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On the Solvability of the Constrained Lyapunov

Problem

Christopher Edwards, Xing-Gang Yan and Sarah K. Spurgeon

Abstract

This paper considers system theoretic conditions for the solvability of the so-called Constrained

Lyapunov Problem for non-square systems. These problems commonly appear in the control systems

literature. Both a static output feedback problem and an observer problem are considered. The basis

for the work described here is a new canonical form which simplifies the analysis and deals with the

equality constraint in a simple way.

I. INTRODUCTION

A common approach in the literature for the design of controllers and observers for nonlinear

systems is to treat the system of interest as being composed of a linear system in feedback

with a nonlinear element – a classical L’ure system. One common strategy for demonstrating

stability of the system is to synthesize a Lyapunov function based on the linear system element

in such a fashion that stability can be proved for the nonlinear system. The so-called Popov and

Circle criterion are well known examples of such an approach [9]. The Circle criteria employs

a quadratic form as the Lyapunov function whilst the Popov criterion augments the quadratic

term with a nonlinear one which depends on an integral of the nonlinear elements. In terms of a

controller synthesis problem, the use of a Popov-type Lyapunov function invariably leads to an

intractable problem and so is usually used more often for analysis than design. In considering

a design problem to establish stability with respect to a quadratic Lyapunov function (so-called

quadratic stabilizability) a problem occurs which was termed by Galimidi & Barmish [7] as a

Constrained Lyapunov Problem (CLP). It commonly occurs in uncertain linear systems where

the so-called matching condition is assumed to be satisfied and when full state availability does

not exist. Subsequently this problem has appeared widely in several guises in the control systems
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literature over several decades: for example, in problems involving robust static output feedback

[7], adaptive observers [14], sliding mode observers [13] and decentralized control [16]. The

solvability of constrained Lyapunov equations is therefore an interesting problem of practical

significance. Many authors have considered this problem but almost all the published work has

focused on square systems. However, systems involving constrained Lyapunov equations are

in most cases non-square [5], [12], [4]. Therefore to consider the solvability of constrained

Lyapunov equations for non-square systems is important and meaningful. The Constrained

Lyapunov Problem was posed and solved in [7] for both square and non-square systems in

the sense that necessary and sufficient algebraic conditions were given to enable its solution.

The conditions in [7] are given in algebraic terms and there is no suggestion as to when they are

solvable in system theoretic terms. More recently, for square systems, Kim & Park [10] drew

parallels between the CLP and the robust output feedback work of Gu [8]. The work presented in

this paper can be viewed as an extension of the work of Kim & Park [10] for non-square systems

as well as an observer design formulation. The notation used throughout is quite standard. For

a square matrix λ(·) represents the spectrum and for a given symmetric matrix, λmax(·) is the

largest eigenvalue; N (·) represents the null-space of a matrix.

II. PROBLEM FORMULATION

Two specific controller/observer theory related examples will be considered for a given system

triple (A,B, C) where A ∈ IRn×n, B ∈ IRn×m and C ∈ IRp×n where C has full row rank and

B has full column rank. Here it will be assumed that p > m; the square case where p = m

has been considered recently by Kim & Park [10]. The case when p > m is a typical situation

where more sensors are available than actuators; the additional outputs are used to assist in the

development of control schemes to enhance the performance of a subset of ‘controlled outputs’.

For a given triple (A,B,C) two specific situations will be considered:

a) The problem of finding a static output feedback gain K such that

P (A−BKC) + (A−BKC)TP < 0 (1)

where P ∈ IRn×n is s.p.d and subject to the linear constraint

BTP = FC (2)

where F ∈ IRm×p. In this problem K, P and F will be treated as variables. This output

feedback control problem arises for example in [6], [7], [8].
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b) The problem of finding a gain G such that

P (A−GC) + (A−GC)TP < 0 (3)

where P ∈ IRn×n is s.p.d and subject to the linear constraint (2). Here G, P and F will

be treated as variables. This essentially is an observer problem which has appeared in [6],

[7], [13], [14], [15].

Remark 1: These two problems were originally posed and solved in a more abstract form in [7].

They are associated with a nominal linear triple (A,B, C) but are usually linked to an overarching

problem involving both linear and nonlinear terms since in a) the triple (A− BKC, B, FC) is

rendered passive whilst in b) the triple (A−GC, B, FC) is rendered passive [1].

