 

treat with conventional therapies such as surgery and cryotherapy because of their 

size, location or number within an area of field change [11].  In these situations, PDT 

can be advantageous and has the added benefit of being associated with excellent 

cosmesis.  This makes it particularly attractive as a treatment option for lesions 

located in highly visible sites [12].  Standardised topical dermatological PpIX-PDT 

protocols utilising either ALA (Ameluz, Spirit Healthcare, UK) or MAL (Metvix, 

Galderma, UK) now exist and are highly effective when the disease is superficial [13] 

but improvement is required to treat thicker or acrally located conditions [14].  Many 

adaptations to standard PDT treatment have been considered to improve efficacy in 

these more difficult to treat clinical applications (including skin stripping with tape 

[15] and combinations with other techniques such as low-dose Photofrin® [16], 

hyperthermia [17, 18], iontophoresis [19] and bioreductive drugs [20]), however one 

of the most promising techniques is utilising an iron chelating agent to increase 

cellular accumulation of PpIX.  This works by reducing the bioconversion of PpIX to 

haem by ferrochelatase (an iron dependent process) thus increasing cell kill on 

subsequent irradiation.   

 

The concurrent use of iron chelating agents to enhance PpIX-induced PDT in 

general, has been investigated with some success and includes iron chelating 

agents such as ethylenediamine tetraacetic acid (EDTA) [21-24] and 

desferrioxamine (DFO) [21, 25-28].  The novel hydroxypyridinone iron chelator 1,2-

diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) is a member of the 
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hydroxypyridinone family of oral iron chelators, which were originally developed to try 

to supersede DFO in the treatment of iron overload as this compound has to be 

administered intravenously clinically via long infusion.  CP94 is particularly effective 

at chelating intracellular iron and has a lower molecular weight and higher 

lipophilicity than either DFO or EDTA [29] and has been found to be superior to DFO 

in the production of elevated PpIX levels when directed compared in vitro [30].  

Additional in vitro investigation has indicated that this effect can also be elucidated 

when using HAL (the hexyl ester of ALA) as well as ALA or MAL as the PpIX 

precursor [31].  In vivo, CP94 has been utilised intravenously to enhance ALA-

induced PpIX fluorescence and necrosis in the normal rat colon [32] and to also 

produce greater tumour necrosis within a colonic rat tumour model [33].  However 

because CP94 experiences rapid first pass glucuronidation when administered orally 

to humans [34], a topical administration route for a dermatological PDT application 

may be preferable.  Two small clinical pilot studies of CP94 in combination with ALA 

or MAL-induced PDT have been conducted to date and have demonstrated the 

safety and feasibility of adding this iron chelator to the photosensitising cream [35-

36]. Additionally, although these clinical investigations were only designed to assess 

safety, some promising initial enhancements in tumour clearance were observed 

when CP94 was included within the photosensitising cream.  However due to clinical 

constraints, it was not possible to assess PpIX production/excised tumour 

fluorescence within these pilot studies and the clinical protocol still requires 

optimisation prior to randomised controlled trials being conducted to consider 

efficacy.  An additional in vivo investigation has therefore been conducted here to 

further investigate the topical availability of CP94 to enhance PpIX accumulation and 

subsequent PDT effect on irradiation within normal rat skin. 
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Methods 

 

Chemicals 

ALA (ALA.HCl powder (99.0% purity) DUSA Pharmaceuticals Inc., New York, USA) 

and the iron chelator CP94 (synthesised with 95.0% purity and kindly donated in 

powder form by the Department of Pharmacy, Kings College London), were 

prepared in a simple polyethylene glycol (PEG) base for topical application.  A basic 

PEG cream (containing neither compound) was used as a blank (containing no 

compounds) control.  PEG base preparations containing 200 mg/ml ALA, 100 mg/ml 

CP94 or 200 mg/ml ALA plus 100 mg/ml CP94 were also used.  No adverse effects 

were observed when administering any of the compounds. 

