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Abstract 18 

 19 

1. A forager’s optimal patch-departure time can be predicted by the prescient marginal value 20 

theorem (pMVT), which assumes they have perfect knowledge of the environment, or by 21 

approaches such as Bayesian-updating and learning rules, which avoid this assumption by 22 

allowing foragers to use recent experiences to inform their decisions.  23 
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2. In understanding and predicting broader scale ecological patterns, individual-level 24 

mechanisms, such as patch-departure decisions, need to be fully elucidated. Unfortunately, there 25 

are few empirical studies that compare the performance of patch-departure models that assume 26 

perfect knowledge with those that do not, resulting in a limited understanding of how foragers 27 

decide when to leave a patch.  28 

3. We tested the patch-departure rules predicted by fixed-rule, pMVT, Bayesian-updating and 29 

learning models against one another, using patch residency times recorded from 54 chacma 30 

baboons (Papio ursinus) across two groups in natural (n = 6,175 patch visits) and field-31 

experimental (n = 8,569) conditions.  32 

4. We found greater support in the experiment for the model based on Bayesian-updating rules, 33 

but greater support for the model based on the pMVT in natural foraging conditions. This 34 

suggests that foragers may place more importance on recent experiences in predictable 35 

environments, like our experiment, where these experiences provide more reliable information 36 

about future opportunities. 37 

5. Furthermore, the effect of a single recent foraging experience on patch residency times was 38 

uniformly weak across both conditions. This suggests that foragers’ perception of their 39 

environment may incorporate many previous experiences, thus approximating the perfect 40 

knowledge assumed by the pMVT. Foragers may, therefore, optimise their patch-departure 41 

decisions in line with the pMVT through the adoption of rules similar to those predicted by 42 

Bayesian-updating. 43 

 44 

Keywords: Bayesian-updating, habitat predictability, learning, marginal value theorem, 45 

primate, patch-departure-rules   46 

 47 

 48 
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Introduction 49 

 50 

There is a growing appreciation of the need to understand the individual-level mechanisms that 51 

drive broader scale ecological and evolutionary patterns (Evans 2012). Two such mechanisms 52 

which are being increasingly recognised as important are individuals’ foraging behaviour and 53 

information use (Dall et al. 2005; Danchin et al. 2004; Giraldeau & Caraco 2000; Stephens, 54 

Brown, & Ydenberg 2007). Decisions made by foragers, and particularly the rules governing 55 

patch-departure decisions, involve both these mechanisms, and are central to optimal foraging 56 

theory (Fawcett, Hamblin, & Giraldeau 2012; Giraldeau & Caraco 2000; Stephens et al. 2007).  57 

 58 

Early work on this topic tended to search for the departure rule that would result in a forager 59 

leaving a patch at the optimal time (Stephens & Krebs 1986), but did not tackle the question of 60 

how a forager would judge when it had reached this optimal departure point, often implicitly 61 

assuming the forager had perfect knowledge of its environment (as highlighted by Green 1984; 62 

Iwasa, Higashi, & Yamamura 1981; Olsson & Brown 2006; van Gils et al. 2003). Two well-63 

recognised examples of this work include the use of simple fixed rules and the original, and 64 

prescient, version of the marginal value theorem (pMVT, Charnov 1976). Fixed-rule foragers, as 65 

the name suggests, leave patches at a fixed point, such as after a fixed amount of time since 66 

entering the patch has elapsed (e.g. Nolet, Klaassen, & Mooij 2006; Olsson & Brown 2006). The 67 

pMVT predicts that foragers should leave a patch when the return they receive (the instantaneous 68 

intake rate) is reduced by patch depletion so that it is more profitable to accept the travel costs of 69 

leaving the patch in search of a new one. This threshold intake rate is known as the ‘marginal 70 

value’ and is set by the habitat’s long-term average intake rate, which is a function of the average 71 

patch quality and density. The pMVT assumes foragers have perfect knowledge (i.e. are 72 

prescient) of the habitat’s patch quality and density and so can judge when their intake rate has 73 
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reached the marginal value, resulting in patch residency times being shorter in habitats where 74 

patches are closer together and better quality. In addition to perfect knowledge, the pMVT also 75 

assumes that foragers gain energy in a continuous flow, rather than as discrete units, and that 76 

there is no short-term variation in the marginal value (reviewed in Nonacs 2001). Consequently, 77 

it has been criticised as unrealistic (van Gils et al. 2003; McNamara, Green & Olsson 2006; 78 

Nonacs 2001), despite receiving some qualitative empirical support for its predictions (Nonacs 79 

2001).  80 

 81 

Further work on patch-departure decisions has addressed the fact that foragers are likely to have 82 

imperfect knowledge of their environment, and so will need to use their past foraging experiences 83 

to estimate the optimal patch departure time. Two such approaches which have received 84 

particular attention are Bayesian-updating (Green 1984; Oaten 1977) and learning-rule models 85 

