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Abstract 15 

Information on species’ ecological traits might improve predictions of climate-driven range 16 

shifts. However, the usefulness of traits is usually assumed rather than quantified. We 17 

present a framework to identify the most informative traits, based on four key range-shift 18 

processes: (i) emigration of individuals or propagules away from the natal location, (ii) the 19 

distance a species can move, (iii) establishment of self-sustaining populations, and (iv) 20 

proliferation following establishment. We propose a framework that categorises traits 21 

according to their contribution to range-shift processes. We demonstrate how the 22 

framework enables the predictive value of traits to be evaluated empirically, how this 23 

categorisation can be used to better understand range shift processes, and illustrate how 24 

range shift estimates can be improved. 25 

 26 

Predictive traits as a new paradigm in climate change ecology 27 

Mitigating the threat from climate change to biodiversity and ecosystems requires a robust 28 

understanding of how species will respond to new climatic conditions. The most common 29 

method for estimating a species’ exposure to climate change is to compare future climatic 30 

conditions against the conditions in which a species currently lives [1]. While there is 31 

disagreement about the accuracy of these techniques, they are well explored, and there is 32 

literature on best practice [2, 3]. Species vulnerability to exposure is less well understood. A 33 

major uncertainty is whether species are able to colonise newly climatically suitable areas as 34 

current geographic ranges become unsuitable. Such “range shifts” (see Glossary) could 35 

mitigate threats from climate change.  36 
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Predictive traits have been suggested as a simple way to improve estimation of species’ 37 

range-shift capacities, identifying how well species are likely to cope with climate change [4-38 

7]. ‘Range-shift capacity’ could be interpreted as the likelihood of range shifts occurring or 39 

the timescale over which range shifts might occur. The emerging approach is to integrate 40 

information on both a species’ exposure to climate change and the traits expected to drive 41 

range-shift capacity, producing a relative metric of species risk [4-6]. Quantitative evidence 42 

is rarely used to inform the choice of predictive traits in these approaches, and trait 43 

selection often relies on expert opinion and data availability [4, 6]. There is no consensus as 44 

to the traits that should be considered in range shift forecasts, meaning that studies are not 45 

comparable, and that trait data could obscure rather than clarify climate change threats. 46 

Consequently, there is a timely need to quantify how different traits contribute to species 47 

range-shifts, and to identify potentially informative traits for which we do not have 48 

sufficient information. 49 

A framework to evaluate and employ predictive traits 50 

The framework we propose permits the use of existing evidence bases to identify the most 51 

important traits and range shift processes for a given taxa, improved testing of the 52 

relationship between traits and range shifts, and superior assessments of the range-shift 53 

capacities of large numbers of species. Given the hundreds of traits that could be analysed 54 

for different taxa, this framework would permit future studies to be comparable. And while 55 

the evidence bases we discuss are correlative, choosing traits to analyse based on our 56 

framework would generate testable hypotheses as to causal mechanisms. 57 

In addition to climate change ecology, bodies of theory within metapopulation, invasion, 58 

life-history, restoration and reintroduction ecology deal with range shifts, i.e. the 59 
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establishment and expansion of new populations. We draw from these disciplines to 60 

identify four key range shift processes (Box 1). Despite widespread acceptance of these 61 

range shift processes, their importance for any given taxa or range-shift scenario is poorly 62 

known. Traits could be used to indicate success at each range shift process, but the relevant 63 

traits are numerous and diverse, will differ between taxa, and some are poorly quantified 64 

for many species. This presents difficulties for evaluating the importance of a given trait. We 65 

therefore propose a trait categorisation (Box 2) that corresponds to range shift processes. 66 

This categorisation results in testable hypotheses as to causal mechanisms underlying the 67 

relationship between traits and range shifts. The categorisation also allows trade-offs and 68 

interactions between traits to be recognised and accounted for. For example, migratory 69 

status could affect range-shift capacity positively by conferring high movement ability, or 70 

negatively by limiting emigration because migrants show fidelity to breeding and over-71 

wintering sites between years [8, 9, Box 2]. Indeed species with migratory ability appear to 72 

have low range-shift potential in [10], possibly because migrants show site fidelity (Table 1). 73 

We demonstrate how the framework could be applied to improve range-shift predictions in 74 

box 3. 75 

In addition to traits, various range shift stages might be affected by species’ exposures to 76 

climate change and thus by species’ climatic tolerances. Here we deal exclusively with how 77 

traits can be employed to improve range-shift predictions, but raise the aforementioned 78 

issues in box 4 (Outstanding Questions). 79 

Evidence bases for the relevance of predictive traits to range-shift capacities 80 

