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Abstract—With steadily increasing parallelism for high-
performance architectures, simulations requiring a good strong
scalability are prone to be limited in scalability with standard
spatial-decomposition strategies at a certain amount of parallel
processors. This can be a show-stopper if the simulation results
have to be computed with wallclock time restrictions or as
fast as possible. Here, the time-dimension is the only one left
for parallelisation and we focus on Parareal as one particular
parallelisation-in-time method.

We present a software approach for making Parareal paralleli-
sation transparent for application developers, hence allowing fast
prototyping for Parareal. Further, we introduce a decentralized
Parareal which results in autonomous simulation instances which
only require communicating with the previous and next simula-
tion instances. This concept is evaluated by solving the rotational
shallow water equations parallel-in-time: We provide speedup
benchmarks and an in-depth analysis of our results based on
state-plots and a performance model. This allows us to show the
applicability of the Parareal approach with the rotational shallow
water equations and also to evaluate the limitations of Parareal.

Index Terms—high-performance computing, parallelization in
time, parareal, rotational shallow water equation, decentralized

I. INTRODUCTION

Over the last decade an improvement in the performance
of simulations executed on supercomputers has been accom-
plished by increasing the number of parallel data processing
pipelines on the core as well as on the instruction level.
This is in contrast to previous decades where performance
was mainly improved through increasing the CPU’s clock
rate which nowadays almost stagnated (see [1]). This recent
type of architectural development has a significant impact
on strong scaling problems: the spatial decomposition is at
one point dominated by the communication latencies at a
fixed number of processors and no further improvement in
performance can be achieved through the utilization of more
computing cores. In combination with MPI-related restrictions,
using more cores can even lead to less performance. Since
the trend of increasing supercomputer performance through
more data parallelisation is likely to continue, this will have
a significant impact on the future of HPC applications and
in particular for problems with strong scaling. In this paper,
we focus on simulations with run-time requirements such
as sub-realtime (for weather and climate, e.g.). With the

aforementioned tendency to increase the number of parallel
data processing pipelines, this requires exploiting new ways of
parallelisation, including those gained by using insights from
novel mathematical formulations.

Our work is based on the parallel-in-time iterative method
called ’Parareal’ [2]. Here, the simulation time is divided into
coarse time intervals. Two different propagators are used: a
fine propagator (the default for standard space-parallelisation
methods) and a coarse propagator, which has to be of lower
complexity than the fine propagator over the coarse time
interval. A coarse propagator (approximation) is used to
compute an approximation of the solution at the start of each
coarse time interval. The Parareal parallel-in-time method then
uses the coarse propagator to estimate solutions at the end of
the coarse time intervals. This is followed by a combination of
fine and coarse propagators in each coarse time interval and
is used as an iterative method to improve the approximated
solution. This can be be executed massively parallel, thereby
introducing new degrees of parallelisation into the simulation,
since data flow only exists between coarse time intervals. Such
an approach can be implemented event-based with a dynamic
task scheduling library [3] or with a centralized manager-
worker task distribution [4]. However, the potentials of the
locality properties of the data flow with the Parareal method
were so far not considered in these works.

In this work our application is given by solving the nondi-
mensional Rotating Shallow Water Equations (RSWE) as test
equations (see Sec. III). The RSWE are a set of nonlinear
hyperbolic partial differential equations which are derived
from integrating the Navier-Stokes equations over their depth
under the assumption that the vertical scale is significantly
shorter than their horizontal scale, as is generally the case in
large-scale atmosphere and ocean simulations. These equations
are often used in the climate model community to test and
develop dynamical cores [5]. For the purposes of this work,
we consider them in the following abstract form [6], [7]:

∂u

∂t
+

1

ε
Lu +N (u,u) = D(u), u(0) = u0 (1)

where the unknown vector, u(x, t) consists of the two horizon-
tal velocities in the x- and y-directions and the water height.
Here ε is a small parameter corresponding to the Rossby
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number, the linear operator, L, is assumed to have purely
imaginary eigenvalues, the quadratic nonlinear operator, N , is
assumed to be significantly more expensive to compute than
the linear operator and D is some form of dissipation.