(Kacelnik & Krebs 1985). In the case of Bayesian-updating, these models were developed in 86 

direct response to the above criticisms of the pMVT (e.g. Green 1984; reviewed in McNamara et 87 

al. 2006). In these models, individuals make foraging decisions as an iterative process, using their 88 

foraging experiences to update their perception of the available food distribution (their “prior” 89 

knowledge), making decisions on the basis of this updated perception (their “posterior” 90 

knowledge), and then using the outcome of this decision to further update their perception, and so 91 

on. Learning-rule models (Kacelnik & Krebs 1985) appear to have developed separately to 92 

Bayesian models, but similarly describe foragers using information from past experiences in their 93 

current foraging decisions. They differ from Bayesian models, however, in that they describe past 94 

experiences accumulating in a moving average representing a perceived valuation of the 95 

environment (Kacelnik & Krebs 1985), rather than a perceived distribution of the relative 96 

occurrence of different patch qualities as in Bayesian models (Dall et al. 2005; McNamara et al. 97 

2006). A learning-rule forager then makes a decision about whether to leave a patch or not by 98 
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combining its moving average valuation of the environment up to the last time step with 99 

information gathered in the current time step (e.g. Beauchamp 2000; Groß et al. 2008; Hamblin & 100 

Giraldeau 2009).  101 

 102 

Compared to this considerable amount of theoretical work, empirical tests of these models’ 103 

predictions are relatively limited and have mainly focussed on the pMVT (reviewed in Nonacs 104 

2001; but see Valone 2006). In those few cases where models of perfectly informed foragers have 105 

been empirically compared against either Bayesian or learning models (i.e. models of foragers 106 

with imperfect information), perfect-information models provided a relatively poor explanation 107 

of the foraging behaviour observed (Alonso et al. 1995; Amano et al. 2006; van Gils et al. 2003, 108 

but see Nolet et al. 2006). For example, Bayesian updating models explained foraging behaviour 109 

better than other models, including a prescient forager model, in red knots (Calidris canutus) (van 110 

Gils et al. 2003). We know of no empirical study, however, that has compared the performance of 111 

Bayesian, learning and perfect-information models, such as the pMVT, in the same analysis. 112 

Furthermore, there is evidence that a forager’s use of past experiences in its patch-departure 113 

decisions, within either the Bayesian or learning framework, can be dependent on the 114 

characteristics of the foraging habitat (Biernaskie, Walker & Gegear 2009; Devenport & 115 

Devenport 1994; Lima 1984; Valone 1991, 1992). However, most studies to date have only 116 

compared foraging behaviour between captive environments or differing configurations of 117 

artificial food patches (but see Alonso et al. 1995). Therefore, to fully understand how a forager 118 

uses previous experiences in its decision-making, a simultaneous comparison of perfect-119 

information, Bayesian-updating and learning-rule models, ideally involving both natural and 120 

experimental conditions (in which the characteristics of the foraging habitat can be manipulated), 121 

would be extremely valuable.  122 

 123 
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The purpose of this paper is, therefore, to empirically test whether patch departure models that 124 

assume foragers’ knowledge of their environment is imperfect, such as the Bayesian-updating 125 

and learning rule approaches, provide a better description of patch-departure decisions than those 126 

that assume perfect knowledge. To do this, we consider which aspects of an individual’s 127 

environment and its foraging experiences these different models predict will play a role in patch-128 

departure decisions, and assess the explanatory power of these different factors in the patch 129 

residency times of wild chacma baboons (Papio ursinus, Kerr 1792) in both their natural foraging 130 

habitat and in a large-scale field experiment.  131 

 132 

Materials and Methods 133 

 134 

Study Site 135 

 136 

Fieldwork was carried out at Tsaobis Leopard Park, Namibia (22°23’S, 15°45’E), from May to 137 

September 2010. The environment at Tsaobis predominantly consists of two habitats: open desert 138 

and riparian woodland. The open desert, hereafter ‘desert’, is characterised by alluvial plains and 139 

steep-sided hills. Desert food patches mainly comprise small herbs and dwarf shrubs such as 140 

Monechma cleomoides, Sesamum capense and Commiphora virgata. The riparian woodland, 141 

hereafter ‘woodland’, is associated with the ephemeral Swakop River that bisects the site. 142 

Woodland food patches are large trees and bushes such as Faidherbia albida, Prosopis 143 

glandulosa and Salvadora persica (see Cowlishaw & Davies 1997 for more detail). At Tsaobis, 144 

two troops of chacma baboons (total troop sizes = 41 and 33 in May 2010), hereafter the ‘large’ 145 

and ‘small’ troop, have been habituated to the presence of human observers at close proximity. 146 

