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Abstract

This paper proposes a new method for the analysis and design of sliding mode observers for sensor fault reconstruction. The
proposed scheme addresses one of the restrictions inherent in other sliding mode estimation approaches for sensor faults in
the literature (which effectively require the open-loop system to be stable). For open-loop unstable systems, examples can be
found, for certain combinations of sensor faults, for which existing sliding mode and unknown input linear observer schemes
cannot be employed, to reconstruct faults. The method proposed in this paper overcomes these limitations. Simulation results
demonstrate the effectiveness of the design framework proposed in the paper.
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1 Introduction

In active fault tolerant control (FTC), one of the im-
portant components is the fault detection and isolation
(FDI) scheme [17]. The FDI scheme detects and isolates
the faults that exist in the system and initiates con-
troller reconfiguration to allow the faults/failures to be
mitigated and to enable safe degraded closed-loop per-
formance. Most model based FDI schemes are residual
based and an analytical redundancy approach is adopted
to compare the system measurements with a mathemat-
ical model of the system, and the difference provides
residual signals from which the faults/failures can be de-
tected and isolated. Work on residual based FDI is dis-
cussed extensively in the literature: see for example [3].
Some active fault tolerant control schemes however re-
quire more information regarding the faults, where esti-
mates of the actuator efficiency are required to allow the
FTC scheme to accommodate the faults/failures. This
information can be provided by schemes such as those
proposed in [23] which use the so-called modified two
stage Kalman filter. In terms of sensor fault tolerant con-
trol, the reconstructions can be used directly to ‘correct’
the sensor measurements before the erroneous informa-
tion is used by the controller [10].

? This paper was not presented at any IFAC meeting.

Email addresses: ha18@le.ac.uk (Halim Alwi),
chris.edwards@le.ac.uk (Christopher Edwards),
tan.chee.pin@eng.monash.edu.my (Chee Pin Tan).
1 Corresponding author: Tel: +44(0)116 2231303,
Fax+44(0)116 252 2619.

In [8], the novel idea of using the ‘equivalent output er-
ror injection signal’ to reconstruct faults was introduced.
Further work, aimed at reducing the system constraints
associated with the result in [8], has recently appeared
in the literature [11,12,5,16,2,14]. With the exception of
[2,14] most of this work has focussed on an unknown in-
put formulation, which from the viewpoint of fault detec-
tion, is associated with an actuator fault reconstruction
problem. This paper is concerned with sensor fault re-
construction. Two methods for sensor fault reconstruc-
tion were proposed in [20]. However the problem setup
is different to the one in this paper, and no uncertainty
was considered. In both methods, two sliding mode ob-
servers are used in cascade. The first approach ignores
the effects of the derivative of the fault (modelled as an
additive perturbation) and requires the open loop sys-
tem matrix to be nonsingular. The second method in
[20] employs a different configuration but requires the
open-loop plant to be stable. The latter approach was
later improved to achieve robust sensor fault estimation
by Tan & Edwards [21] using a Linear Matrix Inequal-
ities (LMI) formulation where open loop stability is no
longer a necessary condition. However for open loop un-
stable systems, with certain classes of faults, examples
can be found such that the method in [21] is not applica-
ble. This paper proposes a new observer design for sensor
fault reconstruction which addresses this restriction. In
particular the proposed observer designs are applicable
for open-loop stable and unstable systems.
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2 Preliminaries

Consider a dynamical system affected by sensor faults
described by

ẋ(t) = Ax(t) + Bu(t) (1)
y(t) = Cx(t) + Ffo(t) (2)

where A ∈ IRn×n, B ∈ IRn×m, C ∈ IRp×n and F ∈
IRp×q, and the matrices C and F have full row and
column rank respectively. Also assume that the triple
(A, B,C) is a minimal realization of the fault-free in-
put/output behaviour of the system. The function fo :
IR+ → IRq is unknown but smooth and bounded so that

‖fo(t)‖ ≤ α(t) (3)

where α : IR+ → IR+ is a known function. The signal
fo(t) represents (additive) sensor faults and F represents
a distribution matrix, which indicates which of the sen-
sors are prone to possible faults.