 

Animal model 

Normal female Wistar rats (120 - 200 g) were used throughout.  The animals were 

anaesthetised for all parts of the procedure using inhaled halothane (ICI 

Pharmaceuticals, Cheshire, UK).  All animal work was conducted humanely and 

according to regulations under license from the Home Office, HM Government, UK. 

 

Fluorescence studies 

An area of skin on the animal’s flank was prepared prior to cream application.  This 

was done by removing the animal’s hair using electric clippers followed by hand 

shaving using a scalpel blade.  A foil stencil was applied so that only a 1 cm2 area of 

skin was exposed.  0.1 ml of the appropriate cream (ALA in PEG, CP94 in PEG, 

combined ALA plus CP94 in PEG or blank PEG control (containing no compounds)) 

was then spread over the 1 cm2 spot and covered with a dressing, two animals being 

treated with each set of parameters.  Completely blank untreated control animals 

were also studied and these animals received no cream application whatsoever.  

The animals were recovered and killed serially at various times after topical 

application (1 - 8 hours).  The treated area of skin (hereafter denoted as “treated”) 

along with a similar untreated (but shaven) area of skin from the opposite flank 

(hereafter denoted as “untreated”) were removed and snap frozen in liquid nitrogen, 

so that frozen sections could be analysed by fluorescence microscopy.  Ten 
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micrometre thick cryosections were prepared together with adjacent sections for 

Haematoxylin and Eosin (H & E) staining.   

 

Phase contrast microscopy with a slow-scan cooled charge coupled device (CCD) 

camera (Wright Instruments Ltd., Enfield, London, UK) was used to image and 

quantify fluorescence on the frozen sections.  The fluorescence was excited using 

an 8 mW helium-neon laser (632.8 nm) and detected between 665 and 710 nm 

using bandpass and longpass filters as described previously [37].  A pseudo colour-

coded image of the fluorescence signal in counts per pixel was produced and the 

fluorescence intensity in each tissue layer was quantified digitally by averaging over 

specified areas.  All fluorescence measurements were corrected for background 

autofluorescence and structures were identified by correlation with the adjacent H & 

E stained section.  Two measurements were made and averaged per section.  

Intensity calibrations were performed using a 0.1 mm thick ruby disc which emits 

near 690 nm under 633 nm excitation.  A previous study using the same system [38] 

on normal rat colon using intravenous ALA has demonstrated that the CCD 

fluorometric measurements of porphyrin fluorescence correlated well with chemical 

extraction measurements.  Statistical analysis between the means of the ALA only 

and ALA plus CP94 groups, at the time of maximum fluorescence, was conducted 

using an unpaired student t-test and error bars were determined by the standard 

error of the mean.  

 

Fluorescence emission spectra were also recorded from separate representative 

frozen specimens to confirm that the fluorescence observed in the imaging was 

indeed produced by PpIX and no other fluorescent porphyrin.  This was carried out 

by placing the skin specimen on a glass slide under the plate well reader of a 

luminescence spectrometer (Perkin Elmer Ltd., Beaconsfield, Buckinghamshire, 

UK).  This was set to read over the range of 600 - 750 nm, exciting with 410 nm light 

and using 10 nm slits with a 530 nm cut off filter in place to remove scattered 

excitation light.  Normal autofluorescence was detected in skin from untreated 

control animals and subtracted from the treated spectra.  Calibration using a 

rhodium disc was conducted both before and after taking spectra. 
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PDT studies 

All compounds were administered to prepared skin (in the same way as the 

fluorescence studies) 5 hours prior to irradiation.  The light source was a Medi-Sun 

arclamp (Medical Light Technologies, Glasgow, Scotland) irradiating at 630 nm (+/- 

20 nm).  A total energy dose of 100 J was administered to 1 cm2 areas of skin (with 

the surrounding skin shielded) at a fluence rate of 150 mW/cm2.  The shielding was 

then removed and the animals recovered.  Each treatment site was assessed 

regularly over 14 days using the scale presented in Table 1 (adapted from [39-40]).   