The baboons at Tsaobis experience relatively low predation risk as their main predator, the 147 

leopard (P. pardus, Linnaeus 1758), occurs at low densities, while two other potential predators, 148 
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lions (Panthera leo, Linnaeus 1758) and spotted hyenas (Crocuta crocuta, Erxleben 1777), are 149 

entirely absent (Cowlishaw 1994). We collected data from all adults and those juveniles over two 150 

years old (n = 32 and 22), all of whom were individually recognisable (see Huchard et al. 2010 151 

for details). Individuals younger than two were not individually recognisable and so were not 152 

included in this study. 153 

 154 

Data Collection 155 

 156 

Natural foraging behaviour 157 

 158 

Baboon behaviour was observed under natural conditions using focal follows (Altmann 1974), 159 

and recorded on handheld Motorola MC35 (Illinois, U.S.A) and Hewlett-Packard iPAQ Personal 160 

Digital Assistants (Berkshire, U.K.) using a customised spreadsheet in SpreadCE version 2.03 161 

(Bye Design Ltd 1999) and Cybertracker v3.237 (http://cybertracker.org), respectively. Focal 162 

animals were selected in a stratified manner to ensure even sampling from four three-hour time 163 

blocks (6 – 9a.m., 9 a.m. – 12 p.m., 12 – 3 p.m. and 3 – 6 p.m.) across the field season, and no 164 

animal was sampled more than once per day. Focal follows lasted from twenty to thirty minutes 165 

(any less than twenty minutes were discarded). At all times we recorded the focal animal’s 166 

activity (mainly foraging, resting, travelling or grooming) and the occurrence, partner identity 167 

and direction of any grooming or dominance interactions. We also recorded the duration of 168 

grooming bouts. During foraging we recorded when the focal animal entered and exited discrete 169 

food patches. Entry was defined as the focal moving into and eating an item from the patch (to 170 

rule out the possibility that they were simply passing by or through the patch), and exit defined as 171 

the focal subsequently moving out of the patch. Patches were defined as herbs, shrubs or trees 172 

with no other conspecific plant within one metre (closer conspecifics, which could potentially be 173 
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reached by the forager without moving, were treated as part of the same patch), and made up the 174 

vast majority of the baboons’ diet. At each patch entry we recorded the local habitat (woodland or 175 

desert), the number of other baboons already occupying the patch, the identity of any adult 176 

occupants, and three patch characteristics: the patch size, type, and food-item handling time. 177 

Patch size was scored on a scale of 1-6 in the woodland and 1-4 in the desert, and subsequently 178 

converted into an estimate of surface area (m2) using patch sizes recorded during a one-off survey 179 

of 5,693 woodland patches and monthly phenological surveys of desert patches, respectively. See 180 

below for details of the surveys; for details of the surface area estimations, see Marshall et al. 181 

(2012). Patch type was recorded by species for large trees and bushes in the woodland, and as 182 

non-specified ‘herb/shrub’ for smaller woodland and all desert patches. Food-item handling time 183 

was classed as high (bark, pods and roots) or low (leaves, berries and flowers). Overall, we 184 

recorded 1,481 focal hours (27 ± 10 hours, mean ± s.d., per individual) containing 6,175 patch 185 

visits (112 ± 71 visits per individual) for our analyses. 186 

 187 

Temporal variation in habitat quality was estimated by the monthly, habitat-specific, variation in 188 

both the mean number of food items per patch and the patch density. These calculations were 189 

based on monthly phenological surveys in which we estimated the number of food items in 190 

randomly selected food patches. In the woodland, we monitored a representative sample of 110 191 

patches selected from an earlier survey of 5,693 woodland patches (G. Cowlishaw, unpublished 192 

data); in the desert, we monitored 73 food patches that fell within eight randomly placed 50 m x 1 193 

m transects. In both habitats, the monitored patches fell within the study troops’ home ranges. 194 

Monthly estimates of patch density were calculated as the mean number of patches containing 195 

food per km2. In the woodland, this was calculated by randomly grouping the survey patches into 196 

11 groups of 10, and calculating the proportion of these patches containing food in each group 197 

per month. Each group’s proportion was then used to estimate a patch density (the number of the 198 
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5,693 woodland patches containing food divided by 9.9 km2, the extent of the woodland habitat 199 

in the study area) and the mean of these values taken as the woodland patch density, for any 200 

given month. In the desert, monthly estimates of patch density were calculated from the mean of 201 

the number of patches containing food in each transect divided by 5 x 10-5 (transect area of 50m2 202 

= 5 x 10-5 km2).    203 

 204 

Large-scale feeding experiments 205 

 206 

Our foraging experiments were conducted in an open, flat and sandy area in each troop’s home 207 

range. They involved a configuration of five artificial food patches of loose maize kernels 208 

arranged as shown in figure 1. The baboons visiting each patch were recorded using Panasonic 209 

SDR-S15 (Kadoma Osaka, Japan) video cameras on tripods, and so patches were trapezoidal to 210 

maximise the use of their field of view. The five patches were a combination of sizes, two 211 

measuring 20 m2 (patches B and C in Fig. 1) and three at 80 m2 (patches A, D and E) for the 212 

small troop, producing a total per-animal feeding area of 8.5 m2 (280 m2 divided by 33 animals). 213 