It is the small parameter, ε, that causes the horizontal
parallelisation to saturate since it creates rapid oscillations (os-
cillatory stiffness) that interact with the nonlinearity. Because
of this we are presented with the issue that the computation
of the solution will require prohibitively small timesteps
for accuracy, which is a requirement for fast convergence
(decreased wallclock time) of the Parareal method. In order
to take large time steps ∆T � ε for the coarse propagator
and still get convergence of the Parareal method, we use a
temporally homogenized version of equation (1).

We first give an overview of the Parareal parallel-in-time
method in Sec. II which can be in general applied to a variety
of simulations. In this work we focus on simulations based on
the rotational shallow-water equations (RSWE) to be paral-
lelised in time and briefly discuss their Parareal formulation
in Sec. III. This is followed by our decentralized Parareal
implementation and we discuss several aspects regarding the
Parareal algorithm implemented in a decentralized manner in
Sec. IV: (a) MPI locality: We discuss communication aspects
regarding the locality of the Parareal algorithm which was
so far not considered in previous approaches (see [3], [4]).
(b) Software engineering: we present a software abstraction
which hides the control and communication required for a
parallelisation-in-time from the developer. This offers a fast
prototyping platform to test the usability of Parareal. (c)
Decentralized control of Parareal: We present a decentralized
control of the Parareal algorithm. This is based on a state
machine with states which are communicated to the next
coarse time interval which can trigger transitions of these
states. This avoids a single-point-of-failure which would be the
case with a centralized approach. We further show, how this
leads to an elegant way of implementing the sliding window
[3] for Parareal.

For large-scale distributed memory systems, MPI is the de-
facto standard for parallelization. Therefore, we decided to
built up the Parareal simulation directly on this interface. For
sake of an efficient implementation of the Parareal method,
we require a non-blocking communication which immediately
sends the data to the next MPI rank. In Sec. V, we briefly
describe performance issues regarding missing quality-of-
service in the MPI specification and discuss solutions with a
thread-based blocking communication. In Section VI, we then
evaluate the aforementioned concepts by solving the rotational
shallow water equations (RSWE) with the aforementioned
Parareal method and the decentralized Parareal approach and
discuss this in-depth.

II. PARAREAL

Here, we give an overview of the Parareal algorithm which
is employed in this work for the parallelisation-in-time. This
algorithm was initially presented in [2], but has its roots in
earlier works by [8]. Particular attention has been paid to the
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Fig. 1. Sketch of the Parareal algorithm for second iteration with the focus
on the third coarse time interval: After computing the coarse timestep (1)
and the fine time stepping (2) as part of the first iteration, the difference is
computed and buffered (3). Then, the next coarse time step is executed based
on updated initial values for this coarse time interval (4). The result of this
coarse time step is then corrected with the previously computed difference
(5).

parallel implementation of the Parareal method by [9]. For a
more detailed review of the history of the Parareal method,
the reader is referred to [10]. A sketch of the algorithm for
ODEs is given in Fig. 1.

Consider some general system of Ordinary Differential
Equations of the form:

du

dt
= f(u), u(0) = u0, t ∈ [0, T ] (2)

Where f(u) is some operator which is not necessarily linear.
This type of system of ODEs may arise through the method
of lines solution of a PDE. The Parareal algorithm is defined
by two propagation operators, G(t2, t1,u1), termed the coarse
propagator, and F(t2, t1,u1), termed the fine propagator.
The coarse propagator provides a coarse approximation to the
solution with the initial condition u(t1) = u1, while the fine
operator provides a more accurate approximation of u(t2).