This enabled the effect of each treatment (ALA + light, CP94 + light, ALA plus CP94 

+ light, light only control, ALA only control, CP94 only control and blank control) to be 

compared, with four animals being treated with each set of parameters.  Statistical 

analysis between the means of the ALA + light and ALA plus CP94 + light groups at 

the time of maximum PDT damage was conducted using a Wilcoxon signed-rank 

test.  
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Results 

 

Tissue fluorescence quantification 

A representative set of photographs can be seen in Figure 1.  One pair (Figures 1a 

& b) shows a typical pseudo colour coded CCD image of the skin with its matched H 

& E stained photograph, five hours after topical administration of 0.1 ml of 200 

mg/ml ALA cream to a 1 cm2 area of skin.  The other pair (Figures 1c & d) shows the 

same images, five hours after administration of 0.1 ml of 200 mg/ml ALA + 100 

mg/ml CP94 cream to another 1 cm2 area of skin.  The fluorescence observed in the 

epidermis is much greater with the administration of CP94 in combination with ALA, 

than ALA administration alone.  In both cases the hair follicles can be seen to 

fluoresce greatly, as does the stratum corneum. 

 

Figure 2a shows how the fluorescence in the epidermis of the skin varied with time 

after topical application of ALA alone and ALA plus CP94.  Measurements were 

taken from the epidermis of each section avoiding the highly fluorescent hair follicles 

and stratum corneum.  The combination of ALA plus CP94 produced a substantial 

increase in fluorescence in the tissue (29.0% elevation) over that achieved with ALA 

administration alone and statistically (in this small sample), this observation did not 

quite reach significance at the p < 0.05 level (p < 0.09).  This elevated level of PpIX 

peaked at 5 hours however, which was the time chosen for the subsequent 

photodynamic studies.  Figure 2b shows the fluorescence profile from the matched 

untreated skin specimens taken from the opposite flank of the same animals.  

Fluorescence in these untreated areas hardly rose above background levels (which 

have been subtracted from all fluorescence measurements). 

 

Fluorescence spectroscopy 

Fluorescence spectra were recorded (using the spectrometer) from frozen 

specimens of tissue taken from animals given each treatment regime and 

representative spectra are shown in Figure 3.  The spectra from blank control 

sections (no compounds administered) were subtracted from each spectrum to 

correct for endogenous autofluorescence.  No significant differences were observed 

between the ALA only and the combination of CP94 and ALA spectra or any other 
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spectra recorded during this study, indicating that the administration of the CP94 iron 

chelating agent did not induce significant production of fluorescent species other 

than PpIX.  Maxima were at 636 +/- 2 nm in each case.  

 

Photodynamic effects 

The effect of CP94 on ALA induced PDT is presented in Figure 4.  Each point 

represents the four animals treated in each group, the assessment scale score of 

each being averaged for each day.  A much greater effect (an increase by up to a 

factor of three) was obtained when using the combination of ALA plus CP94 rather 

than ALA alone and again this observation did not quite reach significance at the p < 

0.05 level (p < 0.07) in this limited sample size.  It should be noted, however, that 

the assessment score recorded was the highest that occurred within the treated area 

and in general “patchy” effects were produced, some parts of the 1 cm2 spot being 

affected more than others.  No effect was seen until day 2.  The maximum effect 

was observed at 4 days and was resolved completely by day 7.  At day 14, all 

treatment sites appeared normal and in all but one instance, substantial hair re-

growth had occurred.  CP94 only plus light, light only, ALA only, CP94 only, PEG 

only and blank controls were also conducted, none of which produced any effect. 
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Discussion 

 