Assumption 0: The dimensions of the state, output
and fault vectors satisfy n ≥ p > q.

Without loss of generality, it can be assumed that the
outputs of the system have been reordered (and scaled
if necessary) so that the matrix F has a structure

F =

[
0

Iq

]
(4)

Remark 1: The assumption that only certain sensors
are fault prone is a limitation. However in practical situ-
ations, some sensors may be more vulnerable to damage
or may be more sensitive or delicate in terms of construc-
tion than others, and so such a situation is not unrealis-
tic. Also certain key sensors may have back-ups (hard-
ware redundancy) and so essentially a fault free signal
can be assumed from a certain subset of the sensors.

The objective is to design a sliding mode observer [22,6]
in order to reconstruct the faults fo(t) using only mea-
surements of y(t) and u(t). Suppose the signal fo is
smooth and so assume

ξ(t) := ḟo(t) (5)

In this paper it is assumed that the sensor faults are
incipient and so ‖ξ(t)‖ is small in magnitude, but over
time the effects of the fault compound, and become sig-
nificant. Equations (1) and (5) can be combined to give
a system with states xa := col(x, fo) in the form
[

ẋ(t)

ḟo(t)

]
=

[
A 0

0 0

]

︸ ︷︷ ︸
Aa

[
x(t)

fo(t)

]
+

[
B

0

]

︸ ︷︷ ︸
Ba

u(t) +

[
0

Iq

]

︸ ︷︷ ︸
Fa

ξ(t) (6)

y(t) =
[

C F
]

︸ ︷︷ ︸
Ca

[
x(t)

fo(t)

]
(7)

where Aa ∈ IR(n+q)×(n+q), Ba ∈ IR(n+q)×m, Ca ∈
IRp×(n+q) and Fa ∈ IR(n+q)×q. Equations (6) and (7)
represent an unknown input problem for the triple
(Aa, Fa, Ca) driven by the unmeasurable signal ξ(t). If
a good estimate of xa can be computed, then fo can be
estimated as the last q states of xa.

From (7), and based on the structure of F in (4),

Ca =
[

C F
]

=

[
C1 0

C2 Iq

]
(8)

where C1 ∈ IRp−q×n and C2 ∈ IRq×n. Notice that the
triple (Aa, Fa, Ca) is inherently relative degree one since
CaFa = F and rank(F ) = q by assumption.

Lemma 1 The triple (Aa, Fa, Ca) is minimum phase if
and only if (A,C1) is detectable.

Proof : Consider the Rosenbrock system matrix associ-
ated with (Aa, Fa, Ca):

R(s) =




sI −A 0 0

0 sI −Iq

C1 0 0

C2 Iq 0




(9)

The invariant zeros of (Aa, Fa, Ca) are given by the val-
ues of s ∈ C where R(s) loses normal rank. It is clear
from (9) that

rank R(s) = rank




sI −A 0

C1 0

C2 Iq


 + q

and so R(s) loses rank if and only if

rank

[
sI −A

C1

]
< n

It follows from the PBH rank test that the invariant zeros
of the triple (Aa, Fa, Ca) are the unobservable modes of
(A,C1). Consequently (Aa, Fa, Ca) is minimum phase if
and only if (A,C1) is detectable.

Lemma 2 The pair (Aa, Ca) is observable if (A,C1)
does not have an unobservable mode at zero.

Proof : From the PBH test and the definition of Aa and
Ca in (6) and (7), the pair (Aa, Ca) is observable if and
only if

rank




sI −A 0

0 sIq

C1 0

C2 Iq




= n + q, for all s ∈ C (10)
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For s 6= 0



sI −A 0

0 sIq

C1 0

C2 Iq




[
η1

η2

]
=0⇒η2=0⇒



sI −A

C1

C2


η1=0⇒η1=0(11)

since (A, C) is observable, and so for s 6= 0, the rank of
the PBH matrix in (10) is n + q. When s = 0,

rank




sI −A 0

0 sIq

C1 0

C2 Iq




s=0

=rank



−A 0

C1 0

C2 Iq


=rank

[
−A

C1

]
+q (12)

Consequently (10) holds if and only if

rank

[
−A

C1

]
= n

A sufficient condition for this is that (A,C1) does not
have an unobservable mode at s = 0.