We begin with some initial approximation, U0
n, for n =

0, 1, . . . , N corresponding to times tn. This approximation is
found by the application, in series, of the coarse propagator,
i.e.:

U0
n+1 = G(tn+1, tn,U

0
n), U0

0 = u0 (3)

We then apply the correction iteration for k = 0, 1, 2, . . .:

Uk+1
n+1 = G(tn+1, tn,U

k+1
n )+F(tn+1, tn,U

k
n)−G(tn+1, tn,U

k
n)

(4)
We shall term equation [4] the Parareal algorithm. We note
that as k →∞, it converges to:

Un+1 = F(tn+1, tn,Un) (5)

That is to say, the Parareal algorithm converges to the accuracy
of the fine propagator. It has been proposed that the use of the
Parareal algorithm permits this level of accuracy to be achieved
more quickly in terms of wallclock time. Only the first step
(equation (3)) must be performed sequentially in time. For
equation (4), there is no requirement of serial time and so
processors which would otherwise be unused may now be used
to refine the approximation.



It is worth noting that the fine propagator must solve the
governing equation fully and to the desired accuracy. Several
different approaches have been taken to the coarse propagator,
however. G may in practice derive from a coarser timestep
(e.g. [2]), a coarser space discretisation (e.g. [11]) and/or a
simpler physical model (e.g. [12]).

III. ROTATIONAL SHALLOW WATER EQUATIONS

It is worth noting that Parareal methods have been success-
fully applied in the past to problems which are often dominated
by dissipative stiffness (cf. [13]–[16]). The Parareal method
was, however, not computationally feasible for weather and
climate simulations until recently due to oscillatory stiffness.
In this work we discuss parallelisation of the asymptotic
parallel-in-time method [7] which permits the Parareal method
to be applied to oscillatory-stiff problems.

The approach used here for the coarse timestep uses both a
longer timestep and a different physical model. Following the
work of [6] and [17], the coarse solver uses a time homog-
enized version of the RSWE that is based on an asymptotic
expansion [7]:

u(t) = e(−t/ε)Lū(t) +O(ε) (6)

where the slowly varying function ū(t) satisfies the following
reduced equation:

∂ū

∂t
+ N̄ (ū, ū) = D̄ū (7)

Finally, the nonlinear and dissipative terms are given by the
following time averages, performed with ū(t) held fixed:

N̄ (ū(t), ū(t)) = lim
T→∞

1

T

∫ T

0

esLN (e−sLū(t), e−sLū(t)) ds

(8)

D̄(ū(t)) = lim
T→∞

1

T

∫ T

0

(esLDe−sL)ū(t) ds (9)

In order to use this approximation for the coarse solver, we use
introduce a smooth kernel, ρ(s), 0 ≤ s ≤ 1 which is chosen
such that the length T0 of the time window for the averaging
is as small as possible, and approximate equation [8] as:

N̄ (ū(t)) ≈ 1

T0

∫ T0

0

ρ

(
s

T0

)
esLN (e−sLū(t)) ds

≈ 1

M̄

M̄−1∑
m=0

ρ

(
sm
T0

)
esmLN (e−smLū(t))

(10)

The above discretization of the long time averages can be in-
terpreted as a variant of the Heterogeneous Multiscale Method
(HMM) [18]. The key point of using such a coarse solver is
that all the time derivatives u(t) in equation (7) are formally
independent of ε, and therefore a standard integrator may be
used on (7) with large time steps ∆T � ε.

In short, we use the averaged equations above for the coarse
timestepping, while the fine timesteps involve the full solution
of the PDE, using whichever method is preferred. In this work,
we have applied Strang splitting, although this is by no means
necessary.

IV. DECENTRALIZED PARAREAL

During the Parareal iterations, the only dependencies be-
tween the different coarse time intervals are given by the input
and output data streams from and to the time-adjacent coarse
time interval. Such a locality which is further discussed in
Section IV-A indicates that a decentralized implementation
without the requirement of a centralized manager is feasible.
We introduce a software approach to allow a reutilisation of
the software for implementations of different kind of solvers
and we present the required interfaces in Section IV-B. The
Parareal controller implements the logic behind the decentral-
ized Parareal implementation and is presented in Section IV-C.