PDT using topical ALA has been shown over the last few years to be an effective 

treatment for conditions like actinic keratosis, Bowen’s disease and superficial basal 

cell carcinomas, with the only main side effect being discomfort/pain during 

irradiation [11, 41].  The treatment of nodular basal cell carcinomas and other thicker 

cutaneous lesions with a single topical PpIX-induced PDT treatment is as yet, 

however, unsatisfactory, with low complete response rates and high recurrence rates 

[42] as the depth of necrosis produced remains insufficient [43].  One way to 

overcome this problem may be the administration of an iron chelating agent in 

combination with ALA, as reported here.  This simple pharmacological modification 

may enhance the effect of the treatment by producing more damage, without 

prolonging the duration of treatment protocol.  

 

Clinically Fijan et al. [26] have already demonstrated the feasibility of combining the 

iron chelator DFO with ALA-PDT to treat 34 superficial basal cell carcinomas (BCCs) 

and 22 nodular BCCs with ALA.  Lui et al. [23] have also found a promising and 

significant (p<0.01) reduction in tumour depth in lesions treated with EDTA in 

combination with ALA-PDT.  Choudry et al. [25] however, could not detect any 

significant differences in surface fluorescence between lesions co-incubated with 

ALA±DFO despite DFO being demonstrated to be superior to EDTA in its ability to 

enhance PpIX-induced PDT [21].  Further work is therefore required to find a better 

suited and more effective iron chelating agent for this purpose (enhancement of 

PpIX-PDT), preferably with the benefit of a topical route of administration for these 

dermatological applications. 

 

Previous in vitro experimentation with the hydroxypyridinone iron chelating agent 

CP94 has already indicated that that CP94 was consistently significantly superior to 

DFO in the production of elevated PpIX levels particularly within epidermal 

squamous carcinoma cells (A431) with minimal enhancement being observed in the 

normal skin fibroblasts and keratinocytes also investigated [30].  Furthermore, 

additional studies undertaken with CP94 alone within A431 cells have indicated that 

significantly increased PpIX levels and subsequent cytotoxicity can be produced 
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when using HAL (the hexyl ester of ALA) as well as ALA or MAL as the PpIX 

precursor, when PDT is conducted within a variety of different oxygen conditions 

[31].  This experimentation has been extended here to consider the effect of topical 

CP94 administration in vivo in a normal rat skin model.  In light of our previous 

findings with CP94 augmentation of PpIX-PDT demonstrated in epidermal 

squamous carcinoma cells (A431) [30-31], a colonic tumour model [33] and 

dermatological skin lesions [35-36], it was not deemed necessary to create a 

neoplastic skin model here when our main focus was to assess PpIX 

production/excised tissue fluorescence (which we have been unable to do clinically 

due to ethical constraints).  

 

The quantitative CCD fluorescence microscopy presented here determined that the 

CP94 (when administered topically in combination with ALA) was able to increase 

the PpIX fluorescence detected in the epidermis of the normal rat skin by 29.0% at 

the fluorescence peak and this enabled an increase in the photodynamic effect by 

up to a factor of three to be achieved when compared with the effect of ALA alone.  

These findings both support and extend the previous in vivo experimentation 

conducted with intravenously administered ALA +/- CP94 in the rat colon [32-33] to a 

topical application.  They also permit insight to the mechanisms that may explain the 

promising initial clinical results obtained with this enhanced treatment regime in the 

first clinical safety pilot studies [35-36], as the increased therapeutic effects are most 

likely being conveyed through the elevated dermal PpIX accumulation observed 

following effective iron chelation achieved via topical CP94 administration.  