Corollary 1 If the open loop system in (1) is stable the
pair (Aa, Ca) is observable.

Assume without loss of generality that C from (2) is
given as

C =

[
C1

C2

]
=

[
0 0 Ip−q

0 Iq 0

]
(13)

For any system with C of full row rank, this canonical
form can be achieved by a change of coordinates in (1)–
(2). Change coordinates in the augmented system in (6)
and (7) according to xa 7→ Txa where

T =

[
In 0

C2 Iq

]
(14)

The system triple in the new coordinates is (TAaT−1,
TFa, CaT−1) where

TAaT−1 =

[
In 0

C2 Iq

][
A 0

0 0

][
In 0

−C2 Iq

]
=

[
A 0

C2A 0

]
(15)

and

CaT−1 =

[
C1 0

C2 Iq

][
In 0

−C2 Iq

]
=

[
C1 0

0 Iq

]
=

[
0 Ip

]
(16)

from the definition of C1 in (13). It is also easy to check
that

TFa = Fa =

[
0

Iq

]
(17)

where Fa is defined in (6).

In the original xa coordinates, the states corresponding
to fo are given by the last q components i.e.

fo(t) = Cfxa(t) (18)

where

Cf :=
[

0q×n Iq

]
(19)

After the change of coordinates xa 7→ Txa the new ma-
trix relating the states to the fault signals fo is

CfT−1=
[
0 Iq

][ I 0

−C2 Iq

]
=

[
0q×(n−p) −Iq 0q×(p−q) Iq

]
(20)

using C2 as defined in (13).

Remark 2: Although the problem tackled here is simi-
lar to the one considered in [20,21], the approach is dif-
ferent. The work in [20] employed observers in cascade,
and [20,21] both consider filtered output measurements
as the basis of the observer design. The net effect is
that, in both cases, the sensor signal estimation prob-
lem becomes an unknown input problem. This unknown
input is then reconstructed using the concept of equiva-
lent output error injection. In this paper, the robustness
properties of sliding mode observers will be exploited.
In this respect, the approach taken here is more akin to
the unknown input approaches [4,19] whereby the fault
signal to be estimated is augmented with the plant state
vector, then the augmented state vector is robustly es-
timated using an observer.

Remark 3: The problem formulation in (6)-(7) con-
stitutes a ‘classical’ unknown input observer situation.
However the form in (6)-(7) is very specific, in that
it is inherently relative degree one by construction (i.e
rank(CaFa) = q). There has been extensive recent re-
search into the use of sliding mode observers for unknown
input problems – although the focus has been primarily
directed at the situation where the relative degree one
requirement is not met: see for example [11,12,5,16,2,14].
As far as the authors are aware, much less attention has
been directed towards the problem of obviating mini-
mum phase limitations [1]. Thus, although the main mo-
tivation in this paper is to tackle the problem of sensor
fault reconstruction, the problem may also be viewed as
one of unknown input reconstruction in nonminimum
phase systems. It is important to note that classical lin-
ear unknown input observers (UIO) also cannot be em-
ployed in this situation [9,4,19].
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3 Main Results

This section will consider a system, arising from the aug-
mented sensor fault system (6)-(7), of the form

ẋa(t) = Aaxa(t) + Bau(t) + Faξ(t) (21)
y(t) = Caxa(t) (22)

where the faults fo(t) = Cfxa(t) and Cf is defined in
(19). Without loss of generality, (following the series of
transformations described above) the matrices Aa, Fa,
Ca and Cf are assumed to have the forms given in (15),
(16), (17) and (20) respectively. Write

Aa =

[
A11 A12

A21 A22

]
=




A11 A12

A211

A212

A22


 (23)

where A11 ∈ IR(n+q−p)×(n+q−p). Define A211 as the
top p − q rows of A21. By construction, the unobserv-
able modes of (A11, A211) are the invariant zeros of
(Aa, Fa, Ca) [8]. Also define F2 ∈ IRp×q as the bottom p
rows of Fa so from (17)

F2 =

[
0(p−q)×q

Iq

]
(24)

Assumption 1: Assume that the system triple
(A, B,C) is such that the new pair (A,C1) resulting
from the reordering and partitioning of the outputs as
shown in (6)-(8), does not have any unobservable modes
at the origin.