Kim & Park [10] recently showed that for the square case when p = m, necessary and sufficient

conditions to solve the first problem are that det(CB) 6= 0 and none of the n−m invariant zeros

of the triple (A,B,C) lie in C+. These conditions are system theoretic and are independent of the

state-space representation. They amount to the nominal system being minimum phase and relative

degree one. This paper shows that the natural extension of these two conditions are necessary

for the non-square case also. Specifically, it will be assumed that the following restrictions on

the triple (A,B,C) hold:

A1) rank(CB) = m

A2) no invariant zeros of the triple (A,B, C) lie in C+

It will be assumed throughout that the pair (A,B) is controllable. No assumptions will be made

directly on the pair (A,C).

Remark 2: In the square case, the assumption that det(CB) 6= 0 ensures the triple (A,B, C)

has exactly n−m zeros. In the non-square case, the triple (A,B, C) does not necessarily have

invariant zeros, and indeed it can be argued that, typically, unless specific structures exist within

the system, non-square systems tend not to possess any invariant zeros [11]. Thus, typically,

for non-square systems such as those considered in the paper, A2 is trivially satisfied and the

strongest constraint on the class of systems arises from the relative degree one requirement A1.

III. MAIN RESULTS

Both the output feedback and the observer problems discussed earlier will be treated separately.

Remark 3: It is easy to check that if the triple (A,B,C) 7→ (T AT −1, T B, CT −1) := (Ã, B̃, C̃)

via a nonsingular coordinate change associated with an invertible matrix T , then P solves the

constraint (2) if and only if P̃ := (T −1)TPT −1 solves B̃TP̃ = FC̃, i.e. the solvability of

problems a) and b) are independent of the coordinate system and hence are system properties.
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A. The Output Feedback Problem

First consider the static output feedback problem associated with the problem of finding a K,

P and F to satisfy (1)-(2). In order to tackle this problem, a useful lemma will first be stated

and proved which introduces a canonical form to help solve the problem of interest.

Lemma 1: Let (A,B, C) be a linear system with p > m and rank(CB) = m. Then a change of

coordinates exists so that the triple in the new coordinate system has the following structure:

1) The system matrix can be written as

A =


 A11 A12

A21 A22


 (4)

where A11 ∈ IR(n−m)×(n−m) and when partitioned has the structure

A11 =




A1111 A1112 A1113

0 A1122 A1123

0 A1132 A1133


 (5)

where A1111 ∈ IRr×r, A1122 ∈ IR(n−p−r)×(n−p−r) and A1132 ∈ IR(p−m)×(n−p−r) for some r ≥ 0

and the pair (A1122, A1132) is completely observable. Furthermore, the eigenvalues of A1111 are

the invariant zeros of (A, B, C).

2) The input distribution matrix has the form

B =
[

0 BT
2

]T
(6)

where B2 ∈ IRm×m and is nonsingular.

3) The output distribution matrix has the form

C =
[

0 T
]

(7)

where T ∈ IRp×p and is orthogonal.

Proof A pair of linear transformations will be demonstrated which bring about the required

canonical form. Without loss of generality assume C =
[

0 Ip

]
and the input distribution

matrix is partitioned in a compatible way so that

BT =
[

BT
c1 BT

c2

]
where Bc1 ∈ IR(n−p)×m and Bc2 ∈ IRp×m

In this coordinate system CB = Bc2, and so by assumption rank(Bc2) = m. Hence in particular

the left pseudo-inverse B†
c2 = (BT

c2Bc2)
−1BT

c2 for Bc2 exists. Also there exists an orthogonal

matrix T ∈ IRp×p such that

T TBc2 =
[

0 BT
2

]T
(8)
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where B2 ∈ IRm×m and is nonsingular (QR-decomposition). The coordinate transformation

Tb =


 In−p −Bc1B

†
c2

0 T T


 (9)

is nonsingular and with respect to the new coordinates the input and output distribution matrices

are in the form of (6) and (7) respectively. Partition the new system matrix as

TbAT−1
b =




A111 A112

A211

A212

A222




where A111 ∈ IR(n−p)×(n−p), A211 ∈ IR(p−m)×(n−p) and A222 ∈ IRp×p. Let Tobs ∈ IR(n−p)×(n−p)

be any matrix which puts (A111, A211) into the stair-case observability canonical form [3]1. It

can easily be verified that changing coordinates with respect to the nonsingular transformation

Ta = diag{Tobs, Ip} provides a basis in which the system triple satisfies properties 1), 2) and 3)

in the lemma statement once the system matrix is re-partitioned conformably with (4). By direct

computation from the Rosenbrock system matrix it can be shown the eigenvalues of A1111 are

the invariant zeros of (A, B, C).