We kept the total per-animal feeding area approximately constant by increasing these patch sizes 214 

to 27 m2 and 96 m2 for the large troop, producing a total per-animal feeding area of 8.3 m2 (342 215 

m2 divided by 41 animals). The experiment was run in two 14-day periods, alternating between 216 

troops. In the first period, patch food content (f in Fig. 1) was ‘low’ (11.4 ± 0.3 g/m2, mean ± s.d.) 217 

while inter-patch distance (d) was ‘short’ (25 m) for the first 7 days and ‘long’ (50 m) for the 218 

second 7 days. In the second 14-day period, patch food content was increased by 50% to ‘high’ 219 

(17.1 ± 0.4 g/m2) while inter-patch distance was ‘long’ for the first 7 days and ‘short’ for the 220 

second 7 days. The experiments were therefore run over 28 days in total, involving four different 221 

food content – inter-patch distance combinations, for each troop. The amount of food per patch 222 
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was measured using a standard level cup of maize kernels weighing 222 ± 1g (mean ± s.d., n = 223 

20).  224 

 225 

Experimental food patches were marked out with large stones, painted white, and were evenly 226 

scattered with maize kernels before dawn each morning. Video cameras (one per patch, started 227 

simultaneously when the first baboon was sighted) were used to record all patch activity and 228 

trained observers (one per patch) recorded the identity of all individuals entering and exiting the 229 

patch. These patch entry and exit data were subsequently transcribed from the videos to create a 230 

dataset in which each row represented one patch visit and included: the forager ID, the patch ID, 231 

the patch residency time (s), the initial food density of the patch at the start of the experiment 232 

(g/m2), the patch depletion (indexed by the cumulative number of seconds any baboon had 233 

previously occupied the patch), the forager’s satiation (indexed by the cumulative number of 234 

seconds the focal baboon had foraged in any patch that day) and the number and identity of all 235 

other individuals in the patch. Video camera error on day 11 of the large troop’s experiment 236 

meant that data from all patches were not available on that day, resulting in unreliable depletion 237 

and satiation estimates. Data from this day were therefore excluded, leaving 8,569 patch visits 238 

(159 ± 137 per individual) in the final dataset for analysis.  239 

 240 

Individual forager characteristics 241 

 242 

For each focal animal, we calculated its dominance rank, social (grooming) capital, and genetic 243 

relatedness to other animals in the troop. Dominance hierarchies were calculated from all 244 

dominance interactions recorded in focal follows and ad libitum (in both cases, outside of the 245 

experimental periods; nlarge = 2391, nsmall = 1931) using Matman 1.1.4 (Noldus Information 246 

Technology 2003). Hierarchies in both troops were strongly linear (Landau’s corrected linearity 247 
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index: h’large = 0.71, h’small = 0.82, p < 0.001 in both) and subsequently standardised to vary 248 

between 0 (most subordinate) and 1 (most dominant) to control for the difference in troop sizes. 249 

Social capital was calculated using a grooming symmetry measure as there is growing evidence, 250 

particularly in primates, that asymmetries in grooming interactions can be traded for foraging 251 

tolerance (e.g. Fruteau et al. 2009). This symmetry measure was calculated as the proportion of 252 

grooming time between two individuals that the focal animal was the groomer, minus 0.5 (to 253 

make balanced relationships 0), multiplied by the proportion of total focal time that the focal and 254 

partner were observed grooming together during focal follows. Finally, dyadic relatedness (r) was 255 

estimated on the basis of 16 microsatellite loci using Wang’s triadic estimator (Wang 2007; see 256 

Huchard et al. 2010 for further details). These data were then used in the analysis of natural and 257 

experimental foraging behaviour to calculate: (1) each forager’s rank, mean social capital and 258 

mean relatedness with other troop members, as individual characteristics of the forager that were 259 

constant across patches, and (2) the mean rank difference, social capital and relatedness between 260 

the focal forager and other patch occupants, which were specific for each patch visit.   261 

 262 

Analysis 263 

 264 

We formulated eight models describing the factors predicted to influence patch departure 265 

decisions, and so patch residency times, by our three types of patch-departure model (fixed-rule, 266 

including pMVT, Bayesian-updating, and learning rules: see Introduction). We then compared 267 

these models’ performances against each other as explanations of the natural and experimental 268 

patch residency times we observed. These models comprised different combinations of three 269 

groups of variables that described, respectively, the forager’s current foraging experience, c, its 270 

recent foraging experience, t, and the broader habitat characteristics, h. Here t is simply the time 271 

the forager spent in the previous patch, whilst c and h are vectors of variables that describe the 272 
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current physical and social characteristics of both the patch and the forager, in the case of c, and 273 

the foraging habitat’s characteristics, in the case of h (see below for details of the variables 274 

included in each vector).  275 

 276 

The simplest patch-departure models assume that a forager’s decision to leave a patch (and so the 277 

time it spends in it) is solely based on a rule fixed by some aspect of their environment. To 278 

explore this approach, our first three models predict patch residency time (PRT) simply from the 279 