Remark 4: It follows from Assumption 1 and Lemma 1,
that the pair (Aa, Ca) is observable. Using the results of
Lemma 1, Assumption 1 is equivalent to the assumption
that (Aa, Ca) is observable. It is then straightforward to
show using the PBH test that the pair (A11, A21) from
the partition in (23) is also observable.

3.1 Observer analysis

For the system in (6) - (7) a sliding mode observer of the
form

ż(t) = Aaz(t) + Bau(t)−Gley(t) + Gnν (25)

will be considered. In (25) the discontinuous output error
injection term

ν = −ρ(t, y, u) Poey

‖Poey‖ if ey 6= 0 (26)

where ey(t) := Caz(t) − y(t) is the output estimation
error and Po is a symmetric positive definite (s.p.d.) ma-
trix. The matrix Gl is a traditional Luenberger observer
gain used to make (Aa −GlCa) stable. The scalar func-
tion ρ(·) must be an upper bound on the uncertainty and
the faults; for details see [21].

An appropriate gain Gn for the nonlinear injection term
ν in (25) has the structure

Gn =

[
−L

Ip

]
where L =

[
L1 L2

]
(27)

and L1 ∈ IR(n+q−p)×(p−q) and L2 ∈ IR(n+q−p)×q repre-
sent design freedom [7,22]. In particular the gain L must
be chosen so that A11 + LA21 is stable.

If e := z−xa is the estimation error, then from (21) and
(25)

ė(t) = (Aa −GlCa)e(t)− Faξ + Gnν (28)

where ξ is defined in (5), and represents the derivative
of the sensor fault signal. For an appropriate choice of
ρ(t, y, u) in (26), it can be shown using arguments similar
to those used in [21], that an ideal sliding motion takes
place on

S = {e : Cae = 0}
in finite time: for details see [21]. During the ideal slid-
ing motion [22,6], ey = ėy = 0 and the discontinuous
signal ν must take on average a value to compensate for
ξ to maintain sliding. The average quantity, denoted by
νeq, is referred to as the equivalent output error injection
term (the natural analogue of the concept of equivalent
control [22]). It follows from (28) that during sliding

νeq = −(CaGn)−1(CaAae− CaFaξ) (29)

Substituting from (29) into (28), it follows that the slid-
ing motion is governed by

ė=(Aa−Gn(CaGn)
−1CaAa)e−(Fa−Gn(CaGn)

−1CaFa)ξ (30)

Ideally the effect of the unknown disturbance ξ on the
state estimation, particularly on the states which corre-
spond to estimates of fo, needs to be minimized.

The effect of ξ on the estimate of fo is given by Cfe(t),
where e(t) evolves according to (30) since f̂o − fo =
Cfe(t) if f̂o(t) := Cfz(t). Therefore, the impact of ξ on
the estimate of fo can be expressed as G(s)ξ where

G(s) :=


(Aa −Gn(CaGn)−1CaAa) (Fa −Gn(CaGn)−1CaFa)

Cf 0


 (31)

For accurate estimation of the faults fo, the transfer
function matrix G(s) must be ‘small’ and for complete
decoupling G(s) = 0. Here, the H∞ norm of G(s) will
be minimized by choice of Gn.

Partition the state error vector e from (28) conformably
with the canonical form in (23) as col(e1, ey). One way
to identify the reduced order sliding motion is to per-
form a further change of coordinates according to the
nonsingular matrix

TL =

[
In+q−p L

0 Ip

]
(32)
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so that

e = (e1, ey) 7→ (e1 + Ley, ey) ≡ (ẽ1, ey) =: ẽ (33)
It can be easily verified that in the coordinate system
in (33), during the sliding motion, the error system i.e.
(the reduced order sliding motion) can be written as

˙̃e1(t) =
(
A11 + L1A211 + L2A212

)
ẽ1(t) + L2ξ (34)

ėy(t) = ey(t) = 0 (35)

The gain matrices L1 and L2 needed to be chosen to
ensure A11 + LA211 + L2A212 is stable for the sliding
motion to be stable. Therefore the effect of ξ on the
estimation f̂o is given by Cfe = C̃f ẽ where C̃f = CfT−1

