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Abstract

Land ecosystems absorb about a quarter of all human emissions of carbon (C)
by fossil fuel burning and land use change. This percentage varies greatly
within years due to the land ecosystem response to climate variability and
disturbance. Significant uncertainties remain in our knowledge of the magnitude
and spatio-temporal changes in the land C sinks. The aims of my thesis are 1)
to evaluate the capacity of different dynamic global vegetation models (DGVMs)
to reproduce the fluxes and stocks of the land C cycle and 2) to analyse the
drivers of change in the land C over the last two decades (1990-2009).

In the first part of this thesis | evaluated the DGVM results over two
regions: the Northern Hemisphere (NH) and the Tropics. Over the NH DGVMs
tend to simulate longer growing seasons and a greater positive leaf area index
trend in response to warming than that observed from satellite data. For the
tropical region we found a high spatial correlation between the DGVMs and the
observations for C stocks and fluxes, but the models produced higher C stocks
over the non-forested areas.

In the second part | studied the processes controlling the regional land C
cycle. The findings can be summarized as: (1) the land CO; sink has increased
over the study period, through increases in tropical and southern regions with
negligible change in northern regions; (2) globally and in most regions, the land
sinks are not increasing as fast as the growth rate of excess atmospheric CO,
and (3) changes in water availability, particularly over the dry season, played a
fundamental role in determining regional trends in NPP.

My work seeks to improve our understanding of the relationship between
the C cycle and its drivers, however considerable research is needed to
understand the role of additional processes such as land use change, nitrogen

deposition, to mention just a few.
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Chapter 1: Introduction

1.1 The Carbon Cycle on Earth

The recycling of elements is a key feature of our planet that allows the
existence and continuation of life. All major nutrients cycle through the four
components of the Earth system: air, land, water and living organisms. This is
true for all elements, but particularly for the 6 main elements that constitute the
building blocks of life: sulphur, hydrogen, oxygen, nitrogen, phosphorous and
carbon (C).

C helps modulate atmospheric temperature and is fundamental to energy
exchanges in living organisms. Firstly, it keeps the planet warm, the natural
Earth’s atmosphere has only about 0.3% (300 ppm) concentration of C, but this
fraction, plus other greenhouse gases (such as water vapour and methane), are
enough to keep the planet’s temperature 15 degrees above what it would be in
the absence of their presence in the atmosphere, allowing the existence of
liquid water and life (Lovelock, 1987). The C components are responsible for
25% of this greenhouse effect (Rodhe, 1990). Secondly, C is fundamental to all
living organisms, as part of their constitutive tissues (e.g. wood, leaves) and as
a way to store and use energy.

The C cycles through the Earth system in three different components: the
atmosphere, the ocean and the land. In its gaseous form, the primarily pool of C
is in the inorganic form CO., with a burden of 760 PgC in the atmosphere (Ciais
et al., 2013). This is also the most dynamic of all components, as it's natural
lifetime —the time for a molecule to circulate through the atmosphere- is around
8 years, this short life-span of C in the atmosphere is primarily driven by the
exchange of CO; with the oceans and the living organisms capturing and
respiring it back (Moore and Braswell, 2012). However, it is important to note
that the “residence time” of CO; in the atmosphere is much longer, a pulse of
CO; in the atmosphere will be removed by the land and oceans owing multiple
processes over centuries to millennia (Ciais et al. 2013)

In the oceans C has multiple forms (such as dissolved organic C,
particulate organic C, and dissolved inorganic C), with up to 98% of all oceanic
C in inorganic forms. The total pool of C in the ocean has been estimated at
38,000 PgC (Sarmiento and Gruber, 2006), out of which about 97% is
concentrated in the deep oceans. In spite of representing a vast pool, the deep
ocean C is relatively stable taking thousands of years to turnover. On the other



hand, the C exchange in the surface waters is more dynamic due to the quick
exchange with the atmosphere. Finally, marine biota accounts for 3PgC but it is
responsible for cycling 50-60PgCyr ' due to is shorter lifetime of 5 weeks (Ciais
et al., 2013).

Land C is contained mainly in organic forms, in the soil (1,500-2000 PgC)
and the vegetation (360-650PgC) (Ciais et al., 2013; Liu et al. 2015). This C has
a lifetime of about 10 years for the vegetation C and about 25 years for the soill
C (Chapin et al. 2011). A large fraction of the land C is also contained in the
frozen permafrost soils, with an estimated 1200 PgC in organic forms (Schuur
et al., 2008), and also in peatlands and wetlands, with around 450 PgC.

The last pool of C is the soil contained on the Earth’s crust and mantle.
This represent at least 99% of all planetary C but its cycling, regulated by soil
weathering, tectonic plate movement and volcanism makes it an extremely slow
pool, with lifetimes of millions and thousand of millions of years (Chapin et al.
2011).

Over the shorter time periods (centuries, decades, inter and intra annual)
the terrestrial C cycle is driven by photosynthesis and respiration by land
vegetation (Keeling et al. 1995) and by the human activities (Le Quere et al.,
2013, 2014). Human activities, in particular fossil fuel burning and land-use
change, have altered the global C cycle. Changes in the C cycle in the
atmosphere, oceans and land are shown in Figure 1. CO, in the atmosphere
has increased from 280 at the onset of the industrial revolution to near 400 ppm
today (that is an increase of 43%), which could be the highest concentration
over the last 3-5 million years (Pearson & Palmer, 2000). The growth rate of
atmospheric CO; has also gone up from 1% per year over 1990-1999 to 3%
over 2001-2010 (Le Quere et al., 2013). The airborne fraction, the fraction of
human emissions that remains in the atmosphere, is somewhere between 40-
45% (Knorr, 2009).

Changes in the ocean C occurred mostly over the surface waters as an
increase in dissolved inorganic C (Sarmiento et al., 1998). The process is driven
by the difference in the partial pressure of CO; between the atmosphere and the
oceanic water, through Henry’s law. An increase of 1ppm of CO; in the
atmosphere leads to a net uptake of 0.28ppm in the oceans, hence the ocean
has been a net sink of C over the last 20 years, absorbing 28% of all human

emissions (Le Quere et al., 2013) or about 2.4+0.7 PgCyr™'. Based on modelling
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work, the sink exhibits little interannual variability, mostly driven by changes in
the sea surface temperature (Gruber et al., 2002).

The C stored in land ecosystems depends on the activity of plants and
soil microbes but also on land use by humans. Before the industrial revolution,
there was a balance between the biosphere and the atmosphere in the
exchange of C: the entire flux of C that was captured through photosynthesis
was eventually released back into the atmosphere via decomposition with a
small fraction exported to oceans via the river system. As humans modified the
system the tight balance was broken. The land began to absorb more C through
mechanisms such as the COz fertilization effect on photosynthesis, increases in
nitrogen deposition stimulating plant growth, longer growing seasons due to
warming and the reforestation of mid latitudes (Ciais et al., 2013). According to
recent modelling estimtes, over the last two decades terrestrial ecosystems
captured 1.6+1.0 PgCyr"' —different sources estimate similar values as detailed
in the next section- or the equivalent to 22%-30% of total anthropogenic
emissions (Le Quere et al. 2013). However, the human influence on the land-C
is also negative, through deforestation and conversion of natural ecosystems
into pastures and croplands, with emissions of 0.9 + 0.8 PgCyr' (Le Quere et
al., 2013).

11
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Figure
1.1. Global carbon emission and sinks from 1870-2013 in parts per million
(ppm). Original image from the Global Carbon Budget 2014
(http://www.globalcarbonproject.org).

Considerable uncertainties remain in our knowledge of the magnitude
and spatio-temporal changes in the land C sink (Ciais et al., 2013), particularly
in the vyear-to-year variation. Modelling studies have suggested that the
interannual variability (IAV) in atmospheric CO; is driven by the terrestrial
ecosystems, which in turn is regulated by the variation in vegetation productivity
-particularly over the semi-arid regions- (Keeling et al. 1995; Poulter et al. 2014,
Ahlstrom et al. 2015). Several different drivers affect the land C at different
scales and act in different directions: both increasing and decreasing CO;
exchange between the land and atmosphere. Understanding the mechanisms
behind variations in the IAV in the terrestrial C exchange, and its implications
for the global C cycle for the future, are a key study for Earth-System science
and the correct reproduction of future modelled scenarios (e.g. Cox et al. 2013).

1.2 Drivers of the terrestrial C cycle
In the absence of disturbance two main processes control the C dynamics in
terrestrial ecosystems: photosynthesis and respiration. As much as 270 PgCyr™

passes through leaves each year, however only about 120 PgCyr™ are actually
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fixed in the vegetation (Farquhar and Sharkey 1982). Half is then consumed by
autotrophic respiration and the rest is used to sustain plant growth (leaves,
roots and wood). The total uptake of C by the vegetation is the Net Primary
Productivity (NPP), which accounts for about 60 PgCyr'; on the long-term
virtually all of this returns to the atmosphere as heterotrophic respiration (Rh) or
combustion by fires (Prentice et al., 2001) and a small fraction is lost as riverine
fluxes (Regnier et al. 2014) —although this flux is not included in most global
models-. The difference between NPP and Rh is called Net Ecosystem
Production (NEP). When disturbance processes (natural such as fires or human
induced such as land use change) are also considered, the Net Biome
Productivity (NBP) represents the net exchange of C between the land and
atmosphere usually applied at broader scales (Chapin et al. 2006).

NBP = NPP — Rh — LUC - Fire — other disturbances

Global NBP has been estimated from different sources. Recent modelling work
estimate annual NBP between 1.6 + 1.0 PgCyr"' (Le Quere et al., 2013; Ciais et
al., 2013); results from atmospheric CO; inversions set the value at 1.65 + 0.29
PgCyr' (Gurney and Eckels, 2011; Pelyn et al., 2013); the flux can also be
calculated indirectly from geophysical methods, using O./N, rations and the
COz concentration in the atmosphere Manning and Keeling (2006) estimated a
value of 1.2 #+ 0.8 PgCyr'; using mid-air vertical atmospheric CO,
measurements the flux is estimated at 1.4 + 1.4 PgCyr"' (Stephens et al., 2007);
based on inventory-based data Pan et al. (2010) estimated a land uptake of 1.3
+ 0.2 PgCyr™; finally, the land-C flux can also be estimated by closing the C
budget (as a reminder of the atmospheric CO, growth and the ocean uptake),
thus resulting in an uptake of 1.5 = 0.9 PgCyr‘1 (Sarmiento et al., 2010).

Altough some level of variation is found across estimates, all of them
agree that land ecosystems generally had gained C over recent decades.
However NBP shows high interannual and decadal variability. The interannual
variations are driven by ecosystem response to climate variability (temperature,
precipitation and radiation) and the decadal by changes in nutrient availability
(e.g. nitrogen and phosphorus), land use and land cover changes (LUC) and
disturbance (Ciais et al., 2013).

13



Change in atmospheric CO, concentration.

The main direct effect of CO, on land ecosystems is a boost in GPP, through
increasing the photosynthetic rate of plants. On the leaf level, oxygen and CO»
compete for the reaction place of RUBISCO, the carbon-fixing enzyme. As the
relative partial pressure of CO; increases, the process becomes more efficient,
reducing the oxygenase reaction rate (Farquhar and Sharkley, 1982). Through
enhanced photosynthesis plants develop faster, and/or augmenting in size —or
mass-, which ultimately translates into higher NPP, biomass and in addition
more litter production. The process also enhances Rh as more C is available for
decomposition, however the increase in NPP is faster than in Rh and the net C
balance is a sink. In other words, rising atmospheric CO; translates to more C
uptake by the terrestrial ecosystems. In the last 100 years, the CO; fertilization
effect has been estimated to boots NPP by about 20-25% (Friedlingstein et al.,
1995; Ainsworth and Long, 2005; Norby et al. 2005; Wang et al., 2012; Ciais et
al., 2013).

Another impact of an increase in atmospheric CO, is a change in the
water-carbon relationships of plants. The water-carbon trade-off is a basic
metabolic feature of all plants, regulated by stomatal control. The central idea is
that plants necessarily loose water in order to gain CO; for photosynthesis. A
higher CO, concentration means that the plants gain more C per unit of water,
in water-limited ecosystems this can result in longer growing seasons and
higher annual NPP (Field et al. 1995). This may also lead to a small decrease in
the evaporative fluxes and to a small increase in continental river runoff (Betts
et al., 2007); however the effect of soil moisture limitation on evapotranspiration
seems to have a larger role in controlling the land water fluxes (Jung et al.,
2010).

The effects of climate variability and change

As a greenhouse gas, increasing atmospheric CO; leads to global warming and
changes in the global water cycle. Temperature has increased by around 0.5-
0.7 °K during the last century, with higher values occurring over the land and
the northern hemisphere (Ciais et al., 2013; Stocker et al., 2013) On the other
hand, the increase in radiative forcing has accelerated the planetary water
fluxes by 5% (or 8%/°C) (Durack et al. 2012), leading to more extreme
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seasonality (Chou et al. 2014) and a redistribution of global precipitation
patterns (Zhang et al. 2007).

However the effects of climate change on the terrestrial C cycle are not
fully understood. When the changes in the terrestrial C-cycle were attributed to
the effects of changing temperature, precipitation and atmospheric CO, over
recent decades (1980-2002), Piao et al (2009) found that CO, was responsible
for at least 80% of the increase in both NPP and NBP. The effect of climate
combined (temperature + precipitation change) was near zero, due to a
balancing act of a positive precipitation effect and a negative from temperature.
When analysing the effects of climate change in global NBP over the last
century, as simulated by ESMs, Friedlingstein et al. (2006) found that the
directional response was not clear, with models showing opposite trends.

Multiple contrary effects occur at the same time (e.g., an increase in T
leads to enhanced RH, but also to longer growing seasons at high latitudes). As
a consequence different model estimates produce contrasting results regarding
the relative contribution of climate to the change in NBP in the long-term;
however the increase in temperature usually leads to a loss of C from land
ecosystems (Friedlingstein et al., 2006; Arora et al., 2013; Piao et al., 2013;
Ciais et al., 2013). In addition the effect of climate change on land ecosystems
—at least in the Northern Hemisphere- has lead to an increase in the
atmospheric CO, amplitude, signalling a large change in ecosystem conditions
(Graven et al., 2013).

Due to this uncertainty of terrestrial C cycle responses to climate in the
historical period, it is not surprising that the simulated future response of land-C
to climate change is also very different across models (Friedlingstein et al,
2006, 2014; Arora et al., 2013). The uncertainty arises from the strength of the
climate-carbon feedbacks, but also from the strength of the CO, fertilization
effect. There are at least four important global climate-C feedbacks that might
alter current uptake trends: 1) The change in the rate of microbial respiration
due to increased temperature, 2) the thawing of the permafrost and C release
with global warming, 3) increases in regional drought and impact on land C
cycle and 4) warming of the northern hemisphere (NH) and impact on the
vegetation growing season.

The first happens because soil organic C decomposition depends on the

activity of bacteria, which in turn depends on environmental conditions such as
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temperature and moisture (Chapin et al. 2011). Under future scenarios warming
may lead to faster respiration rates and quicker turnover times (Knorr et al.
2005). A warmer planet could potentially mean that the C residence time in soil
is reduced. However, recent research has shown that ecosystem residence
time also depend strongly on changes in the hydrological cycle (Carvalhais et
al. 2014).

The second feedback is the thawing of the permafrost. As temperature
increases the high latitude frozen soils start to thaw, allowing decomposition of
previously frozen 'old carbon' stocks from the thawed soil. This could be a major
C source in this century, since its estimated that the permafrost contains 1200
PgC (Schuur et al., 2008), from which approximately 50-250 PgC has been
projected to be released by 2100 (Koven et al., 2011; Ciais et al., 2013; Stocker
etal., 2013).

The third feedback concerns decreases in regional precipitation and/or
warming, which would enhance surface and soil drying. Drought may also play
an important role in the total C balance. Until recently drought trends were
expected to increase in the future (Dai et al.,, 2012), contrary to the overall
global precipitation trend, due to the fact that most of the 'new' rain will fall on
the oceans (Sterl et al., 2008). As shown by Zeng et al. (2005), during the
period 1998-2002 global NBP decreased by 0.9 PgC yr' due to several regional
droughts in the Northern Hemisphere. A similar pattern was found for Amazon
during 2005 and 2009 (Doughty et al. 2015). Additionally, this variation in the
water cycle may induce enhanced plant mortality (Allen et al., 2010), which
ultimately may change some ecosystems for being a C sink to a source.
However there are still considerable uncertainties in our understanding of the
relationship between the water and C cycles and recent publications suggest
increasing drought may be largely driven by the natural variability of the climate
system (Sheffield et al., 2013). In spite it seems that although drought may not
increase in length due to climate change, it is likely that when it happens it will
be quicker and more intense (Trenbeth et al., 2014)

The last feedback is an increase on the length of the growing season
over the NH, due to early thawing of winter-snow, an early spring bud-burst and
a later leaf shed, all consequences of global warming. Several model studies
(e.g. Piao et al., 2007, Barichivich et al., 2013) and field data (Matsumoto et al.,

2003) have found a lengthening of the growing season of about 1-4
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days/decade over the northern hemisphere. The longer active period of plants
could lead to increase C uptake, as leaves are able to photosynthesise for an
extended period. Virtually all models agree that this increase in the NH growing
season leads to more C uptake (Ciais et al., 2013), however it remains a
challenge for DGVMs to represent the phenological cycle correctly (Richardson
etal.,, 2011).

Fire

Fire in the Earth system is responsible for emitting ~2-3.2 PgC yr' (van der
Werf et al. 2010), a quantity similar to total NBP. Due to this, it accounts for a
significant proportion of the year-to-year variation in the land-atmosphere
exchange (Prentice et al., 2011). The interannual variability of fire emissions is
driven to changes in global temperature, precipitation, fuel load (Van der Werf
et al., 2008; Pausas et al., 2012) and land-use change (Houghton et al., 2012).
Interestingly the burned area and the total fire emissions are highly decoupled
from year-to-year, total C emissions are driven primarily by forested areas,
whereas burned area is largely controlled by savannah fires (Van der Werf et
al., 2003), with both responding differently to human perturbation.

17



Nutrient control: nitrogen and phosphorus

Nitrogen (N) limits plant growth and microbial decomposition in most
ecosystems worldwide (Vitousek et al., 1997), with phosphorous (P) playing a
similar role over the savannahs (Reich and Olensky, 2004). Both nutrients are
key regulators of the land C-balance and can drive plant productivity in nutrient-
poor ecosystems (Fernandez-Martinez, et al., 2014). In spite most global
models (DGVMs and ESMs) usually neglect their limiting effect and assume
plant growth to be driven C-uptake trough photosynthesis (Reich et al., 2006),
which leads to overestimating the land C-balance in future scenarios (Thorthon
et al., 2007; Wieder et a., 2015). Recent studies have shown that when the full
N and P cycles are taken into account, the C-uptake is reduced by 25% -19%
due to N and 6% due to P- by the end of next century (Goll et al., 2012; Wieder
et al., 2015).

On the other hand humans had more than doubled the amount of
reactive N (Nr) that circulates the planet (Gruber and Galloway, 2008). This new
Nr is likely to increase the C sink in terrestrial ecosystems to some extent
(Sokolov et al., 2008). The effect is particularly important in grasslands (Felzer
et al., 2011) and northern ecosystems (Kim et al., 2011) where cold conditions
limit the rate of soil organic matter decomposition by microbes, i.e. the rate of N
mineralization. Nonetheless, the widespread N-limitation is likely to reduce the
land C uptake over future scenarios (Zaehle et al., 2010; Ciais et al., 2013).

Land use change
Land use change, through forest conversion into pastures and croplands, is one
of the main drivers of the land C cycle (Hurtt et al. 2011). Presently, agriculture
already covers 40% of the planet surface (Ramankutty and Foley, 1999).
Current emissions from LUC represent 0.910.8 PgCyr‘1 (Friedlingstein et al.,
2010; Le Quere et al., 2013). Land use change also has potential secondary
effects such as: fire, change in species composition and nutrient depletion,
which ultimately interact with vegetation, potentially decreasing its capacity to
fix C.

Changes in all of these drivers have an anthropogenic component and
while the global land C sink is estimated within well-known boundaries (Figure
1.1), the regional differences in NBP and its drivers remains uncertain. One of
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the possibilities to reduce this uncertainty is the usage of Dynamic Global
Vegetation Models (DGVMs).

1.3 Dynamic Global Vegetation Models and the TRENDY initiative

Dynamic Global Vegetation Models (DGVMs) are process-based computer
programs that simulate land fluxes of C, water fluxes and energy (in some
cases also nitrogen) throughout the vegetation and the soil, as a response of
changes in the climate, atmospheric CO; concentration, land use change and
other disturbances (e.g. nitrogen deposition or fire). They do this based on a set
of submodels representing key ecophysiological and disturbance processes
(e.g. photosynthesis, allocation, soil C, vegetation competition, fire, etc.) that
run at different time scales (e.g. photosynthesis is simulated typically every 30
seconds, fire every month) at a set spatial resolution (e.g. 0.5°x0.5°).

DGVMs are widely employed in the literature to study different processes
of the Earth system. For example they have been used to simulate the effect of
volcanoes eruptions on plant productivity over the high-latitudes (Lucht et al.
2002), to measure the impacts of agriculture in the land C cycle (Bondeau et al.
2007) or to simulate fire dynamics and their impact on the vegetation (Thonicke
et al. 2001). However possibly the main usage is to evaluate the terrestrial C
cycle and its response to global climate change (e.g. McGuire et al., 2001, Sitch
et al. 2008).

Modelling communities have developed their own DGVMs and while
these models have many similarities in the way they represent some processes
(e.g. most of them simulate photosynthesis based on the Farquar and Sharkey,
1982 or Collatz et al. 1991 equations), they differ in the way they represent
different types of vegetation and their interaction, on parameterisations for
many other processes (eg. phenology, allocation, mortality, litter and soil
dynamics, etc) and in the number of processes they include (e.g. some include
fire, nitrogen dynamics, vegetation dynamic and competition, etc) (Prentice et
al. 2007; Sitch et al., 2008; Piao et al. 2013).

In order to better understand and constrain the response of the land-C
cycle to climate change, agricultural usage and rising atmospheric CO-, a
consortium of modellers force their individual DGVMs under similar protocols.
The “TRENDY” modelling group ran different DGVMs using the same forcing
data and similar spin-up techniques to evaluate the change in terrestrial C cycle
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over the last century. These results are central to my thesis as | evaluated and
analysed these model output throughout my PhD.

1.4 Aims and research objectives

The first aim of my PhD thesis is to evaluate the results from the
TRENDY project against observed data for particular processes of the land
ecosystems and/or particular regions. This gives us a general overview of the
underlying uncertainty of the models and the similarities and discrepancies
between them.

The second aim is to analyse the processes driving the changes in the
land C over the last decades. A particular focus has been paid to drought and
changes in the dry season, as this was identified as a key driver of global
vegetation processes and changes in NPP.

1.5 Specific Objectives
1. To evaluate the ability of the DGVMs to reproduce the phenological
responses of the northern hemisphere to recent changes in temperature
against observed satellite data.

2. To compare DGVM results with different observational data (e.g. forest
inventories, satellite observations, fluxtower measurements)
continental (Africa) and regional (Mexico) scales, to produce estimates of
change in NEP and NBP in the past and the possible implications for the
future.

3. To investigate the evolution of the land C cycle over the past two
decades and to attribute the relevant part to its drivers (e.g. climate
variability and change) over the same time period.

4. To analyse the impacts of changing drought in the vegetation (NPP) over
the last century, recent decades (1989-2005) and the reminder of the
21% century.
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1.6 Thesis structure and main findings

My thesis is divided in six chapters, each containing four sections: introduction,
model evaluation, process analysis and conclusions. The first chapter is a
review of the relevant literature on the C cycle and the land component.
Chapters 2 and 3 represent a compendium guided by the evaluation of the
DGVMs, Chapter 4 and 5 are based on the analysis of different processes that
drive the land C cycle, and chapter 6 are the general conclusions of the thesis.

Chapter 2 focuses on the changes in the growing season over the NH
over a span of 20 years (1986-2005). This chapter raises the questions: how
well can models reproduce changes in phenology over the NH? |s uncertainty
DGVM structure (ie growth and phenology parametrisation) more important than
uncertainty in simulated climate when aiming to reproduce LAl in the NH?

Chapter 3 consists of a comparison of model results with satellite and
field data at two different spatial scales over the tropics (continental and
country-level). We focused on targeting the questions of how well DGVMs
reproduce continental (Africa) and country (Mexico) level estimates for the land
C fluxes and pools? Can we improve current estimates by adding model-based
information?

Chapter 4 contains results for recent trends (1990-2009) in the land C
pools and fluxes. This chapter focuses on the main drivers for the land-C flux
over this time period.

Chapter 5 investigates the link between changes in dryness and
vegetation productivity globally over multiple time-scales, using novel dryness
metrics.

Chapter 6 contains the conclusions and discussion of the thesis, with a
particular emphasis on the key findings, limitations of my study and the
opportunities for further research. | also included the main contribution of my

work to the research field.
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1.7 Contribution to co-authored papers
| led three papers and co-authored another three, relevant for my PhD Thesis.
Those are:

1. Murray-Tortarolo, Guillermo, Alessandro Anav, Pierre
Friedlingstein, Stephen Sitch, Shilong Piao, Zaichun Zhu,
Benjamin Poulter et al. "Evaluation of land surface models in
reproducing satellite-derived LAI over the high-latitude Northern
Hemisphere: Part |: Uncoupled DGVMs." Remote Sensing 5, no.
10 (2013): 4819-4838.

2. Anav, Alessandro, G Murray-Tortarolo, Pierre Friedlingstein,
Stephen Sitch, Shilong Piao, and Zaichun Zhu. "Evaluation of
Land Surface Models in Reproducing Satellite Derived Leaf
Area Index over the High-Latitude Northern Hemisphere. Part Il:
Earth System Models." Remote Sensing 5, no. 8 (2013): 3637-
3661.

3. Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla
Gatti, R., Chevallier, F., Ciais, P., Grieco, E., Hartmann, J.,
Henry, M., Houghton, R.A., Jung, M., Kutsch, W.L., Malhi, Y.,
Mayorga, E., Merbold, L., Murray-Tortarolo, G., Papale, D.,
Peylin, P., Poulter, B., Raymond, P.A., Santini, M., Sitch, S.,
Vaglio Laurin, G., van der Werf, G.R., Williams, C.A., Scholes,
R.J., 2014. A full greenhouse gases budget of Africa: synthesis,
uncertainties, and vulnerabilities. Biogeosciences 11, 381-407.
doi:10.5194/bg-11-381-2014

4. Murray-Tortarolo, Guillermo, Victor J Jaramillo, Fabiola Murguia-
Flores, Pierre Friedlingstein, Stephen Sitch and Alessandro
Anav. “The Full Carbon Cycle of Mexico: Present, Past and
Future”. In preparation.

5. Sitch, S., P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-
Tortarolo, A. Ahlstrom, S. C. Doney et al. "Trends and drivers of
regional sources and sinks of carbon dioxide over the past two
decades." Biogeosciences (2015): 20113-20177.

6. Murray-Tortarolo, Guillermo, Brigitte Mueller, Imogen Fletcher,
Sonia Seneviratne, Stephen Sitch, Pierre Friedlingstein,
Alessandro Anav et al. “Changes in the Dry Season Intensity
are a Key Driver of Global NPP Trends”. Submitted to Nature
Geosciences.

The first two papers are contained in chapter 2, they represents part 1 and 2 of
the same study. The study was designed by Alessandro Anav and myself with
important contributions from Pierre Friedlingstein, Stephen Sitch, Shilong Piao
and Zaichun Zhu. Additional co-authors were responsible for providing LAl data
for the individual DGVMs and contributing to the writing of the papers. | was

responsible for the execution and writing of the first part (uncoupled DGVMs)
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and Alessandro Anav for the second part (coupled ESMs). Both papers have
been published in the open access journal Remote Sensing.

Results from papers 3 and 4 are part of chapter 3. The greenhouse gas
budget of Africa was designed and executed by Riccardo Valentini (University
of Tuscia) as part of the Regional Carbon Cycle Assestement and Processes
(RECCAP) initiative. | contributed with estimates and maps for individual
models and ensemble for NEP and NPP (Figures 4 and 5 on the main paper),
and the analyses of model results. The paper has been published in the open
access journal Biogeosciences. An extraction of these results, comparing NEP
with atmospheric inversions is contained in chapter 3. The fourth paper
considers the full C cycle of Mexico for the present, past and future, and was
designed and executed by myself. It benefits from ideas and analysis from the
rest of the co-authors. It compares results from field, satellite, fluxtowers and
DGVM data to give an estimate of the country’s C stocks and fluxes. This paper
is in progress and its included in chapter 3.

Co-authored paper number 5 is my chapter number 4. Stephen Sitch and
Pierre Friedlingstein designed the original TRENDY experiments. | was involved
in this study from the beginning of my PhD and throughout the first year. |
contributed with the preparation of all the figures and partially in the analysis for
trends and fluxes of individual models. The study has been published in the
open-access journal Biogeosciences.

Finally, paper number 6 is chapter number 5. This study was designed
and executed by myself, again with input from co-authors. | dedicated most of
my PhD to the study of the impacts of drought on vegetation processes
contained here. This paper is the culmination of these efforts and shows a clear
link between changes in the length and intensity of the dry season and the trend
in NPP. The paper has been submitted to the journal Nature Geosciences.

Furthermore | contributed to three additional studies as part of my PhD,
however they were slightly beyond the mainscope of my thesis, hence | decided
not to include them in the present manuscript. The papers are:

1. Anav A, Friedlingstein P, Beer C, Ciais P, Harper A, Jones
C, Murray-Tortarolo G, Papale D, Parazoo NC, Peylin P et
al (2015) Spatio-temporal patterns of terrestrial gross
primary production: a review. Rev Geophys. doi:10. 1002/
2015RG000483
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2. Fletcher, I, et al. A novel index of potential fire based on the
productivity-aridity gradient. Submitted to Earth System
Dynamics.

3. Quijas, S, et al. Modelling Ecosystem Services Based on
the LPJ-mlI DGVM. Submitted to Ecosystems.
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PART 1: MODEL EVALUATION

Chapter 2. Evaluation of DGVMs and ESMs in reproducing satellite derived LAl
over the Northern Hemisphere

Chapter 3. Comparing model results against different observations at multiple
spatial scales: the case of the pantropic.



Two chapters comprise part one of this thesis, guided by the need to evaluate
the ability of DGVMs in reproducing observed data. Model evaluation usually
consists of an assessment of individual models at different time and spatial
scales. The temporal component comprises an analysis on seasonality, IAV and
long-term trends, while the spatial component is based on anomaly maps and
zonal averages (Anav et al. 2013).

There are several examples of model evaluation in the literature. For
example Peng et al. (2015) evaluated the seasonality of CO, fluxes for nine
DGVMs and found that most models tend to overestimate GPP and Rh when
compared with 16 FLUXNET sites. As a result models tend to underestimate
NBP and the seasonal amplitude. Anav et al. (2013) found a similar result when
analysing the carbon component of ESMs, with higher GPP and LAl in the
models than the observations. Another example is the paper by Cadule et al.
(2010), here the authors evaluated the land component of three ESMs and
found different strengths and weaknesses of each model depending on the time
scale.

The second chapter follows the traditional model evaluation at different
time scales (seasonal, IAV and long-term) on the ability of the models in
reproducing LAl and growing season metric related over the Northern
Hemisphere. | compared 8 models from the TRENDY ensemble and 11 ESM
models for the period 1985-2005 with satellite observations of LAl for their
seasonal amplitude, maximum LAI, growing season onset, offset and growing
season length (GSL), and for the trend in LAl and the GSL.

For the third chapter | evaluated NEP over Africa, comparing the results
from 9 DGVMs against CO, atmospheric inversions. However because
inversions are calculated annually, only long-term trend and the spatial
differences between products were analysed. For the second part of the
chapter, | compared the C stored in Mexico (vegetation and soil) calculated
from the models against field data from 4000 points. Again, because field
sampling is complicated in terms of time and money, only one year of data is
available (2000), so the evaluation was again centered only in spatial
differences. The chapter then follows to an analisys on the changes in the C
stocks over the last 60 years and over the reminder of the century based on
modelled results.
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Chapter 2: Evaluation of DGVMs and ESMs in reproducing
satellite derived LAl over the Northern Hemisphere

2.1 Summary

Leaf Area Index (LAI) represents the number of leaf layers in an ecosystem and
it is key in the coupling of the land surface to the atmosphere. LAl does not
remain constant over the year, and its seasonality is driven by temperature over
the Northern Hemisphere (NH) and by precipitation over the tropics (Anav et al.
2013). Recent climate change, particularly warming over the NH has led to
changes in seasonal LAl. Generally, the warmer temperature leads to earlier
spring budburst (Schwartz et al. 2006), i.e. leaf onset, which translates into
longer growing seasons (Linderholm, 2006) and a higher mean annual LAI.

Models differ in the way they represent phenology and an integral
evaluation over the NH is missing. The objective of this chapter was to fill this
informationg gap. In particular, | wanted to know the role of structural
uncertainty (i.e. differences in model parametrization and processes included)
against the uncertainty induced by climate in the different ESMs. In order to do
this, | compared different LAl metrics against satellite obserbations for the
period 1985-2005 over the NH. | used 8 DGVMs from the TRENDY
compendium and 11 ESMs from CMIP5.

The main results can by summarized as: 1) all models (ESMs and
DGVMs) tend to overestimate GSL, onset and offset as well as the trend in LAI
and GSL, particularly over the boreal forest and 2) errors introduced by DGVMs
structure are greater than those introduced by different simulated climate by
ESMs.
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Abstract: Leaf Area Index (LAI) represents the total surface area of
leaves above a unit area of ground and is a key variable in any
vegetation model, as well as in climate models. New high resolution
LAI satellite data is now available covering a period of several
decades. This provides a unique opportunity to validate LAl estimates
from multiple vegetation models. The objective of this paper is to
compare new, satellite-derived LAl measurements with modeled
output for the Northern Hemisphere. We compare monthly LAl output
from eight land surface models from the TRENDY compendium with
satellite data from an Artificial Neural Network (ANN) from the latest
version (third generation) of GIMMS AVHRR NDVI data over the
period 1986-2005. Our results show that all the models overestimate
the mean LA, particularly over the boreal forest. We also find that
seven out of the eight models overestimate the length of the active
vegetation-growing season, mostly due to a late dormancy as a result
of a late summer phenology. Finally, we find that the models report a
much larger positive trend in LAl over this period than the satellite
observations suggest, which translates into a higher trend in the
growing season length. These results highlight the need to incorporate a
larger number of more accurate plant functional types in all models and,
in particular, to improve the phenology of deciduous trees.

Keywords: LAI; land surface models; growing season; trendy;
northern hemisphere; phenology

1. Introduction

Leaf Area Index (LAI) is the number of leaf layers per unit area in an
ecosystem. It is widely used in the coupling of land surface and atmospheric
processes, such as radiation, precipitation interception [1] and gas exchange [2].
There are several methods to estimate LAI [3], including direct observation and
the use of modern radiometers. However, at global scale satellite products are
arguably the most important. LAl is a key variable of energy and water balance

30



calculations in vegetation models [4]. It influences numerous model outputs
such as net primary productivity (NPP), evapotranspiration (ET), the fraction of
the light being absorbed by plants (FAPAR) and nutrient dynamics [5]. Land
Surface Models (LSMs) have different approaches for calculating LAI, and while
the use of plant functional types (PFTs) is widespread [6], there are important
differences in the number of simulated PFTs, their spatial distribution and the
representation of vegetation dynamics [7].