There are multiple metrics for which a wealth of data exists that can be used to evaluate the 81 

predictive value of traits. Traits that correlate with biogeographical patterns and their 82 
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changes through time are likely to be the same traits that correspond to the processes of 83 

climate-driven range shifts. Below we discuss potential metrics for evaluating predictive 84 

traits, summarize their advantages and disadvantages and the major lessons learned for the 85 

use of predictive traits in estimating range-shift potential. We illustrate these points with 86 

selected examples from the literature (Table 1). We focus on terrestrial systems, for which 87 

we found the most evidence as to the processes that drive range shifts.  88 

Recent range shift 89 

Detecting the traits shared by species that have undergone the greatest range shifts in 90 

recent decades is the most direct way to infer traits that will promote or hinder modern 91 

range shifts (which must also take place in tens to hundreds of years due to the current pace 92 

of climate change). However, analyses of traits that correspond to recent range shifts have 93 

yielded equivocal results [11-15] (Table 1). One explanation might be that the drivers of 94 

range shift are so complex that a few decades worth of data are insufficient to draw 95 

generalisations. A second explanation is that these analyses have rarely considered species’ 96 

exposure to climate change. If no areas become newly climatically suitable then no 97 

colonisation can occur, and if species can tolerate new conditions then no range contraction 98 

should occur. It has often been difficult to calculate exposure due to challenges in obtaining 99 

accurate data on climatic tolerances for the species that have undergone range shifts 100 

(though see [15]). Where this is not possible, measuring shifts along climatic gradients 101 

should yield more insights than using only latitudinal or altitudinal shifts [16]. The 102 

requirement for data at multiple time points restricts measurement of recent range shifts to 103 

a handful of very well-studied taxa and geographic regions, reinforcing biases that already 104 

exist in the climate change literature [17]. Despite these limitations, the few trends that 105 
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have emerged correspond to results obtained using other biogeographical metrics (range 106 

size or range filling, see below, Glossary and Table 1). We therefore suggest that, while 107 

monitoring ongoing range shifts is highly important for understanding the predictive value 108 

of traits, proxies such as range filling and range size are also useful. 109 

Range size 110 

Widespread species with large ranges have colonised and maintained persistent populations 111 

over large areas [18], and should therefore be able to colonise and proliferate in newly 112 

climatically-suitable areas. This is particularly the case in regions where species ranges are 113 

substantially affected by historic climate change. For instance, in Europe, species’ current 114 

ranges are largely determined by the degree to which species have been able to expand 115 

since the Last Glacial Maximum [19]. The traits that correlate with the range size of 116 

European species are therefore expected to be traits that have facilitated post-glacial range 117 

expansion [20]. Traits that correlate with Extent of Occupancy (EOO) would indicate the 118 

furthest distance at which new populations might be established, whereas traits that 119 

correlate with Area of Occupancy (AOO) would indicate the distance at which most 120 

populations will be established. A major caveat is the difficulty in distinguishing the degree 121 

to which range size is determined by species’ capacities to colonise and persist in suitable 122 

areas, or by the availability of suitable environmental conditions. Range sizes could also be 123 

affected by historical biogeographical processes, and analytical techniques are emerging to 124 

quantify these effects [21]. These caveats also apply to range filling, below. 125 

Range filling 126 

The rationale behind the use of range filling to inform predictive traits is that, when 127 

potential range is calculated using suitable climatic conditions (using an SDM or  128 
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physiological data [2, 3, 15]) unoccupied portions of the potential range must be due to non-129 

climatic range limitations (e.g. edaphic conditions, dispersal limitations, biotic interactions). 130 

Traits associated with range filling would therefore indicate vulnerability to historic non-131 

climatic range limitations [22, 23], and thus inform species’ vulnerability to similar 132 

limitations during modern range shifts [20]. However, range-filling reflects processes that 133 

occurred over thousands of years, some of which might not be at play in modern range-134 

shifts, due to the faster pace of current climate change. For example, biotic interactions like 135 

competitive exclusion are often more observable over long timescales [24, 25]. Therefore, 136 

traits that correspond to competitive ability might be more important to range filling than to 137 

modern range shifts; a hypothesis that could be tested using available evidence bases and 138 

our framework. 139 

Naturalisation potential 140 

Predictive traits are widely investigated as indicators of species’ potential to naturalise, 141 

spread, and impact ecosystems following introductions by humans [26-28]. Similar 142 

ecological and evolutionary processes occur during climate change in the native region and 143 

during naturalisation, as species encounter novel climates and biotic communities [29]. 144 