A. Strict MPI locality with ring-communication

In our current implementation, each rank is responsible for
executing computations for a single coarse time interval. Let
R be the total number of MPI ranks and i the enumeration
of the different MPI ranks in the world communicator. To
support a sliding window, the send/recv operations are then
accomplished in a ring-like communication scheme: Rank
i exclusively sends data to rank i + 1 mod R and also
exclusively receives data from rank i−1 mod R. There is no
communication with any other ranks. In particular there are no
collective operations such as barriers and reduce operations.
Further, no centralized controlling instance is required.

Such connectivity properties can then be e.g. exploited by
regular mesh-like network topologies: In case of such a
network topology, a continuous space-filling curve (SFC),
e.g. based on a two-dimensional Hilbert or Peano curve [19]
can be used to assure only a single HOP between compute
ranks.

With these local properties, the ranks only communicate
with the previous and next rank which can avoid possible
latencies and network congestions.

B. Simulation layer

Each rank executes one instance of the simulation for
a given coarse time interval. With the Parareal algorithm
given in its generic form (see [2] and Section II), the MPI
parallelisation can be hidden from the simulation developer. In
this Section, we describe the required interfaces with a focus
on making the parallelisation-in-time via MPI transparent to
the simulation developer. Please note that for sake of clarity,
we skip the description of debugging and plotting features.
We group the interfaces in three different types: Setup, time
stepping and Parareal difference/correction. Several buffers are
used and are denoted by u{S,F,C,D,O} (Start, Fine, Coarse,
Difference, Output).

1) Setup: The setup routines either depend on the initial
conditions at t := 0 or simulation data forwarded by a previous
coarse time frame.
• constructor():

Constructor method for one-time-only initialization of the
simulation instance.

• setSimulationTimeframe(tstart, tend):
Set the time frame for the coarse time interval.



• setupInitialValues():
Setup the initial values at t = 0

• setSimulationData(data):
Set simulation data uS := data.

The constructor initializes the simulation only once for each
rank. This allows an efficient sliding window by only requiring
to set the new simulation time frame via setSimulationTime-
frame and by the new initial values via setSimulationData
without requiring reinitializing e.g. FFT computations.

2) Timestepping: The timestepping interfaces are required
to execute the fine and coarse timesteps. The results of these
time stepping methods are then made available via getters.
• runTimestepFine()

Compute the solution at tend with the fine timestepping
method: uF := F(tend, tstart, u

S)
• runTimestepCoarse()

Compute the solution at tend with the coarse timestepping
method: uC := G(tend, tstart, u

S)
• getDataTimestepFine()

Return the solution uF

• getDataTimestepCoarse()
Return the solution uC

3) Parareal different/correction: Finally, the solutions of
the different timestep methods have to be merged together
(see Eq. (4)) in a certain way without race conditions which
can be accomplished by the following interfaces:
• computeDifference()

Compute the difference between the fine and coarse time
stepping uD := uF − uC .

• computeOutputData()
Compute the data to be forwarded to the next timestep
by applying a correction to the solution from the coarse
timestep: uO := uC + uD. Note, that uC is based on the
coarse timestep executed after calling computeDifference.

• getOutputData()
Return the reference to the data uO to be forwarded to
the next coarse timestep interval.

• getErrorEstimation()
Return a scalar value as an error estimation. This is
typically based on a norm of the computed solution and
is required for the convergence test.

These interfaces contain no information on the adjacent MPI
ranks and hide the connectivity from the simulation developer.
Next, we discuss the logic which triggers the execution of
these interfaces and which orchestrates several coarse timestep
intervals.