LSMs differ in the number of PFTs they include [8], and typically divide
vegetation into between 4 and 16 PFTs. The number of PFTs and their
parameterization leads to important discrepancies in the distribution of the
vegetation types [9]. In addition, models vary in their representation of functional
trade-offs and plant responses to the environment [10]. The former creates a
trade-off between the number of modeled PFTs and their correct representation:
using many PFTs leads to an increased uncertainty due to their
parameterizations, while an insufficient number results in a misrepresentation of
vegetation dynamics. One example of this is the ratio of evergreen to deciduous
boreal forest in the Northern Hemisphere, or the ratio of evergreen forests to
grasslands over the tropics; the distribution of these have important implications
for future climate prediction, as shown by Sitch et al. [7,11].

There are several studies that have compared model results with satellite
data [11-13].

Buermann et al. [12] compared the NCAR-CC3 model with satellite data and
found that the model partitioning of latent and sensible heat fluxes create
discrepancies in the CO; fluxes, which lead to an overestimation of the modeled
growing season length (GSL). In another example, Richardson et al. [14]
compared phenology measurements of ten forests sites in USA with fourteen
vegetation models; they found that the models overestimated the length of the
growing season, while correctly reproducing the CO, fluxes due to an
underestimation of the LAl peak. Finally, Randerson et al. [15] found that
models underestimate the carbon uptake during the growing season in boreal
forest ecosystems due to tardiness in the LAl peak.

One of the main reasons for the lack of comparison between model outputs
and satellite observations is data limitation. While satellites have been recording
vegetation growth since the 1980s, the data were difficult to use due to frequent
missing values. The first complete satellite global timeseries did not appear until
1991 [16,17]. These products were initially used to validate simple climatic
models of vegetation distribution [12], but their usage has increased steadily in a
range of applications. For example, they are used to estimate the biomass of
grasslands [18], boreal forests [19] and mangroves [20].

During this time, LSMs continued to develop in sophistication and diversity
[21]. While the core processes represented in these models remain similar, they
vary greatly in their parameterization. This is particularly true in the responses to
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temperature and drought. Moreover, refined observational forcing data have
become widely available. This allows LSMs to be run offline using observed
climatology, as in this paper, or offline with self-generated climatology as part of
an Earth-System-Model (ESM) (as in Part |l of this study, Anav et al. [22]).
Running offline allows the uncertainty corresponding to process representation
to be isolated from climate-related uncertainties, which ultimately can be use to
improve ESMs and future climatic projections. This evaluation is key in model
development.

One important process that remains to be evaluated is the lengthening of the
growing season over the Northern Hemisphere. This has been observed by
several authors in satellite, modeled and field data [23,24]. Changes in
seasonal variation and the mean values of LAI, mostly due to an increase in
temperature at the beginning of the growing season, have important
implications on the global carbon cycle. However, considerable uncertainty
remains with regard to greening trends and the ability of models to reproduce
satellite-derived trends.

With new and improved LAl data now available [25-28], a more precise
validation of model output is imperative. The objective of this paper is to
compare LAI from satellite-derived measurements with modeled output from a
set of 8 LSMs over the Northern Hemisphere. We ask three questions to fulfill
this objective:

* Do uncoupled (LSMs) models correctly reproduce the spatial variability of

LAI shown by satellite data over the Northern Hemisphere?

* How does the length of the growing season in the different models
compare with the satellite data? And where are the main discrepancies
(onset or dormancy)?

* What are the trends in LAl and the growing season over this period?

32



2. Materials and Methods

2.1. Model Data

We use monthly LAl output from eight LSMs from the TRENDY compendium
[8]. The models differ in the way they simulate and parameterize several

processes (Table 1) and in the way they calculate LAI. All of the models were
forced using the same observed climatic and CO, data (corrected CRU v3.1
merged with NCEP) and simulated two experiments over the last century:

* S1:real CO; growth and climate kept constant, recycling the first 10 years
of the century.

» S2:real CO; and climate. In the present study we use the S2 simulations.
All model outputs were regridded to a common 1 x 1 degree grid. Although
satellite data are available before 1986, we focus on the last 20 years of

the 20th century simulations (1986—2005) to be consistent with the

analyses of the coupled models (Anav et al., this issue [22]).

Table 1. Characteristics of the eight dynamic global vegetation
models (re-drawn from Sitch et al. [8]).

Spatia Num
Abbrevi | ber  yegeta Fire  Full Refere
Model Name - of - dynami Nitrogen
ation resolu tion nce
. PFT cs Cycle
tion s
Community 05° x Impose Yes
Land Model CLM 0'50 16 d Yes [29]
4CN '
Lund- 05° Dynami Yes
Potsdam- LPJ o 11 C No [6]
0.5
Jena
LPJ-GUESS GUESS 8'20 1 Ey”am' ves No [30]
ORCHIDEE- 3.75° Impose Yes
CN OCN X 2 5° 12 q Yes [31]
ORCHIDEE  ORC 8'20 12 'dmpose No No [32]
Sheffield- 3.75° Impose Yes
DGVM SDGVM 2 5° 6 q No [33]
TRIFFID TRI 3.75° 5 Dynami No No [34]
x 2.5 C
VEGAS VEG 8'20 * 4 Sy”am' No No [35]
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2.2. LAl Parameterization and Calculation

Models differ in the way they calculate LAI, but all of them reported 1-sided
LAl and use
self-calculated LAI, independent from the satellite measurements. Their main
difference is the choice of imposed or dynamic vegetation. The former uses a
land-cover map to generate PFT categories, while the latter generates PFT
categories based on climatic and competition dynamics.

CLM4CN. The model has 16 PFTs. In this version the carbon-nitrogen
cycling model simulates leaf carbon and specific leaf area to calculate the
LAI for each PFT.

LPJ. The leaf area index is updated daily and depends on temperature,
soil water, and plant productivity for each PFT. The models have 3 different
phenology types (evergreen, summergreen, raingreen) and 11 PFTs.
LPJ-GUESS. The leaf area index is updated daily and depends on
temperature, soil water, and plant productivity for each PFT. The models
have 3 different phenology types (evergreen, summergreen, raingreen)
and 11 PFTs.

ORCHIDEE. LAl is estimated based on temperature. It also uses a
maximum LAI threshold after which no more carbon is allocated to the
leaves.

OCN employs an approach based on the pipe-model for allocation, which
results in much more rapid leaf development, and does not prescribe a
maximum leaf area-rather, the maximal annual LAl is an emergent
outcome of the NPP of the vegetation and the costs (roots, shoot) for
maintaining the leaf area, which varies as a function of water and nitrogen
stress.

SDGVM. LAl is calculated to optimize stem & root NPP. This is achieved
through consideration of the net carbon balance of the bottom layer of the
canopy. The fraction of NPP available for leaf production is adjusted each
year based on this carbon balance. The rate at which this fraction is
adjusted is PFT-dependent.

TRIFFID. LAl is calculated for each of the 5 PFTs, based on parameters
describing the minimum, maximum and balanced LAl if full cover is
reached. The actual LAl is then calculated as a function of the balanced
LAl and the phonological status of the vegetation, which depends on
temperature.

VEGAS. The model has five PFTs: broadleaf tree, needleleaf tree, C3
grass, C4 grass, and crop. Whether a tree PFT is deciduous or evergreen
is dynamically determined, so it has essentially 7 functional types.
Phenology is calculated for each PFT as the balance between growth and
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respiration. The actual leaf mass is calculated based on photosynthesis
allocation, and then converted to leaf area index.

2.3. Satellite Data

The LAI data set used in this study was generated using an Artificial Neural
Network (ANN) from the latest version (third generation) of the GIMMS AVHRR
NDVI data for the period July 1981 to December 2010 at a 15-day frequency
(Zhu et al. this issue [36]). The ANN was trained with
best-quality Collection 5 MODIS LAI product and corresponding GIMMS NDVI
data for an overlapping period of 5 years (2000 to 2004) and then tested for its
predictive capability over another five year period (2005-2009). The average
uncertainty of the MODIS LAl product is estimated to be 0.66 LAI units [24],
though it varies depending on the mean LA, and the data is for 1-sided LAI,
further details are provided in Zhu et al. [36]. The 10 years of MODIS LAI/FPAR
(2000-2009) was further processed to generate climatology. The ANN was
further trained on the climatology fields. The NDVI3g data have now a 30-year
history of development. The data was further regridded to the same 1 x 1 grid,
using a linear interpolation; all missing values were filtered when average over a
coarser resolution.

2.4. Study Region

The main focus of this study is the high northern extra-tropics. This area was
chosen due to the fact that satellite data is more reliable over this region than
others, because there are fewer clouds. Additionally, we want to study the
response of phenology to temperature and there are no clear seasonal changes
in vegetation growth over the tropics. Hence our study region comprises all the
land areas north of 30°N. All results, with the exception of zonal LAI, are
projected over a stereographic projection from the North Pole, with the latitude
ranging from 30°N to 90°N.

2.5. Leaf Phenology Analyses

Growing season onset, dormancy and length were calculated based on the
seasonal amplitude. LAl has been shown to have a normal distribution over the
year in northern latitudes [37], so we consider the start of the growing season to
be 20% of the maximum amplitude. This processes has been proven to be
more stable for monthly data, compared to an approach based on sudden LAI
changes.

In order to analyze changes in the growing season, we mask regions where
there are minimal changes in LAl over the year (e.g., evergreen forests and
mixed forest with a small deciduous component). These regions were defined as
those where the difference between the maximum and minimum LAl amplitude is
less than 0.5. We also masked regions where the LAl decreased in the middle of
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the summer (drought deciduousness), assuming those months to have constant
LAL

For the gridcells with enough variation, we calculated a critical threshold
value (CT) above which we assume the plants to be photosynthetically active
(Equation (1))

CT*Y = LAILY + 0.2X(LALy,, — LAILY

max min

where LAl Min and Max represent minimum and maximum gridcell LAl over one
year. The length of the growing season for each year was calculated as the
number of months with an LAI value above this threshold; the onset is the first
of these months and the dormancy is the last. Since part of the growing season
occurs after the end of the year [38], we included the first three months of the
following year in the calculations. Hence, the growing season offset can occur
on the following year, having DOY higher than 365. Even when calculated
monthly all results are presented in days (number of days passed until the end
of the calculated month). The procedure was repeated for each gridcell, year
and dataset. Mean length, onset and dormancy represent the average over the
whole time period (Figure 1).
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Figure 1. Growing season onset, dormancy (offset) and length
calculation based on the seasonal amplitude. A critical threshold
value is calculated for each gridcell and each year based on the
maximum and minimum Leaf Area Index (LAI).

In order to quantify the differences between the models and data we calculate
the root mean square errors (Equation (2)) between each model and the satellite
observations for each grid cell and all growing season variables, and the
seasonal amplitude.
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xy=n
(Sat*y — Model*Y)?
RSME = - (2)

x=1,y=1

2.6. Temporal Trends

In order to calculate the temporal changes in annual average LAl and
growing season length (GSL), linear trends were calculated for each gridcell for
the whole time period. The values are presented as net change in both
variables, in m?> m™ and in days/year respectively. This approach has been
used by other authors [34] giving important insights on the drivers of change.

3. Results
3.1. Mean LAl

All of the models overestimate mean LAI, LAl trend and interannual variability
(IAV) over the high-latitude Northern Hemisphere compared to the satellite
observations (Figure 2). In general, models with the highest average LAI also
have strong positive trends. This occurs regardless of whether the models use
imposed or dynamic vegetation, or the number of PFTs implemented.
Interestingly, models with a trend and average LAI closest to the satellite
records, such as ORCHIDEE, OCN and TRIFFID have very different values of
AV, ranging from values similar to the satellite data up to 4 times higher. On the
contrary, the most dissimilar models to the observations, such as LPJ and
CLMA4CN, have larger IAV.

Looking at the spatial distribution of LAI, most of the models simulate the
observed spatial distribution pattern (Figure 3). Peaks in LAl are evident over the
boreal forest (55°-65°N) and the North American temperate forest (30°-55°N).
The lowest values are found over the cold Gobi plateau and the Siberian
Tundra. As noted above, there is a general overestimation of mean LAl in the
models, relative to observations. LAl values range from 0 to 2.5 in the satellite
data, while for the models they are as high as 5. Models and observations agree
on values over the deserts and low-LAl regions but the differences are higher (3—
4) over the boreal region. As shown by spatial correlations, differences between
satellite data and models are higher in VEGAS and TRIFFID, and smaller in LPJ
and LPJ-GUESS (Figure 3). It is noteworthy that much of the discrepancies
occur over evergreen vegetation, suggesting that the lack of regenerative
vegetative states, fire and gap dynamics over this region lead to an
overestimation of the number of fully grown trees on models, which ultimately
means a much higher LAl than observed. However, satellite signal saturation—
this is the inability of the satellite to distinguish between areas with high LAI-
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could be leading to an underestimation of LAl in dense forested areas such as
the boreal forest, which might also account for the lower LAI over this area.
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Figure 2. Linear trend against average LAI for each model and satellite
observations, with IAV represented as colors. The data represents the whole
high-latitude Northern Hemisphere (30°-90°) for the time period 1986-2005
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M AT
Figure 3. Spatially distributed annual mean LAI for 8 LSMs (1-8) and satellite
observations over the Northern Hemisphere (30°-90°N), for the period 1986—
2005. Spatial correlations between each model and observations are given in

the white boxes.

The seasonal amplitude patterns show large disagreements between the
models and the satellite data (Figure 4). Most models overestimate the mean
amplitude (RSME = 1.02—-2.21), which is particularly evident over Europe and
Eastern North America. The exception here is SDGVM, which displays little
seasonality and performs better than the rest of the models in reproducing the
satellite-derived observations. The RSME show that models using dynamic
vegetation are less similar to observations than those using imposed

vegetation. Regardless, most models correctly simulate the spatial variability of

the seasonal amplitude; this is true for CLM, GUESS, OCN and VEGAS to
some extent. TRIFFID shows almost no seasonality over this area, which is
mainly driven by the omnipresence of the evergreen PFT over the Northern
Hemisphere (not shown) (Figure 4).
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Figure 4. Seasonal Amplitude in LAI for 8 LSMs and satellite observations for the
Northern Hemisphere (30°-90°N) for the period 1986-2005. Root mean square
errors and spatial correlations between each model and the observations are
given in the white boxes.
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3.2. Growing Season

The growing season onset derived from LAl is broadly consistent across the
models, with high correlations compared to the satellite data (>0.5) (Figure 5).
In general the satellite observations show a later onset as latitude increases,
remarkably similar to the thermal gradient. CLM, LPJ-GUESS, LPJ, SDGVM
and, to a lesser extent, OCN, ORCHIDEE and VEGAS correctly reproduce this
spatial pattern, as shown by the RSME and spatial correlations. This is not
surprising as those models include a thermal limitation to photosynthesis and a
snow scheme. TRIFFID shows no detectable onset above 50°N but has later
values compared to the satellite below that threshold, likely due to the
distribution of the evergreen PFT over the whole NH. Models that have the
highest correlations with the satellite on the SA also show very similar values to
the satellite on the onset, as shown by RSME (Figure 5).

a0
70

&0

50

Figure 5. Mean (1986—2005) growing season onset (day) for 8 LSMs
and satellite observations over the Northern Hemisphere (30°-90°N).
Spatial correlations and root mean square errors between each
model and the observations are given in the white boxes.
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The discrepancies between the models and satellite observations are larger
when considering the end of the growing season or dormancy (Figure 6). While
the satellite data shows a latitudinal gradient, with the dormancy occurring
earlier at higher latitudes, most models overestimate the dormancy day (RSME
= 31-63). Out of the eight models, LPJ-GUESS, LPJ, ORCHIDEE and VEGAS
have a similar dormancy distribution with minor discrepancies over the taiga
and boreal forest, as shown by the spatial correlations. CLM, OCN and TRIFFID
have patchy areas of agreement, while SDGVM has a much later dormancy
than the satellite data. In some regions, particularly boreal deciduous forest,
modeled dormancy can happen after the end of the year (DOY higher than
365). However, over these months the snow corrupts the satellite signal,
leading to an underestimation of LAI. This partially explains why the dormancy
date errors are larger than those of the onset.
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Figure 6. Mean (1986—-2005) growing season dormancy (day) for 8
LSMs and satellite observations over the Northern Hemisphere (30°-
90°N). Spatial correlations and root mean square errors between
each model and the observations are given in the white boxes. DOYs
above 365 represent DOY's of the following year.
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All of the models predict a later dormancy date (day), particularly over the
northern temperate region (30°-~50°N) (Figure 6). This means that leaves in the
models remain for longer than they should. However, the late dormancy is not in
line with the vegetation photosynthetic activity. When the same methodology
used to calculate the LAI-growing period was applied to gross primary
productivity (GPP), we found that the dormancy began at 277 + 7 days in the
models, which is remarkably earlier than previously predicted by LAI (315 £ 10
days), even on the low-north latitudes (287 + 18). It is evident that all of the
models keep inactive leaves for longer than they should, which does not have
an impact on the C cycle but could potentially modify radiation and turbulent
fluxes, therefore affecting planetary boundary layer dynamics.

There is a higher level of agreement in growing season length between the
satellite data and the models than for dormancy dates (Figure 7). Surprisingly,
the satellite observations display a very homogeneous length over regions >
50°N, with values between 120-150 days. Similar to the previous patterns, LPJ,
LPJ-GUESS, CLM, ORCHIDEE and VEGAS have the highest agreement with the
satellite data, as shown by the RSME and spatial correlations. Interestingly, the
disagreement between models and observations occurs mostly over the lower
latitudes of the Northern Hemisphere. OCN displays the same patchy agreement
that shows on the onset and SDGVM displays the least agreement with an
opposite GSL distribution. The length of the growing season has the highest
error compared to the satellite data, where 6 out of 8 models display longer
GSL, mostly driven by a late leaf shedding (Table 2).
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340

Figure 7. Mean growing season length (1986-2005) in days for 8
LSMs and satellite observations over the Northern Hemisphere (30°-
90°N). Spatial correlations and root mean square errors between
each model and the observations are given in the white boxes.

When looking at the hemispheric mean values it is clear that all of the models
overestimate the LAI, dormancy and length of the growing season (Table 2).
Satellite LAl average for the Northern Hemisphere was 0.83, while LAl from the
models varies between 0.98—-2.16. Both growing season onset and dormancy
were later in all of the models, in some cases by more than a month. The effect
of the late offset translates as an increased GSL, with values 9 to 180 days higher
than the satellite data (Table 2). However, when the dormancy period is
calculated based on GPP the modeled values become much closer to the
observations, with an average GSL of 144 + 15 days, compared to 184 days in
the satellite data. This again suggests a decoupling between the active period
of photosynthesis and leaves in the models.
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Table 2. Average LAI, growing season onset, dormancy and length
for the Northern Hemisphere for each model and the satellite
observations. The values for dormancy and length based on GPP are
presented in brackets.

Onset Dormancy Length
Model LAl (day) (day) (days)
CLM 16 131 351 (288) 220 (164)
LPJ_GUESS 1.6 125 314 (285) 189 (151)
LPJ 2.2 130 319 (278) 189 (134)
OCN 1.2 121 342 (268) 221 (142)
ORCHIDEE 0.98 151 323 (268) 172 (134)
SDGVM 1.56 122 374 (275) 252(145)
TRIFFID 1.11 133 355 (274) 222(125)
VEGAS 1.98 136 336 (277) 200 (139)
LAI3g 0.83 111 295 184

given in the white boxes.

Figure 8. LAl linear trends over the period 1986—2005 for 8 LSMs and the satellite
observations. Spatial correlations between each model and the observations are
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3.3. Temporal Trends

All models show a positive LAl trend in most of the Northern Hemisphere,
which is consistent with the satellite observations (Figure 8). Nevertheless,
there is little agreement on the spatial distribution of this phenomenon, with
spatial correlation values between —0.05 and 0.12. In the satellite observation
most of the greening occurs over 55°-90°N in Eurasia, while in models it is
homogeneously distributed. More puzzling is the reduction of LAl in LPJ-
GUESS, OCN and VEGAS, which could be explained by a decrease in
precipitation over this region (not shown). As all models are forced using the
same climate, consistent regional patterns must be driven by temperature or
precipitation. The greening over the high latitudes occurs in all models and is
driven by an increased temperature.

Figure 9. Growing season length trends over the period 1986—2005 for 8 LSMs
and the satellite observations. Brown indicates an increase in the length of the

growing season and green a decrease (days/year). In the white boxes, the
values of the spatial correlation between each model and the satellite
observations are given.
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The models also show a general increase in the GSL albeit with a few areas
where it decreases (Figure 9). However, similar to previous trends, there is little
agreement over the spatial distribution. Clearly, models that perform better at
calculating the GSL (both on the onset and dormancy) and average LAl more
accurately reproduce observed linear trends (Figure 9). In most models,
changes in the GSL match those of LAI. This is the case for CLM, OCN,
ORCHIDEE, SDGVM and the satellite data, all of which use prescribed
vegetation. LPJ, GUESS and VEGAS show an increased length over Eurasia
and a decrease over North America, and their patterns resemble the
precipitation trends for this period (not shown). This discrepancy between LAI
and GSL changes is difficult to explain but could be driven by vegetation shifts
from deciduous to evergreen forests. Changes in the GSL in TRIFFID, while
only occurring over a small area, match the observations.

4. Discussion

The first important point to address is the validity of the satellite data. Satellite
data does not represent true observations per se, but rather a model in itself.
However, it is the closest product to observations, and available globally. It has
been widely validated, but nevertheless there are some important issues that
need to be considered. The satellite LAl product may have some problems
detecting LAl in wintertime, since there is little sunlight in high latitudes. Sun
angles are low and the satellite signals are heavily corrupted. Additionally snow
cover affects reflection in winter and early spring. Hence, in the processing of
any satellite data, there is a sun-angle cut-off. In these regions in the winter
period there is little or no data. This partially explains the difference with
modeled dormancy dates. However, this does not matter since the soil during
this time is frozen and the plants are not photosynthesizing, hence there are no
changes in LAIL. The methods used to detect the growing season will also ignore
this period, since we are only interested in LAl when it starts to change, during
the spring. In the region occupied by boreal forests, the same applies. The
majority of the Boreal forests are photosynthetically inactive since they are
covered in snow. They do however have green needles. These will begin to
appear in late winter and early spring as radiation increases. The sun angles in
some regions are above the processing cut-off limits and the satellite sensor will
begin to register NDVI values. However the ground is still frozen and therefore
there is no photosynthetic activity even if the air temperatures begin to rise
above freezing during some hours of the day [36].

Over the boreal forest region (65°—65°N), all models exhibit an
overestimation in LAl of 2—3 units compared to the satellite but also when
compared with literature estimates [39]. We know that the satellite has an error
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precision of 20% at a pixel scale [40,41], field measurements have reported
values around 2.7 £ 1.18 for the evergreen boreal forest [41] and 2.3 + 0.6 for
the deciduous forest [42]. The annual average over this region is around 1-2,
which is inline with the satellite observations plus error. The average model
values in this region are around 4, more similar to the expected maximum [39],
than the expected mean (2.6-2.7). It seems that modeled LAl is higher all year
round. These values are similar to the temperate forests, which suggests that
having only one PFT for broadleaf forest might not be sufficient as is the case
for TRIFFID, SDGVM and VEGAS. Moreover, models that include a wider range
of PFTs, such as ORCHIDEE and LPJ-GUESS, are more similar to the satellite
observations. Another possible explanation lies in the fact that models based on
observed vegetation perform better than dynamic models. The lack of important
ecosystem processes such as gap dynamics and fire, could be leading to the
simulation of a mature forest state, which ultimately increases the PFT LAI.

There is great discrepancy in the calculation of the GSL with values that differ
for more than a month, due to differences in the phenology module of each
model. CLM4CN is one of the models that best predicts the GSL, since its LAl is
derived from simulated leaf carbon and balanced with nitrogen [29]. More
interestingly, models that use a thermal gradient to determine LAl (e.g., LPJ and
LPJ-GUESS) [6,30] more accurately simulate the GSL than models with a more
complex phenology, such as models where LAl is calculated from the leaf
biomass (e.g., OCN [31], ORCHIDEE [32] and VEGAS [35]) or those that use a
hydrological budget (e.g., SDGVM [32]). The exception is TRIFFID: while the
model uses a thermal gradient for LAI [34], the introduction of a “chilling”
phenology (leave shedding due to freezing) seems to overestimate the
evergreen component in the Northern Hemisphere.

In spite of the differences in the phenology modules of the models, all predict
an onset 15-20 days later than the satellite. Work by Jeong ef al. [43] suggests
that most models fail to calculate an adequate budburst due to the usage of
mean air temperature threshold instead of accumulated heat variable, which
generates better results. The authors also argue that the effect could come from
the lack of representation of PFTs, which is consistent with our results—a higher
number of PFTs leads to a better LAl and GSL representation. Another possible
explanation is the overestimation of the effect of frozen soil thaw in the models.

All models predict a later dormancy, which occurs a month later than the
satellite data. This happens due to all models having a constant leaf shedding
over time once the temperature has reached a minimum certain threshold. While
this might be true for the evergreen component, it creates a longer GSL for the
deciduous forest [44-46]. Moreover, the difference in the dormancy date
between GPP and LAI clearly points out that models need to improve their LAI
dormancy. While this might not have an impact on the C cycle, it could
potentially alter the radiation and turbulent fluxes.
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A longer growing season allows for a longer time of leaf growth, which
explains the increasing LAI trend in the models, with the whole process being
driven by temperature [47—49]. In most cases LAl plateaus at the maximum
value, so if the growing season is longer, there are more days with maximum
leaf area, which leads to a higher average value. This seems to be true for models
with prescribed vegetation, although models that simulate dynamic vegetation
follow the precipitation pattern more closely.

5. Conclusion

We compare LAI from eight different uncoupled LSMs against satellite data
over the Northern Hemisphere, during the 1986—-2005 period. This was
achieved by calculating the mean LAI, seasonal amplitude and growing season
variables (onset, dormancy an length). Our results show that all models
overestimate LAl by 2—3 units, particularly over the boreal forest, relative to the
satellite data and literature estimates. Models that include a high number of
plant functional types (10-16) compare more favorably to the satellite data than
those that only have a few (4-5). Models that calculate their phenology based
on temperature perform better than those with complex photosynthetic modules.
Likewise, models with prescribed vegetation more closely match observations
than those that simulate it dynamically. Finally, all models overestimate the
length of the by 4—40 days based on LAl compared with the observations,
largely due to the dormancy date occurring 20—-60 days later. This is inconsistent
with the photosynthetic active period calculated by GPP, which was on average
3 months smaller. This highlights the need to improve the deciduous phenology
in all models, particularly leaf shedding.

While vegetation models have developed a great deal, there is still a need for
improvement. LAl is a key variable in all models and its correct representation,
both temporarily and spatially, is key to predicting correct carbon fluxes. As the
literature suggests, any overestimate in the length of the growing season and its
trend is likely to affect albedo and have important effects on the radiation
budget of the area. The satellite data represents a unique opportunity to test
models against observational data and to determine where improvements can
be made. Moreover, additional variables can be validated, allowing the
identification of possible problems within the models.
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Abstract: Leaf Area Index (LAI) is a key parameter in the Earth
System Models (ESMs) since it strongly affects land-surface
boundary conditions and the exchange of matter and energy with the
atmosphere. Observations and data products derived from satellite
remote sensing are important for the validation and evaluation of
ESMs, from regional to global scales. Several decades' worth of
satellite data products are now available at global scale, which
represents a unique opportunity to contrast observations against
model results. The objective of this study is to assess whether ESMs
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correctly reproduce the spatial variability of LAl when compared with
satellite data, and to compare the length of the growing season in the
different models with the satellite data. To achieve this goal, we
analyse outputs from 11 coupled carbon-climate models that are
based on the set of new global model simulations planned in support
of the IPCC Fifth Assessment Report. We focus on the average LAI
and the length of the growing season on Northern Hemisphere over
the period 1986-2005. Additionally we compare the results with
previous analyses (Part I) of uncoupled land surface models (LSMs)
to assess the relative contribution of vegetation and climatic drivers
on the correct representation of LAI. Our results show that models
tend to overestimate the average values of LAl and have a longer
growing season. The similarities with the uncoupled models suggest
that representing the correct vegetation fraction in each grid cell is
more important in controlling the distribution and value of LAl than
the climatic variables. We conclude that validating LAl in each model
against satellite observations should be a fundamental step for all
modelling groups, and this process is more central than the correct
LAl parameterization against climate.???

Keywords: LAI; CMIP5; Earth System Models; Leaf Phenology;
Remote Sensing of Vegetation;

1. Introduction

The Leaf Area Index (LAI) is defined as one-sided green leaf area per unit
ground area in broadleaf canopies, and as the projected needle leaf area in
coniferous canopies [1]. LAl is a key parameter in most ecosystem productivity
models and global (or regional) models of climate, hydrology, biogeochemistry
and ecology [2].

Usually defined as the time evolution of the LAI, leaf phenology depends
primarily on the climatic conditions for a given biome [3]. It strongly affects land-
surface boundary conditions and the exchange of matter and energy with the
atmosphere, influencing the surface albedo, roughness, and dynamics of the
terrestrial water cycle [4,5]. Changes in the phase of LAl may therefore have
impacts on climate [6,7], on the terrestrial carbon cycle [8], and on the
atmospheric chemistry through the emission and deposition of several
compounds [9-12]. Therefore, accurate estimates of canopy phenology are
critical to quantifying carbon and water exchange between forests and the
atmosphere and its response to climate change [8].
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Phenology studies based on field observations [13,14], remote-sensing data
[15-19], atmospheric CO, observations [20], and biogeochemical models [21]
indicate that the vegetation growing season length (GSL) has significantly
increased over the past decades [8]. Specifically, in the temperate and boreal
regions of the Northern Hemisphere, the growing season begins in spring with
increasing temperatures and solar radiation, the melting of snow, eventual
thawing of the soil organic horizons, and the start of photosynthesis [22]. It
terminates in autumn as temperatures and solar radiation decrease, soils
refreeze, and photosynthesis ceases [23,24]. Therefore, temperature anomalies
in spring and autumn affect the timing and duration of the growing season
[8,25], which in turn control the seasonal onset and ending of the ecosystem
carbon uptake period in these regions [8,26,27]. Rising temperatures during
recent decades have resulted in a widely reported pattern of earlier and longer-
lasting growing seasons from local to continental scales [27-33]. The greater
rate of change observed in the beginning of the growing season is thought to be
a response to rapid spring warming, and earlier snowmelt and soil thaw [29,34],
while the smaller change in termination date is likely connected with lower rates
of autumn warming [35] and the influence of other environmental effects on
autumn phenology and growth cessation [36-38].

The importance of land surface processes in the climate system has mostly
been supported by modelling studies on climate sensitivity to albedo [39-41],
soil moisture [42-44], surface roughness [45], and leaf area index [6, 46-51].

In the first versions of general circulation models (GCMs) and regional
climate models (RCMs) the soil-vegetation-atmosphere transfer (SVAT)
schemes [52] were originally designed to simulate exchanges of matter and
energy between the land surface and the atmosphere, with vegetation leaf area
index as a forcing variable, rather than a prognostic state [6, 49, 53-57].

In order to improve the representation of the dynamical behaviour of the
vegetation, a number of models have recently evolved to include
biogeochemical processes [58-66].

In the last few years a new generation of general circulation models has
become available to the scientific community. In comparison to the former
model generation, these Earth System Models incorporate additional
components describing the atmosphere's interaction with land-use and
vegetation, as well as explicitly taking into account atmospheric chemistry,
aerosols and the carbon cycle [67].

The inclusion of Earth system components in a climate model has a two-fold
benefit. Firstly, it allows a consistent calculation of the impacts of climate
change on atmospheric composition or ecosystems [68]. Secondly, it allows the
incorporation of biogeochemical feedbacks, which can be negative, dampening
the sensitivity of the climate to external forcing [69], or positive, amplifying the
sensitivity [70]. However, adding Earth systems components and processes
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increases the complexity of the model system, thus a consistent validation of
the variables simulated by these models is needed.

The assessment of vegetation phenology using remotely sensed data has a
long history [71,72] with more recent studies making use of satellite data to
examine the potential effects of climate change on phenology [15, 73-77]. In
fact, remote sensing has been widely recognised as a valuable tool for the
detection and analyses of simulated data, both spatially and temporally. The
past decade has seen a particularly rapid increase in the number of launched
satellites, as well as an improvement in both spatial and spectral resolution of
data they produce. Therefore, the ability to rapidly assess LAI using vegetation
indices from remotely sensed imagery provides a means to rapidly assess
ESMSs' skills at simulating vegetation greenness over a wide geographic area.

The existence of vegetation models that use prescribed climate represents a
unique opportunity to compare and contrast the effect of inner climatic variation
on ESMs against the effect of differences in the vegetation modules. In other
words, comparing different LSMs allows the detection of flaws in the vegetation
dynamics, while comparing ESMs allows the identification of climate effect on
vegetation processes, and the comparison of the two leads to the weighing of
both effects.

In this context, we check the ability of different ESMs to reproduce the spatial
and temporal variability of the satellite observed LAI. Specifically, the objective
of this study is to assess whether ESMs correctly reproduce the spatial
variability of LAl when compared with satellite data, and asses how long the
growing season is in the different models compared with the satellite data over
the Northern Hemisphere. In fact, as described above, over this area several
authors have observed an increase in the growing season length. These
changes in LAI, mostly due to an increase in temperature at the beginning of
the growing season, have important implications on the global carbon cycle [8]
and on atmospheric chemistry [9-12] simulated by the ESMs. Therefore,
obtaining an accurate prediction of the temporal evolution of LAl is imperative
not only in predicting the correct LAl seasonal changes, but also because of the
feedbacks of LAl with the atmosphere.

In addition, we compare results from uncoupled models from part | [78] with
the ESMs to elucidate the weighed role of vegetation and climate on the spatial
and temporal evolution of LAI.

2. Material and methods

2.1. CMIP5 Simulations

We analyze output from 11 CMIP5 coupled carbon-climate models that, at
the time of our analysis, had been submitted to the Program for Climate Model
Diagnosis and Inter-comparison (PCMDI) Earth System Grid (ESG) [79].
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The land components of these ESMs differ in their representations of
vegetation types, soil properties, human disturbances, carbon and nitrogen
pools, as well as in their horizontal resolutions. The models used in this study,
along with the main features controlling their terrestrial carbon cycle, are listed
in Table 1.

Our analysis focuses on the historical period (20" century simulations; CO;
concentration driven), which was forced by a variety of externally imposed
changes such as increasing greenhouse gas and sulphate aerosol
concentrations, change in solar radiation, and forcing by volcanic eruptions [91].
Considering the historical experiments, in general for most of the CMIP5 models
the simulation starts in the year 1850 and ends in 2005. Within this period, we
focus only on the last 20 years of the 20™ century simulation (1986-2005); in
fact, although satellite data are available before 1986, we decided to use the
same reference period used by [92] in order to be consistent with their analysis
and results.

Besides, it is noteworthy that some models have only one realisation, but
other models have many runs; these realisations represent climate simulations
with different initial conditions. In the next section, we present results only from
the first realization for each individual model.