forager’s current experience, i.e. PRT = f(c) (model 1), recent experience, PRT = f(t) (m2) and 280 

habitat characteristics, PRT = f(h) (m3), respectively. Such fixed-rule models are often 281 

considered to represent the ‘floor’ on foraging performance (e.g. Olsson & Brown 2006), i.e., the 282 

poorest of performances, so these three models (m1-m3) are intended to act as a baseline against 283 

which the more sophisticated models, that are likely to achieve higher levels of performance, can 284 

be compared (see below). The prescient version of the marginal-value theorem (Charnov 1976), 285 

which assumes foragers are perfectly informed, predicts a forager should leave a patch when their 286 

intake rate in that patch falls below the habitat’s long-term average, or ‘marginal value’. In this 287 

case, our fourth model predicts PRT from a combination of the forager’s current experience and 288 

the habitat characteristics: PRT = f(c + h) (m4). 289 

 290 

Bayesian-updating and learning-rule models suggest that foragers use their recent experiences to 291 

inform their patch-departure decisions. In learning models, foragers possess a valuation of their 292 

environment, a moving average of their foraging experiences up to the previous time step, and 293 

information about the foraging conditions in the current time step. Foraging decisions in the 294 

current time step are made by differentially weighting and combining these two elements 295 

(environmental valuation and current information) into a single value for the current patch or 296 

foraging tactic (Beauchamp 2000; Hamblin & Giraldeau 2009; Kacelnik & Krebs 1985). This 297 
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suggests that, in this study, PRT should be predicted by the previous foraging experience, 298 

representing the forager’s valuation of the environment, and the current foraging conditions, or 299 

PRT = f(c + t) (m5),  approximately describing the simplest learning rule, the linear operator 300 

(Kacelnik & Krebs 1985). Bayesian models, in contrast, suggest that foragers have a perception 301 

of the environment’s distribution of food (rather than a simple valuation), which they update 302 

using their recent experiences, and then combine this information with current foraging 303 

experiences to make their patch-departure decisions (see Dall et al. 2005; McNamara et al. 2006), 304 

thus suggesting: PRT = f(c + t + h) (m6). Finally, there is some evidence that the use of recent 305 

experiences may be contingent on habitat variability, as increases in variability may decrease the 306 

reliability of recent experiences in predicting the next experience, and so informing decisions 307 

(Lima 1984; Valone 1992). Therefore, our final two models develop m5 and m6 further by 308 

including an interaction between the forager’s recent experience and habitat variability:  309 

 310 

PRT = f(c + t + hsd + t × hsd) (m7) 311 

and, PRT = f(c + t + h + hsd + t × hsd) (m8).  312 

 313 

Here, hsd is a vector of variables describing the standard deviation of the mean estimated habitat 314 

characteristics (see below for details). 315 

 316 

The variables included in vectors c, h and hsd were as follows. In models predicting natural PRTs, 317 

the forager’s current experience, c, was described by the patch size, food species and handling 318 

time. In models predicting experimental PRTs, c comprised the patch’s initial food density, 319 

estimated depletion and the focal forager’s estimated satiation. Since the social environment can 320 

also influence a forager’s current foraging experience, c also included (for both natural and 321 

experimental PRT models) the focal forager’s rank, mean social capital and mean relatedness to 322 
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other troop members, and, on a patch-by-patch basis, their mean rank difference, social capital 323 

and relatedness to other patch occupants, plus the number of patch occupants present (linear and 324 

quadratic terms). The variables describing the foraging habitat characteristics, h, reflected the 325 

average patch quality and density. In the natural PRT models, these were the monthly habitat-326 

specific estimates of both food items per patch and food patches per km2; in the experimental 327 

PRT models, these were the mean initial weight of food per patch (g) and inter-patch distance 328 

(m). Finally, in the natural PRT models, hsd described the standard deviations around the 329 

estimates of both the mean number of food items per patch and patch density (hsd was not 330 

explored in the experimental PRT models, since the initial patch quality and density were fixed 331 

with zero variance).  332 

 333 

Models 1 to 8 and a null model (containing no fixed effects) were estimated using generalised 334 

linear mixed models for the natural and experimental PRTs datasets. In both cases, all non-335 

categorical explanatory variables were standardised to have a mean of zero and standard 336 

deviation of one. Natural models included focal follow number nested within focal animal ID, 337 

nested within troop as random effects. Experimental models included focal animal ID, patch ID 338 

and experiment day cross-classified with each other and nested within troop, as random effects. 339 

To account for overdispersion in the PRT data, all models also included an observation-level 340 

random effect and were fitted as Poisson lognormal mixed effects models using a log link 341 

function (Elston et al. 2001) in the package lmer in R (Bates, Maechler, & Bolker 2011; R 342 