L
and Cf is given in (19). It can be verified

C̃f =
[

0n−p×q Iq ∗
]

(36)

where ∗ represents a matrix which plays no part in the
subsequent analysis. During the sliding motion,

C̃f ẽ =
[

0n−p×q Iq ∗
] [

ẽ1

ey

]
=

[
0n−p×q Iq

]

︸ ︷︷ ︸
Ce

ẽ1 (37)

since ey ≡ 0 during sliding. Consequently,

G(s)ξ = G̃(s)ξ (38)
where

G̃(s) :=


 A11 + L1A211 + L2A212 L2

Ce 0


 (39)

and Ce is defined in (37). As argued in Remark 4, the
pair (A11, A21) is observable, and so from the partition
of A21 in (23) to obtain A211 and A212, it follows that
there exist L1 and L2 so that A11 + L1A211 + L2A212 is
stable.

Proposition 1 If (Aa, Fa, Ca) from (21)-(22) is mini-
mum phase, then a sliding mode observer of the form in
(25) exists such that f̂o = Cfxa → fo as t →∞.
Proof : If (Aa, Fa, Ca) from (21)-(22) is minimum phase,
then the pair (A11, A211) is detectable since it can be
shown that the unobservable modes of (A11, A211) ex-
actly correspond to the invariant zeros of (Aa, Fa, Ca)
[8]. Consequently there exists an Lo such that (A11 +
LoA211) is stable. Therefore the selection L1 = Lo and
L2 = 0 is a feasible choice which makes A11 + L1A211 +
L2A212 = A11 + LoA211 stable. Since L2 = 0, equation
(34) collapses to ˙̃e1(t) = (A11 + LoA211)ẽ1(t). Asymp-
totic tracking of the states takes place since (A11 +
LoA211) is stable and therefore ẽ1(t) → 0 as t → ∞. It
follows f̂o(t) − f(t) = Cfe(t) → 0 since e(t) → 0, and
the fault is estimated asymptotically.

Proposition 2 If the plant system matrix A from (1) is
stable, then a sliding mode observer of the form in (25)
exists such that f̂o = Cfza → fo as t →∞.

Proof : If the plant system matrix A from (1) is sta-
ble, then (A,C1) is detectable and from Lemma 1,
(Aa, Fa, Ca) is minimum phase. Therefore from Propo-
sition 1, f̂o = Cfza → fo since e(t) → 0.
Remark 5: If A from (1) is unstable then for certain
fault conditions, (A, C1) may be unobservable and per-
fect reconstruction is not possible. An example of this is
discussed in §4 in the sequel. Furthermore if (A,C1) is
undetectable then from Lemma 1, (Aa, Fa, Ca) is non-
minimum phase. Then as argued in [9] classical unknown
input observers UIOs also cannot be employed to reject
the unknown input ξ(t): see for example [19,4]. The next
subsection considers the ramifications of this.

3.2 Observer Design

The observer described in this section embodies the same
design philosophies as those proposed in [21]. In this pa-
per, however, there is one major difference from the re-
sults described in [21]. The developments in [21] are com-
pletely predicated on the assumption that (Aa, Fa, Ca)
is minimum phase, and as a consequence, the fault signal
can be perfectly replicated if no uncertainty is present.
As argued in the previous section, this situation can be
recovered as the special case when L from (27) takes the
form [ L1 0 ]. The full block structure in (27) considered
in this paper allows the triple (Aa, Fa, Ca) to be non-
minimum phase thus broadening the class of systems for
which the results are applicable.
As in [21], define a Lyapunov matrix for the error system
in (28) to have the form

P =

[
P11 P12

PT
12 P22

]
(40)

where P11 ∈ IR(n+q−p)×(n+q−p) is s.p.d. Let Gl ∈
IR(n+q)×p be any matrix which satisfies

P (Aa −GlCa)︸ ︷︷ ︸
A0

+(Aa −GlCa)TP < 0 (41)

Here, the design of the linear gain Gl for the sliding mode
observer from (25) will be chosen to satisfy