For comparisons and evaluations, we re-grid all model outputs to a common
1°x1° grid using a bilinear interpolation method. This resolution was chosen to
be consistent with the resolution of uncoupled models [78]. Although the CMIP5
archive includes daily means for a few variables, to be consistent with
uncoupled models analysis [78] we focus here only on the monthly mean model
output.

59



Table 1. CMIP5 Earth System Models used in this study with the associated land models and main features
controlling the terrestrial carbon cycle.

MODELS SOURCE LAND DYNAMIC #PFTs N RESOLUTION REFERENCE
MODELS VEGETATION CYCLE (Lon x Lat)
BCC-CSM1 Beijing Climate Center, BCC_AVIM1.0 N 15 N 2.8125°x~2.8125° [80]
China
BNU-ESM Beijing Normal ColLM Y n/a Y 2.8125°x~2.8125° [81]
University, China
CanESM2 Canadian Centre for CLASS2.7 + N 9 N 2.8125°x~2.8125° [82]
Climate Modelling and CTEM1
Analysis, Canada
CESM1- National Center for CLM4 N 15 Y 0.9°x1.25° [83]
BGC Atmospheric Research,
United States
GFDL- Geophysical Fluid LM3 Y 5 N 2.5°x2° [84]
ESM2G Dynamics Laboratory,
United States
HadGEM2- Met Office Hadley JULES + Y 5 N 1.875°x1.25° [85]
CcC Centre, UK TRIFFID
INMCM4 Institute for Numerical Simple model N n/a N 2°x1.5° [86]
Mathematics, Russia
IPSL- Institut Pierre Simon ORCHIDEE N 13 N 2.5°x1.25° [87]
CM5A-MR Laplace, France
MIROC- Japan Agency for MATSIRO + Y 13 N 2.8125°x~2.8125° [88]
ESM Marine-Earth Science SEIB-DGVM

—_——-l T - [ [P,



MPI-ESM-
MR
NorESM1-
ME

Environmental Studies,

Japan

Max Planck Institute for JSBACH +
Meteorology, Germany BETHY
Norwegian Climate CLM4
Centre, Norway

12

16

1.875°x1.875°

2.5°x1.9°

[89]

[90]
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2.2. Satellite data

The LAI data set used in this study (LAI3g) was generated using an Atrtificial
Neural Network (ANN) from the latest version (third generation) of GIMMS
AVHRR NDVI data for the period July 1981 to December 2010 at 15-day
frequency. The ANN was trained with best-quality Collection 5 MODIS LAl
product and corresponding GIMMS NDVI data for an overlapping period of 5
years (2000 to 2004) and then tested for its predictive capability over another
five year period (2005 to 2009). The accuracy of the MODIS LAI product is
estimated to be 0.66 LAl units [93] and the data is for 1-sided LAI. Further
details on the LAI3g and the comparison with other satellite products are
provided in [93, 94].

2.3. Leaf Phenology Analysis

Growing season onset, dormancy and length were all calculated based on
the LAl seasonal amplitude. In fact, LAl has been shown to have a normal
distribution over the year in northern latitudes [95], so we consider the start of
the growing season to be 20% of the maximum amplitude. The values of 20%
was defined after different tests were conducted using different thresholds; we

found that this value provided the best results.
Overall, this method has being proven to be more stable for monthly data,

compared to an approach based on sudden LAI changes [8]. It also should be
noted that due to the lack of daily data for the LAl we were unable to use other
methods used in previous studies based on the daily LAI variability [8].

In order to analyze changes in the growing season, we mask out regions
where there are small changes in LAl over the year (e.g. evergreen forests and
mixed forest with a small deciduous component). All grid points where the
difference between the maximum and minimum LAI amplitude is less than 0.5
are ignored in this analysis.

Considering every grid cell (x,y) where the seasonal amplitude is greater

than 0.5, we calculated a critical threshold value (C7T"") above which we
assume the plants to be photosynthetically active:

CT* = LALS) +02%(LALL, ~ LA ) )

5)

where LAIG, and LAIL;, represent the minimum and maximum LAl over one
year for the grid cell (x,y). This procedure was repeated on each grid cell
and for each year for any given CMIP5 model. The length of the growing
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season was then calculated as the number of months with a value above
this threshold; the onset is the first month above that value and the
dormancy is the last. Finally, mean length, onset and dormancy were
calculated as the average over the whole time period. It should be noted
that, even when calculated monthly, all results are presented as days; we
retrieved the daily values from the monthly data by multiplying all monthly
results by 30.

The temporal changes in the mean annual LAl and GSL were estimated by
the linear trend value obtained from a least squares fit line computed in
period 1986-2005 of satellite and model data.

For all the variables, in order to quantify the mismatch between models and
data, we calculate the root mean square errors (RMSE) and the spatial
correlation coefficient between each model and the satellite observations.

3. Results
3.1 Mean LAI

In Figure 1 we present the mean annual LAl (upper panel), the mean annual
land precipitation (middle panel), and the mean annual surface temperature
(bottom panel) for each model for the period 1986-2005, with the
corresponding interannual variability and trends. Considering the temperature x-
axis, models falling at the left (right) of observations (CRU, [96]) indicate a cold
(warm) bias, while on the y axis models above (below) the observations have a
stronger (lower) trend than observations. The same consideration is also valid
for the precipitation, namely models falling at the left (right) of observations
(CRU) indicate a dry (wet) bias, while on the y axis models above (below) the
observations have a stronger (lower) trend than observations. It should also be
noted that, to be consistent with LAI, we show the precipitation and temperature
only over the land points of the Northern Hemisphere.

The evaluation of the simulated precipitation and temperature is needed to
assess whether any bias in the simulated LAI can be related to poor
performance of the ESMs at reproducing physical variables, or is mainly due to
the poor representation of some biogeochemical processes in the land surface
models of ESMs.

Looking at the LAl (Figure 1), in general, except CanESM2 and INMCM4, all
the models overestimate the mean annual LAl over the Northern Hemisphere.
The poorest performance has been found in GFDL-EMS2G, which shows a
mean value of 2.7, much larger than the reference value (0.83); all the other
models show a mean annual LAl ranging from 1.2 and 1.7. Conversely, the
trends are well captured by quite a few models; specifically, many models are
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clustered around the reference value, and, according to the observations, all the
models show a greening in the last 20 years. The only far outlier is BNU-ESM,
having a positive trend 6 times larger than the observed value. The interannual
variability is in general well captured by most of the models, although a general
overestimation of the year-to-year variability is found for a few models; the
exceptions are CanESM2 and MPI-ESM-MR, which show an interannual
variability slightly lower than LAI3g. Also, in this case, BNU-ESM is the only
outlier in reproducing the 1AV, having a year-to-year variability much larger than
the reference value.
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Figure 1. The x-axis shows the observed and simulated mean annual LAl

1986-2005 Mean temperature [C]

1986-2005 IAV

1986-2005 IAV

1986-2005 IAV

(top), annual land precipitation (middle), and mean annual surface temperature

over land (bottom). The y-axis shows the temporal trend, while the colorbar
reports the interannual variability as computed from the annual standard

deviation.
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The large bias found in BNU-ESM could be related in some way to the strong
wet bias that this model has in reproducing the observed precipitation.
Specifically, whilst the mean annual precipitation as reported by CRU data is
520 mm/y, BNU-ESM shows a mean value of 802 mm/y. However, it should
also be noted that, except CanESM2, all the other models also have a wet bias.

The wet bias found in all the CMIP5 ESM could explain the LAl
overestimation: in fact the best agreement between observed and simulated LAI
is found for CanEMS2, this being the only model without a wet bias. Although in
the boreal and arctic region the temperature is the main limiting factor for the
carbon assimilation, at mid-latitudes the precipitation plays a pivotal role
through its control on the soil moisture [97,98].

The precipitation trends in general are well reproduced by the models, being
all scattered around the reference data and all showing a wettening over the
last 20 years. The exceptions are INMCM4, which does not show any trend in
the land precipitation and GFDL-ESM2G, which has a wet bias two times larger
than CRU. The interannual variability of the reference data is about 85 mm/y
and only INMCM4, IPSL-CM5A-MR, GFDL-ESM2G and MIROC-ESM well
reproduce this value, while CanESM2 (~80 mm/y), NorESM1-ME (~80 mm/y)
and BCC-CSM1 (75 mmly) have a slightly lower IAV and the remaining models
show a larger IAV. It is noteworthy that MPI-ESM-MR has a IAV two times
larger than the reference data.

Looking at the temperature, all the models are clustered around the
reference data and only HadGEM2-CC (cold bias) and MIROC-ESM (warm
bias) show a bias greater than 1.5 °C. In addition, all the models predict a
warming in the Northern Hemisphere during the last 20 years; the weaker
trends have been found in HadGEM2-CC and INMCM4 being about 4 times
smaller than the one reported by CRU. The observed temperature interannual
variability is about 0.8 °C and only INMCM4 and MIROC-ESM have a similar
IAV; all the other models show a larger IAV than CRU with NorESM1-ME
having an IAV of about 1 °C.

Although models in general show good skills in reproducing the observed
climate, we would highlight that this agreement in the mean values over a large
region could arise from a compensation between overestimation in some points
of the domain and underestimation in other points [92]. This suggests that to
perform an exhaustive model validation we should look at the spatial patterns
(e.g. maps).

Figure 2 displays the spatial distribution of the mean annual LAl in the
Northern Hemisphere as calculated from the CMIP5 ESMs and observed by
satellite over the period 1986—2005. Results are projected over a stereographic
projection from the North Pole, with the latitude ranging from 30°N to 90°N.

The observed spatial pattern of LAl is characterized by a wide maximum over
Northern America and by a negative gradient extending from central Europe to
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Northern-Eastern Asia, with a broad minimum in the Tibetan plateau due to the
sparse vegetation. Although there is an overall overestimation by most of the
CMIP5 models, quite a few models correctly reproduce this pattern: in particular
CESM1-BGC, IPSL-CM5A-MR, and NorESM1-ME show a very good
agreement with observations in terms of locations of the maximum and
minimum values, as well as fairly simulating the gradient over the Eurasian
region. This is confirmed by the relatively high value (> 0.6) of the spatial
correlation computed between the models and the reference data. Conversely
GFDL-ESM2G is not able to reproduce this spatial pattern, and LAI values
above 5 are simulated over the whole North America and Asia; for this reason
this model exhibits the lowest spatial correlation (0.21)

Flgure 2 Spatlal dlstrlbutlon of mean annual LAl as S|mulated by 11 CMIP5
ESMs and observed by satellite over the period 1986-2005 in the Northern
Hemisphere (30-90°N). The value in the box represents the spatial correlation
between modeled and satellite mean annual values obtained by averaging over
all the grid points

The seasonal amplitude patterns show large disagreement between the
models and the satellite data (Figure 3). Some models (e.g. BNU-ESM and
MIROC-ESM) clearly overestimate the mean amplitude, which is particularly
evident over the whole North America and Eurasia. Other models (e.g. CESM1-
BGC, HadGEM2-CC, MPI-ESM-MR, and NorESM1-ME) show a smaller
seasonality than satellite data, while INMCM4, CanESM2 and BCC-CSM1
perform better than the rest of the models in reproducing the satellite-derived
observations. The RMSE, indicating the mean error of the models in
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reproducing a given variable, suggests that CanESM2 has the lowest error: in
fact this model, albeit it slightly underestimates the seasonal amplitude over the
Russia, has the correct magnitude for the observed seasonal amplitude. The
same considerations are also valid for IPSL-CM5A-MR, INMCM4 and BCC-
CSM1 which show a RMSE of 1.1. Conversely, BNU-ESM and MIROC-ESM
show a larger seasonal amplitude than the satellite data, therefore they have
high RMSE values.

The spatial correlation, indicating how well models reproduce the observed
spatial pattern, confirm that CanESM2, INMCM4 overperform the spatial pattern
of the seasonal amplitude compared to other models.
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Figure 3. LAl Seasonal amplitude as simulated by 11 ESMs and
satellite observations for the Northern Hemisphere (30-90°N). In the
box the value of root mean square error and spatial correlation, as
computed from mean annual data and averaged over all the grid
points, are presented for each model against the observations.

3.2 Growing Season

Figure 4 displays the spatial distribution of the mean onset dates of green-up
as calculated from the CMIP5 ESMs and satellite observation for the period
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1986-2005. As expected the satellite data show that the mean green-up date is

progressively delayed with increasing latitude and increasing continentally [8].
The latest dates of green-up occur in northern Siberia, northern Canada, and
over the Tibetan Plateau, owing to low temperatures. The growing season
onset derived from CMIP5 ESMs shows much disagreement between the
models. Some models (BNU-ESM, BCC-CSM1) correctly reproduce the
observed spatial pattern being the correlation greater than 0.6, other models
have some patchy areas of agreement that lead to high correlations, while
HadGEM2-CC and IPSL-CM5A-MR do not reproduce the observed spatial
distribution, as confirmed by the negative correlations.
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Figure 4. Mean growing season onset (day) as simulated by 11
CMIP5 ESMs and satellite observations over the Northern
Hemisphere (30-90 °N). For each model we masked out all the grid
points where the seasonal amplitude is less than 0.5 (see Figure 3).
In the box the value of root mean square error (in days) and spatial
correlation, as computed from mean annual data and averaged over
all the grid points, are presented for each model against the
observations.

The models that correctly reproduce the green-up spatial pattern show an
overestimation of the onset day, namely these models generally predict later
onset values, particularly over the boreal forests of Siberia. This leads to the

large RMSE values found for the onset in most of the models. The exception is
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BCC-CSM1 which predicts slightly earlier onset values over Northern-Eastern
Asia compared to satellite observations. It should also be noted that IPSL-
CM5A-MR shows a green-up date of about 1 month over the whole Northern-
Eastern Eurasia, while satellite data shows that the green-up occurs after 5-6
months, and this explains the large RMSE found for this model.

Considering GFDL-ESM2G, this model shows a larger onset date in the few
“non-masked” grid points, while a large area of Eurasia and Northern America
shows a seasonal amplitude less than 0.5. This suggests a problem in the
initialization of the vegetation during the spin up phase: in fact the GFDL land
model only allows coniferous trees to grow in cold climates, i.e. deciduous trees
and grass do not grow in these cold regions. As a result, coniferous trees are
established in areas where there should be tundra or cold deciduous trees, and
therefore the seasonal amplitude is lower than expected.

Satellite data shows that the dates of vegetation senescence (Figure 5)
occur in reverse order of the green-up onset, namely the green-up wave
progresses northwards and dormancy wave progresses southwards. The
discrepancies between models and satellite observations are even higher on
the growing season dormancy, with most of the models failing to reproduce this
pattern. Considering all the 11 ESMs only BNU-ESM, INMCM4, and CanESM2
have a dormancy distribution similar to the observed pattern, the spatial
correlation being larger than 0.4. However, BNU-ESM and INMCM4
overestimate the offset date, and it explains the large RMSE error found for
these 2 models. Contrarily, HadGEM2-CC, IPSL-CM5A-MR and MPI-ESM-MR
show a slight negative spatial correlation, the latter 2 also having a large RMSE.
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Figure 5. Mean growing season dormancy (day) as simulated by 11 CMIP5
ESMs and satellite observations over the Northern Hemisphere (30-90 °N). For
each model we masked out all the grid points where the seasonal amplitude is
less than 0.5 (see Figure 3). In the box the value of root mean square error (in
days) and spatial correlation, as computed from mean annual data and
averaged over all the grid points, are presented for each model against the
observations.

Compared to other CMIP5 models, GFDL-ESM2G has a smaller RMSE than
the average. However it should be noted that it has been computed considering
only a few grid points, due to the incorrect representation of the seasonal
amplitude.

Looking at the satellite data, the growing season length is found to increase
dramatically with decreasing latitude (Figure 6). It is the shortest in central and
eastern Siberia along the Arctic coast, with a duration of only 3 months. In
contrast, most of Europe, Eastern China and Southern North America have long
growing seasons. The growing season length shows better agreement between
satellite data and models, although individual models still exhibit large errors in
reproducing the observed the spatial pattern. In spite of the high variability in
onset and dormancy, the individual model performance somehow improves on
the growing season length. This could be related to a compensation of the
errors of models in simulating the onset and offset dates.
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Figure 6. Mean growing season length (days) for 11 CMIP5 ESMs and satellite
observations over the Northern Hemisphere (30-90 °N). For each model we
masked out all the grid points where the seasonal amplitude is less than 0.5
(see Figure 3). In the box the value of root mean square error (in days) and
spatial correlation, as computed from mean annual data and averaged over all
the grid points, are presented for each model against the observations.

Looking at the spatial pattern, the best results are found in BNU-ESM,
INMCM4, CESM1-BGC, NorEMS1-ME, MIROC-ESM and CanESM2, being the
correlation systematically greater than 0.5. Besides, in the few grid points
covered by deciduous forests GFDL-ESM2G shows a good agreement with
satellite GSL and this explains the relative high correlation and low RMSE
compared to other ESMs. Consistent with previous results, HadGEM2-CC and
IPSL-CM5A-MR show a negative correlation, indicating the inability of these
models to reproduce the observed spatial variability. In addition HadGEM2-CC
and IPSL-CM5A-MR also show the highest RMSE for the GSL, the IPSL-CM5A-
MR error being almost 3 times larger than the lowest RMSE found in CanESM2.

3.3 Temporal Trends

Quite a few models predict an overall increase of LAl with time in most of the
Northern Hemisphere, which is consistent with the satellite observations
(Figure 7) which show a greening over the whole Eurasia and almost no
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negative trend over the Northern Hemisphere, with a small exception over
western North America and few locations in the Eurasian boreal forest.

-"""C-ESM1—BG'C“‘~~.\
N - I N

¥\ L3 ,w‘/‘v}"? ;ﬁf—f

o~ --""""INMCMI‘"“\»-\

£

T 5 V. SRR
L \ 5 g
b o
B =
A | ¢ 08
3 :
= A
¥ :
\ v
4
)
g

Emm-—

Figure 7. Observed and simulated LAI trends (%) computed over the
period 1986-2005 for 11 CMIP5 ESMs and satellite observations
over the Northern Hemisphere (30-90 °N). For each model we
masked out all the grid points where the seasonal amplitude is less
than 0.5 (see Figure 3). The value in the box represents the spatial
correlation between modeled and satellite mean annual values
obtained by averaging over all the grid points.

From the whole compendium, BNU-ESM, GFDL-ESM2G, HadGEM2-CC and
NorESM1-ME display the highest increase in LAl (see also Figure 1), mostly
over the eastern coast of North America, Europe and the boreal forest of Asia.
IPSL-CM5A-MR, MIROC-ESM, BCC-CSM1 and INMCM4 have an intermediate
signal with the increase shown over the same regions, and some patchy areas
where LAI decreased. We found that none of the models were able to
reproduce the correct spatial pattern, the spatial correlation being close to 0 for
almost all the models, except MIROC-ESM, which shows a positive correlation
of 0.15.

The models also show a general increase in the growing season length, with
patchy areas where it decreases (Figures 8). It is clear that from the 11 ESMs,
those that perform better at calculating the growing season (both on the onset
and dormancy) and LAl also do better for the trends, despite there being no
spatial correlation between CMIP5 models and satellite data.
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Figure 8. Observed and simulated GSL trends (days/year) computed over the
period 1986-2005 for 11 CMIP5 ESMs and satellite observations over the
Northern Hemisphere (30-90 °N). For each model we masked out all the grid
points where the seasonal amplitude is less than 0.5 (see Figure 3). The value
in the box represents the spatial correlation between modeled and satellite
mean annual values obtained by averaging over all the grid points.

4. Discussion

Results show that all coupled models correctly reproduce the spatial pattern
of LAl (Figure 2), although an overall overestimation is found (Figure 1). GFDL-
ESM2G clearly shows a strong overestimation over the Northern Hemisphere.
Such overestimation in boreal forest is related to the substitution of tundra with
coniferous forests; this result is supported by the low seasonal amplitude found
over the whole Northern region of Eurasia.

Table 2 reports the comparison of simulated LAl and the leaf phenology,
averaged over the whole domain of interest, against satellite observations.

74

e e o -
- o ©

e e @
» v o>

o o o o
o ° O

-0.3

o
IS

-0.5

I
o

-0.7

| |
- ~4
0

<@ T T T T T TT T T T T -



Table 2. Average LAI, onset, dormancy and growing season length
average for the Northern Hemisphere for each model and satellite
observations. The values for dormancy and length based on GPP are
presented in brackets.

Model LAI Onset Dormancy Length
BCC-CSM1 1.54 126 300 (274) 174 (146)
BNU-ESM 1.75 132 320 (280) 188 (148)
CanESM2 0.8 163 312 (295) 149 (149)
CESM1-BGC 1.2 117 340 (305) 223 (190)
GFDL-ESM2G 2.7 156 325 (304) 169 (152)
HadGEM2-CC 1.17 132 317 (279) 185 (132)
INMCM4 1.0 125 325 (289) 200 (164)
IPSL-CM5A-MR 1.68 77 340 (276) 263 (131)
MIROC-ESM 1.66 151 301 (276) 150 (130)
MPI-ESM-MR 1.35 134 333 (274) 199 (147)
NorESM1-ME 1.3 120 339 (303) 219 (186)
LAI3g 0.83 138 289 151

Looking at Table 2, it is clear that all the models overestimate not only the
average LAI, but also the mean dormancy and length of the growing season,
while the onset shows much agreement between model means and
observations (Table 2). Satellite LAl average for the Northern Hemisphere is
0.83 while LAI from the models varies between 0.8 to 2.7. Growing season
onset was earlier in 8 of the 11 models, while dormancy came between 11 to 51
days later in the models.

However, when the GSL period is calculated based on the gross primary
production (GPP) the modeled values become much closer to the satellite
values, with an average growing season length of 152+20 days, very similar to
the 151 days from the satellite data. The same consideration is also valid for the
growing season dormancy: in particular, looking at the spatial pattern, when the
offset is computed using the GPP instead of the LAI, all the models show a
geographical distribution very similar to the observations (Figure 9). This is
confirmed by a relevant decrease in the RMSE values and an increase in the
spatial correlations compared to results of Figure 5. These results suggest that
the leaves in the models remain for longer than they should (discussed later).
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Figure 9. Mean growing season dormancy (day) as simulated by 11 CMIP5
ESMs and satellite observations over the Northern Hemisphere (30-90 °N)
computed using the GPP. For each model we masked out all the grid points
where the LAl seasonal amplitude is less than 0.5 (see Figure 3). In the box the
value of root mean square error (in days) and spatial correlation, as computed
from mean annual data and averaged over all the grid points, are presented for
each model against the observations.

Although the wet bias found in most of the analyzed CMIP5 models could
explain the positive bias in LAI, this overestimation of the mean LAl is
consistent with results from the uncoupled models (Table 3), suggesting that it
is unlikely that differences in climate in the coupled models are solely
responsible for this positive bias. This general overestimation could also be
explained by a combination of underestimation of observed LA, likely due to a
saturation of satellite instrumentation, particularly on areas with dense
vegetation, and by missing parameterizations of disturbances in the models
(e.g. pollution, insect attack, nutrient limitation, grazing, fire dynamics), which
leads to a larger amount of carbon stored in the biomass, which, in turn, leads
to a larger LAI. The combination of these two effects explains why we found a
relevant overestimation of simulated LAl in both coupled and uncoupled
models.

The geographical pattern of average LAl is also similar between coupled and
uncoupled models [78]. The overestimation of LAl is found consistently over the
boreal forest (55°N) when compared to the satellite observations, with better
agreement over areas with scarce vegetation. When comparing models with the

76



same vegetation model (TRIFFID vs HADGEM2-CC, ORCHIDEE vs IPSL-
CM5A-MR and CLM vs NorESM1 or CESM1-BGC) there are little differences in
the distribution of LAI, suggesting that climatic variations in the coupled models
are less important in controlling the distribution of LAl than having the correct
vegetation distribution.

The onset patterns are similar among all coupled and uncoupled models,
with the latest onset occurring over the boreal region. The similarities are even
stronger over the dormancy where all models display a general overestimation
over the boreal region, possibly explained by the late leaf shed in all models

[99].
These results suggest that both coupled and uncoupled models predict a

later dormancy (day) and a longer growing season length in comparison to
satellite observation (Table 3). It seems that leaves in the models remain for
longer than they should. However the late dormancy is not in line with the
vegetation photosynthetic activity: in fact, when the same methodology to
calculate the end of the photosynthetic active period was applied to the gross
primary productivity (GPP), we found that the dormancy began at 27717 days in
the uncoupled models and 287113 days in case of CMIPS models, which is
remarkably earlier than previously predicted by LAI, and much closer to the
observed value of 289 days. It is evident that all models are keeping inactive
leaves for longer than they should, which does not have any impact on the
carbon cycle but could potentially modify surface radiation budget and turbulent
fluxes, affecting therefore the PBL dynamics, which in turn could lead to
potential bias in lower atmospheric dynamics simulated by ESMs. In addition to
those ESMs having an interactive tropospheric chemistry component, the
presence of inactive leaves could modify the deposition fluxes that strongly
depend on the area of the canopy [11]. Conversely, the longer offset simulated
by offline models does not affect simulation results since the climate is provided
as input data and the feedbacks between the land surface and the atmosphere

are not taken into account.

Table 3. Comparison of coupled and uncoupled ensemble means of LAl and
phenology averaged over the Northern Hemisphere (30-90 °N).
LAI Onset Dormancy Length
Uncoupled 1.55+0.45 119+36 324 £16 (277+7) 205 149 (137+20)
Coupled 147 £0.51 130+23 323+ 15(287+13) 193 + 34 (152120)
LAI3g 0.83 138 289 151
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Looking at the LAI trends, all the coupled models show a clear greening over
the whole Northern America and Eurasia, consistent with satellite data, while
not all the offline models show the same pattern over the high latitudes of the
Northern Hemisphere. Considering all the ESMs, the greening of the high
latitudes is likely driven by positive temperature trend (Figure 1) but in some of
the offline models we observe a browning over the same region, suggesting
that offline modelled LAl is also sensitive to moisture changes, as most of the
browning occurs over areas where precipitation shows a decrease (not shown).

The previous similarities between coupled and uncoupled models, similar
geographical distribution of LAl with higher values than the satellite data, and
an extended growing season mostly driven by a later dormancy all suggests
that the correct initialization and distribution of vegetation in the models is the
most important feature in the correct representation of LAl. Nevertheless
climatic variables, temperature in particular, have proven to be the main drivers
of changes over time [100].

5. Concluding Remarks

We compared LAI from 11 Earth-System Models from CMIP5 against
satellite data and uncoupled models from part |, for the Northern Hemisphere
during the 1986-2005 period. We compared the mean annual LAI, the spatial
pattern of LAl and the onset, dormancy and length of the growing season. Our
results show that models consistently overestimate the mean value of LAI, and
also have an increased growing season, mostly due to a later dormancy. This is
consistent with the finding on the uncoupled models.

We conclude that validating LAl in each model against satellite observations
should be a fundamental step for all modelling groups, and this process is more
central than the correct LAl parameterization against climate. This is essential
since changes in LAl have been used to show the existence of an increased
growing season over the last decades, and since LAl is a fundamental
parameter in all models, required to correctly calculate the hydrological,
energetic and carbon fluxes.

Acknowledgments

We acknowledge the World Climate Research Programme's Working Group
on Coupled Modelling, which is responsible for CMIP, and we thank the climate
modeling groups (listed in Table 1 of this paper) for producing and making
available their model output. For CMIP the U.S. Department of Energy's
Program for Climate Model Diagnosis and Intercomparison provides
coordinating support and led development of software infrastructure in
partnership with the Global Organization for Earth System Science Portals. We
also thank Ranga Myneni for his valuable contribution and comments on the

78



development of the paper, Xuhui Wang for his help on the methodology, and
the three anonymous reviewers who helped to improve the paper.

References and Notes

1. Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J. L.; Glassy, J.; Tian,
Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.; et al. Global products of
vegetation leaf area and fraction absorbed PAR from year one of MODIS
data. Remote Sens. Environ. 2002, 83, 214-231.

2. Sellers, P.J.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.;
Denning, A.S.; Mooney, H.A.; Nobre, C.A.; Sato, N.; et al. Modeling the
exchanges of energy, water, and carbon between continents and the
atmosphere. Science 1997, 275, 502-509.

3. Botta, A.; Viovy, N.; Ciais, P.; Friedlingstein, P. A global prognostic scheme
of leaf onset using satellite data. Global Change Biol. 2000, 6, 709-726.

4. Pielke, R.A.; Avissar, R.; Raupach, M.; Dolman, A.J.; Zeng, X.; Denning,
A.S. Interactions between the atmosphere and terrestrial ecosystems:
influence on weather and climate. Global Change Biol. 1998, 4, 461-475.

5. Brovkin, V. Climate-vegetation interaction. J. Phys. 2002, 4, 57-72.

6. Chase, T.N.; Pielke, R.; Kittel, T.; Nemani, R.; Running, S. Sensitivity of a
general circulation model to global changes in leaf area index. J. Geophys.
Res. 1996, 101, 7393—-7408.

7. Betts, R.A.; Cox, P.M.; Lee, S.E.; Woodward, F.I. Contrasting physiological
and structural vegetation feedback in climate change simulations. Nature
1997, 387, 796-799.

8. Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing
season extension and its impact on terrestrial carbon cycle in the Northern
Hemisphere over the past 2 decades. Global Biogeochem. Cy. 2007, 21,
GB3018, doi:10.1029/2006GB002888.

9. Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P. |.; Geron, C.
Estimates of global terrestrial isoprene emissions using MEGAN (Model of
Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006,
6, 3181-3210.

10. Lathiére, J.; Hauglustaine, D.A.; Friend, A.D.; De Noblet-Ducoudré, N.;
Viovy, N.; Folberth, G.A. Impact of climate variability and land use changes
on global biogenic volatile organic compound emissions. Afmos. Chem.
Phys. 2006, 6, 2129-2146.

11. Petroff, A.; Mailliat, A.; Amielh, M.; Anselmet, F. Aerosol dry deposition on
vegetative canopies. Part 1: Review of present knowledge. Atmos. Environ.
2008, 42, 3625-3653.

12. Anav, A.; Menut, L.; Khvorostyanov, D.; Viovy, N. A comparison of two
canopy conductance parameterizations to quantify the interactions between

79



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

surface ozone and vegetation over Europe. J. Geophys. Res. 2012, 117,
G03027.

Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999,
397, 659.

Ahas, R.; Jaagus, J.; Aasa, A. The phenological calendar of Estonia and its
correlation with mean air temperature. Int. J. Biometeorol. 2000, 44, 159—
166.

Myneni, R.B.; Keeling, C. D.; Tucker, C.J.; Asrar, G.; Nemani, R.R.
Increased plant growth in the northern latitudes from 1981-1991. Nature
1997, 386, 698—702.

Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V_;
Myneni, R.B. Variations in northern vegetation activity inferred from satellite
data of vegetation index during 1981 to 1999. J. Geophys. Res. 2001, 106,
20069-20083.

Tucker, C.J.; Slayback, D.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor,
M.G. Higher northern latitude normalized difference vegetation index and
growing season trends from 1982 to 1999. Int. J. Biometeorol. 2001, 45,
184-190.

Suzuki, R.; Nomaki, T.; Yasunari, T. West-east contrast of phenology and
climate in northern Asia revealed using a remotely sensed vegetation
index. Int. J. Remote Sens. 2003, 47, 126—-138.

Stockli, R.; Vidale, P.L. European plant phenology and climate as seen in a
20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens.
2004, 25, 3303-3330.

Keeling, C.D.; Chin, J.F.S.; Whorf, T.P. Increased activity of northern
vegetation in inferred from atmospheric CO, measurements. Nature 1996,
382, 146-149.

Lucht, W.; Prentice, I.C.; Myneni, R.B.; Sitch, S.; Friedlingstein, P.; Cramer,
W.; Bousquet, P.; Buermann, W.; Smith, B. Climatic control of the high-
latitude vegetation greening trend and Pinatubo effect. Science 2002, 296,
1687-1689.

Barichivich, J.; Briffa, K.R.; Osborn, T.J.; Melvin, T.M.; Caesar, J. Thermal
growing season and timing of biospheric carbon uptake across the
Northern Hemisphere. Global Biogeochem. Cy. 2012, 26.

Kimball, J.; McDonald, K.; Running, S.; Frolking S. Satellite radar remote
sensing of seasonal growing seasons for boreal and subalpine evergreen
forests. Remote Sens. Environ. 2004, 90, 243—-258.

Euskirchen, E.S.; McGuire, A.D.; Kicklighter, D.W.; Zhuang, Q.; Clein, J.S.;
Dargaville, R.J.; Dye, D.G.; Kimball, J.S.; McDonald, K.C.; Melillo, J.M;
Romanovsky, V.E.; Smith, N.V. Importance of recent shifts in soil thermal
dynamics on growing season length, productivity, and carbon sequestration

80



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

in terrestrial high-latitude ecosystems. Global Change Biol. 2006, 12, 731—
750.

Linderholm, H. Growing season changes in the last century. Agr. Forest
Meteorol. 2006, 137, 1-14.

Churkina, G.; Schimel, D.; Braswell, B.; Xiao, X. Spatial analysis of growing
season length control over net ecosystem exchange. Global Change Biol.
2005, 11, 1777-1787.

Richardson, A.D.; Black, T.A.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron,
N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al.
Influence of spring and autumn phenological transitions on forest
ecosystem productivity. Philos. T. R. Soc. B. 2010, 365, 3227-3246.
Keeling, C.; Chin, J.; Whorf, T. Increased activity of northern vegetation
inferred from atmospheric CO2 measurements. Nature 1996, 382, 146—
149.

Myneni, R.; Keeling, C.; Tucker, C.; Asrar, G.; Nemani, R. Increased plant
growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386,
698-702.

Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999,
397, 659.

Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V_;
Myneni, R.B. Variations in northern vegetation activity inferred from satellite
data of vegetation index during 1981 to 1999. J. Geophys. Res. 2001, 106,
20069-20083.

Mao, J; Shi, X.; Thornton, P.E.; Piao, S.; Wnag, X. Causes of spring
vegetation growth trends in the northern mid—high latitudes from 1982 to
2004. Environ. Res. Lett. 2012, 7, 014010 doi:10.1088/1748-
9326/7/1/014010.

Mao, J.; Shi, X.; Thornton, P.E.; Hoffman, F.M.; Zhu, Z.; Myneni, R.B.
Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving
Mechanisms: 1982-2009. Remote Sens. 2013, 5, 1484-1497.

Smith, N.V.; Saatchi, S. S.; Randerson, J.T. Trends in high northern latitude
soil freeze and thaw cycles from 1988 to 2002. J. Geophys. Res. 2004,
109.

Christidis, N.; Stott, P.; Brown, S.; Karoly, D.; Caesar J. Human contribution
to the lengthening of the growing season during 1950-99. J. Clim. 2007,
20, 5441-5454.

Suni, T.; Berninger, F.; Markkanen, T.; Keronen, P.; Rannik, U.; Vesala T.
Interannual variability and timing of growing-season CO2 exchange in a
boreal forest. J. Geophys. Res. 2003, 108.

Kimball, J.; McDonald, K.; Running, S.; Frolking, S. Satellite radar remote
sensing of seasonal growing seasons for boreal and subalpine evergreen
forests. Remote Sens. Environ 2004, 90, 243—-258.

81



38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Hanninen, H.; Tanino, K. Tree seasonality in a warming climate. Trends
Plant Sci. 2011, 16, 412—-416.

Charney, J.; Quirk, W.J.; Chow, S.-H.; Kornfield, J. A comparative study of
the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci.
1977, 34, 1366—1385.