Development Core Team 2011). We assessed these models’ performance (nine models in the 343 

natural analyses, seven in the experimental analyses) using Akaike’s model weights. These were 344 

calculated from AIC values, since in all models n/k > 40, where n is the number patch visits and k 345 

is the number of parameters in the maximal model (Burnham & Anderson 2002; Symonds & 346 
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Moussalli 2011). The data and R code used in these analyses are available from the Dryad 347 

repository (doi: 10.5061/dryad.3vt0s). 348 

 349 

 350 

Results 351 

 352 

The baboons visited food patches for a median of 30 seconds (inter-quartile range = 12 – 79 s, n 353 

= 6,175) in natural foraging conditions and 52 seconds (16 – 157 s, n = 8,569) in experimental 354 

foraging conditions. 355 

 356 

Natural PRTs were best explained by the model containing factors predicted by the prescient 357 

marginal value theorem (Akaike’s model weight wi = 0.69, Table 1) but also showed some 358 

support for the model containing factors predicted by a Bayesian-updating rule (wi = 0.27). In 359 

contrast, experimental PRTs were best explained by the model containing factors predicted by a 360 

Bayesian-updating rule above all other models (wi = 0.98, Table 1). In both conditions, the 361 

influence of the foraging habitat’s characteristics on PRTs was consistent with the predictions of 362 

the prescient marginal value theorem (Table 2): the baboons spent less time in food patches when 363 

the environment was characterised by higher quality patches at higher densities. In both 364 

conditions, the model based on a Bayesian-updating rule also showed that baboons stayed longer 365 

in a patch when they had spent more time in the previous patch. The effect of this recent foraging 366 

experience was, however, relatively weak, especially in the natural observations (Table 2). 367 

 368 
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Discussion 369 

 370 

The use of a patch-departure decision rule consistent with a Bayesian-updating process was 371 

strongly supported by the behaviour of the foragers on the experimental food patches. In contrast, 372 

foraging behaviour under natural conditions, whilst showing some support for the use of 373 

Bayesian-updating, showed greater support for a patch-departure rule based on the prescient 374 

marginal value theorem. Furthermore, in both environments our Bayesian-updating models also 375 

suggested that the influence of a single previous foraging experience was relatively weak. Our 376 

discussion first focuses on why these differences in decision-making between the two 377 

environments might occur and what this might suggest about the animals’ abilities to efficiently 378 

exploit different environments. We then consider what these results reveal about how foragers 379 

use their recent experiences in their patch-departure decisions and the implications of these 380 

findings for the modelling of foraging behaviour. 381 

 382 

It is widely appreciated that the collection and use of information by animals is dependent on its 383 

associated costs and benefits (Dall et al. 2005; Danchin et al. 2004). These costs and benefits may 384 

be dependent on individual traits (Koops & Abrahams 2003; Marshall et al. 2012; Webster & 385 

Laland 2011), but also on the characteristics of the surrounding environment and its resource 386 

distribution (Olsson & Brown 2006; Templeton & Giraldeau 1995; Webster & Laland 2008). 387 

Previous work has suggested that differences in the weight a forager places on their most recent 388 

experiences between habitats may be due to these experiences providing more reliable indicators 389 

of future foraging rewards when environments are either more predictable (Devenport & 390 

Devenport 1994; Eliassen et al. 2009; Fortin 2002; Valone 1991; Vásquez, Grossi, & Marquez 391 

2006) or less variable (Biernaskie et al. 2009; Lima 1984; Valone 1992). These alternative 392 

hypotheses may coincide, since less variable environments may also be more predictable – but 393 
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not always, since some patterns of variation, such as seasonal habitat changes, can also be highly 394 

predictable (Eliassen et al. 2009). Our findings are able to distinguish between these two 395 

hypotheses to some extent, and support the former. If environmental variability had influenced 396 

the baboons’ use of recent experiences we would have expected more support for our models 397 

which explicitly incorporated it (models 7 and 8). Instead, the baboons incorporated their most 398 

recent experience into their patch-departure decisions to a greater extent in the more predictable, 399 

i.e. experimental, foraging environment (Table 2). This environment was likely to have been 400 

more predictable as the relative quality and position of each patch remained constant throughout, 401 

and their absolute quality and position only changed once (after 14 days) and three times (after 402 

7,14, and 21 days), respectively (see Fig. 1, and Methods). In contrast, natural foraging 403 

environments, such as at Tsaobis, where food patches consist of multiple plant species, with 404 

different plant parts, whose phenology varies considerably across the year (not only between 405 

species but also between individuals), are inherently much less predictable.  406 

 407 

An ability to flexibly incorporate recent experience, contingent on its reliability, into decision-408 

making should allow foragers to maximise the efficiency with which they exploit different 409 

environments (Devenport & Devenport 1994; Koops & Abrahams 2003; Rodriguez-Gironés & 410 

Vásquez 1997; Valone 1991; Valone & Brown 1989). Such an ability appears to be possessed by 411 

the foragers in this study. This flexibility may also be widely distributed across a variety of taxa, 412 

and not limited solely to cognitively advanced animals such as baboons. A model by Holmgren & 413 