C. Parareal controller
The Parareal controller implements the entire logic behind

our decentralized Parareal approach. It is mainly based on a
state machine with the transitions depending on (a) the current
state, (b) the state information forwarded by the previous rank
and (c) the convergence test. After initialization, the first rank
is set to the [setup] state and all other ranks to the [idle]
state. All possible states are discussed in more detail in the
following list and an overview is given in Fig. 2.

first in sliding
window

› fine time step

setup

› setup initial values at t=0
› run timestep coarse
› send coarse timestep data

last converged

› recv data

idle

› recv data
› set simulation data
› run timestep coarse
› send coarse timestep data

follower in
sliding window

› fine time step
› compute error
› recv coarse data
› run timestep coarse
› correction of coarse data
› convergence check
› if converged:
     status = idle
› send output data

exit

converged and
last time interv.

last coarse
time interval

simulation output
data available and
not first in sliding

window

converged
and not last
timeslice

no convergence

converged

m
ore coarse tim

e

intervals left

exit signal
received

sim
ulation data available

and first in sliding win.

Fig. 2. Overview of the different states of the Parareal controller simulation
instances. Each box represents one of the six states. A short description of
the most important operations executed for each state is given in below each
state box. The transitions depend on the convergence or state behaviour. The
receive/send operations are done from/to the previous/next ranks only.

• [setup]
The first rank i = 0 is set to the [setup] state. This
triggers the setup of the initial values at t=0. Then, a
coarse timestep is computed and the data forwarded to
rank 1. After this setup, the state changes to [first in
sliding window].

• [first in sliding window]
A fine timestep is executed. Since this is the first coarse
time interval in the sliding window, further Parareal
iterations would not yield an improvement in the solution.
Therefore, the solution of the just computed fine timestep
is forwarded to the next rank and the state is set to idle.

• [follower in sliding window]
A follower in the sliding window first executes the
fine timesteps (runTimestepFine). Then, the difference
between the solution of the coarse and fine timesteps
are computed (computeDifference). This is followed by
waiting for new simulation data at tstart from the pre-
vious rank which is then used for executing a coarse
timestep (runTimestepCoarse). The solution of the coarse
timestep is then corrected by the previously computed
difference and the result forwarded to the next rank
(computeOutputData).
The state change depends on the previous coarse time
interval: In case of no convergence of the previous coarse
time interval, the state is unchanged. With a convergence
in the previous coarse time interval and the current one,
the state is changed to [idle]. Otherwise, the state of
the coarse time interval becomes the [first in the sliding
window].



• [idle]
An idling state checks for messages from previous ranks.
Due to our asynchronous and decentralized approach, it
is possible that more than one simulation data states are
already enqueued in the receive buffer. Therefore, we
probe for such additional messages and in the case that
new simulation data is already available, we drop the
previous one and read this next message. Depending on
the state of the previous rank, the state is changed to
[follower in sliding window] or [first in sliding window].
In case of receiving a converged state from the previous
rank, the state is changed to [last converged].

• [last converged]
This state can be only reached if the last coarse time
interval in the entire simulation time frame was reached.
A transition to this state is either triggered via the
first/follower in case of a convergence of the last coarse
time interval or by receiving this state by the previous
coarse time interval (see transition from [idle]). During
this state, messages from previous ranks are still received
to assure that no network congestion occurs. This assures
that no messages with simulation data are congesting
the sending queues which could otherwise result in a
deadlock when using blocking sends in an additional
thread (see Sec. V). After transition to this state, the [exit]
state is send to the next rank who can receive this message
only, if all other simulation data messages were read.

• [exit]
With the algorithm presented in [last converged], a
transition to [exit] is done if receiving the [exit] signal.
After assuring that all messages were send in the sending
queue, this instance of the coarse time interval of the
Parareal simulation exits.