Most of the world’s many thousands of human-mediated naturalisations have occurred 145 

within the last 200 years, many within the last 50-100 years [30], i.e. a similar timescale to 146 

that over which the impacts of climate change on native species are normally considered 147 

[30]. However, many studies of predictive traits in naturalisation involve species classified as 148 

invasive [31]. Few introduced species are thought to become invasive (though estimates 149 

vary from, e.g. 1% [32] to 25% [33]). Thus, invasive species may not be representative of 150 

most species, in particular species that are rare as natives and thus of particular concern 151 
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under climate change. Indeed, when traits related to invasion success are inverted they do 152 

not indicate extinction risk [34]. However, the vast majority of naturalised species do not 153 

become problematic or widespread invasives and are thus broadly representative, 154 

suggesting that tapping this information source would be valuable.   155 

Abundance shifts  156 

Examining changes in abundance across geographic space offers insights into population 157 

growth rate that cannot be gained by studying range (i.e. occurrence) shifts alone [16, 17]. 158 

Abundance changes might occur before range shifts can be observed, and could give specific 159 

insight into the traits associated with establishment. The relationship between predictive 160 

traits and trends in abundance have been fairly well studied [35-37]. Traits related to 161 

abundance declines suggest susceptibility to anthropogenic stressors, which could in turn 162 

limit range-shift capacity, particularly in human dominated areas [38]. The heavy data 163 

demands for calculating population trends limit these data to a few countries and for 164 

conspicuous groups of species (Table 1). Recent research has investigated spatial abundance 165 

dynamics at the community level rather than focusing on individual species [e.g. 39]. This is 166 

particularly useful when individual species are rare or show only small abundance changes. 167 

However, community indices might mask hidden drivers or differences between species 168 

[40], and to our knowledge no study has yet linked them to predictive traits.  169 

Threat status 170 

Examining the traits that correspond to species’ threat status is commonly done thanks to 171 

large, standardised datasets such as the IUCN Red List [41]. However, threat status is driven 172 

by a plethora of environmental stressors, of which climate change is a relatively recent 173 

factor. We consider threat status to be a weak proxy for species’ range-shift capacities 174 
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under climate change. Nonetheless this line of enquiry has generated much expertise and 175 

understanding of the relationship between traits and species vulnerability. 176 

 177 

Traits explaining distribution changes: what is done, and what could be done 178 

Table 1 summarises 40 studies that are excellent examples of the above evidence bases 179 

because they analysed a large number of species from different taxa and a variety of traits 180 

from different regions. The studies were selected following criteria in Appendix S1 (section 181 

A), and include all metrics discussed above. There are two major hurdles to interpreting 182 

existing evidence bases. First, the suite of traits analysed rarely represent all processes that 183 

could drive either the response variable (metric of trait predictive value) or climate-driven 184 

range shifts (Box 1). This has limited the mechanistic insight that can be obtained, as links 185 

between traits and the response variable might be dependent on trade-offs and interactions 186 

with unmeasured traits [9]. Second, traits employed by different studies are not 187 

standardized between taxa, and often not within taxa [11]. The literature therefore does not 188 

yet permit a meta-analysis, but it is possible to identify high quality studies with broad 189 

taxonomic representation from which we can assess evidence for the importance of trait 190 

categories (Box 2). See box 2 and table for traits included in each category. 191 

The taxa for which most trait-based analyses have been undertaken are plants, terrestrial 192 

vertebrate endotherms, and butterflies (Table 1). Geographic areas analysed are mainly in 193 

Europe and North America. Notably, fewer than half of the studies specify hypotheses for 194 

the ecological processes that could underlie the relationship between traits and the 195 

response variable [e. g. 20, 23, 42, 43].  196 
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Movement ability, ecological generalization and reproductive strategy were the most widely 197 

studied trait categories (Table 1). Movement and ecological generalization were identified 198 

as important more frequently than any other category. However, movement ability had a 199 

significant and positive effect in fewer than half of the cases it was studied. Thus, while the 200 

movement process is clearly a major determinant of range shift capacity, other range-shift 201 

processes also play an important role. Ecological generalization was found to have a positive 202 

effect in the majority of studies that assessed it, whereas reproductive strategy had a 203 

positive effect in a quarter of the cases in which it was studied. The equivocal support for 204 

reproductive strategy might be the result of trade-offs with other traits such as competitive 205 

ability or persistence in unfavourable climatic conditions [44]. 206 

Persistence in unfavourable climatic conditions is rarely studied, but the proportion of 207 

positive results in Table 1 suggests it should be considered in the future. For instance, 208 