Using this lemma the following will be proved for the output feedback problem.

Proposition 1: For a given triple (A,B, C) there exists a static output feedback gain K and a

s.p.d. matrix P such that (1)-(2) holds where F ∈ IRm×p if and only if A1 and A2 hold and

the fictitious triple (A11, A12, C1) is static output feedback stabilizable where A11 and A12 are

defined in (4) and

C1 :=
[

0(p−m)×(n−p) Ip−m

]
(10)

Proof
(Necessity) Suppose there exist matrices K, P and F such that (1)-(2) hold. Then multiplying

(2) on the right by B yields BTPB = FCB. Because P is s.p.d, rank(BTPB) = m and so

rank(FCB) = m. Since rank(FCB) ≤ min{rank(F ), rank(CB)} it follows that rank(CB) = m

i.e. assumption A1 holds. By changing coordinates if necessary it can be assumed the triple

(A,B,C) is in the form of Lemma 1. Let the s.p.d. matrix P have a structure

P =


 P11 P12

P T
12 P22




1This transformation is available in most design packages such as MATLAB.
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which is commensurate with the partition in (4). Now change coordinates x 7→ Tpx where

Tp :=


 In−m 0

P−1
22 P T

12 Im




In the new coordinates, if (A,B,C, P ) 7→ (Ap, Bp, Cp, Pp) then

Pp = (T−1
p )TPT−1

p =


 P11 − P12P

−1
22 P T

12 0

0 P22




and Bp = TpB = B i.e. the input distribution matrix is invariant. Let FT =
[

F1 F2

]
where

F1 ∈ IRm×(p−m) and F2 ∈ IRm×m and T is the orthogonal matrix in (7) then

FCp = FCT−1
p =

[
0 F1 F2

]

 In−m 0

−P−1
22 P T

12 Im


 =

[
F1C1 − F2P

−1
22 P T

12 F2

]
(11)

where C1 is from (10). As a result of the change in coordinates, (2) becomes BT
p Pp = FCp then

comparing the expression for

BT
p Pp =

[
0 BT

2 P22

]

with (11), in order that BT
p Pp = FCp holds, it follows that F1C1−F2P

−1
22 P T

12 = 0. Consequently

since det F2 6= 0 (because F2 = BT
2 P2) it follows that

P−1
22 P T

12 = F−1
2 F1C1 (12)

After the change of coordinates

Ap = TpAT−1
p =


 A11 − A12P

−1
22 P T

12 A12

∗ ∗




where the ∗’s are matrices which play no part in the following argument. It is easy to verify

Pp(Ap−BpKCp) + (Ap−BpKCp)
TPp =


P1(A11−A12P

−1
22 P T

12) + (A11−A12P
−1
22 P T

12)
TP1 ∗

∗ ∗




where P1 := P11 − P12P
−1
22 P T

12 and again the ∗’s represent (different) matrices which play no

part in the argument. The matrix inequality (1) together with the expression above implies

P1(A11 − A12P
−1
22 P T

12) + (A11 − A12P
−1
22 P T

12)
TP1 < 0

and consequently from standard Lyapunov theory the matrix (A11−A12P
−1
22 P T

12) is stable. Using

the expression for P−1
22 P T

12 from (12) it follows that (A11−A12F
−1
2 F1C1) is stable i.e. the triple
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(A11, A12, C1) is output feedback stabilizable as claimed. From the definition of C1 from (10)

and A11 from (5) it follows that

(A11 − A12F
−1
2 F1C1) =




A1111 A1112 ∗
0 A1122 ∗
0 A1132 ∗




where the ∗ represent matrix sub-blocks which play no part in the argument. As a consequence,

σ(A1111) ⊂ σ(A11−A12F
−1
2 F1C1). The preceding argument has shown that (A11−A12F

−1
2 F1C1)

is stable and therefore the submatrix A1111 must be stable. From Lemma 1 the spectrum of A1111

precisely corresponds to the invariant zeros of (A,B,C) and so A2 must hold. This shows that

a necessary requirement for solvability is that the system triple (A,B,C) is minimum phase.