V. NON-BLOCKING COMMUNICATION

With MPI [20] being the de-facto standard for parallelisation
on large-scale distributed systems, we focused on building
up the Parareal simulation on this interface. For efficiency
reasons, two important issues have to be considered: (1) The
output of each coarse time interval has to be forwarded as
fast as possible to the next coarse time interval, (2) The
computation of the fine time stepping and hence also of the
convergence via Parareal iteration has to be started as soon
as possible. At first glance, it would appear that this could
be accomplished by non-blocking send interfaces from the
MPI. However, the MPI description only assures the required
property (2): ”A nonblocking send start call initiates the send
operation, but does not complete it. The send start call can
return before the message was copied out of the send buffer.”
[20]. Here, it is not assured that the message is sent as fast as
possible to the receiver as required by property (1). We refer
the interested reader to [21].

As soon as the domain resolution for our simulations was
increased to 642, we encountered significant reduction in
Parareal performance. A detailed analysis shows a serializa-
tion of the communication, see Fig. 3. Here, we can see a

Compute ranks
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a
llc
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ck

 t
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e

Fine time stepping

Coarse time stepping

Idle time

Converged

Fig. 3. Example of a serialized Parareal algorithm due to delayed sending
of messages with a problem size of 642 ·3 ·8 (3 conserved quantities, double
precision) with non-blocking communication: The messages which are sent
after the coarse time step (red bars) with a non-blocking send (isend) are not
immediately sent to the next MPI rank. Therefore, the coarse time step of the
next coarse time step interval is executed only after the message is send and
received. Since this message is sent only after the fine time steps (blue bars),
this leads to a serialization of the Parareal algorithm.

serialization of the communication despite using non-blocking
communication. Therefore, the entire Parareal algorithm is
basically serialized and no performance speedup is gained. The
wallclock time for running the simulation is even increased
due to two overheads: the coarse time interval which has to be
additionally computed without contributing to the final result
and the communication overhead of communicating data to
the next MPI ranks.

We tested several variants to force sending of the message as
soon as possible. Such results are MPI implementation specific
and for this evaluation, we used IntelMPI.

• Interleaving each fine timestep computation with an MPI
Test:
This did not result in any significant change in perfor-
mance.

• Two threads for sending and receiving:
For the sender thread, the messages are stored in a queue
and dequeued by the sender thread. These messages are
then sent with a blocking MPI ssend. For the receiving
thread, the messages are received and stored to a queue
and dequeued by the main thread in case of requesting to
receive a message. This led to significant performance
decreases. We account for that by busy waiting for
receiving messages and hence resource conflicts due to
pre-emptive scheduling. Hence, the computing resource
was not mainly used for simulations anymore, but also
to wait for messages.

• Single sender thread:
Using only a single sender thread avoided the aforemen-
tioned resource conflicts due to busy-waiting. This led to
the expected immediate sending behaviour.

The results in the next Section are based on the single sender
thread implementation.



VI. RESULTS

We conducted several studies based on the RSWE (Sec. III)
in combination with our decentralized parareal parallelisation
(Sec. IV) and the single sender thread (Sec. V). These studies
were focused on a particular set of parameters which are set
as follows: The benchmarks were conducted with different
resolutions r ∈ {82, 162, 322, 642, 1282} for the simulation
domain. We use a fine time step size of 0.001 which is
sufficiently small for stability reasons for all values of r
regarding the CFL condition. For the Parareal method, we use
a coarse time step size of 0.1, hence we execute 100 fine
time step sizes within a single coarse time step. Furthermore,
we keep ε fixed to 0.1 and use a Gaussian distribution
1
2 exp−5((x− π)2 + (y − π)2) for the initial values. The sim-
ulation is executed over 40 seconds of wave propagations. The
convergence test is based on the data which is forwarded to the
next coarse time interval. Here, we use the mimimum of the L2

and Lmax norm and set the threshold for the convergence test
to 10−5. All benchmark studies are performed with the sender
thread described in (Sec. V) on the MAC Cluster system1 on
the Intel Sandy bridge partition.