Estrada et al. [20] found that seed bank persistence in plants was even more important than 209 

movement ability or ecological generalization in predicting range size and filling for plant 210 

species in Europe. For animals, hibernation has been hypothesised as improving range shifts 211 

by enabling individuals to avoid unfavourable conditions [11] (Box 2), but showed no 212 

predictive power (Table 1). No support was found for longevity (Box 2), possibly because 213 

longevity trades off with age of first reproduction, reflecting slower colonization [44]. Thus, 214 

traits that correspond clearly to persistence might be difficult to define for animals. 215 

Although rarely accounted for in range-shift forecasts, competitive ability was studied in 14 216 

cases, and had a positive effect in nine. For plants there are well-established frameworks to 217 

evaluate competitiveness (e.g. the Competitor-Stress tolerator-Ruderal framework [44]) but 218 

there is as yet no corresponding framework for terrestrial animals. For animals therefore, 219 
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we included traits in this category that correspond to dominance (e.g. local abundance), 220 

intra-generic co-occurring species richness (indicating the number of similar, potential 221 

competitor, species), and brain size (which corresponds to innovation, a key component of 222 

competition avoidance [27]). Given the surprisingly high importance for these traits, we 223 

recommend more work towards understanding the impacts of competition on species 224 

ranges. 225 

The least studied and least supported trait categories in our sample were avoidance of small 226 

population effects, which corresponds to colonisation ability, and site (in)fidelity, which 227 

corresponds to emigration (Box 2). Categorising avoidance of small population effects in 228 

plants is fairly straightforward: self-fertilization and vegetative regeneration are key traits in 229 

this respect and are widely measured. However, in the papers we sampled for animals, 230 

relevant traits analysed were population or social group size, which could be too simplistic 231 

to capture complex outcomes of animal behaviour for small population sizes. We note that 232 

traits that correspond to reproductive strategies, which were important in some cases, 233 

could also contribute to avoidance of small population effects. The limited support for traits 234 

related to avoidance of small population effects might imply that the colonisation process 235 

does not strongly limit range shifts for the majority of taxa studied (Box 1). However, we 236 

suggest that the importance of the avoidance of small population effects should not be 237 

precluded until a broader range of relevant traits is examined. With respect to site 238 

(in)fidelity, although there is little evidence for the predictive value of relevant traits in Table 239 

1 modelling studies support the importance of emigration to climate-driven range shifts 240 

[45]. We therefore suggest that site (in)fidelity traits merit further investigation. 241 

Limitations of existing evidence bases 242 
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A lack of support in the evidence bases we sampled should not be taken to suggest that a 243 

given trait is not important for any species. Rather, positive or negative effects in Table 1 244 

indicate evidence across many species that a given trait is sufficiently tightly linked to a 245 

range-shift process that it could be used to inform relative estimates of range-shift 246 

likelihood in multi-species analyses. A caveat to all correlative approaches we outline is that 247 

trait plasticity and evolution (past or ongoing) might obscure the relevance of traits to range 248 

shifts.  249 

While trait data are becoming increasingly available, potentially important traits are often 250 

unavailable, e.g. movement distance in animals. Alternatives are to use values for 251 

congeneric species, or morphological proxies [9, 14, 46]. Increasing awareness of the 252 

usefulness of traits (particularly non-movement traits) to inform responses to climate 253 

change should stimulate collection and curation of potentially informative traits. 254 

Macro-ecological analyses of predictive traits typically use a single trait value for the whole 255 

species (usually the mean of all recorded values) [14, 20], despite increasing evidence of 256 

substantial intraspecific variation [47, box 4: Outstanding Questions]. Whenever possible, 257 

the use of trait variance together with the mean can provide new insights and more 258 

accurate separation of species’ range shift capacities. However, information on intraspecific 259 

variation is rarely available, so it is not yet possible to develop a comprehensive macro-260 

ecological analysis for a large number of traits. Nevertheless, the findings in Table 1 indicate 261 

that characterizing species with single trait values does detect relative interspecific variation 262 

in metrics that correspond to range-shift capacity.  263 

Concluding remarks 264 
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We encourage the use of predictive traits in assessment of species potential to colonise new 265 

areas in response to climate change. We recommend that all range-shift processes should 266 

be represented in the choice of traits, and we demonstrate how traits can be categorised in 267 

terms of their contribution to these processes and used to inform range shift potential. 268 