Sud, Y.C.; Fennessy, M.J. A study of the influence of surface albedo on
July circulation in semi-arid regions using the GLAS GCM. J. Climatol.
1982, 2, 105-125.

Dirmeyer, P.A., Shukla, J. Albedo as a modulator of climate response to
tropical deforestation. J. Geophys. Res. 1994, 99, 20863—20877.

Shukla, J.; Mintz, Y. Influence of land-surface evapotranspiration on the
Earth’s climate. Science 1982, 215, 1498-1501.

Douville, H.; Chauvin, F.; Broqua, H. Influence of soil moisture on the Asian
and African monsoons. Part I: Mean monsoon and daily precipitation. J.
Climate 2001, 14, 2381-2403.

Zampieri, M.; D’Andrea, F.; Vautard, R.; Ciais, P.; de Noblet-Ducoudré, N.;
Yiou, P. Hot European Summers and the Role of Soil Moisture in the
Propagation of Mediterranean Drought. J. Climate 2009, 22, 4747—-4758.
Sud, Y.C.; Shukla, J.; Mintz, Y. Influence of land surface roughness on
atmospheric circulation and precipitation: A sensitivity study with a general
circulation model. J. Appl. Meteor. 1988, 27, 1036—1054.

Bounoua, L.; Collatz, G.J.; Los, S.O.;. Sellers, P.J; Dazlich, D.A.; Tucker,
C.J.; Randall, D.A. Sensitivity of climate to changes in NDVI. J. Climate
2000, 713, 2277-2292.

Oleson, K.W.; Bonan, G.B. The effects of remotely sensed plant functional
type and leaf area index in simulations of boreal forest surface fluxes by the
NCAR land surface model. J. Hydrometeor. 2000, 1, 431-446.

Buermann, W.; Dong, J.; Zeng, X.; Myneni, R.B.; Dickinson, R.E.
Evaluation of the utility of satellite-based leaf area index data for climate
simulation. J. Climate 2001, 14, 3536-3550.

Van den Hurk, B.J.J.M.; Viterbo, P.; Los, S.O. Impact of leaf area index
seasonality on the annual land surface evaporation in a global circulation
model. J. Geophys. Res. 2003, 108, 4191, doi:10.1029/2002JD002846.
Tian, Y.; Dickinson, R.E.; Zhou, L.; Myneni, R.B.; Friedl, M.; Chaaf, C.B.;
Carroll, M.; Gao, F. Land boundary conditions from MODIS data and
consequences for the albedo of a climate model. Geophys. Res. Lett. 2004,
31, L05504.

Kang, H.-S.; Xue, Y.; Collatz, G.J. Impact assessment of satellite-derived
leaf area index datasets using a general circulation model: Seasonal
variability. J. Climate 2007, 20, 993-1015.

Dickinson, R.E.; Henderson-Sellers, A; Kennedy, P.J. Biosphere-
Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR

82



53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

community climate model. NCAR Technical Note, NCAR/TN-387+ STR,
1993, National Center for Atmospheric Research, Boulder, CO.

Giorgi, F.; Marinucci M.R.; Bates, G.T. Development of a second
generation regional climate model (RegCM2). |. Boundary-layer and
radiative transfer processes. Mon Weather Rev 1993, 121, 2794-2813
Schulz, J.-P.; Dumenil, L.; Polcher, J.; Schlosser, C.A.; Xue, Y. Land
surface energy and moisture fluxes: Comparing three models. J. Appl.
Meteor. 1998, 37, 288-307.

Lawrence, D.M.; Slingo, J.M. An annual cycle of vegetation in a GCM. Part
lI: Global impacts on climate and hydrology. Clim. Dynam. 2004, 22, 107—
122.

Stier, P.; Feichter, J.; Kinne, S.; Kloster, S.; Vignati, E.; Wilson, J.;
Ganzeveld, L.; Tegen, |.; Werner, M.; Balkanski, Y.; et al. The aerosol-
climate model ECHAMS-HAM. Atmos. Chem. Phys. 2005, 5, 1125-1156.
Hourdin, F.; Musat, |.; Bony, S.; Braconnot, P.; Codron, F.; Dufresne, J.-L.;
Fairhead, L.; Filiberti, M. A.; Friedlingstein, P.; Grandpeix, J.-Y.; et al. The
LMDZ4 general circulation model: climate performance and sensitivity to
parametrized physics with emphasis on tropical convection. Clim. Dynam.
2006, 79, 3445-3482.

Foley, J.A.; Prentice, |.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.;
Haxeltine, A. An integrated biosphere model of land surface processes,
terrestrial carbon balance, and vegetation dynamics. Global Biogeochem.
Cy. 1996, 10, 603-628.

Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich,
D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A revised land surface
parameterization (SiB2) for atmospheric GCMs, Part | : Model Formulation.
J. Climate 1996, 9, 676—705.

Foley, J.A.; Levis, S.; Prentice, |.C.; Pollard, D.; Thompson, S.L. Coupling
dynamic models of climate and vegetation. Global Change Biol. 1998, 4,
561-579.

Foley, J.A.; Levis, S.; Costa, M.H.; Cramer, W.; Pollard, D. Incorporating
dynamic vegetation cover within global climate models. Ecol. Appl. 2000,
10, 1620-1632.

Bonan, G.; Levis, S.; Sitch, S.; Vertenstein, M.; Oleson, K.W. A dynamic
global vegetation model for use with climate models: concepts and
description of simulated vegetation dynamics. Global Change Biol. 2003, 9,
1543-1566.

Pitman, A.J. The evolution of, and revolution in, land surface schemes
designed for climate models. Int. J. Climatol. 2003, 23, 479-510.

Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.;
Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of
ecosystem dynamics, plant geography and terrestrial carbon cycling in the

83



65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

LPJ dynamic global vegetation model. Global Change Biol. 2003, 9, 161—
185.

Krinner, G.; Viovy, N.; de Noblet-Ducoudré, N.; Ogée, J.; Polcher, J.;
Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global
vegetation model for studies of the coupled atmosphere-biosphere system.
Global Biogeochem. Cy. 2005, 19, GB1015.

Alessandri, A.; Gualdi, S.; Polcher, J.; Navarra, A. Effects of Land Surface-
Vegetation on the Boreal Summer Surface Climate of a GCM. J. Climate
2007, 20, 225-278.

Taylor, K.; Stouffer, R.; Meehl, G. An overview of CMIP5 and the
experiment design. B. Am. Meteorol. Soc. 2012, 93, 485-498.

Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.;
Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al.
Development and evaluation of an Earth-System model — HadGEM2.
Geosci. Model Dev. 2011, 4, 1051-1075.

Charlson, R.J.; Lovelock, J.E.; Andreae, M.O.; Warren, S.G. Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature
1987, 326, 655—661.

Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration
of global warming due to carbon-cycle feedbacks in a coupled climate
model. Nature 2000, 408, 184-187.

Rea, J.; Ashley, M. Phenological evaluations using Landsat-1 sensors. Int.
J. Biometeorol 1976, 20, 240-248

Girard, C.M. (1982). Estimation of phenological stages and physiological
states of grasslands from remote-sensing data. Vegetatio 1982, 48, 219—
226.

White, M.A.; Thornton, P.E.; Running, S.W. (1997). A continental
phenology model for monitoring vegetation responses to interannual
climatic variability. Global Biogeochem. Cy. 1997, 11, 217-234.

Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao,
F.; Reed, B.C.; Huete A. Monitoring vegetation phenology using MODIS.
Remote Sens. Environ. 2003, 84, 471-475.

Zhou, L.; Kaufmann, R.K;; Tian, Y.; Myneni, R.B.; Tucker, C.J. Relation
between interannual variations in satellite measures of northern forest
greeness and climate between 1982 and 1999. J. Geophys. Res. 2003,
108, 4004, doi:10.1029/2002JD002510.

Zhang, P.; Anderson, B.; Barlow, M.; Tan, B.; Myneni R.B. Climate-related
vegetation characteristics derived from Moderate Resolution Imaging
Spectroradiometer (MODIS) leaf area index and normalized difference
vegetation index. J. Geophys. Res. 2004, 109, D20105.

84



77.

78.

79.

80.

81.
82.

3.

&4.

85.

86.

87.

88.

Ahl, D.E.; Gower, S.T.; Burrows, S.N.; Shabanov, N.V.; Myneni, R.B.;
Knyazikhin, Y. Monitoring spring canopy phenology of a deciduous
broadleaf forest using MODIS. Remote Sens. Environ. 2006, 104, 88-95.
Murray-Tortarolo, G.; Anav, A.; Friedlingstein, P.; Sitch, S.; Piao, S.; Zhu, Z.
Evaluation of DGVMs in reproducing satellite derived LAI over the Northern
Hemisphere. Part |: Uncoupled DGVMs. Remote Sensing 2013, Submitted.
http://pcmdi3.linl.gov/esgcet/

Wu, T.; Li, W.; Ji, J.; Xin, X,; Li, L.; Wang, Z.; Zhang, Y.; Li, J.; Zhang, F.;
Wei, M.; Shi, X.; et al. Global carbon budgets simulated by the Beijing
Climate Center Climate System Model for the last century. J. Geophys.
Res. 2013, 118, doi:10.1002/jgrd.50320
http://esg.bnu.edu.cn/BNU_ESM_webs/htmls/index.html

Arora, V.K.; Scinocca, J.F.; Boer, G.J.; Christian, J.R.; Denman, K.L.; Flato,
G.M,; Kharin, V.V.; Lee, W.G.; Merryfield, W.J. Carbon emission limits
required to satisfy future representative concentration pathways of
greenhouse gases. Geophys. Res. Lett. 2011, 38,.

Lindsay, K.; Bonan, G.B.; Doney, S.C.; Hoffman, F.M.; Lawrence, D.M.;
Long, M.C.; Mahowald, N.M.; Moore, J.K.; Randerston, J.T.; Thornton, P.E.
Preindustrial Control and 20th Century Carbon Cycle Experiments with the
Earth System Model CESM1-(BGC). Submitted to J. Climate, 2013.

Dunne, J.P.; John, J.G.; Shevliakova, E.; Stouffer, R.J.; Krasting, J.P.;
Malyshev, S.L.; Milly, P.C.D.; Sentman, L.T.; Adcroft, A.J. Cooke, W.;
Dunne, K.A; et al. GFDL's ESM2 global coupled climate-carbon Earth
System Models. Part II: Carbon system formation and baseline simulation
characteristics. J Climate 2013, 26, 2247-2267 .

Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.;
Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; Martin, G.;
O'Connor, F.; Rae, J.; Senior, C.; Sitch, S.; Totterdell, I.; Wiltshire, A.;
Woodward, S. Development and evaluation of an Earth-system model-
HadGEM2. Geosci. Model Dev. 2011, 4, 1051-1075.

Volodin, E.M.; Dianskii, N.A.; Gusev, A.V. Simulating present day climate
with the INMCM4.0 coupled model of the atmospheric and oceanic general
circulations. /zv. Ocean. Atmos. Phys. 2010, 46, 414—431.

Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O;
Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; Bony, S.; Bopp, L.
Climate change projections using the IPSL-CM5 Earth System Model: from
CMIP3 to CMIPS. Clim. Dynam. 2013, 40, 2123-2165

Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima,
H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.; Ise, T.; Sato, H.; Kato,
E.; Takata, K.; Emori, S.; Kawamiya, M. MIROC-ESM 2010: model
description and basic results of CMIP5-20c3m experiments. Geosci. Model
Dev. 2011, 4, 845-872.

85



&9.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Raddatz, T.; Reick, C.H.; Knorr, W.; Kattge, J.; Roeckner, E. Schnur, R.;
Schnitzler, K.-G.; Wetzel, P.; Jungclaus, J. Will the tropical land biosphere
dominate the climate-carbon cycle feedback during the twenty-first century?
Clim. Dynam., 2007, 29, 565-574.

Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevag, A.; Seland,
d.; Drange, H.; Roelandt, C.; Seierstad, |.A.; Hoose, C.; Kristjansson, J.E.
The Norwegian Earth System Model, NorESM1-M — Part 1: Description and
basic evaluation. Geosci. Model Dev. Discuss. 2012, 5, 2843-2931,

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: AN OVERVIEW OF
CMIP5 AND THE EXPERIMENT DESIGN. Bull. Amer. Meteorol. Soc., 93,
485-498.

Anav, A.; , Friedlingstein, P.; Kidston, M.; Bopp, L.; Ciais, P.; Cox, P.M,;
Jones, C.D.; Jung, M.; Myneni, R.B.; Zhu, Z. Evaluating the land and ocean
components of the global carbon cycle in the CMIP5 Earth System Models.
J Climate 2013, In Press.

Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.;
Nemani, R.R.; Myneni, R.B. Global Data Sets of Vegetation Leaf Area
Index (LAI)3g and Fraction of Photosynthetically Active Radiation
(FPAR)3g Derived from Global Inventory Modeling and Mapping Studies
(GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period
1981 to 2011. Remote Sens. 2013, 5, 927-948.

Fang, H.; Jiang, C.; Li, W.; Wei, S.; Baret, F.; Chen, J.M.; Haro, J.G.; Liang,
S.; Liu, R.; Myneni, R.B.; Pinty, B.; Xiao, Z.; Zhu Z. Characterization and
intercomparison of global moderate resolution leaf area index (LAI)
products: Analysis of climatologies and theoretical uncertainties. J.
Geophys. Res. 2013, 118.

Zhang, P.; Anderson, B.; Barlow, M.; Tan, B.; Myneni, R.B. Climate-related
vegetation characteristics derived from Moderate Resolution Imaging
Spectroradiometer (MODIS) leaf area index and normalized difference
vegetation index. J. Geophys. Res. 2004, 109.

Mitchell, T.D.; Jones, P.D. An improved method of constructing a database
of monthly climate observations and associated high-resolution grids. Int. J.
Climatol. 2005 25, 693-712.

Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.;
Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in
global terrestrial net primary production from 1982 to 1999. Science, 2003,
300, 1560-1563.

Piao, S.; Ciais, P.; Friedlingstein, P.; de Noblet-Ducoudre, N.; Cadule, P;
Viovy, N.; Wang, T. Spatiotemporal patterns of terrestrial carbon cycle
during the 20th century. Global Biogeochem. Cy. 2009, 23, GB4026,
doi:10.1029/ 2008GB003339.

86



99. Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.;
Chen, G.; Chen, J.M.; Ciais, P.; Davis, K.J.; Desai, A.R.; et al. Terrestrial
biosphere models need better representation of vegetation phenology:
results from the North American Carbon Program Site Synthesis. Global
Change Biol. 2011, 18, 566—-584.

100. Jeong, S.-J.; Ho, C.-H.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs.
end of growing season in temperate vegetation over the Northern
Hemisphere for the period 1982-2008. Global Change Biol. 2011, 17,
2385-2399.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an

open access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

87



Chapter 3. Comparing model results against observations at
multiple scales in the tropics.

3.1 Summary

One of the most challenging tasks to model the land C cycle is the evaluation of
the results over the tropics. This is due to fewer observations being available
(e.g. Fluxnet sites over the tropics represent about a quarter of the total, and
most of them started over the last 10 years), the signal from satellite products
usually becomes saturated over dense forest and because our understanding of
the underlying driving processes (i.e. soil moisture storage) is also limited
(Poulter et al. 2009). Additionally, LUC and biomass burning also play a pivotal
role in regulating C emissions and uptake over the tropics, representing up to
29% of the total human C emissions to the atmosphere (Fearnside, 2000).

This means that evaluating the modelled results against available
observations over the tropics is a key step in order to improve our
representation of the land C cycle in all DGVMs. The discrepancy between
observations and model results may shed a light onto missing or
misrepresented processes and will help to reduce uncertainty in future
predictions.

This chapter is comprised by two parts, each of them evaluating the C
cycle at a different scale over the tropics. The first scale is the African continent
and it is the result of my collaboration on the paper by Valentini et al. (2013).
The paper compiles information about the C cycle from a vast number of
sources, | was responsible for the analysis of the output from the TRENDY
DGVMs. Here | present a similar analysis to those results, where | compared
the NEP flux from the models against atmospheric CO; inversions, but for a
longer time period (1990-2009) than the original analysis (2000-2009) and
present a brief discussion expanding on the main paper by Valentini et al.
(2013) results.

The second part of the chapter is the evaluation of the observed C
stocks (vegetation and soil) for the country-scale case study of Mexico. These
results are part of a submitted paper (Murray-Tortarolo et al. in progress) where
| evaluated the present C stocks and calculated the predicted change in past
and future stored C. This is a fundamental missing piece of information for
policy-makers in the country, as no previous study has investigated the land-C
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cycle of the country using a processed based approach. The paper is included
fully as part of this chapter.
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3.2 Africa: continent level estimates
3.2.1 Introduction

Africa plays an important role in the global C budget. For example 17%
of global carbon emissions from land-use change, over half of the global gross
fire emissions and about half of the interannual variability of the global carbon
balance have been attributed to Africa (Williams et al., 2007; Canadell et al.,
2009b; van der Werf et al., 2010). About a third of the tropical biomass carbon
sink (or 16% of the total terrestrial carbon sink) over the period 2000-2005 is
thought to be due to the African tropical forests (Lewis et al., 2009, Malhi and
Grace, 2000).

In spite of the importance of this continent to the global C cycle,
estimates of NEP and NBP for the African forests remains insufficient for
accurate estimation and in comparison to other world regions (Ciais et al.,
2009). The same is true for other important land cover classes in Africa, such as
savannahs, shrublands, crops and wetlands.

However new products that account for the C exchange between the
land and the atmosphere became available in recent years. One of these
products is the atmospheric inversion of CO,. These consist of an inversion of
an atmospheric transport to predict the exchange of CO, between the land and
the atmosphere and can account for the flux coming from different sources (e.g.
human, natural). Results from five early inversions (done in the 1990’s) suggest
that Africa was CO, neutral (Williams et al. 2007), however these products has
been deeply refined in recent decades and several more have became
available.

On the other hand, few DGVM studies have explored the African carbon
cycle and its response to climate, CO, and land use change drivers. For
example, applying the model ORCHIDEE with dynamic vegetation disabled,
Ciais et al. (2009) simulated a source-sink shift in the continental C balance
from +0.14 PgC y™' in the 1980s to -0.13 PgC y™' in the 1990s. Nevertheless,
new results from the TRENDY model compendium are available, which also
cover the African region (Sitch et al. 2015).

The objective of this chapter is to compare modelled NEP results with
atmospheric inversions for Africa over the period 1990-2005 and to evaluate the
results from the TRENDY DGVMs.
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These results extend on my collaboration to the paper by Valentini et al.
(2013) and a comparison between the two is included in the discussion. Here
one important caveat must be mentioned, in order to be consistent with the
procedure of Valentini et al. (20130), | used NEP from the TRENDY runs V1,
which are the same than the paper. Nonetheless, these runs do not include
LUC, which is needed in order to compare NEP with the atmospheric
inversions. | derived a LUC mean value for Africa based on the main paper.
However, the new runs (V2 and V3) include a representation of LUC and would
be a better fit for comparison, but are not presented here to maintain

consistentcy.

3.2.1 Methods
Datasets
DGVMs: | used data from 9 DGVMs from the TRENDY compendium (Sitch et
al. 2015) for the S2 simulation, which is forced by climate and atmospheric CO».
| used NEP for the period 1990-2005. | calculated the model ensemble as the
mean of all models and the uncertainty as the standard deviation. | also plotted
the individual model NEP for the same time period. To compare NEP with the
atmospheric inversions | derived a mean value for LUC from Valentini et al.,
(2013).

Inversions: | used the mean annual CO; posterior flux from atmospheric
COgz inversion from 10 different products from Peylin et al. (2013) for the period
1990-2005. The uncertainty was calculated as the standard deviation across
products. The data was corrected by the land/sea fraction and regridded to a
common 1x1 grid (TRENDY grid) for easier comparison.
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Data analysis

| calculated the mean and gridded-mean NEP flux for the period 1990-2009.
The long-term gridded trend was computed as the linear trend of NEP against
time in each pixel, while the continental-level long-term trend was computed
from the yearly means. | also computed the spatial correlation (area weighted)

between the annual means, and the long-term trend across products.

3.2.2 Results
Both the inversions and the models represent Africa as a sink of C, however |
found an estimate for the land C flux much larger for the models than the
inversions (0.4 + 0.3 vs. 0.06 + 1.3 PgCyr", respectively). This is primarily due
to the fact that the inversion estimate does include land use changes C fluxes
while the DGVM estimates used here do not account for LUC. Including the
LUC central estimate (0.32 + 0.05 PgC yr") reduces the discrepancy between
top-doan and bottom-up models to almost the same value.

| also analysed the variables spatially and temporarily. Spatially | found
a similar sink (~50 gCm?yr™") for most of the continent with marked regional
discrepancies: inversions showed a sink of C for central and east Africa, but a
source of C over the Sahel region and the Congo basin (Figure 3.1 a, d). The
model ensemble displays a sink of C almost everywhere, with the greatest
values in central Africa. The clear differences in the uptake lead to a small
spatial correlation between products (r=0.23).

There are also great discrepancies in the spatial trend over these 20
years. The inversions display higher C-fluxes to the atmosphere for most of the
continent, particularly over the source regions. On the contrary the models
predicted an increasing sink almost everywhere, with the exception of the Sahel
(Figure 3.1 b, e). In term of the 1AV, both products predict opposite patterns.
The inversions showed a change of phase from being a source in 1991-2000, to
a sink in 2001-2009, while the models simulated a sink of C for every year
(Figure 3.1. ¢, f)
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Figure 3.1. Land C flux (left), trend (middle) and annual mean (right) for
atmospheric CO; inversions (top) and modelled NBP (bottom). For all cases a
negative value represents a sink of C by the land.

3.2.3 Discussion

Both the DGVMs and the inversion indicate that Africa as a continent was a sink
of C over this 20 year period, as reported in Valentini et al. (2013). However my
results also show that there is great discrepancy between the values and the
long-term trend, likely coming from the uncertainty in each product. For the
particular case of the atmospheric inversions, the lack of CO, measuring
stations (only 7 in the whole continent) and the challenging modelling of the
ITCZ leads to large errors (SD of all inversions) of £1.3PgC. For the case of the
models, the estimates were more constrained, with 8 out of 9 predicting a sink
of C and while the error is smaller (+ 0.3 PgC) there are clear differences
among models, particularly for the Sahel, where some models display the
region as a source of C, much like the inversions (Figure 3.2). In addition, the
S2 run -used here in the DGVMs- does not include LUC, which could explain
why the continent-level estimates are higher than the inversions.

The major source of discrepancy comes from two regions: the Sahel and
the Congo Basin. | compared the results against local field-sample studies. The
Sahel has been experiencing an increase in drought and longer dry season
lengths over recent years (1960-2010), which in turn has led to a decrease in
species richness and biomass (Gonzales et al. 2012). While both modelled
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ensemble and inversions predict a decreasing land-C flux trend, the individual
models differ in their response. Human induced climate change has been
attributed to be the main driver of this change since 1990s (Epule et al. 2013),
but the effect of changing rainfall over vegetation processes on the area is not
linear (Hein and De Ridder 2006).

The second region of discrepancy is the Congo Basin. This region has
the highest C density of Africa and recent studies found a decrease in
photosynthetic activity due to moisture limitations over the past 10 years (2000-
2010) (Zhou et al. 2014). This pattern was better represented in the
atmospheric inversions (a positive trend) than in the individual models, which all
calculated a sink. A deeper model analysis is needed to understand why
models fail to reproduce this decline, but is likely that the models misrepresent
the effect of drought over the tropical wet forest (Sitch et al. 2008).

My results build up on Valentini et al. (2013) and suggest the need to re-
asses the C cycle over Africa with DGVMs that include LUC and are better

parametrized for their drought response.
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Abstract
We modelled the carbon (C) cycle in Mexico with a process-based approach.
We used different available products (satellite data, field measurements,
models and flux towers) to estimate C stocks and fluxes in the country at three
different time frames: present (defined as the period 2000-2005), the past
century (1901-2000) and the remainder of this century (2010-2100). Our
estimate of the gross primary productivity (GPP) for the country was 2137 +
1023 TgC yr' and a total C stock of 34,506 + 7483 TgC, with 20,347 + 4622
PgC in vegetation and 14,159 + 3861 in the top 20 cm of soil.

Contrary to other current estimates for recent decades, our results
showed that Mexico was a C sink over the period 1990-2009 (+31 TgC yr™)
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and that C accumulation over the last century amounted to 1210 £+1040 TgC.
We attributed this sink to the CO;, fertilization effect on GPP, which led to an
increase of 3408 + 1060 TgC, while both climate and land use reduced the
country C stocks by -458 £ 1001 and -1740 + 878 TgC, respectively. Under
different future scenarios the C sink was likely to continue over 21% century,
with decreasing C uptake as the climate forcing became more extreme. Our
work provides valuable insights on relevant driving processes of the C-cycle
such as the role of drought in marginal lands (e.g. grasslands and shrublands)
and the impact of climate change on the mean residence time of C in tropical
ecosystems.

1 Introduction
The global carbon (C) cycle has been altered by anthropogenic activity with the
release of CO; into the atmosphere through fossil fuel burning and land use and
land cover changes since the industrial revolution (Keeling et al., 1995). As a
consequence C stocks have increased in the atmosphere, land and oceans.
About 50% of the annual anthropogenic emissions are sequestered in the
marine and terrestrial ecosystems (Le Quéré et al., 2014). In the latter, the
atmospheric CO; increase has led to greater gross primary productivity (GPP),
as a result of the fertilization effect on the plants’ photosynthetic machinery,
hence leading to higher C storage (Norby et al., 2005). However GPP and the
net biome productivity (NBP) display high interannual variability due to the
effect of climate variability on vegetation processes (e.g. plant production and
water use, growing season extension, fire, drought induced mortality) (Sitch et
al., 2015).

The interaction among climatic forcing, atmospheric CO, and terrestrial
C remains one of the main uncertainties in our understanding of the global C
cycle and in our ability to model it, particularly concerning future projections.
Different authors have documented contrasting qualitative and quantitative
results regarding the future evolution of the land C cycle. These range from a
strong future C sink due to a longer growing season in the Northern
Hemisphere and the CO;, fertilization effect, to C sources from drought-induced
tropical forest dieback and temperature-induced enhancements in mid-latitude
soil respiration (Friedlingstein et al., 2006; Cox et al., 2000; Friedlingstein et al.,
2013).
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These differences in the future of land C arise from two sources: the
strength of the carbon cycle feedbacks (driven by the sensitivity of land C to
atmospheric CO; increase and climate change) and the poor representation of
smaller-scale processes (e.g. disturbance) in the models (Ciais et al., 2013).
Thus, regional studies are growing in importance to close the gap in our
knowledge. These use finer resolution climate information and other data
sources from the field (e.g. site-level carbon stocks), from satellites, and
ecosystem-level information for particular regions. An example is the Regional
Carbon Cycle Assessment and Processes (RECCAP) initiative, which has
promoted studies on drivers of the land C cycle in different regions worldwide
(e.g. Dolman et al., 2012; Gloor et al., 2012; King et al., 2015; Piao et al., 2012;
Valentini et al., 2014), but further work is needed at finer scales (e.g. country
level) (Enting et al., 2012).

In this context, we centred our investigation on Mexico’s C cycle. Until
now, studies on the C stocks or fluxes at the country level have been estimated
from changes in vegetation C due to land use change (Masera et al. 1997;
Cairns et al. 2003) and less frequently soil C has been incorporated in the
calculations (de Jong et al. 2010). While these studies provide important
insights on the processes driving the C-cycle (e.g. LUC), they place Mexico as a
source of C (Pacala et al. 2007), which may be a biased conclusion derived
from estimating C fluxes from biomass change only (Table 1). This approach
results in that important ecological processes are not taken into account, such
as the effect of CO;, fertilization on GPP or the impacts of climate change. In
contrast, results from global models and atmospheric CO; inversions place the
country as a sink of C (Hayes et al., 2012; King et al., 2012), but they lack an
understanding of the driving mechanisms of change. Hence, a more
comprehensive understanding of the C balance in Mexico is needed, to aid in
policy formulation and to identify regions that may provide important ecosystem
services like C sequestration.
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Table 1: Different estimates for the land C-flux of the country. A negative sign
indicates a source to the atmosphere and a positive a sink.

Land C Flux estimates

Author(s) Years Method Estimate (total)
TgC yr”’

Changes in

Masera et al. 1997({1985-1987 vegetation cover -52.6
Changes in

Cairns et al. 2000 |1977-1992 vegetation cover* -18.6

De Jong et al.

2010 1993-2002 Inventory-based -18.4

Haynes et al. 2011{1993-2002 Inventory-based -18.4

Haynes et al. 2011|2000-2006 Forward models 29.0

Haynes et al.

2011 2000-2006 Inverse models 8.7
DGVMs 314
Atmospheric Inversions |21.4

This work 1990-2009  [LUC-only -19.5

This work 1901-2009  |DGVMs 12.1

*This estimate only accounts for part of the South of Mexico

In this study, we provide a country level perspective of the C cycle in

Mexico and use different products and complementary approaches to estimate

C stocks and fluxes over three different time frames: the present (2005-2009),

the last century (1901-2000) and the remainder of this century (2010-2100).

The country represents a unique opportunity to compare the different

approaches, due to the high variety of climates and vegetation (Challenger,

1998), which includes a wide range of land cover types (Figure 1). Thus, in

addition to the country level analysis, we can compare estimates and products

by land cover type. Additionally, the high environmental heterogeneity allows

that multiple processes that drive the C cycle globally can be found at a smaller

spatial scale (e.g. fire, drought, tropical deforestation); thus, providing insights

on the global drivers of the land C.
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Precipitation ~ Temperature
20

0.0

Land Cover Types

Figure 1. Observed Precipitation (mmyr™"), Temperature (°C), and Land
Cover Types for Mexico (mean of 2000-2005). Agric: Croplands, BroEv:
Broadleaf Evergreen Forest, BroDe: Broadleaf Deciduous Forest, NedEv:
Needleleaf Evergreen Forest, G/S: Grassland/Shrubland.

We address the following research questions for the different time
periods under consideration:

1. Present-day: What are the magnitudes of C stocks and fluxes at the
country level? How do they vary geographically and by land cover type?
How do the estimates with the different approaches compare?

2. Past: How have C stocks and fluxes changed over the last century? How
do these relate to changes in atmospheric CO., precipitation,
temperature and land use?

3. Future: How are C stocks and fluxes projected to change over the 21%
century under different climate-change scenarios?

2 Methods
2.1 Datasets

Climate: We used observed temperature and precipitation data from CRU
v3.1 (Harris et al., 2013). We expressed the change over time as the total for
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the last century. These data were also used to force the Dynamic Global
Vegetation Models (DGVMs) (Figure 1).

Land cover: we used the observed vegetation dataset by Ramankutty and
Foley (1999). This was derived from satellite data and contains 18 different
categories (Figure 1). Ten categories were present in Mexico (Sup. 1). In order
to simplify the analysis, we aggregated the vegetation into five broad
categories: broadleaf evergreen forest, broadleaf deciduous forest, needleleaf
evergreen forest, grassland/shrubland and croplands (Figure 1d).

DGVMs: We used vegetation C, soil C, heterotrophic respiration (Rh), GPP
and the net biome productivity (NBP) from an ensemble of 9 DGVMs (Sup. 2)
from the TRENDY v2 project (Le Quéré et al., 2014; Sitch et al., 2015). All
models were forced using the same input data and spin-up protocol. To
attribute the relevant driver (CO; fertilization, climate or LUC) of past change a
set of factorial experiments was conducted over the period 1901-2012 where
the effect of individual drivers and their combinations were analysed. The runs
were: S1- CO; effect only; S2-S1- climate effect only; S3-S2- the LULCC effect
only, and S3 the combined effect of all drivers and their interactions. A full
description of the experiment can be found in Sitch et al. 2015.

Earth System Models (ESMs): We used NBP, precipitation and
temperature for four IPCC Representative Concentration Pathways or RCPs
(2.6, 4.5, 6.0 and 8.5) based on an ensemble of 9 CMIP5 models common to all
RCPs (Sup. 2) (Taylor et al., 2011). A full description of the models can be
found in (Anav et al., 2013).

Model Tree Ensemble (MTE): This is a data-driven model of gross
primary productivity (GPP) based on flux tower observations, the satellite
fraction of the active photosynthetic active radiation (FAPAR) and climate fields.
It uses a Model Tree Ensemble (MTE) which is a machine learning system
based on the data structure (Jung et al., 2011, 2009).

Satellite: To estimate aboveground biomass we used annual passive
microwave satellite-based vegetation optical depth (VOD). VOD is an indicator
of vegetation water content of aboveground biomass and can be approximated
to mean biomass (Liu et al., 2011, 2013). We approximated the vegetation C
from VOD using a linear coefficient for each cover type, derived from the best fit
to the modeled aboveground biomass. To estimate GPP we used data derived
from MODIS v17 f. The MODIS GPP algorithm is described in Running et al.
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(2004). A simple light use efficiency model (MOD17) is at the core of the GPP
algorithm and it requires daily inputs of incoming photosynthetically active
radiation (PAR) and climatic variables.

Field data: To estimate vegetation C we used the data from the REDD-
Mexico initiative, which contains extensive field measurements from the
National Forestry Commission (Alianza MREDD+, 2013), for the year 2004
(Sup. 3). For soil C, we used the topsoil C concentrations (0-20 cm depth) from
4000 sampling sites (SEMARNAT, 2002) covering most of the country; soil
sampling was conducted between 2000 and 2006. An alternative source for soil
C was the harmonized soil database from FAO v1.2
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). We multiplied C concentrations by the
reference bulk density and the soil depth from the same database to estimate
soil C stocks.

Land Use Change (LUC): We used data for the agricultural fraction from
Hurtt et al. (2011). LUC emissions were obtained from the DGVMs.

Atmospheric inversions: for the analysis on the land C flux for the
present-day we used the mean annual CO; posterior flux from atmospheric CO»
inversion from 10 different products from Peylin et al. (2013) for the period
1990-2005. The uncertainty was calculated as the standard deviation across
products. Due to the broad scale of the product (5x5 degrees) we only
presented the national average and not the gridded means.

All datasets were re-gridded to a common 1°x1° grid.

2.2 Data Analysis

For the present-day analysis we first we computed the gridded mean
GPP (satellite, MTE and DGVMs), soil C (field data, DGVMS and FAQO) and
aboveground vegetation C (field data, satellite and DGVMS). Then, we
calculated those values for each land cover type and the total for the country for
the period 2000-2005 which was common to all datasets. We also computed
the mean NBP from all DGVMs, but for an extended time period (1990-2009),
as this flux is strongly affected by the interanual variability of the Earth system.
Our ‘best estimate’ for each C pool or flux was the mean across all products
(i.e. the contribution of each product was equally weighted). The error was
computed as the standard deviation for all years for all products pooled

together. We also computed a spatially weighted correlation across products.
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For the analysis on past changes, we calculated cumulative NBP from
the DGVMs ensemble for the period 1901-2000 (100 years) for the three
different runs. We then attributed to environmental drivers (change in NBP for
the run S1:CO3, S2-S1: climate and S3-S2: LULCC). We calculated the gridded
linear change for each run and each driving factor (i.e. change in stored C by
climate vs. precipitation and temperature trend). The mean residence time of C
in the soil (MRT) was calculated by dividing the linear change of soil C by
change in soil heterotrophic respiration (Rh).