Olsson (2000) demonstrated that incorporating recent experiences during Bayesian foraging was 414 

possible using a simple three-neurone network. Furthermore, there is growing evidence, from a 415 

range of taxa, that the incorporation of recent experiences into foragers’ decision-making can 416 

vary between environments (insects: Biernaskie et al. 2009, birds: Alonso et al. 1995; Valone 417 

1991, non-primate mammals: Devenport & Devenport 1994; Vásquez et al. 2006).   418 
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 419 

The model of forager behaviour predicted by Bayesian-updating was consistently supported over 420 

the model predicted by learning rules. This was true for both natural and experimental 421 

environments. Both Bayesian-updating (Green 1984; McNamara et al. 2006; Oaten 1977) and 422 

learning rules (Beauchamp 2000; Hamblin & Giraldeau 2009; Kacelnik & Krebs 1985) have been 423 

proposed as descriptions of how foragers incorporate past experiences into their decision-making. 424 

Our results seem to suggest that the former is more accurate in our system. This difference in 425 

performance may be explained by the fact that learning rules, particularly the linear operator rule 426 

that our model represents, are often simpler than Bayesian-updating approaches and may be less 427 

responsive to environmental variability (Eliassen et al. 2009; Groß et al. 2008). There is, 428 

however, evidence that the best way for a forager to incorporate previous experiences into their 429 

foraging decisions can be dependent on the underlying resource distribution (Eliassen et al. 2009; 430 

Olsson & Brown 2006; Rodriguez-Gironés & Vásquez 1997). Thus, although our study favours 431 

the Bayesian-updating approach, another study in a different setting might not. Furthermore, in 432 

our study we built each of our candidate models from the general theoretical principles 433 

underlying each approach. However, within each approach, different methods for incorporating 434 

previous experiences have been proposed, e.g. the ‘linear operator’ versus ‘relative payoff sum’ 435 

methods for learning rules (Beauchamp 2000; Hamblin & Giraldeau 2009), and the ‘current 436 

value’ versus ‘potential value assessment’ methods for Bayesian updating (Olsson & Holmgren 437 

1998; van Gils et al. 2003). Another study, which was able to test more specifically these 438 

different methods, might find a narrower gap in performance between the learning and Bayesian 439 

approaches. 440 

 441 

The influence of the baboons’ most recent experience on their patch-departure decisions, whilst 442 

generally important, was still relatively small, suggesting that, where foragers inform such 443 
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decisions with their recent experiences, they do so incrementally (Amano et al. 2006; Beauchamp 444 

2000; Biernaskie et al. 2009; Hamblin & Giraldeau 2009). That is, it is not just the previous 445 

foraging experience that is important but the experiences before that, and so on. This is consistent 446 

with the concept, common across models of imperfectly-informed foragers, that an individual’s 447 

estimate of the environment’s distribution of resources (Bayesian-updating) or value (learning 448 

rules) is an aggregate of their past experiences, and that individuals are continually updating this 449 

estimate with each subsequent experience (Kacelnik & Krebs 1985; McNamara et al. 2006). If, as 450 

here, the influence of each of these experiences is low, then as an increasing number of previous 451 

experiences are remembered this perceived distribution or valuation will increasingly 452 

approximate the true distribution (Koops & Abrahams 2003), i.e. the perfect knowledge assumed 453 

by the prescient marginal value theorem (pMVT; Charnov 1976). The predicted effects of patch 454 

quality and density characteristics in our best supported models (table 2) were consistent with the 455 

pMVT’s prediction, suggesting that the baboons’ perception of their environment did incorporate 456 

many past experiences and was a good approximation of perfect knowledge. Once again, there is 457 

reason to believe that this finding is not specific to baboons, since (1) a weak effect of a single 458 

recent experience on foraging decisions has been shown many times previously (Amano et al. 459 

2006; Beauchamp 2000; Biernaskie et al. 2009; Hamblin & Giraldeau 2009), and (2) there is 460 

evidence from other taxa that foragers can incorporate experiences over many days into their 461 

decision-making (birds: Valone 1991; non-primate mammals: Devenport & Devenport 1994; 462 

Vásquez et al. 2006). Furthermore, in theoretical comparisons, prescient (i.e. perfect-knowledge) 463 

foragers perform best (Eliassen et al. 2009; Koops & Abrahams 2003; Olsson & Brown 2006), 464 

and so it would seem likely that there is widespread selection for the ability to retain and use as 465 

many experiences as possible in foraging decision-making. 466 

 467 
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The finding that the baboons’ perception of their environment included many past experiences 468 

and approximated perfect knowledge has two implications. First, it may provide an extra 469 

explanation for why the pMVT model outperformed the Bayesian-updating model in the natural 470 

foraging conditions. Here, the baboons were assigning very little weight to each foraging 471 

experience, which, as we have argued, is expected in this more natural, unpredictable 472 

environment. The inclusion of the single previous foraging experience variable in the Bayesian-473 

updating model would therefore have provided very little extra explanatory power over the 474 

pMVT model, where this variable is absent, whilst being penalised 2 AIC points for the inclusion 475 

of the extra parameter. The AIC score difference of 1.9 points between the two models supports 476 

this argument. Thus, the baboons may have been using previous experiences in the natural 477 

foraging habitat, but we were less able to detect this given the relatively low weight assigned to 478 

each foraging experience. Indeed, it is hard to imagine how the baboons would have acquired 479 

sufficient knowledge of their environment to follow the pMVT were it not for the gradual 480 

accumulation of information through a process like Bayesian-updating or learning. It has also 481 

been noted that, where foragers update their information about the environment in such a gradual 482 

manner, distinguishing an updating from a non-updating strategy may be difficult (Eliassen et al. 483 