While correlative methods are still the main option for assessing predictive traits for large 269 

numbers of species, employing our framework would formalise hypotheses on the 270 

mechanistic underpinning of the relationship between trait and range shift. This would 271 

permit synthesis across studies and meta-analysis, ultimately leading to a broad 272 

understanding of how traits mediate range shift. While we encourage new analyses to 273 

improve understanding for different global regions, taxonomic groups, and under-studied 274 

range-shift processes, there is already sufficient evidence that traits corresponding to 275 

movement, ecological generalization, persistence in unfavourable climatic conditions, 276 

reproductive strategy, and competitive ability should be considered for inclusion in range-277 

shift evaluations. Further experimental studies could use our proposed framework to better 278 

make mechanistic linkages between traits and range shifts and site persistence.  279 
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Boxes 288 

 289 

Glossary  290 

AOO: area of occurrence, the geographic area that is actually occupied by a species [48], 291 

often defined as the number of occupied grid cells (which vary in size between atlases) [20].  292 

Competitive ability: the ability of an individual of one species to reduce the availability of 293 

contested resources to an individual from another species, and to tolerate or avoid 294 

reduction in contested resource availability by an individual from another species [49]. 295 

Ecological generalization: the ability to use a wide variety of a given resource type, e.g., 296 

ecological generalists could breed in a wide variety of land cover types, have a broad diet, or 297 

tolerate a broad range of soil types. 298 

Emigration: first range-shift process, in which an individual embarks on a journey 299 

(movement) outside its natal location. 300 

EOO: extent of occurrence, the area within the outer limits of the species geographic 301 

distribution [43, 48].  302 

Establishment: range-shift process following movement, in which one or more individuals 303 

reproduce and found a self-sustaining population. 304 

Indicative traits: species’ characteristics related to environmental tolerance, habitat 305 

specialization, geographical boundaries or spatial distribution [5, 7, 50]. These traits can be 306 

measured at the individual or population level, so they are not life-history traits in strict 307 

sense.  308 
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Life-history traits: those morphological, physiological or phenological characteristics 309 

measurable at the individual level that have an effect on individual performance [51]. 310 

Movement ability: ability of an individual or propagule to travel outside its natal location. 311 

This ability is often represented as the average or upper end of the distance moved in the 312 

lifetime of an individual or propagule. Note that this can be informed by, but is not 313 

restricted to, natal dispersal distances (movement from natal to breeding site). We 314 

specifically use ‘movement ability’ instead of ‘dispersal ability’ to avoid confusion, as the 315 

latter term is widely used to include emigration, movement, and establishment [52]. The 316 

movement process in dispersal has also been called transience, transport, and transfer [52]. 317 

Persistence in unfavourable climatic conditions: a population’s capacity to survive during 318 

periods in which poor climate conditions leads to zero or negative population growth rate. 319 

Unfavourability could occur through climate change directly, or as a result of climatically 320 

induced changes in other elements of habitat suitability.  321 

Potential range: the geographic area in which environmental conditions are suitable for a 322 

given species, even if the species is present or not. Potential range is often calculated using 323 

SDMs. 324 

Predictive traits: we define predictive traits as any species’ feature that can be used to 325 

predict (a) the likelihood and extent of range shift given exposure to climate change, or (b) 326 

the species’ interactions with other species and non-climatic elements of the environment, 327 

which directly or indirectly affect range shifts. Predictive traits might include ‘intrinsic’ 328 

ecophysiological, life-history and demographic traits [51], as well as broader, non-329 

organismal ‘indicative’ traits such as habitat requirements or spatial distribution [5, 7, 11].  330 
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Proliferation: fourth range-shift process in which established populations become more 331 

than self-sustaining, producing individuals that will in turn disperse and cause further 332 

population spread. 333 

Range filling: The proportion of its potential range that a species occupies. 334 

Range shift: expansion of one part of the range margin following colonisation events. Range 335 

shift may or may not be accompanied by a contraction in another part of the range margin. 336 

Reproductive strategy:  the number, timing and degree of investment in each reproductive 337 

event, which are related to demography, fecundity and speed of life history. Species with an 338 

‘r’ strategy reproduce early, have small body mass, and many offspring per year. Species 339 

with a ‘K’ strategy are older at first reproduction, have larger body mass and fewer 340 

offspring. 341 

SDM: species distribution model. SDMs relate a species distribution with the environmental 342 

conditions in which species are found, in order to calculate environmentally suitable areas 343 

for that species. 344 

Site (in)fidelity: reflects the likelihood that an individual will embark on a dispersal event to 345 

emigrate away from the natal patch. High site fidelity corresponds to a low likelihood of 346 

emigration and thus low range-shift capacity. We therefore use ‘site (in)fidelity’ in line with 347 

the other six trait categories, for which the terms correspond to a positive effect on range-348 

shift capacity. 349 

Small population effects: factors that make it difficult for small populations to grow, and 350 

thus hinder population establishment. These include Allee effects, genetic drift, and 351 

susceptibility to demographic or environmental stochasticity. 352 
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 353 