For the analysis on future scenarios, we calculated the change in
cumulative NBP for each RCP from the ensemble of ESMs for the 21 century
(2010-2100). We did this by grid, by land cover type, and for the whole country.
For the gridded plots we stippled the areas where at least 66% (6) of the
models agreed on the sign of change in total stored C.

3 Results

3.1 Present

Total GPP for the country was 2137 + 1023 TgCyr ™ (Table 2). In terms of the
distribution by land cover type, the forest areas represented 56% of the total
GPP and the croplands and grasslands/shrublands most of the rest (44%). The
highest GPP per unit area occurred in the broadleaf evergreen forests (2.2 £ 0.2
kgC m?yr') and the lowest in the grasslands and shrublands (0.6 + 0.1 kgC m™
yr': Table 2).
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Table 2: Mean GPP, Total Area and Total GPP by Land Cover Type for the
period 2000-2005.

Gross Primary Productivity for Mexico (2000-2005)

Land Cover type Mean Area Total
kgC m?yr" | 1079 | TgC yr"
m2

Broadleaf evergreen forest 22+0.23 257 553 + 264
Broadleaf deciduous forest 1.2+0.16 438 519 + 356
Needleleaf evergreen forest 1.4 +0.31 92 134 £ 34
Grassland/Shrubland 0.6+0.12 747 420 £ 260
Croplands 1.2+£0.09 423 508 + 210
TOTAL 1957 2137 1023

In terms of the country’s geography, we found the highest GPP in the South
and Southeast with a steep decrease to the North; the lowest GPP occurred in
north-central region (Figure 2a). The three different products (i.e. satellite, flux
towers (MTE) and DVGMs) displayed similar GPP distributions (Figure 2b, c, d),
with DVGMs estimating higher values over the mountainous ranges in the East
and the West of the country and part of the central plateau. The spatial
correlations between products were very high: satellite-MTE=0.97, satellite-
DGVMs=0.92, and MTE-DGVMs=0.91 (see also Sup. 4).
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Figure 2: Mean GPP (gCm™yr™) for a) ensemble of the three products, b-d)
individual products (Satellite, MTE and DGVMs). All maps correspond to the
period 2000-2005.

Our estimate for the total C stock in Mexico was 34,506 + 7843 TgC
(Table 3), of which 20,347 + 4,622 TgC (59%) was stored in the vegetation and
14,159 £ 3,861 TgC (41%) was stored in the soil (Table 3).
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Table 3: Mean (kgC m™) and total (TgC) carbon stored in the vegetation and
soil in each land cover type for the period 2000-2005.

TOTAL STORED C | Vegetation C Soil C Total
Land Cover Type Mean Sum Mean Sum Mean Sum
kgCm? | TgC kgCm? | TgC kgCm | TgC
2
Broadleaf evergreen 3100 8984 +
forest 22.9+0.9/5884 +1220(12.1 £ 0.4 |1167 35.0 £ 1.3|2387
Broadleaf deciduous 5431 3880 + 9311
forest 12.4 £ 0.5|1319 89106 |1235 21.3 £ 1.1|12554
Needleleaf evergreen 1336 + 2721
forest 15.1 £ 0.9(1385 £ 575 |10.9+ 0.4 (586 26.0 + 1.3|1161
4482 + 3535 + 8017 +
Grassland/Shrubland(6.0 + 0.7 |1556 47+0.7 (1208 10.7 £ 1.4{2764
3158 + 2635 + 5793 +
Cropland 7.5£0.3 (1190 6.2+0.5 (790 13.7 £ 018|1980
20,347 14,159 + 34,506 +
TOTAL 4622 3861 7483

Similar to GPP, the forested areas accounted for 60% of the total stored

C, with 40% in grasslands/shrublands and croplands. The broadleaf evergreen

forest showed the highest C stock per unit area in the vegetation (22.9 kgC m™)

and soil (12.1 kgC m™), whereas the grassland/shrubland the smallest (6.0 and

4.7 kgC m?, respectively) (Table 3, Figure 3, Sup. 5).
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Figure 3: Total stored C in soil and vegetation (kgC m'2), ensemble from all
products (6) for the period 2000-2005.

Vegetation C estimates from the three products (DGVMs, satellite and
field data) were in broad agreement at the country level and by land-cover type
(Figure 4; Sup. 5). The largest differences among products were evident in the
grassland/shrubland, with both DGVMs and satellite-based estimates 15-24%
higher than those obtained from field measurements, which was evident in the
geographical distribution of C stocks (Figure 4a, b, c; Sup. 5). The spatial
correlations between products were lower than for GPP: field-DGVMs=0.79,
field-satellite=0.84, and DGVMs-satellite=0.74.

107



Vegetation Carbon (kg m2)

a) Field Data b) DGVMs F) Satellite
\\\\rf\ 2 R ~
. \\\\- \/ ] \".v‘ ) \ \
\ 3 W \ B
d 48 - 3
b \
‘{ 1\-\_>,_¢’ﬁ ‘\;'o “ i s - ) !
\‘\ oA \* 7 \ﬁ\l/v ‘ \M“!
Soil Carbon (kg m?)
d) Fleld data e) DGVMs f) FAO

Tz
;/-/:/ u
- ‘//1:
kal p-.
L
;/_/..'.
=
4—-—" 3
J
cnd
J
<K j <o
6
e
)

(A
0 '\l
- ' { 1\ ~
; \ .
/‘l |, \ B\ /‘l -(
S \Y \_

Figure 4: Top) Vegetation stored carbon for three products: field data, DGVMs
and satellite (kgCm™). Bottom) Soil stored carbon for three products: field data,
DGVMs and FAO estimates based on multiple datasets (kgC m™). Mean for the
time-period 2000-2005.

The differences among products were greater for soil C. The field data
estimates were on average 15% higher than with the other two products. In
particular, the DGVMs and the FAO database appeared to underestimate soil C
in the grasslands and shrublands in Northern Mexico, with a value 27% lower
than the field data (Figure 4d, e, f; Sup. 5). Nonetheless, there were similarities
in the geographical patterns across products, which depicted generally higher
soil C towards the South and lower towards the North, particularly in the central
region. The spatial correlations between products were generally lower than for
vegetation C stocks: field-DGVMs=0.68, field-FAO=0.69, and DGVMs-
FAO=0.92.

Our results showed that Mexico was a sink of C over recent decades
(1990-2009), gaining 31.4 + 18.6 TgC yr (Table 4).

Table 4: Land C-flux to the atmosphere (NBP) for the period 1990-2009 by land
cover type. For all cases a positive value indicates a sink and vice versa.
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Land-C Flux for Mexico (1990-2009)

Land Cover type Mean Total
gC m?2yr” TgC yr”

Broadleaf evergreen forest 100.8 20.6
Broadleaf deciduous forest -42 1 -8.9
Needleleaf evergreen forest 22.2 1.5
Grassland/Shrubland 55.2 21.3
Croplands -52.2 -3.1
TOTAL 31.4+18.6

However, the sink was not equally distributed across land covers, with the

broadleaf evergreen forest, the needleleaf evergreen forest and the grasslands

gaining C, but the broadleaf deciduous forest and the croplands losing C. In
terms of the geographical distribution of NBP, most of the country displayed
positive values, except in areas of the Northwest and the central East of the
country, which lost C (Figure 5). The atmospheric inversions also displayed a
positive value for the country with a value of 21.4 + 12.7 TgC yr" (Table 1).
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Figure 5: Land-C Flux (NBP) to the atmosphere for the period 1990-2009
(gCm2yr’"). A positive value indicates a sink of C and vice versa.

3.2 Past

The model results with the DGVMs showed that over the last century
Mexico has been a C sink, during which there was an overall gain of 1210
1040 TgC. Geographically, NBP was not homogeneously distributed. The South

and central regions of the country lost C, while brad regions towards the North
and the Yucatan Peninsula represented a C sink (Figure 6).
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Land C Flux (1901-2000)
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Figure 6: Total change in land C during 1901-2000 (kgCm™). A positive sign
indicates C gain. dC= total change in stored C (TgC).

Three drivers of these regional trends could be identified at this scale with the
processes included in the DGVMs: a) the rise in atmospheric CO,, b) long-term
climate variability and change, and c) land use change (LUC). a) The effect of
elevated CO; led to enhanced C storage across the whole of Mexico (3408
+1060 TgC), with the highest C gain occurring over the forested regions (Figure
7).
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Figure 7: Change in total stored C by the effect of CO2-only over the period
1901-2000 (kng'Z). A positive sign indicates C gain. dC= total change in
stored C (TgC).

b) Climate impacts were highly contrasting across the country. Thus,
when accounted nationwide, the positive and negative effects almost
counteracted each other, although the negative effect dominated the flux with
emissions of -458 + 1001 TgC. Climate led to a decrease in C storage over
most areas of the country, with the exception of the Northeast and the Yucatan
Peninsula (Figure 8a). Over the last 100 years, both precipitation and
temperature showed an increase in most of the country, except for decreases in
precipitation especially in the Baja California Peninsula in the the northwest
(Figure 8c). The loss of C over most of the country in spite of generally positive
climate trends was driven by a faster increase of heterotrophic respiration (Rh)
than GPP, thus leading to a decrease in the mean residence time of soil C

(Suppl. 8).
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Figure 8: top) Change in stored C by the effect of climate-only for the period
1901-2000 (kng'Z). A positive sign indicates C gain. dC= total change in
stored C (TgC). Bottom) change in climate (precipitation and temperature) for
the same time-period.

c) The negative effect of LUC on total stored C (-1740 £ 878 TgC)
occurred mostly over the South of the country and along the Gulf of Mexico and
Pacific coasts (Figure 9a). Carbon emissions from LUC were apparently related
to the distribution of changes in the agricultural fraction over the same time

period (Figure 9b).
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Figure 9: a) Change in stored C by the effect of LUC-only for the period 1901-
2000 (kgC m™). A positive sign indicates C gain. dC= total change in stored C
(TgC). b) Agricultural area change for the same time period.

Thus, when the three drivers were considered simultaneously, we found
that the fertilization effect of CO2 on GPP during those 100 years was greater
than the climate and LUC negative effects, resulting in a positive net C storage
at the scale of the country.

3.3 Future

In three out of four RCPs scenarios, the Earth System Models predicted
Mexico to remain a C sink up to 2100; only in the most extreme scenario
(RCP8.5), the country would become a C source. The total amount of stored C
decreased as the radiative forcing increased, from 3.0 PgC in RCP2.6, to 2.1
PgC in RCP4.5, to 1.5 PgC in RCP6.0 and -0.7 PgC in RCP8.5.

Geographically, Northern Mexico was generally a C source in all RCPs

and at least two thirds of the models agreed on this trend (Figure 10). As the
radiative force increased, most of the country turned into a C source and model
agreement also increased. However, there was a significant uncertainty in the
magnitude and even sign of the changes in other parts of the country,
especially over the Yucatan Peninsula (Figure 10).
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Figure 10: Gridded future change in total stored C for four RCPs for the period
2010-2100 (kgCm?). The stippling represents areas where >66% of the models
agree on the sign of the flux.

Under all RCPs, precipitation decreased (Sup 7) and temperature
increased over the 21% century in the whole country (Sup 6), with the larger
changes occurring with increasing radiative forcing. Under these scenarios, very
likely Mexico would face drier conditions, with the North of the country drying
faster than the South.

4 Discussion

4.1 Present

The GPP (2137 TgC yr'") estimated in our study for Mexico corresponds to 2%
of the global values (Ciais et al. 2013), similar to the fraction of the land area
the country represents. As far as we know, this is the first estimate of gross
primary productivity at the country level combining different products. Although
there are no site-level GPP data, there are a few site estimates of net primary
productivity (NPP) in Mexican ecosystems and we can compare them by
assuming NPP to be 0.5 of GPP (Farquar and Sharkey, 1982). Among those,
Martinez-Yrizar et al. (1996) estimated an aboveground NPP of 0.6-0.8 kgC m™
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yr in the tropical dry forest of Chamela, Mexico, similar to our findings of 0.6 +
0.2 kgC m?yr for broadleaf deciduous forests. Garcia-Moya and Montanés-
Castro (1992) estimated NPP in a semiarid grassland in central Mexico
between 0.3 and 0.6 kgC m2yr", similar to our finding of 0.3 + 0.2 kgCm?yr"
for grasslands/shrublands. Such overall agreement provides elements to
constrain C fluxes, although more field measurements are needed to provide
better comparisons at the country scale.

The total C stock (vegetation and soil) for the country of 34,506 + 7483
TgC, estimated with different products (field data, DGVMS and satellite), differs
from the 24000 TgC estimated by Masera et al. (2001) with a C accounting
model. More recent and comprehensive estimates put the total C stock for
Mexico at around 33000 TgC (Pacala et al., 2007), which is similar to our value.
Interestingly, the baseline estimate of 19,000 TgC for the total C stock in forests
by Masera et al. (2001) compares to our 20,347 TgC for forest vegetation. This
means that the highest source of discrepancy across estimates concerns soil C,
with our estimate of 14,159 TgC almost three times higher than Masera et al.
(2001) of 5,000 TgC.

Total aboveground biomass C for Mexico represents ~4% of the global
biomass stocks (Ciais et al., 2013). Our estimates for land cover types are
difficult to compare to field-based studies because of the coarse scale of
resolution used in our study, which provides large-scale averages and does not
capture the heterogeneity of land cover at the local scale. Also, difficulties arise
when comparing with other modelling approaches because of differences in
criteria to establish land cover classes and in the methods for calculation.
Nevertheless, it is interesting that our mean estimate of 22.9 + 0.9 kgC m?in
the broadleaf evergreen forest is similar to the mean value of 20.5 kgC m™ from
Masera et al. (2001) for the same land cover, with a different modelling
approach, and even to the 19.5 kgC m reported for the Los Tuxtlas region
from field measurements (Hughes et al., 1999). Also, our estimate for the
needleaf evergreen forest of 15.1 + 0.9 kgC m™ compares to the mean
temperate forest C stock of 12.6 kgCm™ of Masera et al. (2001). However, it is
important to note that field measurements by Jasso (2014) showed a range
from 2.1 to 20.8 kgC m™ for pine and fir dominated forests depending on
altitude, which indicates the high degree of variability for this land cover type.

Important discrepancies were found over the grasslands/shrublands for which
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we estimated a mean vegetation C of 6.1 + 0.7 kgC m™, while field studies (e.g.
Burquez et al., 2010; Navar et al., 2014) estimated 1.6-4.4 kgCm™ in the
deserts over the North of the country.

Total soil C storage in the country is ~0.6% of the global stock (Ciais et
al., 2013). This represents a smaller percentage than the other stocks and
fluxes, because the FAO and field data used in this study included only the top
20 cm of soil; thus, the size of the soil C stock is underestimated. Batjes (1996)
showed that, on average, topsoil (20 cm) represents a third of the global soil C
stock. A field study in the dry tropics of Mexico (Jaramillo et al., 2003) showed
that 37-59% of the soil C stock was in the top 20 cm of soil in land covers which
comprised dry and floodplain forest and pasture. In the tropical evergreen forest
of Los Tuxtlas (Hughes et al., 2000), soil C in the top 30 cm of soil represented
46% of the soil C stock to a 1 m depth. Thus, the amount of C stored in soil at
the country scale is likely to be at least twice as high as estimated here and
further work is needed to better constrain this calculation.

If we compare the estimates among products and consider the high
correlations, it seems that the C stocks in the vegetation and the GPP fluxes
are remarkably well constrained and compare favourably against field data and
findings by other authors (Pacala et al. 2007). However, model development
and improvement, particularly over non-forested areas, is needed, where the
DGVM estimates showed the highest differences compared to field values.

Our results also showed that Mexico was a C sink over recent decades
(1990-2009), gaining 31.4 + 18.6 TgC yr". This is similar to recent calculations
by Hayes et al. (2013) using inverse (+8.7 TgC yr"') and forward models (29.0
TgC yr') and to the result from atmospheric CO; inversions (21.4 TgC yr™).
However, it is in disagreement with all inventory based calculations (Masera et
al., 1997; Cairns et al., 2000; de Jong et al., 2010) that place Mexico as source
of C (Table 1). The discrepancy may arise because the latter estimates are only
based on changes in vegetation stocks, which does not take into account
important ecosystem processes such as the effect of CO; fertilization and the
impacts of climate change. In other words, those estimates are closer to the
LUC C-flux than to NBP (see Table 1). Based on our estimates and the recent
literature, we argue that it is likely that Mexico is currently a sink and not a

source of C, if we disregard emissions from fossil fuels.
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4.2 Past

Similar to the present-day, our results indicated that the terrestrial ecosystems
in the country were a C-sink over the last 100 years, gaining 1,210 £ 1040 TgC
in total. Such increment was driven by the CO; fertilization effect on vegetation
(3408 + 1060 TgCyr™), which enhanced GPP and subsequently biomass and
possibly soil C to different degrees. Both the climate (-458 + 1001 TgCyr™') and
the land use (-1740 + 878 TgCyr") drivers showed a generalized negative effect
on C storage. Our estimates are highly consistent with those derived from
global models for Latin America, which show these land ecosystems as C sinks
(Pan et al. 2011). However, during the period 1901-2000 the country’s
emissions from fossil fuels amounted to about 10,600 TgC (Le Quéré et al.,
2014). This suggests that only 11% of the emissions from fossil fuels were
actually captured back into the land and emphasizes the need for more efficient
fossil-fuel and LUC policies.

The lost of C over the NE of Mexico is likely driven by climate. A long-
term drought identified over the NE of Mexico and Southeast USA (Cayan et
al., 2010), has led to a reduction in grassland productivity (Grover and Musick,
1990) and the subsequent loss of stored C due to increased dry season
intensity and length (Murray-Tortarolo et al., Submitted). However, the overall
negative effect of climate on C storage in other regions is likely linked to its
impact on C mean residence time (MRT; Sup. 8). The increase in temperature
leads to a higher respiration rate and soil C loss. As the MRT decreases, it
results in certain regions becoming a C source to the atmosphere. This source,
nevertheless, is apparently overridden by the impact of higher precipitation on
plant productivity in many regions of Mexico. In this sense, MRT is one of the
main sources of uncertainty for the future of global soil C (Carvalhais et al.,
2014; Friend et al., 2014) and a more comprehensive analysis over the country,
based on observed data, is lacking.

Other regions which experienced C loss are linked to the impact of LUC.
LUC accounted for a loss of 1740 TgC over this period, with most of the
emissions (60%) occurring in forested regions and 32% in the broadleaf forests
over the South. Interestingly, about a third of the emissions (34%) were
accounted for in croplands. Country-level estimates by Masera et al. (1997)
calculated the flux at 61 TgC yr” based on changes only in vegetation stocks

for their baseline year in the 1980s. More comprehensive analyses including C
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emissions from the soil C, estimated net emissions from LUC in forests of
Mexico for the period 1993-2002 at 23.7 TgC yr ' (de Jong et al., 2010; Hayes
et al. 2012). Despite the different methodologies, all approaches establish that
the highest LUC emissions fluxes have occurred mostly over the South of
Mexico.

When the effects of all drivers were considered, the models showed that
changes in climatic variables had a smaller impact on stored C than LUC during
the period 1901-2009. This was due to the fact that the impacts of LUC were
consistently negative on all land cover types, whereas climatic variables
showed a heterogeneous effect (i.e., positive and negative) on the land cover
types, which are differentially distributed over the country. Notably, climate
trends alone have promoted C capture in broadleaf forests during the past 100
years, but this was overridden by LUC. However, there is no evidence from field
measurements to support or disprove this claim. While there are studies on the
consequences of LUC on C pools at the site and regional levels (Hughes et al.
2000; Jaramillo et al. 2003; de Jong et al. 2010), there is very little work on the
effect of climate change on NBP over Mexico (e.g. Dai et al., 2014), making this
a fundamental missing piece in our understanding of C cycle at local to regional
scales. This is particularly important because the DGVMs used here are poorly
constrained for their drought response (Morales et al., 2007; Sitch et al., 2003),
a key process for the C balance over the arid regions of Mexico
(grasslands/shrublands), which cover about 40% of the land area.

4.2 Future

In three out of four scenarios, Mexico represents a potential C sink in the
remaining of this century. It is only in the scenario with the highest temperature
and lowest precipitation (RCP8.5) that the country actually turns into a C
source. While the CO fertilization dominates the magnitude of the sink across
all RCPs, the effect of climate becomes more negative and predominant as the
RCP becomes more extreme (Table 5). Similar modelling results have been
found at the global scale, with an increasing climate-carbon feedback as the
future scenario becomes more extreme (Cox et al., 2000; Friedlingstein et al.,
2006).
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Table 5: Sensitivity of carbon to climate in four RCPs for the whole country. dC:
change in total stored C, dT change in temperature, y: Change in the Land-C
flux relative to the change in temperature, yo land carbon sensitivity to climate
in the past. A negative y-yo implicates a less positive or negative effect of
climate in the land-C-flux in the future compared to the present.

Period/RCP dC dT Y yo-y
PgC °K PgC/°K PgC/°K
1901-2000 1.2 0.88 1.36*
RCP2.6 3.0 24 1.25 -0.11
RCP4.5 2.1 3.6 0.58 -0.78
RCP6.0 1.5 4.5 0.33 -1.03
RCP8.5 -0.7 6.1 -0.21 -1.57

Important considerations should be taken into account. The CO»
fertilization effect is likely limited not only by climate, but also by the effect of
limiting nutrients on C uptake —a process that is not considered in many Earth-
System-Models (ESMs) (Reich et al., 2014, 2006) or by more severe fires as a
result of more intense and recurrent ENSO (Yocom et al., 2010). Additionally,
as shown by the past trends, a decrease in the MRT of soil C can change an
ecosystem from a C-sink into a source. There is a lack of field information to
estimate MRT and its response to temperature and soil moisture to fully
understand the implications for the future of stored C, especially in tropical and
sub-tropical ecosystems.

5 Final considerations

We quantify different aspects of the C cycle for Mexico (GPP and the total land
C flux, as well as vegetation and soil C stocks) using different products over
three time periods. As far as we know, this is the first time these pools and
fluxes have been quantified for the whole country with a process-based
approach. It takes into account different drivers (e.g. COg, climate and LUC)

and provides a more realistic estimate of the C cycle for the country.
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Additionally, we quantify fluxes (e.g. GPP and NBP), not previously estimated at
the country scale.

Contrary to other inventory-based estimates (de Jong et al. 2010;
Pacala et al. 2007; Hayes et al. 2012), our analysis shows that over the last 100
years and recent decades the country was a C sink. Our results suggest this is
mainly due to the positive effect of CO; fertilization and to precipitation and
temperature changes in some regions. This pattern is likely to persist, although
with a diminishing trend, over the remaining part of the century. Such a sink
however only accounts for 11% of C emissions from fossil fuels during the
period, which clearly points towards the need of more fuel-efficient policies and
emissions controls.

Our work also identifies the need to study the role of drought in marginal

lands (e.g. grasslands and shrublands) and to determine soil carbon

MRT in tropical ecosystems. Finally, as we used data coming from global

sources (e.g. DGVMs, ESMs, satellite), the methodology proposed here

can be used to analyse the full-C cycle of regions elsewhere.
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PART 2: PROCESS ANALYSIS

Chapter 4. Recent Trends in the Land Carbon Cycle

Chapter 3. Changes in dry season intensity is a key driver of regional NPP
trends
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The third part of the thesis is guided by the analysis of processes that drive
global NBP and NPP. As shown in chapter 1 (introduction), several different
drivers can alter the rate at which C is exchange between the biosphere and the
atmosphere. They have been studied at great detail at multiple scales, however
large uncertainty remains on the relative contribution of each driver to the total
change in NBP at regional scales. Moreover some of the relationships (i.e.
precipitation and NPP) are non linear and a more in depth study is needed to
fully understand how they interact and the implications this can have for the
future.

Two chapters comprise the second part. Chapter 4 focuses on the
regional trends in NBP driven by changes atmospheric CO; and climate acting
concurrently. We found that the land has been a C sink over the last 20 years
(1990-2009) with increasing NBP trends as NPP grew faster than RH. However
the trends were not distributed homogeneously across the land and several
regions show a decline in NBP driven by declining precipitation. This was the
end of this study, but a more in-depth relationship between drought and
negative NBP trends was missing.

Chapter 5 fills this gap, analysing the relationship between vegetation
productivity and changes in the dry season intensity and length. We found that
small changes in the water fluxes during the dry season have a large effect on
annual NPP and biomass and act as a key driver of regional differences in
productivity. Moreover, increasing dryness over arid ecosystems reduced NPP
globally; an effect that we predicted will continue into the future and could
reduce global NPP by up to 10%.
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Chapter 4: Recent Trends in the Land Carbon Cycle

4.1 Summary

4.1.1 introduction

Land ecosystems are responsible for the uptake of 28% of the anthropogenic
COz emissions (Le Quéré et al. 2013). Models suggest this is driven primarily
driven by the COx; fertilization effect on photosynthesis and subsequent
increment in total stored C on land (McGuire et al., 2001). However this effect is
not distributed homogeneously across the planet (Pan et al. 2011).

Additionally, effect of climate on the land C varies across the planet,
leading to regional differences in the magnitude and direction of the land-C flux
(Sarmiento et al. 2010). This is particularly important as extreme climate events
occurred during the 1990-2009 period across many regions of the world,
including North America (south-western USA, 2000-2002), Europe (2003),
Amazonia (2005), and eastern Australia (2001-2008), raising considerable
attention in the ecological community regarding the consequences of recent
climate variability on ecosystem structure and function (Allen et al., 2010) and
the carbon cycle (Ciais et al., 2005; Van der Molen et al., 2011; Reichstein et
al., 2013).

While there is growing literature on regional carbon budgets (e.g.
RECCAP: Valentini et al. 2014; McGuire et al, 2012; Luyssaert et al. 2012; Piao
et al. 2009), no consistent attribution (i.e. over the same time period, using the
same models and the same forcing datasets) has been conducted.

The objective of this chapter is to calculate the recent changes in the
land C uptake (1990-2009), to attribute these trends to the underlying
processes, and to go beyond the global scale and analyse regional changes in
the carbon cycle and their environmental drivers. This chapter is the result of
my collaboration in the paper:

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-
Tortarolo, G., Ahlstrom, A., Doney, S. C., Graven, H., Heinze, C.,
Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B.,
Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L.,
Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M.,
Peylin, P., Piao, S., Le Quéré, C., Smith,B., Zhu, Z., and
Myneni, R. 2015. Trends and drivers of regional sources and
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sinks of carbon dioxide over the past two decades,
Biogeosciences. doi:10.5194/bg-12-653-2015

4.1.2 Methodology

We used the output from 9 DGVMs forced with the same climatic data and
similar spin-up protocol, for the period 1990-2009. Two simulations were
conducted: S1=CO, only and S2= CO; + Climate for the full century. All
modelled output was regridded to a similar grid and weighted by the land/sea

fraction.

4.1.3 Summary of results

Globally land ecosystems were a sink of C of 2.4 + 0.7 PgCyr™ with an
increasing trend of 0.055 + 0.030 PgCyr? as a result of NPP increasing faster
then Rh. However important regional differences occurred, driven mainly by
climate variability and change.

Over the Northern Hemisphere (NH), in response to warming, models
simulate an earlier onset (ensemble mean model trend = -0.078 + 0.131 days
yr‘1) and delayed termination of the growing season (0.217 + 0.097 days yr'1)
based on LAI, and thus a trend towards a longer growing season in the northern
extratropics (0.295 + 0.228 days yr‘1). This, in addition to the CO;, fertilization
effect, led to an increase in NPP of 0.63 + 0.02 PgC yr?. However at the same
time, the warming in boreal regions led to increased microbial decomposition,
reducing the mean residence time of carbon in soils. Additionally, widespread
drought over the Mongolian Plateau and southern USA led to a decreasing
NBP. So while the NH remained a sink of C (with a magnitude of.3 £ 0.3 PgC yr
%) because of increased CO, the long-term trend was close to zero as the
change in RH balanced the increase in NPP.

Over the tropics NBP increased steadily due to COz fertilization in all
DGVMs, with a magnitude of 0.96 + 0.43 PgC yr" and an increasing trend of
0.04 £0.01 PgC yr'2. However important regional differences occur, with
decreasing NBP trends over the Amazon basin, Northern Africa and Australia,
clearly linked to decreased precipitation. Rh trend was also positive and slightly
smaller than NPP, possibly also stimulated by the increase of CO; via increases

in litter input into soils.
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The regional findings can be summarized briefly as (1) the land CO; sink
has increased over the study period, almost entirely through increases in
tropical and southern regions with negligible increase in northern regions; (2)
globally and in most regions, the land sinks are not increasing as fast as the
growth rate of excess atmospheric CO2 above preindustrial and (3)
precipitation, particularly when decreasing, plays a fundamental role in

determining regional decreases in NBP.

4.1.4 My contribution to the paper

This chapter is the result of my collaboration on the paper of Sitch et al. (2015)
and my involvement in the TRENDY modelling group activities
(http://dgvm.ceh.ac.uk/node/9). | led the DGVM comparison against remote

sensing data, and was responsible for analysing part the post-processed data
(i.e. | provided some calculations for the tables and main text), and produced
the main figures for the paper. | was actively involved in all the scientific
discussions and contributed to the analyses and interpretation of results.

| include this study in my thesis because 1) | did most of this during my
first year of PhD studies. It was an opportune way to develop coding, analysis
skills, and better familiarize myself with dynamic global vegetation models
(DGVMs) and global modelling studies in general. | gained valuable skills
comparing different models, manipulating large databases, analysing different
spatial and temporal scales and plotting advanced figures, which | applied in all
other chapters, and 2) it was the background for the rest of my thesis, as |
derived the rest of the analysis from this study.
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Abstract. The land and ocean absorb on average just over
half of the anthropogenic emissions of carbon dioxide (CO2)
every year. These CO; “sinks” are modulated by climate
change and variability. Here we use a suite of nine dynamic
global vegetation models (DGVMs) and four ocean biogeo-
chemical general circulation models (OBGCMs) to estimate
trends driven by global and regional climate and atmospheric
CO; in land and oceanic CO; exchanges with the atmo-
sphere over the period 1990-2009, to attribute these trends
to underlying processes in the models, and to quantify the
uncertainty and level of inter-model agreement. The mod-
els were forced with reconstructed climate fields and ob-
served global atmospheric CO,; land use and land cover
changes are not included for the DGVMs. Over the pe-
riod 1990-2009, the DGVMs simulate a mean global land
carbon sink of —2.440.7PgCyr~!' with a small signifi-
cant trend of —0.06 4 0.03 Pg C yr~? (increasing sink). Over
the more limited period 1990-2004, the ocean models sim-
ulate a mean ocean sink of —2.24+02PgCyr~! with a
trend in the net C uptake that is indistinguishable from zero
(=0.01+0.02Pg Cyr~2). The two ocean models that ex-
tended the simulations until 2009 suggest a slightly stronger,
but still small, trend of —0.02 +0.01 Pg C yr~2. Trends from
land and ocean models compare favourably to the land green-
ness trends from remote sensing, atmospheric inversion re-
sults, and the residual land sink required to close the global
carbon budget. Trends in the land sink are driven by increas-
ing net primary production (NPP), whose statistically sig-
nificant trend of 0.22 +£0.08 PgC yr'2 exceeds a significant
trend in heterotrophic respiration of 0.16 +0.05PgC T
primarily as a consequence of widespread CO, fertilisation
of plant production. Most of the land-based trend in simu-
lated net carbon uptake originates from natural ecosystems
in the tropics (—0.04 £0.01 PgC yr~2), with almost no trend
over the northern land region, where recent warming and
reduced rainfall offsets the positive impact of elevated at-
mospheric CO, and changes in growing season length on
carbon storage. The small uptake trend in the ocean mod-
els emerges because climate variability and change, and in
particular increasing sea surface temperatures, tend to coun-
teract the trend in ocean uptake driven by the increase in at-
mospheric CO,. Large uncertainty remains in the magnitude
and sign of modelled carbon trends in several regions, as well
as regarding the influence of land use and land cover changes
on regional trends.

1 Introduction

Soon after the first high-precision measurements of atmo-
spheric CO; started in the late 1950s, it became clear that
the global-mean CO; growth rate is substantially lower than
expected if all anthropogenic CO, emissions remained in the
atmosphere (e.g. Keeling et al., 1976). The search for this
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“missing” carbon and the identification of the processes driv-
ing carbon sinks has been one of the dominating questions
for carbon cycle research in the past decades (e.g. Tans et al.,
1990; Sarmiento and Gruber, 2002; and others). While much
progress has been achieved (e.g. Prentice et al., 2001; Sabine
et al., 2004; Denman et al., 2007; Le Quéré et al., 2009),
and estimates have converged considerably (Sweeney et al.,
2007; Khatiwala et al., 2013; Wanninkhof et al., 2013), the
spatial attribution of recent sink rates for the ocean and land,
and particularly their changes through time, remain uncer-
tain. To balance the global carbon budget, the combined sinks
by land and ocean must have increased over recent decades
(Keeling et al., 1995; Canadell et al., 2007; Raupach et al.,
2008; Sarmiento et al., 2010; Gloor et al., 2010; Ballantyne
et al., 2012). Sarmiento et al. (2010) showed that some of
the increasing sinks are driven by the ocean, but also iden-
tified an even more substantial increase in the net uptake by
the land biosphere between the 1980s and the 1990s. This in-
crease in the global land and ocean sink has been sustained
to date (Ballantyne et al., 2012).

There are several studies on the trends in carbon exchanges
at the regional level based on atmospheric CO; observations
(top-down approach) (Angert et al., 2005; Buermann et al.,
2007; Chevallier et al., 2010; Sarmiento et al., 2010) and
changes in high-latitude greenness on land (Nemani et al.,
2003; Myneni et al., 1997) and changes in sea surface tem-
perature in the ocean (Park et al., 2010). Atmospheric CO>-
based top-down approaches provide large-scale constraints
on the land and ocean surface processes, but they cannot
unambiguously identify the underlying processes or the re-
gions driving these changes. Bottom-up studies using dy-
namic global vegetation models (DGVMs) or ocean biogeo-
chemical general circulation models (OBGCMs) mechanis-
tically represent many of the key land (Prentice et al., 2007)
and ocean processes (Le Quéré et al., 2005), and offer the
opportunity to investigate how changes in the structure and
functioning of land ecosystems and the ocean in response
to changing environmental conditions affect biogeochemi-
cal cycles. Therefore DGVMs and OBGCMs potentially al-
low for a more comprehensive analysis of surface carbon
trends and provide insight into possible mechanisms behind
regional trends in the carbon cycle.

There is a growing literature on regional carbon budgets
for different parts of the world (Ciais et al., 1995; Phillips
et al., 1998:; Fan et al., 1998; Pacala et al., 2001; Janssens
et al., 2003; Stephens et al., 2007; Piao et al., 2009; Lewis
et al., 2009a; Ciais et al., 2010; Pan et al., 2011; Tjipu-
tra et al., 2010; Roy et al., 2011; Schuster et al., 2013;
Lenton et al., 2013), using bottom-up (inventory, carbon
cycle models) and top-down methodologies, although they
typically cover different time intervals. To date, no glob-
ally consistent attribution has been attempted for regional
sources and sinks of atmospheric CO;. This paper attempts
to fill this gap by combining top-down and bottom-up ap-
proaches discussed in the regional syntheses of the REgional
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Carbon Cycle Assessment and Processes project (RECCAP;
Canadell et al., 2013) and by using factorial simulations to
elucidate the processes that drive trends in the sources and
sinks of atmospheric CO,.