Pleasingly, no significant production of PpIX was detected in the untreated skin from 

the opposite flank in any of the animals studied.  This was investigated as there 

have been reports in the literature [44] which describe porphyrins in untreated areas 

of skin indicating that some systemic effect may be produced when ALA is applied 

topically.  There was no evidence of this in this study however, indicating that 

application of a simple light occlusive dressing to the treatment area alone should be 

sufficient to prevent clinical cutaneous photosensitivity even when hyper-

accumulating even greater amounts of PpIX with an iron chelating agent. 
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The PDT changes produced in the normal rat skin were not found to affect all parts 

of the treatment site to the same extent.  The reasons for this currently remain 

unclear.  It could be explained by uneven drug distribution in the cream base 

employed or small scratches (produced during shaving) allowing uneven drug 

absorption.  However, all preparations were thoroughly mixed prior to use and great 

care was taken during the shaving procedure.  Furthermore, these potential 

causations should have been evident in the fluorescence microscopy and 

corresponding histology.  The patchy effect may have also theoretically been caused 

by uneven light irradiation, although the damage appeared to be completely random 

and the power was checked both before and after the treatment and did not vary 

significantly over this period.  Alternatively, it may have been due to naturally 

occurring irregularities in skin thickness or follicle distribution (which are particularly 

fluorescent).  It should also be noted that the preparation employed to administer the 

compounds topically within this investigation was a simple polyethylene glycol (PEG) 

base.   Clinically an emulsion type cream is typically employed to administer the 

PpIX prodrugs and the composition of this preparation varies depending on the 

commercial product being employed [1, 13].  We have been able to circumvent this 

issue within our clinical investigations of CP94 to date [35-36] by simply mixing the 

experimental CP94 compound into the commercially available preparation.  However 

these formulations are complex in nature and design, vary from product to product 

and are expensive to purchase for non-clinical use.  Furthermore emulsion creams 

are emollients with known moisturising properties that may have affected the results 

observed with our treatment assessment scale (Table 1; adapted from [39-40]).  It 

was therefore decided to utilise a simple PEG base here.  However, looking to the 

future it is going to be important to derive a clinical formulation that includes CP94 

as well as the PpIX-precursor of choice for maximum efficacy. 

 

Although normal skin was investigated in this study, it is expected that the PDT 

effect induced by the treatment would be greater in a clinical application of this 

modification to abnormal skin.  This is because the accumulation of PpIX occurs 

more rapidly within (pre)cancerous lesions/cells due to their disrupted stratum 

corneum (which facilitates better cream absorption), upregulation of the haem 

biosynthesis pathway within diseased cells that have greater metabolic demands as 
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well as alterations in the expression of the porphobilinogen deaminase and 

ferrochelatase enzymes within the haem biosynthesis pathway [3, 45].  These 

factors in combination all result in a window of opportunity for therapeutic light 

delivery (around 3 hours following cream application in human skin lesions), where 

PpIX is preferentially accumulated within the target diseased cells and as a result 

the surrounding normal cells are relatively spared by this localised ablative therapy 

[1].  It is interesting to note that the peak fluorescence observed in the normal rat 

skin investigated here occurred at the delayed time point of 5 hours after cream 

application.  It would have also been preferable to have been able to increase the 

group size of these fluorescence studies as statistically significance was not reached 

at the p < 0.05 level utilising this small sample size.  Fluorescence spectral analysis 

using a spectrometer did confirm however, that the increased fluorescence observed 

could be attributed to PpIX and no other fluorescent porphyrins of the haem 

biosynthesis pathway (which may have feasibly been produced in elevated amounts 

by altering the biochemistry of this system with an iron chelating agent in this 

manner).     

 

These findings also demonstrate the importance of the role of iron within the 

mechanism of PpIX-induced PDT with the increased PDT damage observed being 

related to the increased accumulation of PpIX pre-irradiation, an effect which was 

solely produced by the topical co-administration of the iron chelating agent, CP94.  