]

(Sufficiency) Suppose A1 and A2 hold then without loss of generality the triple (A,B, C) can

be assumed to be in the form of Lemma 1. Under the assumptions of the proposition there exists

a matrix M ∈ IRm×(p−m) such that A11 − A12MC1 is stable. Define

F = F2

[
M Im

]
T T (13)

where T is the orthogonal matrix in (7), F2 ∈ IRm×m and det F2 6= 0 is a design parameter.

Change coordinates according to x 7→ TMx where

TM :=


 In−m 0

MC1 Im


 (14)

In the new coordinate system

Ã = TMAT−1
M :=


 Ã11 Ã12

Ã21 Ã22


 B̃ = TMB =


 0

B2


 = B (15)

where Ã11 = A11 − A12MC1 and so by construction is stable. Also

FC̃ = FCT−1
M =

[
0 F2

]
(16)

where F2 is the parameter from (13). The expression in (16) follows from (7) and (13) since

FC = F2

[
MC1 Im

]

Define P̃ := diag(P̃1, Im) where P̃1 ∈ IR(n−m)×(n−m). Notice that if F2 := BT
2 , then by

construction, B̃TP̃ = FC̃ and so (2) holds. Let K =: γB−1
2 (BT

2 )−1F = γB−1
2

[
M Im

]
T T

where γ is a positive design scalar then KC̃ = γB−1
2 (BT

2 )−1FC̃ =
[

0 γB−1
2

]
and

Ã− B̃KC̃ =


 Ã11 Ã12

Ã21 Ã22 − γIm




DRAFT



8

and therefore

P̃ (Ã− B̃KC̃) + (Ã− B̃KC̃)TP̃ =


 P̃1Ã11 + ÃT

11P̃1 P̃1Ã12 + ÃT
21

ÃT
12P̃1 + Ã21 Ã22 + ÃT

22 − 2γIm


 (17)

Since Ã11 is stable, P̃1 can be chosen so that P̃1Ã11 + ÃT
11P̃1 < 0. Then from the Schur

complement the right hand side of (17) can be made negative provided

γ > max
{
0,

1

2
λmax

(
(Ã22 + ÃT

22)− (ÃT
12P̃1 + Ã21)(P̃1Ã11 + ÃT

11P̃1)
−1(P̃1Ã12 + ÃT

21)
)}

(18)

Thus A1, A2 and the stabilizability of the triple (A11, A12, C1) are sufficient conditions.

Remark 4: In the original paper describing the Constrained Lyapunov Problem [7], the necessary

and sufficient conditions for its solution are given in terms of A1 and the stabilizability of

(A∗, B∗, C∗) where the matrices A∗ = ΘATΘT−ΘTCTCB(BTCTCB)−1BTATΘ, B∗ = ΘTCTΛ

and C∗ =BTATΘ; Θ ∈ IRn×(n−m) is rank n − m and formed from orthogonal vectors which

span N (BT); and Λ ∈ IRp×(p−m) is rank p−m and formed from the orthogonal vectors which

span the null space of (CB)T. After some algebra and using the canonical form in Lemma 1 it

can be shown A∗ = AT
11, B∗ = CT

1 and C∗ = BT
2 AT

12. It follows the conditions are the same but:

• it is straightforward from the canonical form in Lemma 1 to show that the pair (A11, A12)

is controllable iff (A,B) is controllable. This was never explicitly addressed in [7];

• lack of detectability of (A11, C1), and hence lack of stabilizability of the fictitious triple

(A11, A12, C1), follows from the presence of invariant zeros of the original triple (A,B, C)

lying in the RHP. The relationship between the detectability of (A11, C1) and the invariant

zeros was never identified.

Remark 5: The difficult part of Proposition 1 is to establish the stabilizability by static output

feedback of the triple (A11, A12, C1). This of course is still an open problem [12]. Nevertheless

there are some significant advantages to the approach proposed in this paper:

• the CLP is reduced to a standard static output feedback problem and any of the wealth of

existing methods and literature can be used;

• whereas the original system (A,B, C) has n states, p outputs and m inputs, the static output

feedback problem to be studied is of reduced order: (A11, A12, C1) has n−m states, p−m

outputs and m inputs. Sometimes this reduced order problem is more amenable to solution.