This study has two major aims. The first of these is to es-
timate the regional trends in the carbon exchange over the
period 1990-2009, associated with changes in climate and at-
mospheric CO, concentration, for three land regions (north-
ern land, tropical land, and southern land) and seven ocean
regions (North Pacific, equatorial Pacific, South Pacific,
North Atlantic, equatorial/South Atlantic, Indian Ocean, and
Southern Ocean) (Fig. 1). The second aim is to determine
which factors and processes among those included in the
models are driving the modelled/observed trends in the re-
gional land/ocean to atmosphere net CO» fluxes. For the land
models, those factors and processes included are the CO; fer-
tilisation effect on productivity and storage, as well as cli-
mate effects on productivity, respiration, and climate-caused
natural disturbances (see Table S1 in the Supplement for de-
tails represented in individual models). A particular focus
is on the impacts of climate variation and change on land
ecosystems at the regional scale, as extreme climate events
occurred during the period of 1990-2009 across many re-
gions of the world, including North America (southwestern
USA, 2000-2002), Europe (2003), Amazonia (2005), and
eastern Australia (2001-2008), raising considerable attention
in the ecological community regarding the consequences of
recent climate variability on ecosystem structure and func-
tion (Allen et al., 2010) and the carbon cycle (Ciais et al.,
2005; Van der Molen et al., 2011; Reichstein et al., 2013).

This study addresses the changes in the magnitude of the
global carbon sink but does not discuss the efficiency of the
sinks, which is widely discussed elsewhere (Raupach et al.,
2014; Gloor et al., 2010; Ciais et al., 2013). These DGVMs
have been extensively evaluated against observation-based
gross primary production (GPP), land to atmosphere net CO2
flux, and CO» sensitivity of net primary production (NPP)
compared to results from free-air CO, enrichment (FACE)
experiments (Piao et al., 2013).

Consideration of land use and land cover change (LULCC)
on regional trends is beyond the scope of the present
study, and therefore models assume a fixed present-day
land use throughout the simulation period. Thus our re-
sults presented should be interpreted with this caveat in
mind. There are large uncertainties in the global LULCC
flux and its change through time, with an estimated decrease
from 1.6 4+0.5PgCyr~! (1990-1999) to 1.0+ 0.5Pg C yr~!
(2000-2009) (LeQuéré et al., 2013). In addition, the net land
use (LU) flux for the period 1990-2009 will be influenced by
carlier LULCC (i.e. legacy fluxes), confounding the analysis.
The response of the large fluxes associated with net primary
productivity and heterotrophic respiration to climate variabil-
ity and CO; are the focus of this study. Other companion pa-
pers investigate ecosystem response to interannual and sea-
sonal timescales (Piao et al., 2013), and the carbon balance
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Figure 1. Land and ocean regions. The three land regions: north-
ern land, tropical land, and southern land. Northern land com-
prises boreal North America (navy blue), Europe (light blue), bo-
real Asia (blue), temperate North America (pale red), and tem-
perate Asia (red). Tropical land comprises tropical South Ameri-
can forests (sea green), northern Africa (sand), equatorial Africa
(green), and tropical Asia (dark green). Southern land comprises
South American savanna (pale green), temperate South America
(violet), southern Africa (orange), and Australia and New Zealand
(yellow). Ocean regions comprise North Pacific (dark red), equa-
torial Pacific (orange-red), South Pacific (orange), North Atlantic
(orchid), equatorial/South Atlantic (slate blue), Indian Ocean (this-
tle), Southern Ocean (sky blue), and Arctic Ocean and Antarctica
(white).

for individual land and ocean regions over the period 1990—
2009 (see RECCAP special issue; Canadell et al., 2013,
http://www.biogeosciences.net/special_issue107.html).

Trends and variability in the air-sea CO> fluxes simulated
by the employed OBGCMs are driven by the increase in at-
mospheric CO; and by variability and change in ocean tem-
perature, circulation, winds, and biology largely governed
by climate variability. The air-sea CO> flux arising from
the increase in atmospheric CO; is often referred to as the
flux of anthropogenic CO,, while the remainder, induced
by changes in the natural cycling of carbon in the ocean—
atmosphere system, is called the “natural” CO, component
(e.g. Gruber et al., 2009). Although this conceptual separa-
tion has its limits (McNeill and Matear, 2013), it provides
for a powerful way to understand how different forcings af-
fect the net ocean sink.

DGVM results are compared with estimates of the resid-
ual land sink (RLS) and remote sensing products indicat-
ing trends of greening and browning in the northern region.
Regional sources and sink trends are attributed to processes
based on factorial simulations.

2 Methods
2.1 Dynamic global vegetation models

Following the studies of Le Quéré et al. (2009) and Sitch et
al. (2008), a consortium of DGVM groups set up a project

Biogeosciences, 12, 653-679, 2015
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to investigate further the spatial trends in land—atmosphere
flux and agreed to perform a factorial set of DGVM simu-
lations over the historical period, 1901-2009. These simula-
tions have contributed to the RECCAP activity (Canadell et
al.,2011,2013). There are now a variety of DGVMs with ori-
gins in different research communities that typically contain
alternative parameterisations and a diverse inclusion of pro-
cesses (Prentice et al., 2007; Piao et al., 2013). DGVMs have
emerged from the land surface modelling (LSM), forest ecol-
ogy, global biogeography, and global biogeochemical mod-
elling communities. Representative of these research strands
are the following nine DGVMs, which are applied here: Hy-
land (Levy et al., 2004), JULES (Cox, 2001; Clark et al.,
2011), LPJ (Sitch et al., 2003), LPJ-GUESS (Smith et al.,
2001), NCAR-CLM4 (Thornton et al., 2007, 2009; Bonan
and Levis, 2010; Lawrence et al., 2011), ORCHIDEE (Krin-
ner et al., 2005), OCN (Zaehle and Friend, 2010), SDGVM
(Woodward et al., 1995; Woodward and Lomas, 2004), and
VEGAS (Zeng, 2003; Zeng et al., 2005). In this study we fo-
cus on two aspects of land surface modelling: the carbon and
the hydrological cycles. In the case of land surface models
coupled to GCMs, energy exchange between the land surface
and atmosphere is also simulated.

2.2 Ocean biogeochemical general circulation models

A total of four different groups have conducted the fac-
torial simulations over the analysis period with three-
dimensional OBGCMs and submitted their results to the
RECCAP archive. These are MICOM-HAMOCCv1 (BER)
(Assmann et al., 2010), CCSM-WHOI using CCSM3.1
(BEC) (Doney et al.,2009a,b), CCSM-ETH using CCSM3.0
(ETH) (Graven et al., 2012), and NEMO-PlankTOMS (UEA)
(Buitenhuis et al., 2010). Details of the models are given
in the respective publications cited and in Table 2. Not all
model simulations are independent of each other, as sev-
eral of them share components. BEC and ETH employ the
same OBGCM, but differ in their spin-up and surface forc-
ing. The employed models have relatively similar horizontal
resolution of the order of 1 to 3° in longitude and latitude,
i.e. none of them is eddy-permitting or eddy-resolving. The
four ecosystem/biogeochemical models are also of compara-
ble complexity, i.e. including explicit descriptions of at least
one phytoplankton and zooplankton group, with some mod-
els considering up to three explicitly modelled groups for
phytoplankton and two for zooplankton. All models use the
same gas exchange parameterisation of Wanninkhof (1992),
although with different parameters. In particular, the ETH
model used a lower value for the gas exchange coefficient
than originally used in the CCSM standard configuration,
yielding a global-mean gas transfer velocity that is more than
25 % lower than those of the other models (Graven et al.,
2012). This reduction reflects the mounting evidence based
on radiocarbon analyses that the original global-mean gas
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transfer velocity of Broecker et al. (1985) was too high (Pea-
cock, 2004; Sweeney et al., 2007; Miiller et al., 2008).

2.3 Datasets
23.1 Land

Climate forcing is based on a merged product of Cli-
mate Research Unit (CRU) observed monthly 0.5° clima-
tology (v3.0, 1901-2009; New et al., 2000) and the high-
temporal-resolution NCEP reanalysis. The merged product
has a 0.5° spatial and 6h temporal resolution. A coarse-
resolution 3.75° x 2.5° version at monthly timescales was
also produced (see Table 1 for spatial resolution of individ-
ual DGVMs). Global atmospheric CO, was derived from ice
core and NOAA monitoring station data, and provided at
annual resolution over the period 1860-2009. As land use
and land cover change was not simulated in these model
experiments, models assume a constant land use (invariant
agricultural coverage) throughout the simulation period. At-
mospheric nitrogen deposition data for CLM4CN and OCN
were sourced from Jean-Francois Lamarque (personal com-
munication, 2012) and Dentener et al. (2006), respectively.

Gridded fields of leaf area index (LAI) are used in the eval-
uation of DGVM northern greening trends. These LAI data
sets were based on remote sensing data and were generated
from the AVHRR GIMMS NDVI3g product using an artifi-
cial neural network (ANN)-derived model (Zhu et al., 2013).
The data set has a temporal resolution of 15 days over the
period 19812011, and a spatial resolution of 1/12°.

23.2 Ocean

Unlike how the land models simulations were set up,no com-
mon climatic forcing data set was used for the ocean model
simulations. In fact, some models provided several simula-
tion results obtained with different climatic forcings. Models
were forced by the NCEP climatic data (Kalnay et al., 1996)
in their original form, or in the modified CORE (Common
Ocean-ice Reference Experiments — Corrected Normal Year
Forcing (CORE-CNYF; Large and Yeager, 2004)) form (Ta-
ble 2).

2.3.3 Atmospheric inversion

Simulated trends in land to atmospheric net CO, flux are
compared with those from version 11.2 of the CO; inver-
sion product from the Monitoring Atmospheric Composi-
tion and Climate — Interim Implementation (MACC-II) ser-
vice (http://copernicus-atmosphere.eu/). The horizontal res-
olution of the inversion is 3.75 x 2.5 square degrees (longi-
tude x latitude), and weekly temporal resolution, with night-
time and daytime separated. The accuracy varies with the pe-
riod and the location over the globe, depending on the den-
sity and the information content of the assimilated data, and
usually decreases with increasing the resolution. Uncertainty
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Figure 2. Global trends in environmental driving variables: (a) land
temperature, (b) land precipitation, (¢) ocean temperature, (d) wind
speed, (e) N deposition, and (f) atmospheric [CO;].

numbers at various scales can be found in Table 2 of Peylin
et al. (2013). The inversion covers years 1979-2011, and
a previous release has been documented by Chevallier et
al. (2010). It uses a climatological prior without interannual
variability, except for fossil fuel CO; emissions.

2.4 Experimental design
24.1 Land

Model spin-up consisted of recycling climate mean and
variability from the early decades of the 20th century
(1901-1920) with 1860 atmospheric CO> concentration of
287.14 ppm until carbon pools and fluxes were in steady state
(zero mean annual land to atmospheric net CO» flux). The
land models were then forced over the 1861-1900 transient
simulation using varying CO> and continued recycling of cli-
mate as in the spin-up. The land models were then forced
over the 1901-2009 period with changing CO,, climate, and
fixed present-day land use according to the following simu-
lations:

— S_L1: changing CO; only (i.e. time-invariant present-
day land use mask, fixed pre-industrial climate);

— S_L2: changing CO, and climate (i.e. time-invariant
present-day land use mask).

For DGVMs including the N cycle, N deposition was a
time-variant forcing in both simulations, such that the differ-
ence between S_L2 and S_L1 includes the synergistic effects
of N deposition on CO; fertilisation (Zachle et al., 2010).

www.biogeosciences.net/12/653/2015/

657

Figure 2 shows the historical changes in climate, atmo-
spheric CO; concentration, and nitrogen deposition over the
period 1990-2009 used to force the DGVMs. A summary of
DGVM characteristics is given in Table 1. A more detailed
description of DGVM process representations is given in Ta-
ble S1.

24.2 Ocean

The ocean models employed two different approaches for
creating the initial conditions for the experiments. The first
approach, followed by CCSM-ETH, CCSM-WHOI, and
BER, involved first a multiple-century-long spin-up with cli-
matological forcing and with atmospheric CO, held constant
at its pre-industrial value, bringing these models very close
to a climatological steady state for pre-industrial conditions
(in some models ~ 1750; in others ~ 1850). In the second
step, the models were then integrated forward in time through
the historical period until 1948, with atmospheric CO, pre-
scribed to follow the observed trend and a climatological
forcing. The length of the spin-up varies from a few hun-
dred years to several thousand years, resulting in differing
global integrated drift fluxes, although their magnitudes are
substantially smaller than 0.05Pg C yr~! with essentially no
rate of change. The second approach, followed by NEMO-
PlankTOMS (UEA), was to initialise the model with recon-
structed initial conditions in 1920, and then also run it for-
ward in time until 1948 with prescribed atmospheric CO;,
repeating the daily forcing conditions of a single year (1980).
The modelled export production was tuned to obtain an ocean
CO; sink of 22 Pg Cyr~! in the 1990s. This second method
offers the advantage that the model’s carbon fields remain
closer to the observations compared to the long spin-up ap-
proach, but it comes at the cost of generating a drift that af-
fects the mean conditions and to a lesser extent the trend.
Tests with the model runs of Le Quéré et al. (2010) suggest
the drift in the mean CO> sink is about 0.5PgCyr~! and
the drift in the trend is about 0.005 Pg C yr~2 globally, and is
largest in the Southern Ocean.

From ~ 1950 onward, the models performed two separate
simulations:

— S_OlI: CO; only, i.e. atmospheric CO; increases, but
models are forced with climatological atmospheric
boundary conditions (referred to as ACO2 in the REC-
CAP archive);

— S_02: CO; and climate, i.e. as S_O1, but models are
forced with “realistic” year-to-year variability in atmo-
spheric boundary conditions (ANTH).

In these runs, both S_O1 and S_O2 are affected by the same
drift, and their differences thus remove the drift. The CCSM-
based models performed an additional experiment to bet-
ter separate between the fluxes of natural and anthropogenic
COzZ
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Table 1. Characteristics of the nine dynamic global vegetation models.

Model name Abbreviation Spatial  Land surface  Full nitrogen ~ River export Fire Harvest/grazing Source
resolution model cycle flux  simulation flux

Community Land CLM4CN 0.5° x 0.5° Yes Yes No Yes No Oleson et al. (2010);
Model 4CN Lawrence et al. (2011)
Hyland HYL 3.75° x 2.5° No No No No Yes Friend et al. (1997):
Levy et al. (2004)

Lund-Potsdam-Jena  LPJ 0.5° x 0.5° No No No Yes Yes Sitch et al. (2003)
LPJ-GUESS LPJ-GUESS 0.5° x0.5° No No No Yes No Smith et al. (2001)
ORCHIDEE-CN OCN 375%% 215° Yes Yes No No Yes  Zaehle and Friend (2010):
Zaehle et al. (2010)

ORCHIDEE ORC 0.5° x 0.5° Yes No No No No Krinner et al. (2005)
Sheffield-DGVM SDGVM 3.75° x 2.5° No No Yes Yes No Woodward et al. (1995)
TRIFFID TRI 3.75° x2.5° Yes No No No No Cox (2001)
VEGAS VEGAS 0.5° x0.5° Yes No Yes Yes Yes Zeng et al. (2005)

Table 2. Characteristics of the four ocean biogeochemical general circulation models (OBGCMs). All include NPZD-type ecosystem models

and N, P, Si, and Fe nutrient components.

Model name A i Spatial

Gas transfer Years used Source

forcing

formulation

MICOM-HAMOCCvl  BER
CCSM-WHOI BEC
CCSM-ETH ETH
NEMO-PlankTOMS UEA

24°x08-24°  NCEP
3.6°x08-18°  NCEP
36°x09x19° CORE
2°x0.5-2° NCEP

Wanninkhof (1992) 1990 t0 2009  Assmann et al. (2010)
‘Wanninkhof (1992) 1990 to 2009  Doney et al. (2009a, b)
‘Wanninkhof (1992) 1990 to 2007  Graven et al. (2012)
Wanninkhof (1992) 1990 to 2009  Buitenhuis et al. (2010)

— S_03: pre-industrial CO3 and climate, i.e. atmospheric
CO; is fixed at its pre-industrial level, but atmospheric
boundary conditions vary as in S_O2 (PIND).

From these simulations, only the results from 1990 through
to 2009 were analysed. Only the UEA and CCSM-WHOI
models made results available for the S_O1 and S_O2 simu-
lations for the entire analysis time. The results for the BER
model for 2009 are incomplete, and the CCSM-ETH simula-
tions extend only to 2007. In order to maintain a sufficiently
large set of models, we decided to focus our analysis primar-
ily on the 1990-2004 period, but occasionally also include
the results through to 2009, with the important caveat that
the latter are based only on two models.

2.5 Output variables
251 Land

In this study we focus primarily on the simulated carbon cy-
cle variables, net NPP, RH (heterotrophic respiration), and
LAI, a measure of vegetation greenness. The land to atmo-
sphere net CO; flux is

land to atmosphere net CO, flux = —NBP

= RH + wildfire flux riverine C flux 4 harvest — NPP,
where we have adopted the atmospheric perspective with re-
gard to the sign of the fluxes, i.e. negative numbers indicate
a sink for atmospheric CO; and a negative trend indicates an
increasing sink or a decreasing source.

DGVMs typically do not represent all these processes; a
list for each individual DGVM is given in Table 1. DGVM
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results for simulation S_L2 are compared against the global
RLS, calculated as the annual anthropogenic CO> emissions
(fossil fuel, cement manufacture, and land use C flux) mi-
nus the annual CO, growth rate and model mean ocean C
sink as given by Friedlingstein et al. (2010). The ocean up-
take is from the same OGGCMs as the ones used here, and
the land use C flux is based on a book-keeping approach from
Houghton (2010). Note the RLS depends on a LULCC model
of emissions (the one of Houghton). Strictly speaking, com-
parison of model land to atmosphere net CO» flux with RLS
is therefore inconsistent because these models treat areas af-
fected by LUC as pristine ecosystems, and these areas are
generally associated with a high land carbon sinks. Simulated
net carbon flux from S2 is therefore likely to overestimate the
RLS sink, by construction.

The regional analysis will focus on three large land regions
(Fig. 1), and within these regions, trends at a finer spatial res-
olution, from multi-grid-cell to the sub-region, are analysed.

The comparison of DGVM simulated trends in the north-
ern growing season against satellite-derived NDVI (nor-
malised difference vegetation index) observations was based
on eight models JULES, LPJ, LPJ-GUESS, NCAR-CLM4,
ORCHIDEE, OCN, SDGVM, VEGAS), which provided
LAI outputs. The means and trends in the onset, end, and
length of growing season were computed. Growing season
variables were calculated using the methodology of Murray-
Tortarolo et al. (2013). Leaf onset is defined as the day when
LAI begins to increase above a critical threshold (CT), de-
fined as

CT = LAlIpjn + 0.2 - (LAIpax — LAIin),
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where LAl i, and LAl represent the minimum and max-
imum LAI over the annual cycle. Similarly, leaf senescence,
or offset, or end of growing season, is defined as the day
when LAI decreases below the CT. The length of the grow-
ing season in days is calculated as the end minus the onset.
This calculation was made for each grid cell above 30°N
(i.e. northern extratropics) from the models and the satellite
data. In addition, any grid cell where LAI varied by less than
0.5 over the annual cycle from the satellite data was consid-
ered to be predominantly evergreen (e.g. boreal forest), and
thus excluded from the analysis. We also masked out regions
where LAI decreases in the summer (drought deciduous veg-
etation). In addition, when the growing season spans over the
end of year (e.g. Mediterranean and some pixels particularly
on the southern margin of the domain), we include the first 3
months of the second year in our analysis. Means and trends
were calculated using a linear model over the period 1990—
2009.

2.52 Ocean

The modelling groups provided output on a monthly basis
for the years 1990 through to 2004 and 2009 at two levels
of priority. Tier-one data included the surface ocean fields of
the air—sea CO; flux, oceanic pCO>, dissolved inorganic car-
bon (DIC), alkalinity (Alk), temperature (T°), salinity (), and
mixed layer depth. The second-tier data included the biologi-
cal export at 100 m, the vertically integrated net primary pro-
duction, and the surface chlorophyll a concentration. Some
models also supplied three-dimensional climatological fields
of DIC, Alk, T',and S.

To determine the different factors contributing to the mod-
elled trends and variations, we undertook two (linear) sepa-
rations:

— The contribution of climate variability and change on
the ocean carbon cycle: X_var= X(S_02) — X(S_O1),
X is any variable or flux, where the expression in paren-
theses represents the results of the corresponding sim-
ulation, and X_var represents the impact of climate
change and variability on the ocean carbon cycle.

— The contribution of
X_ant=X(S_02) — X(S_03).

anthropogenic CO;:

For each of the integrations, but particularly for the changing
CO; and climate simulation S_0O2, we analysed the factors
contributing to the temporal change in the air-sea CO, flux
F by a linear Taylor expansion (see e.g. Lovenduski et al.,
2007 and Doney et al., 2009a):
AF =09F/ows- Aws+9dF/dT - AT + 0 F /dice

- Aice + 9 F /9sDIC - AsDIC

+dF/dsAlk - AsAlk + d F/dFS - AS,
where ws is the wind speed, ice is the sea-ice fraction, sDIC
and sAlk are the salinity normalised DIC and Alk concentra-
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tions, and 8 F'/9FS is the change in the air—sea CO> flux in re-
sponse to freshwater fluxes. This latter term includes not only
the sensitivity of oceanic pCO3 to changes in salinity but also
the dilution effects of freshwater on DIC and Alk (see Doney
et al., 2009a, for details). The partial derivatives were com-
puted directly from the model equations for the mean condi-
tions in each region. The changes in the driving components
were derived from the trend computed via a linear regression
of the model results and then multiplied by the length of the
time series.

3 Results
3.1 Global Trends
3.1.1 Land

The ensemble mean global land to atmosphere net carbon
dioxide flux from S_L2 is —2.38 +0.72Pg Cyr~! over the
period 1990-2009 (P =0.04, where P is the probability of a
trend statistically indistinguishable from zero; a significance
level of 0.05 is selected) (Fig. 3, Fig. S1 in the Supplement,
Table 3). The numbers behind = signs are the 1 standard de-
viation of 20-year means for nine DGVMs. This compares
to the global RLS of —2.45+1.17PgCyr~!, inferred from
the global carbon budget by Friedlingstein et al. (2010) over
the same period. All DGVMs agree on an increasing land
sink with a net flux trend over this period ranging between
—0.02 and —0.11 PgCyr'z, corresponding to the OCN and
Hyland DGVMs, respectively (Table 3). DGVMs simulate
an increase in the land C sink with an ensemble mean trend
of —0.06+0.03Pg Cyr~2 (P <0.05) over the period 1990—
2009 (Table 3) in response to changes in climate and atmo-
spheric CO content. The two DGVMs with a fully cou-
pled carbon and nitrogen cycle (CN) also simulate an in-
crease in the land sink, at —0.02 (P =0.6) for OCN and
—0.05Pg Cyr~2 (P =0.06) for CLM4CN. DGVMs suggest
the increase in global land sink between 1990 and 2009 is
driven by increases in simulated global NPP (Fig. 3).
DGVMs simulate an ensemble mean global NPP of
62.9+8.73PgCyr~! over the period 1990-2009 (Table 3).
All DGVMs simulate an increase in NPP over this pe-
riod, with an ensemble mean DGVM trend in NPP of
0.2240.08PgCyr—2 (P =0.00) (Table 3). Models with a
higher NPP trend also produce a higher land to atmosphere
net CO; flux trend (Fig. S2 in the Supplement). The ensem-
ble mean NPP trend of 0.22 +0.08 Pg C yr~2 (P <0.01) from
simulation S_L2 (CO, and climate forcing) contrasts with
an ensemble trend of 0.19£0.08 PgCyr~2 (P <0.01) and
0.0340.05PgCyr~2 (P =0.24) over the same period for
the S_L1 (CO; only) and S_L2-S_L1 (the climate effect),
respectively (Tables S2, S3 in the Supplement). These re-
sults suggest that the simulated increase in global NPP is
mainly in response to increasing atmospheric CO» (direct
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Figure 3. Global trends in ensemble land model responses.
(a) DGVM mean model land to atmosphere net CO, flux and stan-
dard deviation (grey lines); (b) component fluxes, NPP; and (¢) RH
(=RH + wildfire + riverine C flux); and (d) remotely sensed trends
in annual mean NDVI (crosses), a measure of vegetation greenness,
and a linear regression through the data points (bold line).

CO, fertilisation of photosynthesis, in addition to the indirect
benefits from an improved water balance in water-limited
ecosystems due to the physiological effects of CO; on wa-
ter use efficiency). VEGAS, CLM4CN, and OCN simulate
the smallest positive trends in NPP among the DGVMs in re-
sponse to elevated CO; forcing (Table S2). This suggests that
the potential CO, fertilisation effect may be already strongly
limited by present-day nitrogen availability in some ecosys-
tems (Vitousek and Howarth, 1991). There is more uncer-
tainty among models on the impact of climate changes on
global NPP, with only two models simulating a significant
positive trend (Table S3).

DGVMs simulate an ensemble mean global RH of
57.5+9.8PgCyr~! over the period 1990-2009 (Table 3).
All DGVMs simulate an increase in RH for S_L2
(CO2 and climate), with an ensemble mean trend of
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1990 1992 1994 1996 1998 2000 2002 2004

Figure 4. Global trends in ensemble ocean model fluxes. Black line:
results from simulation S_O2 with variable “climate” and increas-
ing CO;. Red line: results from simulation S_O1 with constant “cli-
mate” and increasing CO;. The dashed grey and dashed red lines
indicate the £ uncertainty bands given by the four models that con-
tribute to the ensemble mean.

0.16£0.05PgCyr~2 (P <0.01) over the period 1990-2009
(Table 3). This is lower than the trend in global NPP, resulting
in a trend towards increasing net land carbon uptake. This is
unsurprising as there is a lagged response in increases in RH
relative to NPP, reflecting the turnover time of the newly in-
corporated plant material. The ensemble mean trend in RH is
0.124+0.06PgCyr2 (P <001) and 0.04+0.02PgCyr 2
(P =0.09) over the same period for the S_L1 (CO> only)
and S_L2-S_L1 (the climate effect), respectively (Tables S2,
S3). This implies the dominant effect on RH is increased
substrate for microbial respiration, with the additional lit-
ter input into soils, as a consequence of enhanced NPP,
rather than enhanced rates of microbial decomposition with
rising temperatures. Nevertheless, the simulated mean resi-
dence time (MRT = soil carbon / RH) of soil organic mat-
ter decreases, in response to warming, which is especially
pronounced in high-latitude regions (Fig. S3 in the Sup-
plement). The difference in land—atmosphere flux trend be-
tween the CN models OCN (—0.02 Pg C yr~2) and CLM4CN
(—0.05Pg Cyr~2) is largely due their difference in RH trends
at0.14and 0.11 PgC yr_2 ,respectively, rather than differen-
tial responses of simulated NPP to elevated CO» (Table 3).
Only four DGVMs simulated wildfire fluxes (CLM4CN,
LPJ, LPJ-GUESS, SDGVM). No significant trends in the
global wildfire flux were reported by any of the DGVMs.

3.1.2 Ocean

The global ocean is simulated to have acted as a very sub-
stantial sink for atmospheric CO, but one that has increased
only slightly over the last two decades (see also discus-
sion in Wanninkhof et al., 2013). The mean ocean sink in
the four models (CCSM-ETH, CCSM-WHOI, UEA, and
BER) increased from ~ —2.0Pg C yr~! in the early 1990s to
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~—2.1PgCyr~! during the first 5 years of the 21st century
(Fig. 4).

We separate the mean and variable components by us-
ing our factorial experiments, i.e. by using S_O1 results to
identify the ocean uptake in the absence of climate variabil-
ity and change, and the difference between S_0O2 and S_O1
as measure of the impact of climate change. This separa-
tion reveals that, in the absence of climate variability and
change, the global ocean uptake would have increased from
about —1.98£0.04PgCyr~! for the 1990-1994 period to
—23+009PgCyr~! for 2000-2004 (for the two models
that provided S_O1 results up to 2009 (CCSM-WHOI and
UEA), the uptake flux would have increased from —1.99
to —2.56PgCyr~! for 2005-2009). This global net uptake
flux and its substantial trend in time (—0.03 PgCyr"2 for
1990-2004, and —0.04 PgC yr~2 for 1990-2010) is entirely
driven by the increase in atmospheric CO; and is — integrated
globally — numerically equivalent to the ocean uptake flux
of anthropogenic CO;. Climate variability and change mod-
ified these fluxes, and particularly the trend in these mod-
els. The four models suggest an enhancement of the uptake
in the early 1990s (1990-1994) of about —0.2PgCyr~!,
turning into a reduction of the uptake in the subsequent pe-
riod (1995-1999), followed by a further reduction in the
2000-2004 period of ~+0.1 PgCyr~!. This trend toward
reduced uptake in response to climate variability and change
of +0.03PgCyr~?2 nearly completely compensates for the
anthropogenic CO; driven increase in uptake, causing the
overall uptake of CO> to have a nearly flat trend over the
1990-2004 period of <0.01PgC yr'2 The same tendencies
are found for the two models that extend over the entire
1990-2009 period: in these models, climate change and vari-
ability reduces the CO,-driven trend of —0.04 PgC yr~2 by
more than +0.02 Pg C yr~2, to around —0.02 Pg C yr—2.

With consideration of the different factors affecting the
ocean carbon sink following our Taylor expansion, we find
increasing sea surface temperature to be a globally im-
portant driver for the positive trends (reduced sinks) in-
duced by climate change and variability. Over the 1990-
2004 period, the surface ocean warmed, on average, by
0.004°Cyr~! (0.005°Cyr~! from 1990 through to 2009).
Isochemically, this leads to an increase in the oceanic pCO;,
of ~0.06 patm yr~!, which appears small. However, it needs
to be compared with the trend in the global-mean air—
sea pCO, difference of about ~0.1 yatmyr~! that is re-
quired in order to generate a trend in the ocean uptake
of —0.03PgCyr~? (see e.g. Matsumoto and Gruber, 2005;
Sarmiento and Gruber, 2006). The overall sink is therefore
largely a consequence of the increase in atmospheric CO2
(i.e.it mostly corresponds to the uptake flux of anthropogenic
CO»), but it includes a substantial perturbation flux stem-
ming from the impact of climate variability and change on
the ocean carbon cycle.
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3.2 Regional trends
32.1 Land
Northern land

All DGVMs agree on a land C sink over the north-
ern land region, with a mean land-atmosphere flux of
—1.03£0.30 PgCyr~! over the period 1990-2009 (Fig. S4
in the Supplement, Table 3). The ensemble mean land—
atmosphere flux trend is near zero for this region between
1990 and 2009 (Fig. S5 in the Supplement). Of particu-
lar interest are sub-regions with a simulated positive land—
atmosphere flux trend (Fig. 5), implying a diminishing sink
of atmospheric CO; or an increasing source of CO; to the at-
mosphere. At least six models out of nine agree on a decreas-
ing regional land sink across some areas in temperate North
America, eastern Europe, northeastern China, and Mongolia
(Fig. 5). These largely correspond to regions with negative
trends in precipitation (Fig. 6).

Over the northern region, which covers almost 50 % of
the land surface, DGVMs simulate an ensemble mean NPP
of 24.1 £4.48 PgCyr~!, which represents almost 40 % of
the global total (Table 3). All DGVMs simulate an increase
in northern NPP over this period, with a trend in NPP
of 0.06+0.02PgC yr‘Z (P <0.01) (Table 3). However, en-
hanced productivity in the northern land region accounts
for only around 29 % of the simulated global trend in NPP.
The ensemble mean NPP trend of 0.06+0.02 PgCyr'2
(P <001) from simulation S2 (CO; and climate forcing)
compares to a trend of 0.07 +0.03 PgCyr~2 (P <0.01) and
—0.00+0.04 PgCyr~2 (P =0.85) for the S_L1 (CO; only)
and S_L2-S_L1 (the climate effect), respectively (Tables S2,
S3). All DGVMs simulate a positive trend in NPP in response
to elevated CO; across the northern land region, and trends
are all significant at the 95 % confidence level with the ex-
ception of CLM4CN (P =0.21).

Large areas in temperate North America and Asia ex-
perienced warming combined with reductions in precipita-
tion over the period 1990-2009 (Fig. 5). Indeed, although
DGVMs simulate larger mean NPP in temperate compared
to boreal regions (Table S5 in the Supplement), they simu-
late significant positive trends in boreal North America and
boreal Asia, whereas trends in both temperate North Amer-
ica and Asia are smaller and not significant at the 95 % con-
fidence level (Table S5).

In response to warming, models simulate an earlier onset
(ensemble mean model trend = —0.078 +0.131 daysyr™")
and delayed termination of the growing season
(0.217 £0.097 days yr‘l) based on LAI, and thus a
trend towards a longer growing season in the north-
ern extratropics (0.295+0.228 days yr‘l) (Fig. 7). This
is in broad agreement with observed greening trends
(Zhu et al., 2013; Murray-Tortarolo et al., 2013): on-
set=—0.11daysyr!, offset=0.252days yr—!, and
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Table 3. Mean and trends in NPP, RH, and land-atmosphere flux as simulated by individual DGVMs and the ensemble mean.