However, due to its multiple valences, iron can also play an important role in ROS 

biology [46] and has the potential to increase cytotoxicity from PDT as iron is 

important in the generation of the hydroxyl radical as well as in lipid peroxidation 

[47].  Singlet oxygen generated by PpIX-induced PDT can itself react with oxygen to 

generate superoxide, which is dismutated by superoxide dismutase within cells to 

form hydrogen peroxide.  Hydrogen peroxide is usually detoxified via catalase to 

produce water and oxygen.  However if hydrogen peroxide comes into contact with 

metal ions (especially Fe2+) then the highly reactive hydroxyl radical can be formed 

via Fenton reactions and this can lead to damage to cellular proteins, lipids and DNA 

[48].  Limiting the availability of iron via chemical chelation could therefore 

theoretically reduce the efficacy of PpIX-PDT by blocking or limiting this hydroxyl 
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radical generating pathway so that a response less than that maximally feasible was 

produced by the treatment.   

Previous experimental work undertaken with cultured human cells in an iron 

controlled/standardised environment has suggested however, that the role of limited 

iron levels in elevating PpIX accumulation has a greater effect on the level of cellular 

damage produced by PpIX-induced PDT than the role of excess iron availability in 

the formation of ROS (as the level of damage/death was related to the differences in 

the accumulation of PpIX observed) [49].  A possible explanation for this may be that 

other transition metals (such as zinc or copper) may be able to mediate Fenton-type 

reactions instead of iron in the ROS cascades triggered by PpIX-PDT.  Furthermore, 

although cellular iron levels are tightly regulated under normal circumstances, during 

oxidative stress iron homeostasis can be disrupted resulting in the release of labile 

iron [50-52].   This might mean that although iron chelation initially reduces iron 

availability, so that PpIX accumulation during PpIX-PDT is elevated, once a state of 

oxidative stress begins to occur on irradiation other transition metals and freshly 

released labile iron could perpetuate the ROS cascades via Fenton reactions in a 

timely and efficacious fashion. 

 

It is important to note that no attempt was made in this time course investigation to 

determine the depth of the PDT effect and future studies should investigate this 

factor, which is obviously crucial to the success of this technique in dermatological 

applications.  Nonetheless, it has been established that it is feasible to use the 

hydroxypyridinone iron chelating agent, CP94, topically in normal rat skin, to 

increase the PDT effect produced by ALA-induced PpIX photosensitisation.  With 

continued investigation this pharmacological modification has considerable potential 

to improve dermatological PpIX-PDT practice. 
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Table Legends 

 

Table 1 Scale (adapted from [39-40]) used to assess each treatment site 

following PDT treatment with each set of parameters investigated. 
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Table 1   

 

 

Value Recorded Observation Made 

0 No effect 

1 Minimal redness 

2 Redness 

3 Dry desquamation 

4 Thin scab formation 

5 Thick scab formation 
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Figure Legends 

 

Figure 1 a) Pseudo colour coded fluorescence image and b) matched H & E 

stained histology photograph of the skin, five hours after topical administration of 20 

mg ALA.  c)  Pseudo colour coded fluorescence image and d) matched H & E 

stained histology photograph of the skin, five hours after topical administration of 20 

mg ALA + 10 mg CP94. Scale bars represent 70 m. 

 

Figure 2 Fluorescence (arbitrary units) of the epidermis as a function of time 

(hours) when a) treated with 20 mg ALA only or 20 mg ALA plus 10 mg CP94, 

topically or b) untreated (when the opposite flank of the animal had been treated 

with 20 mg ALA only or 20 mg ALA plus 10 mg CP94, topically). Each point 

represents the mean (with the standard error of the mean) from two separate 

animals. 

 

Figure 3 Emission spectra obtained from skin specimens treated topically with 

20 mg ALA only (black solid line) or 20 mg ALA plus 10 mg CP94 (red dotted line), 5 

hours after administration. 

 

Figure 4 Treatment effect (arbitrary units) as a function of time (days) following 

topical PDT treatment with 20 mg ALA only or 20 mg ALA plus 10 mg CP94 and 100 

J/cm2, 630 nm irradiation (150 mW) 5 hours later.  Each group represents the mean 

(with the standard error of the mean) from four separate animals. 
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