A. Scalability

We conducted scalability benchmarks for up to 128 cores
with the results given in Fig. 4. The runtime was restricted
to 30 minutes to account for real-time requirements which
was the original motivation of the Parareal approach. For the
single-core performance, we only used the fine time stepping
method without any communication and Parareal overheads.
This performance is used as the baseline in the following.
We can see an increase of wallclock time for executing the
simulation on two cores. We account for that by (a) the
additional time required for the coarse time stepping, (b) the
communication overheads of sending the simulation data to
the next MPI rank and (c) the convergence test which requires
at least two iterations. In particular because of issue (c), there
cannot be any performance increase of the Parareal method
with only two coarse time steps and by using a convergence
test. By using four coarse time intervals in the sliding win-
dow, we already gain a robust speedup for all considered
resolutions. Utilizing 128 cores for the parallelisation-in-time,
we get speedups of (8.64, 7.74, 8.54, 6.66) for the resolu-
tions (82, 162, 322, 642), respectively. Here, we like to remind
that the Parareal approach is intended to yield performance
speedups where traditional parallelisation-in-space methods
reached their scalability limits.

B. Getting insight into Parareal

In this section, we discuss the Parareal performance in detail
based on the change of the states over time of our decentralized
Parareal approach. Note that for sake of a better overview, we
only show the first few seconds of the simulation wall clock
time. We selected two simulation-state plots from the bench-
marks of the previous section with different characteristics.

1http://www.mac.tum.de/wiki/index.php/MAC Cluster
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Fig. 5. Example for state overview with 32 compute ranks (columns).
Convergence is indicated by a black bar. At the beginning of the simulation,
we can see a large idle time (grey bars).

In these state plots, the red colour denotes the time for the
coarse time stepping, the blue colour denotes the time for the
fine time stepping, the grey colour accounts for idling cores
and the black line annotates convergence of the solution and
therefore an advance of the sliding window.

The first state plot is given in Fig. 5 and is based on a
simulation with a resolution of 322 with the Parareal method
executed on 32 cores. We can observe the grey area on the
top of the plot which refers to unused resources. Over this
time, these resources do not contribute to computing the results
until the first coarse timestep solution is received. Regarding
the convergence, we observe that it takes about 5 iterations
until the solution converged. After a certain simulation time,
all resources are involved in the iterative Parareal corrections
and contribute to the final results. This accounts for the steady
decrease of the simulation time for the considered resolution
as depicted in Fig. 4.

Next, we investigate a smaller problem size of 16 and have
a closer look on the wallclock times of Fig. 4 which are
given by (113.59, 63.80, 60.67) for using (32, 64, 128) cores,
respectively. Here we can observe that almost no performance
gain is obtained by increasing the number of cores from 64
to 128 cores. For 128 cores, the state plot which is given in
Fig. 6 shows a significant amount of idling time.

Next, we develop a simplified performance model for the
Parareal approach for a better understanding of this idling
time. Let R be the number of compute resources with each
resource being one coarse time interval in the sliding window.
Furthermore, let TC be the wallclock time for coarse timestep,
TF the wallclock time for fine time step, Tx the wallclock time
for data exchange and I the average number of iterations until
the system converges. Then, the overall computation time for I
iterations, considering a computation of both a fine and coarse
time step, is given by (TC +TF ) · I . Here, we assume that the
time Tx for sending the simulation data to the next coarse time

http://www.mac.tum.de/wiki/index.php/MAC_Cluster
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in the computations.

step only delays the transfer and not the fine time stepping. In
the case of idling resources (during setup or after successful
convergence), it takes TC +Tx to compute the coarse timestep
and to propagate this as initial values to the next resource.
This leads to a natural limitations of the maximum number of
running resources of

Rmax :=
(TC + TF ) · I
TC + Tx

For the state-plot given in Fig. 6, we use I = 5 for the num-
ber of convergence iterations and determine TC = 0.05353 and
TF = 0.55305. Since the coarse timestep is already above the
order of magnitude of milliseconds, we assume the time for
communication to be negligible. Then, the maximum number
of resources is given by

Rmax :=
(0.05353 + 0.55305) · 5

0.05353
= 56.66.