For example, in systems with one input and two outputs, the CLP problem reduces to a

classical ‘root-locus’ investigation;

• restrictions on n, p, m can be imposed so that the Kimura-Davison conditions [12] are

satisfied for (A11, A12, C1). This dimensionality inequality together with A1) and A2) then

represent sufficient conditions for the CLP to be solved;

DRAFT



9

• if n − m ≤ m and rank(A12) = m the output feedback problem ‘collapses’ to a state-

feedback problem for the pair (AT
11, C

T
1 ) (see the example in Section IV).

Remark 6: For a given M which makes A11 − A12MC1 stable, the problem of finding a P

and K to satisfy (1) and (2) is convex. In the coordinates associated with (14) and (15) if

K := [ K1 K2 ]T T where K1 ∈ IRm×(p−m) then

Ã− B̃KC̃ =


 Ã11 Ã12

Ã21 −B2K1C1 Ã22 −B2K2




If P̃ = diag(P̃1, P̃2) then
P̃ (Ã− B̃KC̃) + (Ã− B̃KC̃)TP̃ < 0

is an LMI with respect to Y1, Y2, P̃1 and P̃2 where Y1 := P̃2B2K1 and Y2 := P̃2B2K2. The

equality B̃TP̃ = FC̃ is satisfied provided F is chosen as in (13) where F2 := BT
2 P̃2. Once a

feasible solution to the LMI with respect to Y1, Y2, P̃1 and P̃2 has been found (one is guaranteed

to exist by the proof of Proposition 1) then K1 and K2 can be recovered from Y1 and Y2

respectively since B2 and P̃2 are nonsingular.

Remark 7: In the situation of an over-actuated system i.e. when m > p, the constraint in (2)

cannot be satisfied since the right hand side will be rank m whilst the left hand side can have

at most rank p. The method described above can be used on the dual system (AT, CT, BT). The

dual system fits into the framework described above and so a control law ud = −Kyd can be

synthesized so that (AT−CTKBT) is stable. It follows that (A−BKTC) is stable and u = −KTy

is a controller for the original plant. Now the structural constraint becomes P−1CT = BF [7].

B. The Observer Problem

Another lemma introducing a specific canonical form will now be quoted. It is similar to Lemma 1

but for clarity and ease of exposition later on it will be given in its entirety

Lemma 2: Let (A,B, C) represent a non-square system with p > m and suppose rank (CB) =

m. Then a change of coordinates exists so that (A,B,C) has the following structure:

1) The system matrix can be written as

A =


 Ao

11 Ao
12

Ao
21 Ao

22


 and Ao

21 =


 Ao

211

Ao
212


 (19)

where Ao
11 ∈ IR(n−p)×(n−p), Ao

211 ∈ IR(p−m)×(n−p) and when partitioned have the structure

Ao
11 =


 Ao

1111 Ao
1112

0 Ao
1122


 and Ao

211 =
[

0 Ao
1132

]
(20)
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where Ao
1111 ∈ IRr×r and Ao

1132 ∈ IR(p−m)×(n−p−r) for some r ≥ 0 and the pair (Ao
1122, A

o
1132) is

completely observable. Furthermore, the eigenvalues of Ao
1111 are the invariant zeros of (A,B,C).

2) The input distribution matrix has the form

B =
[

0 BT
2

]T
(21)

where B2 ∈ IRm×m is nonsingular.

3) The output distribution matrix has the form

C =
[

0 T
]

(22)

where T ∈ IRp×p and is orthogonal

Proof This is similar to Lemma 1

Remark 8: Whilst it has been assumed that (A,B) is controllable, no assumptions have been

made concerning the observability of (A,C). However using the Popov-Belevitch-Hautus test it

can be easily shown from the canonical form in Lemma 2 that conditions A1 and A2 imply the

pair (A,C) is detectable (and if (A,B,C) has no invariant zeros, then (A,C) is observable).

Proposition 2: For a given triple (A, B, C) there exists a gain matrix G and a s.p.d. matrix

P ∈ IRn×n such that (2)-(3) holds where F ∈ IRm×p if and only if A1 and A2 hold.