Box 1. Range-shift processes. 354 

The first range-shift process (see Figure I) is that individuals embark on a journey away from 355 

their natal location (emigration). For animals the motivations involved include high 356 

population density, low resource availability, and harassment from prospective mates [45]. 357 

For sessile taxa, such as plants, some aspects of reproductive behaviour can affect the 358 

probability that propagules disperse away from the adults’ location, for example timing of 359 

seed shed to maximise dispersal by animals [53]. Species that have a physical or behavioural 360 

mechanism that promotes emigration are more likely to respond to poor environmental 361 

conditions (as driven by climate change) by leaving the natal location than those that do not 362 

have these mechanisms. Recent applications of metapopulation modelling approaches to 363 

climate change highlight the importance of emigration for range shifts [45, 54]. Movement 364 

itself, i.e. the transfer of individuals or propagules away from the location in which they 365 

originated [54], is the second and most widely studied range-shift process. The upper limit 366 

of a species’ dispersal distance is one of the strongest limitations on metapopulation 367 

persistence, invasive spread, and population recovery [55-57]. The third range-shift process 368 

is establishment, i.e. the ability of dispersing individuals to reproduce and found new 369 

populations following a dispersal event. While probability of establishment is affected by 370 

the number of arriving propagules at a site, dispersal, invasion and reintroduction ecology 371 

demonstrate that non-movement traits and their interaction with local conditions also 372 

mediate ease of establishment [58]. The fourth range-shift process is proliferation, i.e. the 373 

growth of established populations to become more than self-sustaining, producing 374 

individuals that will in turn disperse and cause further population spread [59]. In the short 375 
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term, spreading outwards to locations immediately surrounding the newly colonised 376 

location will improve population robustness. In the longer term, a large number of 377 

emigrating individuals will sustain the range-shift itself. Life-histories that permit rapid 378 

proliferation contribute greatly to the long term success of naturalised and reintroduced 379 

populations [47]. Predictive traits employed in climate-change risk assessments should 380 

correspond to all of the above processes.  381 

Figure I 382 

Figure I. Schematic representation of range-shift processes and their relationship with the 383 

trait categories we suggest (Box 2). We do not suggest that there is an exclusive 384 

correspondence between a given trait category and range-shift process. Rather, we identify 385 

the links between trait categories and range-shift process that evidence suggests are the 386 

most directly informative. Note that we are considering species traits and not their 387 

interaction with the environment, e.g. we do not include the effect that climate-driven 388 

resource limitation could have on emigration. 389 

 390 

Box 2. Categorisation of predictive traits 391 

We propose seven trait categories related to range-shift processes (Figure I). Trade-offs and 392 

interactions between traits mean that some categories cannot be tied exclusively to one 393 

range-shift process. We demonstrate how traits addressed by studies in Table 1 could be 394 

categorised. First, site (in)fidelity corresponds to emigration, and can be informed by 395 

migration (migrants show fidelity to breeding and over-wintering sites between years [8]), 396 

and breeding behaviour (social or territorial) that encourages individuals to remain at natal 397 
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locations or to disperse to new breeding territories [60]. Sessile taxa can also have traits 398 

that correspond to site (in)fidelity, for example plants can time seed shed to maximise 399 

dispersal by animals [53]. Second, movement ability corresponds directly to the movement 400 

process, and for plants can be informed by properties related to dispersal vectors [20]. In 401 

animals, movement can be informed by natal dispersal [14] and by behaviours such as 402 

migratory status [61], home ranging area [37], or flight period length [62], and morphologies 403 

such as wing or leg length [63]. Third, small population effects hinder establishment, and 404 

particularly occur in animals that rely on group behaviour for breeding, resource acquisition, 405 

or predator avoidance [41], and in plants that cannot reproduce vegetatively or self-406 

pollinate [20]. Fourth, persistence in unfavourable climatic conditions aids establishment 407 

under climate change because newly colonised locations can fluctuate in climatic suitability 408 

before becoming consistently suitable for a given species [64, 65]. This category can be 409 

informed in plants by seed-bank persistence [20], and in animals by ‘sleep’ (e.g. hibernation, 410 

dormancy) and ‘hide’ (use of burrows, caves, tree-holes) behaviours that might allow 411 

species to ‘wait out’ unfavourable periods [66] or by traits indicating the importance of each 412 

reproductive event to lifetime reproduction (e.g. longevity). Fifth, ecological generalisation 413 

aids establishment and proliferation by increasing resource availability, and includes diet 414 

breadth, land-cover types occupied, and breadth of diurnal cycle [11]. Sixth, species with an 415 