Comparing this with the state-plot in Fig. 6, this closely
matches the resource utilization of about 50% of the 128 cores.
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Fig. 7. Each line represents the maximum resource utilization for a given
number of iterations until convergence is reached depending on the ratio
between the fine and coarse time stepping. Using more resources would only
lead to an increase of idling resources.

This clearly shows the importance of the wallclock time
ratio of the coarse timestep to the fine time steps. Therefore
we further evaluate the potential of the Parareal approach



by plotting the maximum number of non-idling resources
depending on the ratio between the coarse and fine time step
size and the number of iterations in Fig. 7. Here, we can see
that we have only one option to further utilize more resources
for a given number of iterations: We have to execute more fine
time steps per coarse time step to increase the ratio. Therefore,
to exploit a massive parallelism with a Parareal parallelisation-
in-time, coarse time step solvers are required which allow
arbitrarily large time steps.

VII. CONCLUSION AND OUTLOOK

We first presented a software approach for a realization of
a Parareal controller. This approach hides the complexity of
the Parareal approach and its requirement of MPI parallelisa-
tion from the implementation of the problem to be solved
parallel-in-time. Here, it is required that specific interfaces
be implemented which we described in this work. Now, this
allows fast prototyping of other ODE/PDE solvers with the
Parareal method and with an MPI parallelisation hidden from
the developer.

Second, we presented a decentralized realization of the
Parareal method. With the Parareal method, only a commu-
nication from/to the previous/next coarse timestep interval is
required. Our decentralized approach utilizes this locality by
a state machine for each coarse time interval. Transitions of
this state machine then only rely on locally triggered events
or events triggered by the previous coarse time interval. By
using a ring-communication, this directly results in an imple-
mentation of a so-called sliding window which is required in
the case of restrictions on coarse timestep sizes.

Third, we showed limitations of the MPI standard for
Parareal regarding delayed sending of messages and discussed
several solutions. For the MPI implementation used in this
work, a single sender thread resulted in the best performance.

We conducted several performance benchmarks based
on the rotational shallow-water equations. With the
parallelisation-in-time method, we can show performance
improvements of up to 8.64 for a resolution of 82 and
6.66 for a resolution of 642. Based on these performance
studies, we further analyzed two benchmarks with different
characteristics: One which yielded good performance
speedups and the second one with about 50% idling cores.
We analyzed these idling cores with a performance model to
confirm the limitations on utilized resources. Furthermore, we
derived upper limitations on number of resources which can
be involved in the iterative Parareal solver. Here, we show the
dependency on the number of iterations for convergence as
well as the ratio of the wallclock time for the coarse timestep
vs. the small timesteps. These results indicate that resource
limitations can be only circumvented by a coarse timestep
supporting arbitrarily long timesteps of appropriate quality.

The Parareal method in combination with our decentralized
approach leaves several space for future work: This would
allow adding and removing MPI ranks over the simulation run-
time by inserting/removing coarse timestep intervals at/from

the end of the sliding window. Therefore, we see a huge poten-
tial for dynamic resource management and the Parareal method
to improve the resource utilization requirements among con-
currently running applications. The decentralized approach
can be used to avoid a single point-of-failure. This implicitly
includes a huge potential to support fault tolerance in a way
which is almost transparent to the application for upcoming
Exascale architectures.

ACKNOWLEDGMENT

We are grateful to David Ham for the discussions on the
software design in general and to Stefan Zimmer for his
valuable feedback on this work. We would also like to thank
the University of Exeter for providing access to the Zen
computer on which we computed the first benchmarks. We
would further like to thank the Munich Centre of Advanced
Computing for supporting this project by providing computing
time on the MAC Cluster.

REFERENCES

[1] P. M. Kogge and T. J. Dysart, “Using the top500 to trace and project
technology and architecture trends,” in Proceedings of 2011 Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 28.

[2] J.-L. Lions, Y. Maday, and G. Turinici, “Résolution d’edp par un schéma
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