Proof
(Necessity) Suppose there exist matrices G, P and F such that (2)-(3) hold. As in the proof

of Proposition 1 because (2) is assumed to hold, it follows that rank(CB) = m i.e. assumption

A1 holds. By changing coordinates if necessary it can be assumed the triple (A,B, C) is in the

form of Lemma 2. Let the s.p.d. matrix P have a partition

P =


 P11 P12

P T
12 P22




where P11 ∈ IR(n−p)×(n−p) which is commensurate with the partition in (19). Now change

coordinates x 7→ Tox where

To :=


 In−p P−1

11 P12

0 Ip




In the new coordinates assume that (A, B, C, G, P ) 7→ (Ao, Bo, Co, Go, Po) and it follows that

Po = (T−1
o )TPT−1

o =


 P11 0

0 P22 − P T
12P

−1
11 P12



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Notice that as a result of the transformation Co = CT−1
o = C and

Bo = ToB =


 P−1

11 P12Bo2

Bo2


 where Bo2 :=


 0(p−m)×m

B2


 (23)

and B2 is defined in (21). In order that BT
o Po = FCo holds, P12Bo2 = 0 or equivalently

P−1
11 P12Bo2 = 0 must hold. Furthermore

P−1
11 P12Bo2 = 0 ⇒ P−1

11 P12 =
[

L 0(n−p)×m

]
(24)

where L ∈ IR(n−p)×(p−m) because of the structure of Bo2 in (23) and the fact that det(B2) 6= 0.

After the change of coordinates

Ao = ToAT−1
o =


 Ao

11 + P−1
11 P12A

o
21 ∗

Ao
21 ∗




where the ∗’s are matrices which play no part in the subsequent analysis. Because of the partition

of Co it follows that

Ao −GoCo =


 Ao

11 + P−1
11 P12A

o
21 ∗

Ao
21 ∗




The fact that only the last p columns of Ao are affected by the output injection follows from

the structure of Co from (22). Consequently

Po(Ao −GoCo) + (Ao −GoCo)
TPo =


 P11(A

o
11+P−1

11 P12A
o
21) + (Ao

11+P−1
11 P12A

o
21)

TP11 ∗
∗ ∗




since Po(Ao −GoCo) + (Ao −GoCo)
TPo < 0 it follows

P11(A
o
11 + P−1

11 P12A
o
21) + (Ao

11 + P−1
11 P12A

o
21)P1 < 0

As a result the matrix (Ao
11 + P−1

11 P12A
o
21) is stable. From the structure of Ao

11 and Ao
211 from

(20) it follows that

(Ao
11 + LAo

211) =


 Ao

1111 ∗
0 ∗




where the ∗ represent matrix sub-blocks which play no part in the argument. Consequently

σ(Ao
1111) ⊂ σ(Ao

11 + LAo
211) and since from the argument above (Ao

11 + LAo
211) is stable, the

sub-block Ao
1111 must be stable. From Lemma 2 the invariant zeros of (A,B, C) are precisely

the eigenvalues of Ao
1111 and so A2 must hold. This shows that a necessary requirement for

solvability is that the system triple (A,B,C) is minimum phase. ]

(Sufficiency) Now suppose A1 and A2 hold then, without loss of generality, change coordinates

according to Lemma 2 and establish the matrices Ao
11 and Ao

211 as in equation (20). From
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Lemma 2 the undetectable modes of the pair (Ao
11, A

o
211) are the invariant zeros of (A,B, C)

and so consequently by assumption the pair (Ao
11, A

o
211) is detectable. Let

L =
[

Lo 0(n−p)×m

]
where Lo ∈ IR(n−p)×(p−m) (25)

such that Ao
11 + LoA

o
211 is stable. Change coordinates x 7→ TLx according to

TL =


 In−m L

0 Ip




As a result of this change of coordinates C̄ = CT−1
L = C and

B̄ = TLB =


 LB̄2

B̄2


 where B̄2 :=


 0(p−m)×m

B2


 (26)

Because of the special structure of B̄2 from (26) and the structure of L in (25) LB̄2 = 0 and so

B̄ = TLB = B. The system matrix

Ā = TLAT−1
L =


 Ā11 Ā12

Ā21 Ā22


 (27)

where Ā11 = Ao
11 + LoA

o
211 and is therefore stable. Let Ās ∈ IRp×p be a symmetric negative

definite matrix and define

Ḡ =


 Ā12

Ā22 − Ās


 T T ⇒ Ā− ḠC =


 Ā11 0

Ā21 Ās


 (28)