2009).  484 

 485 

The second implication is more important. If a forager’s perception of its environment 486 

approximates perfect knowledge, then, in theory, its behaviour should also approximate 487 

optimality (Koops & Abrahams 2003), within the scope of its informational or physiological 488 

constraints (Fawcett et al. 2012). Our empirical support for this theoretical prediction suggests 489 

that the assumption of such knowledge by the prescient marginal value theorem may not be so 490 

unrealistic. Indeed, the predictions of the pMVT have received widespread qualitative support 491 

(Nonacs 2001). Modelling any natural process requires researchers to trade-off model accuracy 492 
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and simplicity (Evans 2012). The present study, and previous research, indicates that models of 493 

patch-departure decisions that consider how foragers incorporate past experiences into these 494 

decisions will usually provide more realism and accuracy than simpler models. However, our 495 

findings also suggest that when attempting to predict foraging behaviour, the prescient marginal 496 

value theorem may provide a simpler approach without sacrificing a great deal of accuracy.  497 

498 
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Figures legends 642 

 643 

Figure 1: Schematic of the foraging-experiment’s patch (a) layout and (b) dimensions. For each 644 

troop patch food content, f, was varied between 11.1 ± 0.1 grams/m2 (low, first 14-day period) 645 

and 16.7 ± 0.1 g/m2 (high, second 14-day period) of loose dried maize kernels. Inter-patch 646 

distance (d) was varied within each 14-day period. In the first period it was set at 25 m (low) for 647 

the starting 7 days and 50m (high) for the remaining 7 days, and vice versa for the second period. 648 

Patch size was constant within troops. Large patches (A, D and E) were set at 80 m2 (a = 10 m, b 649 

= 10 m, c = 6 m) for the small troop and 96 m2 (10, 12, 6) for the large troop. Small patches (C 650 

and D) were set at 20m2 (5, 5, 3) for the small troop and 27 m2 (6, 6, 3) for the large troop.  651 
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Table 1: Model performance in explaining patch residency times, under natural and experimental conditions. Models in bold make up the 95% 652 

confidence model set. AIC = Akaike’s information criterion, ∆AIC = difference between AIC score and lowest AIC score, wi = Akaike’s model 653 

weight 654 

natural     experimental    

no. patch-departure rule from predictions of : AIC ∆AIC wi  no. patch-departure rule from predictions 

of :  

AIC ∆AIC wi 

4 prescient marginal value theorem 28342.16 0.00 0.69  6 Bayesian updating  48410.75 0.00 0.98 

6 Bayesian updating  28344.06 1.90 0.27  5 learning-rule   48418.16 7.41 0.02 

7 learning-rule dependent on habitat variability  28348.33 6.18 0.03  4 prescient marginal value theorem 48429.22 18.47 0.00 

8 Bayesian updating dependent on habitat 

variability  

28349.61 7.46 0.02  1 fixed rule based on current foraging 

condition  

48436.57 25.82 0.00 

1 fixed rule based on current foraging condition  28377.87 35.71 0.00  3 fixed rule based on habitat's patch 

configuration  

49161.69 750.94 0.00 

5 learning-rule 28379.16 37.01 0.00  2 fixed rule based on recent foraging 

experience  

49174.14 763.39 0.00 

3 fixed rule based on habitat's patch 29323.18 981.02 0.00   null 49200.07 789.32 0.00 
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configuration  

2 fixed rule based on recent foraging experience  29521.79 1179.64 0.00       

  null 29543.59 1201.43 0.00       

 655 

Table 2: The influence of previous foraging experience and foraging habitat characteristics (effect sizes, β ± s.e.) on patch residency times (PRTs) 656 

in the best models (95% confidence set, see table 1) under natural and experimental conditions 657 

natural PRT models (model number)   experimental PRT models (model number) 

predictors prescient 

marginal value 

theorem (m4) 

Bayesian-

updating (m6) 

 predictors Bayesian-

updating (m6) 

time in previous patch 

(s) 

 0.006 ± 0.02  time in previous patch 

(s) 

0.08 ± 0.02 

mean number of food 

items per patch 

-0.11 ± 0.03 -0.11 ± 0.03  mean weight of food 

per patch (g) 

-0.56 ± 0.15 

mean number of food 

patches per km2 

-0.16 ± 0.02 -0.16 ± 0.03  inter-patch distance 

(m) 

0.10 ± 0.04 
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