‘r’ reproductive strategy will rapidly achieve high local abundances (aiding establishment), 416 

thus driving emigration (aiding proliferation). Reproductive strategy can be informed by 417 

traits linked to the number, timing and degree of investment in each reproductive event [11, 418 

27]. Seventh, low competitive ability hinders establishment when competition with 419 

incumbent individuals occurs, and hinders proliferation by slowing the growth of already-420 

established populations. Competitive ability could be informed by population traits (e.g. 421 
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local density [34]) the number of co-occurring congeners [67]), by brain size in animals [27] 422 

and by leaf-economic traits in plants [44, 68].  423 

Box 3. Case studies applying the predictive trait framework to evaluate range-shift 424 

capacities 425 

We examine pairs of species that are predicted to potentially undergo climate-driven range 426 

shift in the 21st century (Table I). We show how different traits can be used to inform the 427 

likelihood or speed of range shifts. There are multiple ways in which trait categories could 428 

be combined to determine range-shift ability. Here we classify trait values for each species 429 

as High, Moderate or Low depending on the species’ trait value relative to values for related 430 

species. We used only the best-supported traits for a given taxa (Table 1). For the sake of 431 

illustration, we consider that a trait category is supported when at least three studies in 432 

Table 1 found a significant relationship between the trait category and a response variable. 433 

Other approaches are possible, such as i) assigning a numeric score to the results in each 434 

trait category and summing across all, or the best-supported categories, ii) two species can 435 

be compared by summing the number of differences (positive and negative) between 436 

results in each, or the best-supported, trait category. We make no recommendations as to 437 

best practice as insufficient information exists on the relative importance of each trait 438 

category, but urge research that compares the importance of trait categories amongst 439 

species. Both Populus nigra and Carpinus betulus are predicted to gain climatically suitable 440 

areas to the north of their range (Figure II), but Carpinus betulus is more likely to colonise 441 

this area. Sylvia cantillans is predicted to gain proportionally more climatically suitable area 442 

than Corvus monedula but has less ability to colonise this area, changing relative 443 

assessments of climate change effects on these species.  444 
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Table I. Case studies illustrating the application of our framework to improve range-shift 445 

evaluations under climate change.  446 

Taxa Plants (trait data from [20]) Median values for 
native European 

trees in [20] 

Species Carpinus betulus Populus nigra  

Movement ability High (estimated 1500m, bird 
and mammal seed dispersal, 
seed mass 53 mg) 

Moderate (estimated 15m, 
wind seed dispersal, low 
seed mass 0.81 mg) 

Dispersal 500m 
Seed mass 25mg 

Persistence in 
unfavourable 
climatic conditions 

Moderate (seed bank 
persistence 1-5 years) 

Low (seed bank 
persistence < 1 year) 

< 1 year 

Ecological 
generalisation 

High (2.19 vegetation types 
occupied) 

Low (1.2 vegetation types 
occupied) 

1.86 vegetation 
types 

Reproductive 
strategy 

High (perennial tree species, 
age of first flowering 15 
years) 

Moderate (perennial tree 
species, age of first 
flowering 6 years) 

8 years 

Competitive ability High/moderate (mean height 

15m, SLA 24 mm2/mg) 
High/moderate (mean 
height 50m, SLA 11

 

mm2/mg) 

Height 20 m 
SLA 10 mm2/mg 

Resulting range-
shift ability 

High Moderate / Low  

Taxa Birds (trait data from [69]) Median values for 
native European 

passerines in [69] 

Species Corvus monedula Sylvia cantillans  

Movement ability High/Moderate (natal 
dispersal 8.6km, seasonal 
migrant) 

Moderate (seasonal 
migrant) 

8.45 km 

Ecological 
generalisation 

High (omnivorous and  
opportunistic, high habitat 
breadth 5.4) 

Low (omnivorous, low 
habitat breadth 1.25) 

3.4 vegetation 
types 

Reproductive 
strategy 

Low (large-bodied: 248g , 
late reproducing: year 2, 
average clutch size 4.46, 1 
brood per year) 

Moderate (small-body: 
9.8 g, early reproducing: 
year 1, small clutches: 
3.86, 2 broods per year) 

Body mass 21 g 
Sexual maturity 
year 1 
Clutch size 4.6 
Clutches/year 1.7 

Competitive ability High (large brain size : body 
mass ratio) 

Moderate (small brain 
size : body mass ratio) 

 