Notice λ(Ā−ḠC̄) = λ(Ā11)∪λ(Ās) and therefore Ā−ḠC̄ is stable. Choose P̄ = diag(P̄1, αIp)

where P̄1 ∈ IR(n−p)×(n−p) is s.p.d and α is a positive scalar. Since Ā11 is stable, P̄1 can be

chosen to make P̄1Ā11 + ĀT
11P̄1 < 0. Notice that BTP̄ = FC provided F := αB̄T

2 T T where B̄2

is defined in (26). It can be verified that

P̄ (Ā− ḠC) + (Ā− ḠC)TP̄ =


 P̄1Ā11 + ĀT

11P̄1 αĀT
21

αĀ21 2αĀs


 (29)

Then from the Schur complement, the right-hand-side of (29) is negative definite if and only if

2Ās < αĀ21(P̄1Ā11 + ĀT
11P̄1)

−1ĀT
21 (30)

This can always be satisfied for small enough α, since by definition Ās is symmetric negative

definite. Consequently G, P and F can be found to satisfy (2) and (3).

Remark 9: The solvability conditions from [7] are that the pair (A∗, B∗) are stabilizable where

A∗ := ΨTATΨ−ΨTCTCB(BTCTCB)−1BTATΨ and B∗ := ΨATCTΛ where Ψ ∈ IRn×(n−p) is a

rank n−p matrix formed from the orthogonal vectors which span N (C) and Λ ∈ IRp×(p−m) is a
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rank p−m matrix formed from the orthogonal vectors which span the null space of (CB)T. Again

after some algebra, from the canonical form in Lemma 2, it can be shown that A∗ = (Ao
11)

T and

B∗ = (Ao
211)

T and so the stabilizability condition for the pair (A∗, B∗) ties in with the results of

Proposition 2. Furthermore

• Proposition 2 provides additional insight and concludes that the lack of stabilizability of

(A∗, B∗) follows from the presence of invariant zeros of (A,B,C) lying in the RHP.

• The problem discussed in Proposition 2, can, through a change of variables, be transformed

into a convex optimization problem. Specifically if a new variable L = PG is introduced

then (2)-(3) are Linear Matrix Inequalities (LMIs) [2] in terms of the decision variable

L, P and F . This is not the case for the static output feedback problem. However the

equality constraint (2) cannot be directly handled by several commonly used LMI solvers.

The approach embedded in the proof of Proposition 2 can be used to circumvent this.

Instead of choosing Ḡ as in (28) allow the decision variable G = T−1
L Ḡ to have a more

general form. In the coordinates of Lemma 2 if

P :=


 P1 −P1L

−LTP1 P2 + LTP1L


 (31)

where L is given in (25), then for F := B̄T
2 P2T

T the constraint (2) is satisfied for all Lo,

and s.p.d. matrices P1 and P2. Consequently making the change of variables P11 := P1,

P12 = −P1L and P22 = P2 + LTP1L and Y = PG where P is given in (31), a simpler

convex problem appears in terms of P11, P12, P22 and Y . For given values of these variables,

P1, P2 and L, (i.e. P ) and finally G = P−1Y can be obtained. The number of scalar decision

variables associated with P11, P12, P22 and Y may be significantly less than those associated

with P , G and F and in addition the equality constraint has been removed.

IV. EXAMPLE

Consider the following system which represents the longitudinal dynamics of a passenger aircraft

Ap =




−0.6803 0.0002 −1.0490 0

−0.1463 −0.0062 5.1216 −9.7942

1.0050 −0.0006 −0.5717 0

1.0000 0 0 0




Bp =




−1.5539 0.0154

0 1.3287

−0.0398 −0.0007

0 0




Cp =




1 0 0 0

0 1 0 0

0 0 0 1




The states represent pitch rate (rad/s), true airspeed (m/s), angle of attack (rad) and pitch angle
(rad) respectively. The inputs are elevator deflection (rad) and thrust (105 N). Using the change
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of coordinates x 7→ T x where