MODEL NPP Trend P value RH Trend P value  Land-atm COy Trend P value
PgCyr~!)  (PgCyr2) (®gCyrl)  (PgCyr2) flux PgCyr~!)  (PgCyr )
Global_Land
CLM4CN 51.508 0.148 0.000 47.668 0.106 0.000 —1.459 —0.052 0.059
HYLAND 73422 0.319 0.000 68.835 0.203 0.000 —3.466 —0.109 0.000
LPJ 59.306 0.216 0.000 47612 0.117 0.000 —2.251 —0.068 0.061
LPJ-GUESS 62.506 0.174 0.000 55.448 0.145 0.000 —1.802 —0.043 0.346
OCN 53.941 0.155 0.000 50.611 0.135 0.000 —2272 —0.015 0.568
ORCHIDEE 75.516 0.293 0.000 72.037 0.208 0.000 —3.479 —0.086 0.046
SDGVM 60.965 0.240 0.000 53.778 0.190 0.000 —2.127 —0.044 0.170
TRIFFID 71.929 0.305 0.000 69.167 0.244 0.000 —2.762 —0.061 0.265
VEGAS 57.308 0.113 0.006 51.930 0.092 0.000 —1.783 —-0.018 0.551
Ensemble 62.934 0.218 0.000 57454 0.160 0.000 -2.378 —0.055 0.048
SD 8.729 0.076 9.791 0.053 0.721 0.030
Northern_Land
CLM4CN 17.523 0.043 0.003 16.215 0.036 0.000 —0.670 —0.007 0.612
HYLAND 19.139 0.098 0.000 17.591 0.080 0.000 —0.876 —-0.014 0.311
LPJ 24.566 0.079 0.001 19.578 0.062 0.006 —1.168 —0.006 0.735
LPJ-GUESS 28.484 0.039 0.085 25.883 0.067 0.009 —0.634 0.023 0.521
OCN 21.008 0.044 0.035 19.264 0.047 0.008 —1.117 0.007 0.632
ORCHIDEE 30.337 0.070 0.007 29.112 0.063 0.000 —1.226 —0.006 0.740
SDGVM 25.144 0.063 0.006 22598 0.065 0.006 —0.828 0.004 0.762
TRIFFID 28.476 0.088 0.009 27.006 0.103 0.001 —1.470 0016 0455
VEGAS 21.895 0.048 0.012 18914 0.043 0.001 —-1.322 —0.000 0.968
Ensemble 24.064 0.063 0.001 21.796 0.063 0.001 -1.034 0.002 0.865
SD 4.484 0.022 4.562 0.020 0.295 0.012
Tropical_Land
CLM4CN 26.400 0.090 0.000 24464 0.058 0.000 —0.692 —0.039 0.110
HYLAND 34.489 0.112 0.000 32.695 0.067 0.000 —1.560 —0.044 0.001
LPJ 25.830 0.100 0.001 21224 0.035 0.001 —0.817 —0.049 0.031
LPJ-GUESS 21.922 0.078 0.000 19.332 0.051 0.000 —0.785 —0.036 0.038
OCN 22.750 0.084 0.000 21476 0.065 0.000 —0.982 —-0.017
ORCHIDEE 31.313 0.151 0.000 29.640 0.108 0.000 —1.673 —0.043 0.084
SDGVM 23.505 0.118 0.000 20.677 0.075 0.000 —0.984 —0.038 0.030
TRIFFID 29.801 0.141 0.000 28.925 0.096 0.000 —0.876 —0.045 0218
VEGAS 23472 0.041 0.061 21.994 0.033 0.004 —0.278 —0.010 0.527
Ensemble 26.609 0.102 0.000 24.492 0.065 0.000 —0.961 —0.036 0.045
SD 4.350 0.034 4.752 0.025 0.428 0.013
Southern_Land
CLM4CN 7.617 0014 0.187 7017 0011 0.036 —0.098 —0.005 0.719
HYLAND 19.875 0.109 0.000 18.623 0.056 0.000 —1.035 —0.051 0.000
LPJ 8.940 0.037 0.074 6.833 0.021 0.004 —0.267 -0.013 0.355
LPJ-GUESS 12.124 0.058 0.003 10.255 0.026 0.001 —0.385 —0.031 0.192
OCN 10.222 0.027 0.165 9.909 0.023 0.053 —0.174 —0.004 0.744
ORCHIDEE 13.884 0.073 0.002 13.304 0.037 0.000 —0.581 —0.036 0.027
SDGVM 12.358 0.059 0.034 10.539 0.050 0.000 —0.317 —-0.010 0.701
TRIFFID 13.707 0.077 0.020 13.290 0.045 0.000 —0.417 —0.032 0.269
VEGAS 11.971 0.024 0.382 11.049 0016 0.140 —0.182 —0.009 0.656
Ensemble 12.300 0.053 0.011 11.202 0.032 0.000 —0.384 —0.021 0.196
SD 3.528 0.031 3.597 0.016 0.285 0.017
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Land Flux Mean gCm™2yr™! SD mean

Figure 5. (a) Average land to atmosphere net CO; flux over the period 1990-2009 for the ensemble mean and model disagreement, with
stippling representing agreement for <66 % of DGVMs , and (b) standard deviation across DGVMs. (¢) The trend in land to atmosphere
net CO; flux across the ensemble, and model disagreement, with stippling representing agreement of <66 % of the DGVMs , and (d) the
standard deviation of the trend.

Temperature Trend (°Cyr™') Precipitation trend (%yr ')
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Figure 6. Trends in land climate drivers and process responses. (a) Trend in temperature (°Cyr~!), (b) trend in precipitation
(% yr"). (¢) trend in land to atmosphere net CO, flux (ng_2 yr‘z). (d) trend in NPP (ng_2 yr‘z). and (e) trend in RH
(=RH + wildfire + Riverine C flux) (ng’2 yr’z).
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growing season length =0.361daysyr—'. There is less
agreement among models on reproducing the observed
browning trends in some regions of the boreal forest.

DGVMs simulate an ensemble mean RH of
21.844.6PgCyr~! across the northern land region
(Table 3). All DGVMs simulate an increase in northern RH
over the period 1990-2009, with a significant trend in RH
of 0.063+002PgCyr~! (P<001) (Table 3). DGVMs
simulate larger mean RH in temperate compared to boreal
regions, yet smaller positive trends for Asia (Table S6
in the Supplement). This is because of relatively smaller
increases in substrate (i.e. NPP) in temperate regions and
greater warming in boreal regions stimulating microbial
decomposition, reducing mean residence time of carbon in
soils (MRT = soil carbon / RH; see Fig. S3).

No significant trends in the wildfire flux were reported by
any of the DGVMs for the northern land region. However,
DGVMs agree on simulating a small negative trend in wild-
fire flux across boreal North America and tundra.

Tropical land

All DGVMs simulate an increasing land C sink over
recent decades, in response to changes in climate
and atmospheric CO> concentration over the tropical
land region, with an ensemble mean land-atmosphere
flux of —096+043PgCyr~! (Table 3, Fig. S4)
and trend of —0.04+0.01 PgCyr'2 (P =0.05), or
—0.88 i0.33ng_2 yr‘2 on an area basis (Table 3,
Table S4 in the Supplement Fig. S5). This represents 65 %
of the increase in global land sink over the last two decades
across the tropical land, which covers 27 % of the land sur-
face (Table S4). DGVMs simulate significant negative trends
(i.e. increasing sinks) across tropical Asia and equatorial
Africa (Table S4).

DGVMs simulate an ensemble mean NPP of
26.6+435PgCyr~! averaged over the tropical re-
gion, representing 42 % of the global total (Table 3). All
DGVMs simulate a significant increase in tropical NPP
over this period, with an ensemble mean trend in NPP of
0.10+0.03PgCyr~2 (P =0.00) for S_L2 (Table 3). This
compares to a trend of 0.09 £0.03PgCyr~2 (P <0.01) and
0.02+0.02PgCyr~2 (P =0.33) over the same period for
the S_L1 (CO; only) and S_L2-S_L1 (the climate effect),
respectively (Tables S2, S3). Again, the simulated trend in
NPP is dominated by the simulated response of ecosystems
to elevated atmospheric CO, content. DGVMs simulate
positive NPP trends across tropical South American forests,
tropical Asia, equatorial Africa, and North African savanna
(Table S5). Nevertheless there are some areas within tropical
South America and North African savanna regions with
negative trends in NPP (Fig. 6).

All DGVMs simulate an increase in RH over
the period 1990-2009, with an ensemble mean RH
of 24494+475PgCyr~! (Table 3) and trend of
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Figure 7. Ensemble-mean trends in the onset (a, b), offset (¢, d),
and length of growing season in days (e, f) for the ensemble mean
(left) compared with satellite-derived estimates (right).

0.065+£0.025PgCyr~2 (P<001). This can be largely
attributed to the response of ecosystems to elevated CO,
(Table S2).

No significant trends in the wildfire flux were reported by
any of the DGVMs for the tropical land region. However,
DGVMs agree on simulating a negative trend in wildfire flux
across equatorial Africa and tropical Asia.

Southern land

All DGVMs agree on a net land sink over the southern
land during the last two decades, with an ensemble mean
land—atmosphere flux of —0.38 +0.29 PgCyr~! (Table 3,
Fig. S4). Although all DGVMs simulate an increase in the
land sink over the southern extratropics, with an ensem-
ble mean land—atmosphere trend of —0.02 +0.02 PgCyr—2
(P =020) (Fig. S5) or —0.584+0.45¢Cm 2yr 2 on an
area basis, only trends for HYL and ORC are significant at
the 95 % confidence level (Table 3). Ensemble mean trends
are significant for temperate South American and south-
ern African regions at 0.005 +0.005PgCyr—2 (P =0.05)
and —0.022+0.011PgCyr=2 (P =0.01), respectively (Ta-
ble S4). For southern Africa, all DGVMs simulate an in-
crease in the land sink in response to climate variability and
change over this period (five out of nine are significant at the
90 % confidence level) (Table S7 in the Supplement, Fig. 6).
In contrast, the simulated decrease in land sink for temperate
South America is associated with a decrease in precipitation
over 1990-2009 (Table S8 in the Supplement).

DGVMs simulate an ensemble mean NPP of
1234353PgCyr! over the southern extratropics,
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which represents ~20% of the global total (Table 3)
across 24 % of the land surface. All DGVMs simulate
an increase in NPP over this period, with a significant
ensemble mean trend of 0.05+£003PgCyr~2 (P =0.01),
i.e. the southern land region accounts for around 25 % of
the simulated global trend in NPP. Southern Africa is the
only southern sub-region with a significant trend in NPP
of 0.041+£0018PgCyr~2 (P <001) (Table S5), due to
a positive response of plant production to both CO, and
climate, and is likely in response to increases in precipitation
over the last two decades (Table S7, Fig. 5).

DGVMs simulate an ensemble mean RH of
11.2043.60PgCyr~! over the southern land region
(Table 3). All DGVMs simulate an increase in RH over
the period 1990-2009, with a significant trend in the
ensemble mean RH of 0.03 j:O.OZPgCyr’2 (P<0.01).
This is only partly explained by the response of ecosys-
tems to elevated CO3; over southern Africa the ensemble
mean trend in RH from S_L1 is 0.0140.01 PgCyr‘2
(P <0.01), and a climate-induced positive trend in RH of
0.01+0.00PgCyr~! (P <0.01) (Table S2, S7).

No significant trends in the wildfire flux were reported by
any of the DGVMs for the southern land region. However
DGVMs agree on simulating a negative trend in wildfire flux
across southern Africa.

In summary, the globally increasing trend in land carbon
sink is about two-thirds due to tropical ecosystems and one-
third due to the southern land region, with zero contribution
from northern land. This partitioning in trend is quite differ-
ent from the mean carbon sink fluxes themselves, which is
more like 43 : 41 : 16 (northern : tropical : southern).

Qualitative change in processes

A qualitative assessment of the differential responses of
the underlying land processes to changes in environmental
conditions, and their contribution to the sink—source land—
atmosphere flux trends is shown in Fig. 8. Many regions
are simulated to have a negative land—atmosphere flux trend,
with increases in NPP leading increases in RH. However
there are locations with positive trends over the period 1990—
2009, i.e. red colours in Fig. 8. In some regions models sim-
ulate a positive trend in NPP but an even larger positive trend
in RH (eastern Europe, southeastern USA, Amazonia, south-
ern China, North America tundra). Warming is likely to en-
hance both NPP and RH in high-latitude ecosystems, but pri-
marily RH in low latitudes. Reduced precipitation may par-
tially or fully offset the benefits of elevated atmospheric CO;
abundance on NPP, and the response of RH to changes in
precipitation is not obvious, as this is influenced by the ini-
tial soil moisture status. This is because microbial activity
increases with increasing soil moisture at low moisture lev-
els, before reaching a maximum activity, and then begins to
decline as water completely fills the soil pore spaces and oxy-
gen becomes more limiting to respiration. Locations in the
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western USA, southern Asia, northern boreal China, south-
eastern South America, and western and southern Australia
are simulated to have negative NPP trends over the last two
decades, as a result of reduced rainfall, and there is a less
negative trend in RH, possibly due to a reduction in micro-
bial respiration rates with increased soil dryness. The warm-
ing and drying in central Asia (northeastern China and Mon-
golia) and southern Australia is simulated to reduce the rate
of microbial decomposition in these regions (Fig. S3), which
partly opposes the NPP-driven lagged decrease in RH. The
source trend in eastern Europe is simulated as a combina-
tion of a negative trend in NPP, as a result of a combination
of elevated temperatures and reduced precipitation (i.e. soil
drying), and a positive trend in RH driven by increasing tem-
perature, despite reduced plant litter input.

.2 Ocean
Regional fluxes

The large-scale distribution of the modelled mean surface
fluxes consists of strong outgassing in the tropical regions,
especially in the Pacific, and broad regions of uptake in the
mid-latitudes, with a few regions in the high latitudes of par-
ticularly high uptake, such as the North Atlantic (Fig. 9). This
pattern is largely the result of the exchange flux of natural
CO; that balances globally to a near-zero flux, but exhibits
regionally strong variations (Gruber et al., 2009). Superim-
posed on this natural CO; flux pattern is the uptake of an-
thropogenic CO,, which is taken up everywhere, but with
substantial regional variation. Large anthropogenic CO» up-
take fluxes occur in the regions of surface ocean divergence,
such as the equatorial Pacific and particularly the Southern
Ocean (Sarmiento et al., 1992; Gloor et al., 2003; Mikaloff
Fletcher et al., 2006). This is a result of the divergence caus-
ing waters to upwell to the surface which have not been ex-
posed to the atmosphere for a while, thereby permitting them
to take up a substantial amount of anthropogenic CO,. This
reduces the outgassing that typically characterises these re-
gions as a result of these upwelling waters also bringing with
them high carbon loads from the remineralisation of organic
matter.

Over the analysis period, the air-sea CO; fluxes exhibit
only a remarkably small trend in most places, with some re-
gions increasing in uptake, while others show a positive flux
anomaly, i.e. lesser uptake. Thus the small global trend in
ocean uptake over the 1990-2004 analysis period is a result
of also the individual regions having relatively modest trends.

Process analysis
The regional flux trends are, however, much smaller than ex-
pected from an ocean with constant circulation that is only

responding to increasing atmospheric CO,, and hence would
tend to increase its uptake of anthropogenic CO> through
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Figure 8. Qualitative change in processes over the period 1990-2009. Negative trend in land—atmosphere net CO;, flux: enhanced
NPP>enhanced RH (= RH + wildfire + riverine C flux) (pale blue); enhanced NPP, reduced RH (turquoise); and reduced NPP <reduced
RH (dark blue). Positive trend in land—atmosphere net CO; flux: enhanced NPP < enhanced RH (dark red); reduced NPP, enhanced RH (red):
and reduced NPP > reduced RH (pink).

a) Mean flux gCm2yr™! b) SD gCm%yr”’

Figure 9. Gridded maps of the ensemble mean sea—air CO; flux over the period 1990-2004 (a), standard deviation of the mean flux across
the four OBGCMs (b), the trend in the net flux across the ensemble (c), and the standard deviation of the trend (d).
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time (Fig. 10). In the absence of climate variability and
change, all regions would have flux density trends of more
than —0.05gCm~2yr~2, with some regions, such as the
Southern Ocean, exceeding —0.15g Cm™~2yr~2. However
climate variability and change compensate for these neg-
ative trends in every single region by increasing them by
+0.04¢gC m~2 yr‘2 or more (with the exception of the South
Pacific), such that the overall trends fluctuate from region to
region around zero (Fig. 10). The largest reductions in trends
are simulated to occur in the North and equatorial Pacific and
in the North Atlantic, where they even cause a change in the
sign of the overall trend. A similar, although slightly more
moderate, pattern is seen if the analysis is undertaken for the
entire 1990-2009 period with two models only. The most im-
portant difference is found in the North Atlantic, where the
climate variability impact is substantially smaller, and not
offsetting the anthropogenic CO, trend when analysed for
1990-2009.

The mechanisms driving the oceanic flux trends differ be-
tween the analysed regions. Attribution of regional trends to
specific processes or changes in specific state variables in
the different models is a work in progress, and is difficult
to achieve with high confidence as yet. This is due to the an-
tagonistic effect of ocean warming on CO, solubility and on
dissociation of carbonic acid into bicarbonate and carbon-
ate, as well as to the complex changes in ocean circulation
and mixing, which themselves influence the biological car-
bon pumps of the ocean.

4 Discussion
4.1 Land

The DGVMs used in this study simulate an increase in
land carbon uptake over the period 1990-2009. The re-
sult is consistent with the earlier findings of Sarmiento et
al. (2010), who suggested a large increase in the RLS be-
tween 1960 and 1988 and between 1989 and 2009 (Table S9
in the Supplement). The ensemble mean land—atmosphere
flux increased by —1.11 PgC yr~! for the same period, com-
pared to the estimated RLS increase of —0.88 Pg Cyr~! from
Sarmiento et al. (2010). The DGVM ensemble trends in land
uptake for the globe, northern, tropical, and southern land
regions of —0.06+0.03, 0.00+0.01, —0.044+0.01, and
—0.024+0.02PgCyr2, respectively, compare favourably
with the inversion estimates of —0.06 £0.04, —0.01£0.01,
—0.0440.02, and —0.0140.01PgCyr2 over the period
1990-2009. Although encouraging, these results should be
interpreted with caution because the inversion accounts for
any trend in the land use change flux over this period,
whereas DGVMs had fixed land use.

There is empirical evidence of a large increase in biomass
in intact forest in tropical South America and Africa (Pan et
al., 2011; Baker et al., 2004; Lewis et al., 2009a, b), which
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Figure 10. Regional ocean flux trends from 1990 through to 2004
for the standard case, i.e. variable climate and increasing CO; (sim-
ulation S_02), and for the constant climate case (simulation S_O1),
and their difference (S_02-S_O1). Ocean regions comprise North
Pacific (NP), equatorial Pacific (EP), South Pacific (SP), North At-
lantic (NAT), equatorial/South Atlantic (EQ), Indian Ocean (IO),
and Southern Ocean (SO), and world oceans (W).
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is consistent with the DGVM projections presented here.
Lewis et al. (2009b) found broad agreement between biomass
trends from observations and from a suite of carbon cycle
models applied with 20th century forcing of climate and at-
mospheric CO, content, using a similar protocol to the cur-
rent analysis. DGVMs suggest a large component of the up-
take trend is associated with a positive NPP response to ele-
vated CO2, which is broadly consistent with the enhancement
of forest production due to CO; observed in FACE experi-
ments (Norby et al., 2005), although they are largely located
in temperate forest ecosystems. However, recent studies have
highlighted the role of nitrogen in limiting the long-term CO,
response (Canadell et al., 2007; Norby et al., 2010) in these
ecosystems. The long-term plant response to elevated CO; is
likely affected by nutrients and its impact on plant C alloca-
tion (Zachle et al., 2014), however only two out of the nine
models used here (CLM4CN and OCN) include interactive
nutrient cycling (see DGVM characteristics, Table S1).

In contrast to the large trend in net C uptake across the
tropics, DGVMs simulate no statistically significant trend
over the northern land region. In particular, trends in NPP
over temperate regions are smaller than those in boreal re-
gions, and are also not significant. Many temperate areas ex-
perienced a decrease in rainfall between 1990 and 2009, and
suffered periods of prolonged and severe drought. Examples
include the drought in the western USA of 2000-2004 (Mc-
Dowell et al., 2008; Anderreg et al., 2012) and the 2003 sum-
mer heatwave in Europe (Ciais et al., 2005). Zscheischler et
al. (2014) suggest that negative productivity extremes dom-
inated interannual variability in productivity during the pe-
riod 1982-2011; these extremes are evident particularly over
temperate latitudes.

Satellite observations suggest a general greening trend
in high latitudes, with an earlier onset and longer growing
season in high-latitude ecosystems, which is reproduced by
the DGVMs. Observations suggest a greening tundra and a
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slower greening and possible browning in some regions of
the boreal forest (Tucker et al., 2001; Bhatt et al., 2010), es-
pecially in North America (Beck and Goetz, 2011). In tun-
dra ecosystems, an carlier onset is attributed to warming
and earlier snowmelt. In these ecosystems, the start of the
growing season corresponds to near peak in radiation. Thus
any temperature-induced earlier snowmelt (McDonald et al.,
2004; Sitch et al., 2007a) is likely to enhance plant produc-
tion. Warming may not have such a great effect on the end
of the growing season in Arctic tundra ecosystems, as this
may be driven primarily by radiation. DGVMs simulate a
significant positive trend in NPP in boreal North America
and boreal Asia and the circumpolar tundra. Nitrogen limi-
tation is also likely to constrain the productivity at high lati-
tudes, but it was not possible to quantify N-limitation effects
on regional trends in this study.

DGVMs simulate decreasing NPP across northeastern
China and Mongolia, contributing to the overall decreas-
ing land uptake trend, in response to recent climate. In
a regional study, Poulter et al. (2013) investigated the dif-
ferential response of cool semi-arid ecosystems to recent
warming and drying trends across Mongolia and northern
China, using multiple sources of evidence, including the LPJ
DGVM, FPAR remotely sensed data (derived from GIMMS
NDVI3g), and tree-ring widths. They found coherent patterns
of high sensitivity to precipitation across data sources, which
showed some areas with warming-induced springtime green-
ing and drought-induced summertime browning, and limita-
tions to NPP explained mainly by soil moisture.

Browning has occurred as a consequence of regional
drought, wildfire, and insect outbreak, and their interaction,
especially in North America (Beck and Goetz,2011). Distur-
bance plays a key role in the ecology of many global ecosys-
tems. For example, wildfire plays a dominant role in the car-
bon balance of boreal forest in central Canada and other
regions (Bond-Lamberty et al., 2007), and insect outbreaks
like the mountain pine beetle epidemic between 2000 and
2006 in British Colombia, Canada, resulted in the transition
of forests from a small carbon sink to a source (Kurz et al.,
2008). In general, disturbance and forest management are in-
adequately represented by the current generation of DGVMs,
even though several models include simple prognostic wild-
fire schemes (Table S1), while some are starting to include
other disturbance types such as insect attacks (Jonsson et al.,
2012) and windthrow (Lagergren et al., 2012). The exten-
sion of DGVMs to include representations of globally and
regionally important disturbance types and their response to
changing environmental conditions is a priority.

In Table 4, DGVM results are compared with the REC-
CAP synthesis papers documenting carbon sources and sinks
for individual regions. Note that DGVMs provided one
source of evidence for some regional papers. Over Russia,
DGVMs agree on a sink yet underestimate that sink’s mag-
nitude, likely related to soil respiration (which is unsurpris-
ing, as many DGVMs have a limited representation of per-
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mafrost and active layer thickness) (Dolman et al., 2012).
In South America, DGVMs agree with inventory-based es-
timates on a sink in natural forests (Gloor et al., 2012).
DGVMs also agree with other data sources on the sign and
magnitude of the natural land sink over Australia (Harverd
et al., 2013). Over Europe DGVMs simulate a smaller mean
land sink than the synthesis study suggests (Luyssaert et al.,
2012). However, the regional synthesis was conducted over
the shorter time period 2001-2005. For the Arctic, DGVMs
tend to simulate a lower sink than regional process-based
models (McGuire et al., 2012). However, over the 1990—
2006 period, DGVMs are in line with observations and in-
versions on the magnitude and sign of the natural land sink,
and DGVM results also suggest a sink trend in line with ob-
servations. DGVMs simulate a land sink over South Asia in
agreement with inversions; however there were limited data
to compare trends from DGVMs and other products (Patra
et al., 2013). For East Asia, DGVM results agree remark-
ably well with remote sensing model—data fusion and inverse
models on the magnitude of the land sink over the period
1990-2009. Finally, for Africa, DGVMs are broadly consis-
tent with inventory- and flux-based estimates in simulating a
land sink over Africa, albeit of lower magnitude (Valentini et
al.,2014).

4.2 Ocean

The investigated OBGCMs consistently simulate an ocean
characterised by a substantial uptake of CO; from the at-
mosphere, but with a global integrated trend in the last
two decades (—0.02+0.01PgCyr~2) that is substantially
smaller than that expected based on the increase in at-
mospheric CO;. Results based on the predictions from
ocean inversion and ocean Green function methods (Mikaloff
Fletcher et al., 2006; Gruber et al., 2009; Khatiwala et al.,
2009) suggest an increase in ocean uptake with a trend of
the order of —0.04 PgCyr'2 over the analysis period (see
also Wanninkhof et al., 2013). These latter methods assume
constant circulation, while our simulations here include the
impact of climate variability and change.

Our analyses reveal that recent climate variability and
change has caused the ocean carbon cycle to take up less
CO3 from the atmosphere than expected on the basis of the
increase in atmospheric CO», i.e. it reduces the efficiency of
the ocean carbon sink. Globally, we find that this efficiency
reduction is primarily a result of ocean warming, while, re-
gionally, many more processes (e.g. wind changes, alkalin-
ity/DIC concentration changes) are at play.

Is this reduction in uptake efficiency over the analy-
sis period the first sign of a positive feedback between
global warming and the ocean carbon cycle — or, alterna-
tively, could it just reflect natural decadal-scale variability
in air-sea CO; fluxes? Without a formal attribution study,
it is not possible to provide a firm answer. We suspect
that the majority of the trend in the efficiency is due to
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Table 4. Ensemble DGVM regional NBP mean comparison with RECCAP regional chapter analyses.

Region DGVM mean Region Inventory-based Flux-based Inversion Best estimate
NBP (TgCyr™ D) processed-based
models
Russia -199 =761 -709 —653
South America (forest) —472+211 =570+ 170 (1990-94)
—530 140 (1995-99)
—450 250 (2000-04)
—150 4230 (2005-09)
Africa —410£310 =740 £ 1190 —1340 £ 1320 50+280
(LULCC 510+ 280)
Australia & New Zealand —70+78 —-36+29
(LULCC 18 £7)
Europe —179+92 —891 4155
(2001-05)
Arctic (1990-2006) —86 =177 -96
South Asia —210£ 164 —35.4 (1997-06)
—317 to —88.3 (2007-08)
East Asia —224+ 141 —293 + 33 combined 270 £507

inventory-EO-flux approach

“natural” decadal-scale variability; however, largely based
on the results of McKinley et al. (2011) and Fay and McKin-
ley (2013), who showed that whereas trends in oceanic pCO»
(and air-sea CO; fluxes) are variable on a decadal timescale,
they do converge towards atmospheric pCO; trends when
analysed over a longer 30-year period for most global re-
gions. Nevertheless, they also show that warming (partly
driven by anthropogenic climate change) in the permanently
stratified subtropical gyre of the North Atlantic has started to
reduce ocean uptake in recent years. In the Southern Ocean,
where Le Quéré et al. (2007) and Lovenduski et al. (2008)
used models to suggest a reduction in ocean carbon uptake
efficiency over the past 25 years in response to increasing
Southern Ocean winds, Fay and McKinley (2013) concluded
that the data are insufficient to draw any conclusions.

We should note that the associated uncertainties remain
large. Of particular concern is the moderate success of the
models in simulating the time-mean ocean sinks and their
long-term seasonal cycle (e.g. McKinley et al., 2006). Fur-
thermore, some of the models underestimate the oceanic up-
take of transient tracers such as anthropogenic radiocarbon
(see e.g. Graven et al., 2012). Such a reduction in the oceanic
uptake efficiency is also not suggested by independent mea-
sures of oceanic CO; uptake, such as the atmospheric O2 /N3
method (Manning and Keeling, 2006; Ishidoya et al., 2012),
although the large uncertainties in these estimates make the
determination of trends in uptake highly uncertain.

All the models have been tuned to reproduce data syn-
thesis on ocean surface pCO; (Pfeil et al., 2013; Takahashi
et al., 2009) and deep ocean (Key et al., 2004) reasonably
well. Specific systematic data assimilation procedures, how-
ever, have not been applied. On decadal timescales, the ocean
CO; flux feedback to climate change (change in hydrogra-
phy and circulation) and rising ambient CO3 (change in CO»
buffering) reacts only slowly on the global average due to the
long timescales of oceanic motion and marine CO; equilibra-
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tion with the atmosphere. Changes in biogeochemical and
ecosystem processes, such as locally varying gas exchange
velocities, phytoplankton blooms, and associated particle
flux pulses, can lead to regional interannual variations in air—
sea CO» fluxes, but may partially cancel for averages over
larger regions. With ocean observations only over about a
two-decade time frame, it is difficult to quantify longer-term
trends due to other proposed mechanisms: a gradual slowing-
down of meridional overturning circulation due to a strength-
ening of density stratification; redissolution of CaCOj3 sedi-
ment from the seafloor associated with fossil fuel neutraliza-
tion; and potential changes in biogenic particle fluxes due to
carbon overconsumption and changing ballasting (cf. Keller
etal., 2014). Whether more complex models will render bet-
ter results will depend on how well the additional free pa-
rameters in more complex biogeochemical models can be
constrained by measurements. So far, more complex — and
hence potentially more realistic — models do not necessarily
give better results than the present nutrient-phytoplankton-
zooplankton-detritus (NPZD)-type models models as applied
here (Le Quéré et al., 2005; Kriest et al., 2010).

4.3 Reducing uncertainty in regional sinks

In order to better quantify the regional carbon cycle and its
trends, DGVM and ocean carbon cycle models need to im-
prove both process representations and model evaluation and
benchmarking (Luo et al., 2012). There is a need for up-
to-date global climate and land use and cover change data
sets to force the DGVMs, as well as a deeper investigation
of the quality and differences between the different reanaly-
sis products used to force ocean carbon cycle models. Also,
techniques such as detection and attribution can be applied to
elucidate trends in the regional carbon cycle and their drivers.
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4.3.1 Model evaluation and benchmarking

Piao et al. (2013) evaluated the DGVM model results for
their response to climate variability and to CO, trends, and
the seasonal cycle of CO; fluxes were benchmarked in Peng
et al. (2014). Piao et al. (2013) found DGVMs to simulate
higher mean and interannual variations (IAVs) in gross pri-
mary production than a data-driven model (Jung et al., 2011),
particularly in the tropics; however, this is the region where
the data-driven model is most uncertain. DGVMs were able
to capture the IAVs in RLS, although the simulated land—
atmosphere net CO; flux appears too sensitive to variations in
precipitation in tropical forests and savannas. However, Poul-
ter et al. (2014) found an increase in the sensitivity of the net
flux to precipitation over the last three decades across conti-
nental Australia. Piao et al. (2013) found that the simulated
net CO; flux was more sensitive than productivity to tem-
perature variations. When compared to ecosystem warming
experiments the DGVMs tend to underpredict the response
of NPP to temperature at temperate sites. DGVMs simulated
an ensemble mean NPP enhancement comparable to FACE
experiment observations (Piao et al., 2013). However, mod-
elling of ecosystem function in water-stressed environments
and changes in plant water use with elevated CO; remains a
challenge for DGVMs (Morales et al., 2005; Keenan et al.,
2009; De Kauwe et al., 2013).

There is a critical need for comprehensive model bench-
marking, as a first step to attempt to reduce model un-
certainty. Several prototype carbon cycle benchmarking
schemes have been developed (Randerson et al., 2009; Cad-
ule et al., 2010). A more in-depth evaluation and community
benchmarking set needs to be agreed upon and implemented
which also evaluates models for their implicit land response
timescales (especially relevant in the discussion on future tip-
ping elements and non-linear future responses) and for the
simulated carbon, water, and nutrient cycles. New emerging
frameworks now exist (Blyth et al., 2011; Abramowitz, 2012;
Luo et al., 2012; Dalmonech and Zachle, 2013; Harverd
et al., 2013). One example within RECAPP is a multiple-
constraint approach applied to reduce uncertainty in land car-
bon and water cycles over Australia (Haverd et al., 2013).

4.32 Model resolution

Simulated ocean carbon dynamics may be sensitive to
horizontal resolution, particularly as model resolution im-
proves sufficiently to adequately capture mesoscale eddies.
Mesoscale turbulence influences the ocean carbon cycle in
a variety of ways, and the present eddy parameterisations
may not adequately capture the full range of effects and
the responses to climate variability and change. For exam-
ple, mesoscale processes are thought to modulate biologi-
cal productivity by altering the supply of limiting nutrients
(Falkowski et al., 1991; McGillicuddy et al., 1998; Gruber
et al., 2011). A particularly crucial issue involves the wind-
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driven overturning circulation in the Southern Ocean, where
non-eddy-resolving models indicate a strong sensitivity of
the overturning circulation and ocean carbon uptake to sur-
face wind stress (Le Quéré et al., 2007; Lovenduski et al.,
2008). Some eddy-resolving models, in contrast, suggest that
enhanced wind stress is dissipated by increased eddy activ-
ity, leading to only a small increase in overturning (Boning,
et al., 2008), although more recent results indicate a larger
response (Gent and Danabasoglu, 2011; Matear et al., 2013).

4.3.3 Model structure

There is a need for improved representation of ecological
processes in land and ocean models, e.g. nutrient cycling
(N, P), demographic dynamics, disturbance (wildfire, wind-
throw, insects), land use and land cover change in land mod-
els, and better representation of the key functional diversity
in ocean and land biogeochemical models. DGVMs need to
represent land use and land cover changes, forest manage-
ment, and forest age in order to improve estimates of the
regional and global land carbon budget. There have been
recent developments to include nutrient dynamics, mostly
nitrogen, in global land biosphere models (as reviewed by
Zaehle and Dalmonech, 2011). Too few model simulations
are available to date to allow for an ensemble model trend
assessment. However, a few general trends appear robust:
as evident from Table 3, CN models generally show less
of a response to increasing atmospheric CO; due to nitro-
gen limitation of plant production. N dynamics further al-
ter the climate—carbon relationship, which tend to reduce the
C loss from temperate and boreal terrestrial ecosystems due
to warming — but with a considerable degree of uncertainty
(Thornton et al., 2009; Sokolov et al., 2008; Zachle et al.,
2010). Changes in the nitrogen cycle due to anthropogenic
reactive nitrogen additions (both fertiliser to croplands and
N deposition on forests and natural grasslands) further mod-
ify the terrestrial net C balance and contribute with —0.2
to —0.5PgCyr~! to the current land sink (Zachle and Dal-
monech, 2011). Zaehle et al. (2011), using the OCN model,
estimated the 1995-2005 trend in land uptake due to N de-
position to be —1.1 4 1.7 Tg C yr~2, with strong regional dif-
ferences depending on the regional trends in air pollution and
reactive N loading of the atmosphere and the nitrogen status
of the ecosystems, which are generally lower in less respon-
sive ecosystems close to nitrogen saturation highly polluted
regions. The DGVMs applied here do not consider the P cy-
cle; P limitation on land carbon uptake may be particularly
important in tropical forests and savannas (Edwards et al.,
2005; Wang et al., 2010; Zhang et al., 2014).

There are several additional land processes that have not
been considered in this current multi-model analysis. These
include the effects of aerosols and tropospheric ozone on the
carbon cycle. Unlike a global forcing agent such as CO;,
the effects of air pollutants (aerosols, NOy, and O3), with
their shorter atmospheric lifetimes, are at the regional scale.
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Aerosol-induced changes in radiation quantity and quality
(i.e. the ratio of diffuse to direct) affect plant productivity and
the land sink (Mercado et al., 2009). From around 1960 until
the 1980s, radiation levels declined across industrialised re-
gions, a phenomenon called “global dimming”, followed by
a recent brightening in Europe and North America with the
adoption of air pollution legislation. Reductions in acid rain
have been found to greatly influence trends in riverine DOC,
vegetation health, and rates of soil organic matter decompo-
sition. Tropospheric ozone is known to be toxic to plants and
lead to reductions in plant productivity, and thus reduce the
efficiency of the land carbon sink (Sitch et al., 2007b; Anav et
al.,2011). Drivers of the land carbon sink related to air pollu-
tion —e.g. N deposition, acid precipitation, diffuse and direct
radiation, and surface O3 — have varied markedly in space
and time over recent decades. Although likely important for
regional carbon cycle trends, quantifying these effects is be-
yond the scope of the present study.

The Pinatubo eruption in 1991, at the start of the study pe-
riod, had a major influence on many carbon cycle processes,
leading to an enhanced land sink over the period 1991-1993.
This has been attributed to a combination of cooling-induced
reductions in high-latitude respiration and enhanced produc-
tivity associated with changes in diffuse radiation (Jones and
Cox,2001; Lucht et al., 2002; Peylin et al., 2005; Mercado et
al., 2009; Frolicher et al., 2013). The direct effect of aerosols
on climate drivers is implicitly included in this study (i.e. re-
sponses to high-latitude cooling, tropical drying, reduced net
incoming solar radiation); however diffuse radiation effects
are not included.