Resulting range-
shift ability 

High/Moderate Moderate/Low  

 447 

Figure II. Current distributions and areas predicted climatically suitable for case study 448 

species in 2071-2100 (see section C in Appendix S1 for details of distributions and forecasts). 449 
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Black dots are currently occupied, blue areas are climatically suitable in the future, and 450 

yellow areas are climatically unsuitable. 451 
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Reference 

Alpine plants 133 Switzerland RS  x x  x   [11] P 

Forest plants 92 USA RS  x      *[70] 

Plants 734 Global RZ   +     *[71] P 

Plants 1276 Europe RZ  + x + + - + [20] P 

Angiosperms 524 Australia RZ  x    x  [72] P 

Herbaceous flora 263 Central England RZ  +   +   [73] P 

Forest plants 273 W Europe RZ  +  +    [43] P 

Plants 1276 Europe RF  + x + + - + [20] P 

Plants 183 Austrian Alps RF  +   +  x *[23] P 

Plants 37 Fynbos biome RF  +  +   + [42] P 

Trees 48 Europe RF  +      [74] P 

Trees 55 Europe RF      x x [22] P 

Plants 150 E Australia IS  +     + [68] P 

Woody plants 278 N America and Europe IS  + x x + - + [26] 

Plants 898 Lowland England ER  x   + x x [75] 

Mammals 28 NW America RS    x x x  [11] P 

Mammals 23 Australia RZ x x  - + +  [10] P 

Endemic mammals 89 Mexico RF  x   x x  *[76] 

Mammals 40 Australia IS + -  x + x  [10] P 

Mammals 292 USA AC  x   x x  [37] P 

Mammals 372 Global ER  - x  + + + [41] P 

Birds 254 N America RS  x   - x  [11] P 

Birds 97 UK RS  +    +  [14] P 

Songbirds 40 N America RS x x   - -  [13] P 

Sylvia warblers 26 Global RZ  +    x  [63] P 

Passerines 165 Global RZ - +   + +  [9] P 

Birds 23 Palaearctic a RF  +   x  + [67] P 

Birds 1813 N America and Europe IS    + + + + [34] 

Birds 416 Global IS x x   + x  [61] P 

Birds 428 Global IS x x x x + x + [27] P 

Birds 71 France AC x x   + +  [35] P 

Passerines 57 Spain AC x x   +  x [36] 

Passerines 68 Czech Republic AC x x   - -  [77] P 

Forest birds 18 New Zealand AC     x x  [78] 

Herptiles 36 USA ER  x   + + + [7] 

Butterflies 48 Finland RS  +   x   [62] P 

Butterflies 95 Finland RS  +   +   *[12] 

Odonata 24 UK RS x x   + x  [11] P 

Bees 187 NE USA AC   x  +   [50] P 

Butterflies 95 Finland ER  +   +   *[79] 

Total + 1 16 1 5 20 7 9  

Total - 1 2 0 1 3 5 0  

Total x 8 16 7 4 7 13 5  

 622 

 623 
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Table 1. Selected studies testing relevance of predictive traits to range-shift capacities, and a 624 

summary of the results. An * before the reference indicates that predictive traits were tested 625 

individually, not in concert with other traits. A ‘P’ after the reference indicates that the study 626 

accounts for the phylogeny of the species. ‘a’: the study area of this reference is Palaearctic, 627 

Afrotropics and Indo-Malaya. References are sorted by taxa (plants, mammals, birds, herptiles 628 

and invertebrates) and then by the response variable. Response variables are as follows. RS: 629 

range shift, RZ: range size, RF: range filling, IS: introduction (naturalisation) or invasion success, 630 

AC: abundance change, ER: extinction risk. + indicates positive relationship, - indicates negative 631 

relationship, x indicates no relationship, an empty cell means that the trait was not tested. In 632 

all cases ‘+’ indicates a greater capacity to undergo range shifts. Thus, for AC ‘+’ corresponds to 633 

positive population growth, for ER ‘+’ corresponds to low extinction risk. 634 

For each of the trait categories, a ‘+’ sign indicates that the relationship between trait and 635 

metric indicates the following increases range-shift capacities. Site (in)fidelity: a high likelihood 636 

of leaving the natal location; movement: strong movement ability; avoidance of small 637 

population sizes: ability to avoid small population effects; persistence in unfavourable climatic 638 

conditions: ability to persist in unfavourable conditions; ecological generalization: ecological 639 

generalists; reproductive strategy: an ‘r’ strategy; competitive ability: strong competitors (see 640 

Box 2 for more details). Predictive traits and further rationales for each of the seven categories 641 

are detailed in Appendix S1 (section B).  642 