T =




0.0256 −0.0008 −1.0000 0

0 0 0 1.0000

0 1.0000 0 0

1.0000 0 0 0




(32)

the system in the regular form of Lemma 1 can be represented by the triple

A =




−0.5407 0.0080 0.0002 −1.0085

0 0 0 1.0000

−5.1216 −9.7942 −0.0104 −0.0151

1.0490 0 0.0011 −0.7072




B =




0 0

0 0

0 1.3287

−1.5539 0.0154




C =




0 0 0 1

0 0 1 0

0 1 0 0




It follows from Lemma 1

A11 =

[
−0.5407 0.0080

0 0

]
A12 =

[
0.0002 −1.0085

0 1.0000

]
C1 =

[
0 1

]

The pair (A11, C1) is not observable and so −0.5407 is an invariant zero of (A,B,C). Choosing
MT = [ 0 1 ] implies

A11 −A12MC1 =

[
−0.5407 1.0165

0 −1.0000

]

and λ(A11 − A12MC1) = {−0.5407,−1}. It can be shown that P1 = I2 is a Lyapunov matrix

for Ã11 = A11 − A12MC1 and after performing the change of coordinates in (14) to obtain Ã

and its sub-matrices, it can be shown that γ from (18) must be greater than 114.3230.

From an observer perspective, from the canonical form in Lemma 2, Ao
11 = −0.5407 and

(Ao
21)

T =
[

0 −5.1216 1.0490
]

⇒ Ao
211 = 0

Consequently

Ā =

[
Ā11 Ā12

Ā21 Ā22

]
=




−0.5407 0.0080 0.0002 −1.0085

0 0 0 1.0000

−5.1216 −9.7942 −0.0104 −0.0151

1.0490 0 0.0011 −0.7072




If Ās = −I3 then from (28)

Ḡ =




−1.0085 0.0002 0.0080

1.0000 0 1.0000

−0.0151 0.9896 −9.7942

0.2928 0.0011 0




(33)

which means λ(Ā − ḠC̄) = {−0.5407,−1,−1,−1}. It follows that P̄1 = 1 is an appropriate

choice of Lyapunov matrix for Ā11 and so from (30), α < 1/12.6380 is a valid choice.
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V. CONCLUSIONS

This paper has considered conditions for the solvability of the so-called Constrained Lyapunov

Problem for non-square systems. Both a static output feedback problem and an observer problem

have been considered. Necessary and sufficient conditions have been given based on system

theoretic properties rather than the algebraic ones which appeared in the original work by

Galimidi & Barmish [7]. The viewpoint adopted here is more akin to the recent work of Kim &

Park [10] which has been extended in this paper to more general non-square systems. The basis

for the work in this paper is a canonical form which simplifies the analysis and deals with the

equality constraint in the CLP problem in a simple way. The advantages from the standpoint of

convex representations (of the observer problem particularly) have also been given.

REFERENCES

[1] B.D.O. Anderson and S. Vongpanitlerd. Network Analysis and Synthesis: A Modern Systems Theory Approach. Prentice

Hall, Englewood Cliffs, NJ, 1973.

[2] S.P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in Systems and Control Theory. SIAM:

Philadelphia, 1994.

[3] C.T. Chen. Linear System Theory and Design. Holt, Rinehart & Winston, New York., 1984.

[4] C.F. Cheng. Output feedback stabilization for uncertain systems: constrained Riccati approach. IEEE Transactions on

Automatic Control, 43(1):81–84, 1998.

[5] D.M. Dawson, Z. Qu, and J.C. Carroll. On the state observation and output feedback problems for nonlinear uncertain

dynamic systems. Systems and Control Letters, 18(2):217–222, 1992.

[6] C. Edwards and S.K. Spurgeon. Sliding Mode Control: Theory and Applications. Taylor & Francis, 1998.

[7] A.R. Galimidi and B.R. Barmish. The constrained Lyapunov problem and its application to robust output feedback

stabilization. IEEE Transaction on Automatic Control, 31:410–418, 1986.

[8] G. Gu. Stabilizability conditions of multivariable uncertain systems via output feedback control. IEEE Transactions on

Automatic Control, 35:925–927, 1990.

[9] H.K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs NJ., 1992.

[10] K.S. Kim and Y. Park. Equivalence between two solvability conditions for a static output feedback problem. IEEE

Transaction on Automatic Control, 45:1877, 2000.

[11] J.M. Maciejowski. ‘Multivariable feedback design’, Addison-Wesley, 1989.

[12] V.L. Syrmos, C.T. Abdallah, P. Dorato, and K. Grigoriadis. Static output feedback – a survey. Automatica, 33:125–137,

1997.
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