PA0 + AT
0 P P (GlD −Bd) ET

(GlD −Bd)TP −γ0Ip+q 0

E 0 −γ0Iq


 < 0 (42)

The matrices Bd ∈ IR(n+q)×(p+q), D ∈ IRp×(p+q) in (42)
are defined as

Bd :=
[

0 Fa

]
(43)

D :=
[

D1 0
]

(44)

where D1 ∈ IRp×p, Fa is defined in (17), and

E :=
[

Ce FT
2

]
(45)
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where Ce is defined in (37) and F2 is defined in (24).
From the Bounded Real Lemma, if (42) holds, then
‖G̃a(s)‖∞ < γ0, where the transfer function matrix
G̃a(s) := E(sI − A0)−1(GlD − Bd). This represents an
H∞ filtering problem [24] associated with the linear part
of the observer from (25) obtained from setting ρ = 0 .
The matrix D1 in (44) represents design freedom used
to trade-off the speed of response of the observer versus
the magnitude of the gain matrix Gl. As argued in [21],
inequality (42) is feasible if and only if


PAa+AT

aP−γ0C
T
a (DDT)−1Ca −PBd ET

−BT
d P −γ0I(p+q) 0

E 0 −γ0Iq


<0 (46)

in which case

Gl = γ0P
−1CT

a (DDT)−1Ca (47)

is a choice of the Luenberger gain. Let

PAa + AT
a P :=

[
X11 X12

XT
12 X22

]
(48)

where P is defined in (40) and X11 ∈ IR(n+q−p)×(n+q−p)

is defined as

X11 = P11A11 + P12A21 + (P11A11 + P12A21)T (49)

From (43) it follows that

PBd = P
[

0 Fa

]
=

[
0 P122

0 P222

]
(50)

where P122 and P222 are the last q columns of P12 and P22

from (40) respectively. Using (48) and (50), inequality
(46) can be written as



X11 X12 0 −P122 CT
e

XT
12 X22 − γT

0 (DDT)−1 0 −P222 F2

0 0 −γoIp 0 0

−PT
122 −PT

222 0 −γoIq 0

Ce FT
2 0 0 −γoIq



< 0 (51)

A necessary condition for this inequality to hold is



X11 −P122 CT
e

−PT
122 −γ0Iq 0

Ce 0 −γ0Iq


 < 0 (52)

If L := P−1
11 P12 then P11L2 = P122 and (52) can be re-

written as


P11(A11+LA21)+(A11+LA21)

TP11 −P11L2 CT
e

∗ −γ0Iq 0

∗ ∗ −γ0Iq


< 0 (53)

which is the Bounded Real Lemma associated with
G̃(s) = Ce(sI − (A11 + LA21))−1L2 and implies
‖G̃(s)‖∞ < γ0.

Formally the design problem is: for a given matrix D1

and scalar γ0, minimize γ with respect to P , subject to



X11 −P122 CT
e

−PT
122 −γIq 0

Ce 0 −γIq


 < 0 (54)

P > 0 (55)

and (46). This is a convex optimization problem. Stan-
dard LMI software can be used to synthesize numeri-
cally γ and P . Once P has been determined, L can be
determined as L = P−1

11 P12. The observer gain Gl can
be determined from (47) and Gn is determined from
(27). As argued in [20] a possible choice of the s.p.d
matrix P0 associated with the unit-vector term (26) is
P0 = P22 − P21P

−1
11 P12.

3.3 System Uncertainty

Suppose the system in (1) is subject to uncertainty:

ẋ(t) = Ax(t) + Bu(t) + Mψ(t, x) (56)
y(t) = Cx(t) + Ffo(t) (57)

where ψ(·) represents a bounded unknown disturbance.
The term Mψ(t, x) is assumed to capture the mismatch
between the model about which the observer is designed,
and the real plant which is to be monitored. This model
representation is common in the robust FDI literature
[3], and significant effort has been made to develop prac-
tical methods to determine the distribution matrix M
from measured input/output data [18]. Therefore the
augmented system in (6) - (7) becomes

ẋa(t) = Aaxa(t) + Bau(t) + Maψ(t, x) + Faξ(t) (58)
y(t) = Caxa(t) (59)

where the term Maψ(t, x) represents the effect of addi-
tive bounded uncertainty. Again the fault to be recon-
structed is given by fo = Cfxa. The idea now is to rep-
resent (58) as

ẋa(t) = Aaxa(t) + Bau(t) +
[

Ma Fa

] [
ψ(t, x)

ξ(t)

]
(60)

and to minimize the effect of (ψ, ξ) on the reconstruction
of fo. In this new optimization problem, the disturbance
matrix Bd from (43) must be augmented and becomes

B̄d =
[

0 Fa Ma

]
(61)

and the matrix D from (44) becomes

D̄ =
[

D1 0
]

(62)

The new optimization problem becomes:
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For a given matrix D1 and γ0, minimize with respect to
γ and P , inequalities (54), (55) and



PAa + AT
a P − γ0C

T
a (D̄D̄T)−1Ca −PB̄d ET

−B̄T
d P −γ0I 0

E 0 −γ0I


<0 (63)

Again this represents a convex optimization problem and
LMI solvers can be employed to synthesize γ and P .
Note Ma needs to be pre-scaled appropriately so that
ψa and ξ are of the same order – or suitably weighted to
reflect the relative importance of rejection of uncertainty
compared to the effect of the fault derivative.

4 Simulation Results

An unstable fighter aircraft will now be used to demon-
strate the theory which has been developed in the earlier
sections. The ADMIRE model represents a rigid small
fighter aircraft with a delta-canard configuration based
on a real fighter aircraft. Details of the model can be
found in [13]. The linear model used here has been ob-
tained at a low speed flight condition of Mach 0.22 at
an altitude of 3000m [15]. The states are angle of attack
(AoA) (rad), sideslip angle (rad), roll rate (rad/sec),
pitch rate (rad/sec) and yaw rate (rad/sec). The outputs
are roll rate (rad/sec), yaw rate (rad/sec) and pitch rate
(rad/sec). The control surfaces represent the deflections
(rad) of the canard, right elevon, left elevon and rud-
der respectively. The linear model is open-loop unstable,
which is a typical characteristic of fighter aircraft to al-
low high manoeuvrability. It is assumed that the sensor
for the pitch rate is prone to faults. This system is an ex-
ample where the fault estimation scheme in [20,21] will
not work because it can be shown that if

F =
[

0 0 1
]T

in (2), then the associated augmented system (Aa, Fa, Ca)
is non-minimum phase with a zero at {1.0769}. Note
that the C matrix has been reordered to comply with
the requirements in (4) where the sensors that are prone
to faults are in the lower part of the C matrix. How-
ever, the approach proposed in §3 is applicable for this
particular system. The design parameters for the ob-
server were chosen as, γ0 = 10 from (42) and D1 = I3

from (44). The LMI solver yields a γ and P such that
‖G̃(s)‖∞ = 1.2212. The nonlinear gain in (26) has been
chosen as ρ = 1.

The simulations in Figures 1 and 2 have been obtained
from the full nonlinear ADMIRE model with the air-
craft undergoing a change in altitude (Figure 1). Figure
2 shows the results of the fault reconstruction using dif-
ferent sensor fault shapes, to show the effectiveness of
the method.
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Fig. 1. Manoeuvre on ADMIRE full nonlinear model
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Fig. 2. Sensor fault reconstruction on the pitch rate sensor
on ADMIRE full nonlinear model

5 Conclusion

This paper has addressed one of the system restrictions
in the literature for sensor fault reconstruction based on
sliding mode observers as proposed in [21,20]. The exist-
ing literature guarantees that a sensor fault reconstruc-
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tion observer exists for open loop stable systems. As
shown in this paper, for an open-loop unstable system,
for certain fault combinations, the methods in [21,20] are
not applicable. In this paper, a sliding mode observer for
fault reconstruction which is applicable for both open-
loop stable and unstable systems has been proposed.
Only one meaningful assumption is required: namely,
that after the outputs have been partitioned into the
fault-free and fault-prone subsets, the system associated
with the fault-free measurements does not have an un-
observable mode at the origin. Simulation results from
an open-loop unstable system representing a fighter jet
shows good fault estimation properties even when sim-
ulated on the full nonlinear model.
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