Similar gaps need to be addressed in ocean biogeochemi-
cal models. The ecosystem modules in the current generation
of OBGCM s lack the ability to assess many of the suggested
mechanisms by which climate and ocean acidification could
alter marine biogeochemistry and ocean carbon storage. Pro-
posed biological processes that could influence ocean car-
bon uptake and release involve, for example, decoupling of
carbon and macronutrient cycling, changes in micronutrient
limitation, variations in elemental stoichiometry in organic
matter, and changes in the vertical depth scale for the res-
piration of sinking organic carbon particles (e.g. Boyd and
Doney, 2003; Sarmiento and Gruber, 2006). Some advances
have been made with the incorporation of dynamic iron cy-
cling and iron limitation, multiple plankton groups, calcifi-
cation, and nitrogen fixation (Le Quéré et al., 2005). How-
ever, the evaluation of these aspects of the models is cur-
rently hindered by both data- and process-level information
limitations.

434 Climate and land use and cover data sets
In addition to model structure, the choice of climate forc-
ing and model initial conditions can also contribute to dif-

ferences in the simulated terrestrial carbon sink. At regional
scales, differences in land cover can introduce ~ 10 % un-
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certainty in simulated regional-scale GPP (Jung et al., 2007;
Quaife et al., 2008) and ~ 3.5 % uncertainty for global NPP.
Climate forcing uncertainty tends to have larger effects on
carbon flux uncertainty than land cover (Hicke, 2005; Poul-
ter etal., 2011), with up to 25 % differences in GPP reported
over Europe (Jung et al., 2007) and a 10 % difference for
global NPP (Poulter et al., 2011). Climate forcing uncertainty
and land cover (i.e. PFT distributions) can alter long-term
trends in land to atmosphere net CO, flux and interannual
variability of carbon fluxes to climate (Poulter et al., 2011).
The DGVMs applied here did not consider LULCC. This
is an active area of research; models need a consistent im-
plementation of LULCC. Uncertainties in the simulated net
land use flux are associated with assumptions on the imple-
mentation of LULCC gridded maps (e.g. whether conversion
to cropland in a grid-cell is taken preferentially from grass-
land, forest, or both), simulated biomass estimates, and sub-
sequent decomposition rates. However DGVMs offer the ex-
citing prospect of disentangling the component fluxes asso-
ciated with land use (e.g. direct emissions and legacy fluxes)
and separating the environmental and direct human impacts
on the net LU flux (Gasser and Ciais, 2013; Pongratz et al.,
2014; Stocker et al., 2014).

5 Conclusions

Land models suggest an increase in the global land net C
uptake over the period 1990-2009, with increases in trop-
ical and southern regions and negligible increase in north-
ern regions. The increased sink is mainly driven by trends in
NPP, in response to increasing atmospheric CO» concentra-
tion, and modulated by change in climate. Over the same pe-
riod, ocean models suggest a negligible increase in net ocean
C uptake — a result of ocean warming counteracting the ex-
pected increase in ocean uptake driven by the increase in at-
mospheric CO;. At the sub-regional level, trends vary both in
sign and magnitude, particularly over land. Areas in temper-
ate North America, eastern Europe, and northeastern China
show a decreasing regional land sink trend, due to regional
drying, suggesting a possibility for a transition to a net car-
bon source in the future if drying continues or droughts be-
come more severe and/or frequent. In the ocean, the trends
tend to be more homogeneous, but the underlying dynamics
differ greatly, ranging from ocean warming, to winds, and to
changes in circulation/mixing and ocean productivity, mak-
ing simple extrapolations into the future difficult.

Our conclusions need to be viewed with several important
caveats: only a few models include a fully coupled carbon—
nitrogen cycle, and no model included land use and land
cover changes. Ocean models tend to be too coarse in reso-
lution to properly represent important scales of motions and
mixing, such as eddies and other mesoscale processes, and
coastal boundary processes. Furthermore, their representa-
tion of ocean ecosystem processes and their sensitivity to
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climate change and other stressors (e.g. ocean acidification,
deoxygenation, etc.; Gruber, 2011; Boyd, 2011) is rather
simplistic.

There is a need for detailed model evaluation and bench-
marking in order to reduce the uncertainty in the sinks in
the land and ocean and, particularly, in how these sinks have
changed in the past and how they may change in the fu-
ture. For land ecosystems, a concerted effort is needed in the
DGVM community to incorporate nutrient cycling as well as
land use and land cover change. For the oceans, models need
to improve their representation of unresolved physical trans-
port and mixing processes, and ecosystem models need to
evolve to better characterise their response to global change.

The Supplement related to this article is available online
at doi:10.5194/bg-12-653-2015-supplement.
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Chapter 5: Changes in dry season intensity is a key driver of
regional NPP trends

5.1.1 Introducion

One of the effects of global warming is the acceleration of the hydrological cycle
(Durack et al. 2013). This not only means greater water fluxes (Precipitation and
evapotranspiration) but also more extreme seasonality (Chou et al. 2013). An
additional effect is the increase of extreme climatic events, for example over
recent decades several droughts occurred, such as the drought in the western
USA of 2000-2004 (McDowell et al., 2008; Anderreg et al., 2012) and the 2003
summer heatwave in Europe (Ciais et al., 2005).

Soil moisture controls plant productivity, thus long-term changes in
climate or extreme events may lead to changes in net primary productivity
(NPP) and vegetation biomass. Nevertheless, the effects of changes in
seasonal water availability on annual NPP and biomass over the globe remain
remarkably undetermined. Particularly, because the focus of most drought
indices is annual, which may obscure changes at a seasonal scale.

The objective of this chapter is to explore the relationship between
changing seasonal dryness and vegetation productivity at a global scale over
recent decades (1989-2005), over the 20™ century and over this century.

5.1.2 Methods

Datasets: We used three different observational precipitation products,
Evapotranspiration (ET) from the land-flux merged product (which contains data
from 24 different ET estimates), ET from the TRENDY and CMIP5 models as
well as NPP and vegetation biomass, Vertical Optical Depth (VOD) from
satellite and NPP, ET and precipitation (P) from 10 long-term ecological
research (LTER) sites and 16 Fluxnet sites.

Timeframe: We analysed three time periods. 1) 1989-2005 based on
observational datasets, 2) 1901-2005 based on TRENDY and CMIP5 models
and 3) 2006-2099 based on CMIP5 models.

Drought indices: We used two novel seasonal indices, the dry season length
and the dry season intensity. The first was defined as the number of months per
year where ET was higher than P, while the second is the cumulative value of
ET-P as long as ET is higher than P.
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Analysis: we compare the trend in dry season intensity (DSI) against by dry
season length (DSL); this gave an estimate of the change in dryness by
ecosystem type. We then compared the change in seasonality by ecosystem
(DSI, wet season intensity (WSI) and annual E-P) to study the trend in seasonal
and annual water fluxes. We then established the relationship between
changing DSI and the trend in NPP and biomass. All the analysis was

conducted for the same three time periods.

5.1.3 Results

We found that the trend in DSI increases linearly with DSL (p=3e-23, r’=0.67).
This slope means that over these 17 years (1989-2005) the dry season became
more severe over arid and semi-arid ecosystems, but decreased in intensity
over the wet regions. Over the dry regions this was driven mostly by an
increase in the DSL, while in the wet regions the main driver was a higher P
over the dry season.

Our results also showed that the trend in the dry and wet season tends to
be opposite. This meant that at an annual scale E-P changes are 10 times
smaller than at a seasonal scale. This implies that the widespread use of
aggregated annual drought indices may be misrepresenting the changes in the
hydrological cycle.

We linked the changes in DSI to the trend in NPP and biomass. We
found that seasonal increase in dryness leads to a reduction in both NPP and
biomass over the dry ecosystems and vice versa. In other words, seasonal DSI
trends controls annual NPP trends. The mechanism behind this is the fact that
DSI trends impact wet season NPP, while changes in the wet season had no
link to dry season NPP. Therefore an increase in dryness has a much larger
impact on vegetation productivity than an excess of water.

We presented the paper as it was submitted, but we moved the
supplementary information into the main text it, to aid the visualization of the
results. In adittion we moved the methodology from the end of the paper (as
requested by the journal) to the middle of the paper, to make for an easier
reading.
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Rising temperatures are expected to modify the global hydrological cycle,
altering patterns of precipitation (P) and evapotranspiration (E)".
Seasonal variations in soil moisture, which affect the structure and
function of global biomes, may therefore change with global warming®.
Here we use a seasonal index, the dry season intensity, to estimate
regional trends in water availability and link them to trends in annual net
primary productivity (NPP) and biomass. We include an ensemble of 24 E
datasets, results from 9 Dynamic Global Vegetation Models (DGVMs) and
16 Earth System Models (ESMs). Our analysis is conducted over three
time-periods, 1) 1989-2005, 2) 1901-2005 and 3) the 21°' Century. Results
show a wetness (E-P) asymmetry in dry ecosystems, with dry seasons
becoming drier and wet seasons wetter. These trends are projected to
continue into the future with evidence that they are driven by climate
change, however the impact of decadal variability cannot be excluded
over the 1989-2005 period. Results show a negative correlation between
the trend in the dry season intensity and the trends in annual biomass
from satellite data and NPP from DGVMs at all time periods. Annual NPP
in dry ecosystems is particularly sensitive to the length and intensity of
the dry season, whereas an increase in precipitation during the wet
season has little effect. We conclude that changes in the water availability
over the dry season affect vegetation throughout the whole year, driving
changes in regional NPP. Moreover, these results suggest that the
widespread usage of drought indices aggregated at annual scales is
insufficient for understanding the link between water availability and the

land carbon cycle.
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Global temperatures have risen over the last century due to anthropogenic
greenhouse gas emissions. As a consequence of warming, fluxes of water in
the atmosphere have increased, altering patterns of precipitation (P) and
evapotranspiration (E)3. This has important effects on the water cycle4'8,
although long-term global trends in hydrological variables are difficult to
distinguish from decadal variability*~®, partly due to the uncertainty of the
underlying observational datasets®'®. Nonetheless, some regional (or

latitudinal) trends can be identified'"'?

, and a global increase in the range
between dry vs. wet season precipitation has been reported?, particularly over
the tropics™>.

Soil moisture controls plant photosynthesis, influences growth and
mortality, and thus affects NPP and biomass®'*'°. There are several examples
of this mechanistic relationship: The 2003 heat-wave and drought in Europe
was responsible for a steep decline in NPP'®; over the Amazon the dry season
has increased leading to more fires and lower NPP'’; and climate-driven
drought was responsible for the continuous decrease in NPP over the
Mongolian steppe'®. Nevertheless, the effects of changes in seasonal water
availability on annual NPP and biomass over the globe remain remarkably
undetermined. This is partially due to a lack of observational data, but also
because commonly employed drought indices may not necessarily best relate
to changes in land biogeochemistry (e.g. Standard precipitation index —SPI- or
Palmer Drought Severity Index —PDSI-) (Figure S1)°.
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Figure S1. Timeseries of annual NPP and three global averaged drought
indices DSI (left), PDSI (middle) and SPI (right) (top) and linear regression of
trends for the same indices against binned NPP trends (bottom). Values for the
temporal correlation and R? are given. While trends in all indices capture the
trend in NPP correctly, there are clear differences in their ability to reproduce
the IAV of NPP, with DSI showing the highest correlation.

The concept of dry season is common in the literature, yet there is no
single definition. Some studies use a fixed time period to delimit dry seasons
(e.g. driest or 6 month period)?°, while other definitions assume dry season
length varies and are based on climate thresholds (e.g. the number of months
that account for less than 30% of the rainfall)'’. In order to investigate the link
between changes in the availability of water contained in the land surface and
NPP, we consider two seasonal indices based on net water fluxes, i.e. the
difference between E and P. The first index is the dry season length (DSL),
which is defined as the cumulative number of months in which E is larger than P
over a year. The second index is the dry season intensity (DSI), defined as the
cumulative value of E minus P during months when E is higher than P. The DSI
is similar to the maximum climatological water deficit (MCWD) as defined by
Mahli et al.?", and applied for Amazonia, but rather than using calendar years,
we allow for dry season to go over the end of a calendar year. Unlike the
MCWD, we also allow E to vary, rather than fixing it at 100 mm / month, and we
calculate it at a global scale. Both DSL and DSI are computed using observed

167



precipitation (mean of three products: CRU3.1%2, CPC* and GPCP?*) and a

product synthesizing E estimates from various sources’.

Methods
Data
We use observed monthly precipitation (P) data from CRU3.1%2, CPC* and
GPCP? for the two periods, 1989-2005 and 1901-2005. For the period 1989-
2005, we use monthly evapotranspiration (E) from the landflux-merged
product’, which represents the ensemble of 24 different E datasets, and is the
closest data available to observations. For the century timescale, 1901-2005,
we use modeled monthly NPP and E from an ensemble of 9 DGVMs from the
S2 (CO; + Climate) and S1 (CO- only) simulations of the TRENDY inter-
comparison project®® and also an ensemble from 16 ESMs from CMIP5%. The
0.25° annual passive microwave satellite-based vegetation optical depth (VOD)
global product from 1989 to 2005 is used. VOD is an indicator of vegetation
water content of aboveground biomass and able to capture long-term biomass
changes over various land cover types at the global scale'®. Monthly P, E and
NPP for the period 2006-2100 were extracted from an ensemble of 16 CMIP5
ESMs from simulations for the future greenhouse gas pathway scenarios
RCP2.6 and RCP8.5 (Table S1, Table S2).

All data were regridded to a common 1° x 1° grid. In order to remove
especially low productivity / desert areas, a mask is applied whereby grid cells
where NPP is less than 5% of mean global NPP are excluded.
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Table S1. List of TRENDY-models used for the calculation of E, P and NPP
over 1901-2005.

DGVMs E NPP S2 NPP S1 Biomass

(climate +C02) (CO, only) (C Veg)
CLMACN X X X X
HYLAND X X X X
LPJ X X X X
LPJ-GUESS | X X X X
OCN X X X X
ORCHIDEE | X X X X
SDGVM X X X X
TRIFFID X X X X
VEGAS X X X X

Table S2. List of CMIP5-models

ESMs Historical Nat. | Historical | RCP2.6 RCP8.5
1901-2005 1901-2005 | 2006-2100 | 2006-2100
BCC-CSM1-1-M n.a. X X X
BCC-CSM1-1 X X X X
BNU-ESM X X X X
CanESM2 X X X X
CCsm4 X X X X
GFDL-ESM2G n.a. X X X
GFDL-ESM2M X X X X
HadGEM2-ES X X X X
IPSL-CM5A-LR X X X X
IPSL-CM5A-MR X X X X
MIROC-ESM-CHEM X X X X
MIROC-ESM X X X X
MPI-ESM-LR n.a. X X X
MPI-ESM-MR n.a. X X X
NorESM1-ME n.a. X X X
NorESM1-M X X X X

Long-Term Ecological Research (Knapp and Smith, 2010): 10 sites, each
sites contains unique methodology for the estimation of NPP
(http://www.lternet.edu/node/144). We used data for the period 1989-1998 and

calculated the NPP trend and DSI trend for each site. For the DSI calculation

we used observed precipitation and ET from the landflux product for the nearest
gridcell. We then calculated the trend in NPP for models and in VOD for the
satellite for the same sites (nearest gridcell).

Fluxtowers (Anav et al. in progress): 16 sites, each site contains data for
a period equal or shorter to 1990-2005, with an average of 6 years per site.
GPP was calculated as the positive integral of the NEE flux for the summer
months (JJA) for each year and we derived a linear trend. The DSI trend was
computed for the same years (different for each site) based on the nearest grid.
We then replicated the results with the DGVM NPP and Satellite VOD.
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Dry season intensity and length

We used two indices of water availability:

* Dry Season Intensity (DSI) is computed as the time-integrated (in months) E
minus P, for as long as the value is positive; when P>E, DSI| becomes 0.
Hence, as the number of consecutive months with water deficit
increases, DSI becomes more positive. This is done allowing the
integration to go across years, but DSI is defined as the maximum value
for each year (i.e. in the event of two dry periods within a year). The
same definition is used for Wet Season Intensity (WSI), but integrating
while P is greater than E.

* Dry season length (DSL) is defined as the consecutive number of months
where E>P (or when DSl is positive). There can be multiple dry seasons
in one year. DSL is the sum across dry seasons for a given year.

Data analyses
DSI, DSL and WSI linear trends are calculated for each grid for the period 1989-
2005 inclusive. In Figure 1d, the DSI trend is plotted against binned DSL
values, by dividing DSL into 100 intervals (each size 3.65 days), so each point
on the plot corresponds to the mean of all grids with the same DSL value. To
calculate the error on the regression slope we run a bootstrap test randomly
removing 20 per cent of the data and re-calculate its value; this procedure was
replicated 1000 times. The results are plotted as “box and whiskers” format
(Figure 1e). The same protocol is applied for the modeled data over the
identical 17-year period, the 20" century and the two future scenarios.

For Figure (left) we calculate the range in the seasonal trends (WSI trend
— DSl trend) and plot it by ecosystem type (arid: >6 months of DSL semi-arid:
<6 and >3 months of DSL, and wet: <3 months of DSL). We also plotted the
standard error as bars for each point. For Figure (right) we bin E-P trend over
the dry season, wet season and annually against the DSL using the same
procedure as in Figure 1d and plot a simple linear regressions for each. Values
for the slope are shown.

For Figure 3 the trend in NPP is calculated from the S2 run (a), and the
biomass trends from the satellite product (c) for the period 1989-2005 for each
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grid cell are plotted. Trends for both variables are binned by the DSI trends (b
and d). The slope is calculated following the bootstrap procedure described
above. We used the same procedure for the observed (TRENDY) and modeled
climate (CMIP5) for the estimated effects of climate only (TRENDY S2
minusS1) over the whole century (1901-2005) and for the two future scenarios
(2006-2100) (Figure 3e).

Finally for Figure 4 we split the global annual NPP and season intensity
into dry and wet seasons and calculate the trend for the period 1989-2005,
plotting all possible data combinations as binned linear regressions. Each panel
shows the global mean results.

For all figures m represents the slope of the linear regression and p the
statistical significance.

Results and Discussion

The DSL closely corresponds to the distribution of global vegetation
cover: evergreen (both broadleaf and needlleaf) forests coincide with areas of
0-3 months of dry season, dry forests and semi-arid ecosystems to those with
3-6 and arid ecosystems to those above 6 months (Figure 1a). DSL can be
used as an index to aggregate ecosystems with similar phenological
characteristics. DSI on the other hand represents an aridity gradient.
Ecosystems that face the most severe water stress have the highest DSI values
(Figure 1b). Sensitivity to drought (i.e. DSL) has been shown to be one of the
main determinants of plant distribution in some tropical forests?® and changes in

the dry season intensity (DSI) can rapidly alter vegetation distribution.
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Figure 1. Annual average a) dry season length (days yr") and b) dry season
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(mm yr’2 clay’1 )
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intensity (mm yr'") calculated during the period 1989-2005, c) Dry season
intensity trend (mm yr?) during 1989-2005, d) binned dry season intensity trend
plotted against dry season length, while the red line represents the linear
regression through the data (p<0.001, R?=0.67), e) median value for the
regression slope of d) plus error, results from 1000 bootstrap simulations (box
and whisker) for different datasets: observations, TRENDY-DGVMs, and CMIP5
ESMs (historical, natural forcing and two future RCPs). Green: 1989-2005, Red:

1901-2005, Blue: 2006-2100. In grey mean slope value for 15-years periods

(last year).

When linear trends in DSI are calculated for the period 1989-2005 (for

which more E estimates are available), clear regional patterns emerge (Figure
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1c). We find an increase in DSI (i.e. it is getting drier) over Amazonia and many
arid and semi-arid regions, including parts of temperate South-America, central
USA and northern Mexico, the Mongolian steppe, eastern Africa, western
Australia and eastern Asia. In contrast, a negative trend in DSI is found over the
high northern latitudes, eastern Brazil and central Africa. Trends in DSI are
correlated to trends in PDSI (r=0.75), soil moisture derived from the DGVMs
(r=0.59) and soil moisture from satellite observations®® (r=0.41), which shows
consistency of the drying/wetting regions across the planet for this time period
(Figure S2). This suggests that DSI can ultimately be used as a proxy of soil
water availability and its trends, with the advantage of including ecologically
meaningful units that clearly link to vegetation processes (i.e. change in NPP
per mm of water deficit) and a better representation of the temporal evolution of
NPP (Figure S1 and S2).
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spat.cor=-0.45 =
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Figure S2. Binned relationship between the trend in DSI trend (1989-2005) and
trends in soil moisture derived from models (left), soil moisture from satellite-
retrievals (Dorigo et al. 2012) (middle) and PDSI trend (right). Values for the
spatial and linear correlations are given. DSI trends closely resemble model-
simulated soil moisture (SM) trends and PDSI trends, showing agreement of the
wetting/drying regions globally.

The trend in DSI increases linearly with DSL (p=3e-23, r’=0.67) (Figure
1d 1989-2005). This slope means that over these 17 years, the dry season
became more severe over arid and semi-arid ecosystems, but decreased in
intensity over the wet regions. However, because of the short timeframe this
could be driven by the natural variability of the system. To rule this out we
replicated the observed results using E calculated from 9 DGVMs to explore the

173



behavior of the system further back in the 20™ century, as well as simulations
from 16 CMIP5 models under natural and all (natural and anthropogenic
combined) forcing. We plot the value for the slope and calculate its error based
on 1000 bootstrap simulations using 80% of the data. For all cases a positive
slope means that the dry season gets drier in regions of arid ecosystems than
in areas where wet ecosystems are present. The same pattern was found in the
observational-based products and models for the 17-year time period, with
remarkably similar slope values (m=0.03 mm yr? day ' of dry season) (Figure
1e green). Over the period 1901-2005 only a small change in intensity across
ecosystems is observed, mostly driven by the last 30 years (Figure 1e red).
However, when the century is split into 15-year intervals, the increased E-P
imbalance during the dry season across wet and arid ecosystems becomes
more evident in the 1989-2005 time-period. Over these 17 years the consistent
trend in CMIPS simulations under all forcing and the difference with the
simulations under natural forcing suggest that the observed trend is unlikely to
be driven by the natural variability of the Earth System but is rather an effect of
anthropogenic climate change. The pattern is also similar for the two future
scenarios: the less severe future scenario RCP2.6 (IPCC, 2014) revealed a
similar slope to the present-day, in spite of temperature and precipitation
stabilization at the end of the 21 century; while in the more extreme RCP8.5
scenario the slope was almost twice as strong (Figure 1e blue). Hence, both
the recent observationally-based data and the model projections are found to
display a similar tendency towards an increased DSI in regions with long DSL,
although decadal variability could also play a role for the former given the
limited length of the considered time period.

The change in DSI can be driven by an alteration of the DSL (change in
length) or by a change on the distribution and magnitude of E and P during the
dry season itself (change in the amplitude), or by both effects combined. To
determine the possible causes of the change in DSI, we compare the DSL to its
trend (change in length) and to the maximum monthly difference in E-P (change
in amplitude) using the observational-based datasets for the period 1987-2005
(36). On average, DSL increased over the arid ecosystems, but they showed no
change in the amplitude, indicating that the already short wet season has
become even shorter, leading to higher water deficits during the dry season. In

the semi-arid regions, DSL increased with decreased depth, but slightly higher
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P occurred in the dry season. In the wet ecosystems we found no change in the
length, but higher P than E during the dry season (Figure S3).
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Figure S3. Top. Left: Dry season length trend. Right: Dry season intensity
trend. Middle. Left: Change in the dry season length trend across ecosystems.
Right: change in the depth (min P-E) of the season, dry ecosystem. Bottom.
Change in length, depth and DSI by ecosystem type (wet, semi-arid and dry),
with no climate change (as estimated from TRENDY for the period 1901-1915),
black) and due to the effect of climate change (as estimated from TRENDY for
the period 1989-2005). Changes in the dry season length are not always linked
to changes in DSI. Globally those two trends have a spatial correlation of 0.21.
For the wet ecosystems this relationship is only 0.08 and for the dry it is 0.034.
It seems that the dry season in wet ecosystems remained equally longer, with
decreased depth, leading to less intense DSI. In semi arid ecosystems both
effects cancel each other out: longer dry seasons but decreased depth lead to
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small changes in DSI. In the dry ecosystems the depth remained similar but we
found longer dry seasons, which lead to an increase in DSI.

Variations in seasonality trends are also present during the wet season.
However, arid and semi-arid ecosystems display an increase in seasonal range,
while only small changes appear in the wet ecosystems. This explains why
there is only a small difference across ecosystems when only annual E-P is
used as an index. This increase in range between the dry (+0.003 mm/day) and
the wet season (-0.0029 mm/day), translates to a zero-sum mean annual trend
(-0.0001 mm/day) (Figure 2, left panels), potentially leading to the incorrect
assessment that changes in E-P are generally small. In reality, we find that arid
and semi-arid ecosystems face more extreme seasonality with more intense dry
seasons, but they only display minor changes in annual mean E-P (Figure
right-hand column). This increased range has also been found by Kumar et
al.?” and by Cho et al.? at a global scale for precipitation and by Huntingford et
al.?® for temperature. However this is the first time this is explained by wet and
arid regions.
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EPlend E-P trend Dry Season (mm yr'z)

Figure 2. Left: E-P trend (mm yr) binned by dry season length in the dry
season (top), wet season (middle) and annual (bottom). Error bars (standard
error) is shown as grey bars for each point. In parenthesis the percentage of
NPP those ecosystems represent. A simple linear model was fitted to each plot
and the slope value is presented (m), all slopes are statistically significant
(p<0.001). Right: gridded E-P (mm yr?) trend by season in arid ecosystems,
white areas represent other ecosystems.
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As the dry season represents the maximum water deficifor vegetation,
we hypothesize that this trend in dry season E-P imbalance between arid and
wet ecosystems must also have an impact on vegetation productivity. We
plotted the trend in NPP against the trend in DSI and found a high correlation
between them (Figure 3a). We also found this linear relationship between DSI
and modeled biomass and satellite-based vegetation changes (Vegetation
Optical Depth (VOD) trends), for the period 1989-2005.

On the other hand, while NPP increased globally in all time periods (due
to CO;, fertilization), our results show smaller NPP trends and negative biomass
trends in regions where DSI became more positive (Figure 3bcd). In other
words, an increase in DSI leads to a decrease in vegetation productivity at a
global scale but particularly over semi-arid and arid ecosystems. These results
hold for different models, at smaller spatial scales (Figure S4) and when using
observed data (Figure S5). This extends on the argument of Poulter et al.?°
showing a large contribution of arid and semi-arid ecosystems to the
interannual variability of the C-cycle, driven by patterns we show above.
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E-P trend Dry Season (mm yr2) E-P trend annual (mm yr?)

R2=0.29
p<0.001

NPP trend

E-P drv trend

Figure S4. The Amazonian region as an example case for the relationship
between DSI trend and annual NPP trend (1989-2005). The E-P trend for the
dry season shows a clear link with annual NPP trends for the Amazon (i.e.
increase productivity as it gets wetter). However, annual E-P shows an opposite
trend (i.e. increase productivity when it is getting drier). This example shows
how the dry season controls annual NPP. A similar analysis, linking cumulative
water deficit (similar to our DSI see main paper) to NPP for the Amazon over
the period 2005-2010, has been recently published by Doughty et al. (2015)".
The authors found that years with extreme CWD or DSI lead to increase three
mortality and decreasing NPP.
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Figure S5. Linear regression between DSI trend (x-axis), observed GPP or NPP
(left), modeled NPP (middle) and satellite VOD (right) trends for two different set
of observations: LTER (up) and FLUXTOWERS (bottom). The same negative
relationship we found at a global scale for DSI trends vs NPP trends was found
at local scales using observed data.
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Table S3. Changes in DSI and NPP in CMIP5-simulations under the emission
scenario RCP2.6. We calculated mean DSI trend for the dry, semi-arid and arid
ecosystem and multiply it by the relationship between NPP-DSI in RCP2.6
(Figure 3), we then extrapolate by the century and multiply by the area of each
ecosystem type. The result is the change in NPP driven by DSI.
We then compare this value with the total change in NPP under RCP2.6 for

2005-2100.
Ecosystems | DSI trend NPP — DSI Change in Changein | Area Total
(mm/yr) slope NPP due to NPP due to | (10*2 Change
(9C/m2/mm) | DSI DSI m?) due to
(gC/m2/yr) (gC/m2) DSI
2005-2100

Arid +1.1 -0.22 -0.24 -22.8 40 -912

Semi-Arid +0.2 -0.22 - 0.04 -3.8 54 -205

Wet -0.5 -0.22 +0.11 10.45 45 +470

Total change in cumulative NPP by 2100=-646PgC (total NPP = 6175).

Reduction in NPP =10.45%

Table S4. Same as Table S3 but for RCP8.5

Ecosystems | DSl trend NPP — DSI Change in Changein | Area Total

(mm/yr) slope NPP due to NPP due to | (1072 | Change
(gC/m2/mm) | DSI DSI m) due to
(gC/m2/yr) (gC/m2) DSI
2005-2100

Arid +1.7 -0.3 -0.33 -31.3 40 -1240

Semi-Arid +0.5 -0.3 - 0.06 -5.7 54 -307

Wet -1.2 -0.3 +0.15 14.25 45 +640

Total change in cumulative NPP by 2100=-905PgC (total NPP = 6775).

Reduction in NPP =13.35%
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When analysing the models we found that the NPP-DSI slope was similar using
observed and modeled DSI over the period 1989-2005 in both TRENDY (m=2.2
+ 0.4 gCmm™') and CMIP5 models (m=2.0 + 0.6 gCmm™") (Figure 3d green).
When the trend was simulated using CO»-only simulations the slope was not
different from zero (m=0.3 + 0.5 gCmm™"), but when removing the effect of CO
and leaving climate only the slope was similar to the observed one (m=2.5 + 0.
gCmm™'5) (Figure 3d climate-only). In other words, the effect of changing DSI
in NPP is likely to be driven by climate change; so while the mean annual NPP
trend is driven by the CO, fertilization effect the regional variations in the NPP
trend are governed by climate induced DSI trends. It is notable that this
increasing effect of the hydrological over the land carbon cycle begins over the
last 30 years, after which the land C-cycle sensitivity to the DSI trend is
expected to remain at present-day levels for the next 100 years (Figure 3d
blue). This implies that for the next 100 years, arid and semi-arid ecosystems
will face more intense dry seasons, which alone would in turn lead to a NPP
reduction of 230-310 gCm™ for the arid and of 30-50 gCm™ in the semi-arid
ecosystems by 2100, depending on the future climate scenario This translates
to a global reduction of 10-13% of total NPP by 2100 due to increased dryness
(Table S3 and S4).

Our results indicate that DSI trends are closely link to annual NPP
trends. This is consistent across datasets coming from multiple sources
(satellite, direct measurements, fluxtowers, DGVMs, ESMs), at multiple time-
scales (recent decades, past century and 21 century) and at different spatial
scales (local, regional and global) and it is likely to be caused by climate
change. An increase in the water deficit over the dry season is likely to have a
large impact on annual NPP, particularly in dry ecosystems and DSl is likely to
be a fundamental constrain for future NPP.
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Figure 3. a) Binned modeled NPP trend (gC m™ yr?), b) Binned modeled
biomass trend (KgC m? yr™') ¢) Binned satellite biomass trend (VOD yr™') vs.
DSl trend (x-axis). The negative slope indicates a higher DSI trend lead to a
decrease in NPP or biomass trends. This was consistent across datasets.

d) Median slope values plus error for NPP trend vs Dry Season trend for:
TRENDY-DGVMs, CMIP5-ESMs (historical and two RCPs) and TRENDY-
Climate-Only. Green: 1989-2005, Red: 1901-2005, Blue: 2006:2100. All plots
have 100 bins. The value for the slope (m) is presented for a, b and c.
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To explore why the dry season effect on NPP drives its annual trend (that is dry
season behavior might also influence the other season), we split NPP between
wet and dry seasons and compare it with the change in wet and dry season
intensity during that time. We found that wet season intensity (WSI) trends are
only linked to changes in NPP during the wet season, but not during the rest of
the year (Figure 4). In contrast, the effect of changing dryness in the dry
season appears in both seasons. This means that changes in DSI also affect
productivity in the wet season. We propose two possible mechanisms for this
process: The first one is that increasingly dry soils take longer to recover,
leading to shorter effective growing seasons and longer time periods with
closed stomata. This in turns leads to C starvation and reduces C reserves, leaf
area index and NPP, which in the long-term also reduces biomass growth. The
second possible mechanism is an increase in mortality as a consequence of
hydraulic failure, which in turn leads to decreasing NPP*°?'. On the other hand,
changes in the wet season are not carried through to the dry season, mainly
because excess water is not stored and is likely lost as river runoff. Cadule et
al.*? found a similar pattern when comparing wet and dry years across the
planet. Therefore an increase in dryness has a much larger impact on

vegetation productivity than an excess of water both seasonally and annually.
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Dry Season NPP Trend (gC m2yr?)

Wet Season NPP Trend (gC m2yr?)

p<0.001
R2=0.34
m=-0.1

Dry Season Intensity Trend (mm yr2)

p<0.001
R2=0.85
m=-0.4

Dry Season Intensity Trend (mm yr2)
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Figure 4. Top left: dry season NPP trend (gC m™ yr?) against dry season water
intensity trend (mm yr?). Top right: wet season NPP trend against wet season
water intensity trend. On the bottom: the same effect but across seasons. The
value for the slope is presented in each panel (m).
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We conclude that changes in water availability over the dry season affect
vegetation throughout the whole year, driving trends in net primary productivity
globally at different time scales (past, present and future under climate change).
Our seasonal index, the dry season intensity, gives a strong estimate of
expected evolution of NPP using simple calculations derived from a basic
water-balance. Moreover, we show evidence that the widespread use of
drought indices aggregated at annual scales is insufficient for understanding the
linkages between water availability and the land carbon cycle, as the effects of
changes in specific seasons might be lost on an annual scale. Finally, our
results suggest that the strength of the carbon-climate feedback might intensify
in the future, reducing natural offsetting of fossil fuel emissions through
vegetation capture of atmospheric CO, as a consequence of increased
seasonality and dryness intensity.
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CHAPTER 6: Conclusions

This chapter summaries the research of this thesis, the key findings, the
limitations to the different analyses, the opportunities for further research and
my novel contribution to my field of study.

6.1 Summary of the research

The work of my thesis comes from two different areas: model evaluation and
process analysis. In the first part | evaluated the ability of DGVMs to reproduce
observed data, and generate a new methodology for evaluating the phenology
module of these models. | also give examples on how DGVMs can be
evaluated over the tropics, where less data is available, using novel
observations for different scales.

In the second part | analysed the relationship between NBP and NPP
trends and recent changes in climate and atmospheric CO,. Results show that
globally NBP and NPP increased due to rising CO, but this was not
homogeneously distributed across the globe. | showed that the decreasing
trends in NPP over several regions were due to an increase in the dry season

intensity and length.

6.2. Key findings

The main findings of my thesis can be separated into the same two parts: the
ability of models to reproduce observed data (chapters and 3) and the analysis
of processes that drive changes in land-C (chapters 4 and 5).

In chapter | found that all models overestimate the length of the growing
season, driven by an earlier onset and later offset. As a consequence they also
overestimate the trend in mean LAI. By comparing models that were forced with
real climate (uncoupled) and forced with their own climate (coupled), it was
determined that the misrepresentation of the phenology lies on the structure of
the land component of the models.

Chapter 3 shows that modelled and observational variables of the land C
cycle over the tropics are similar when comparing area means (at least over the
past 20 years), however important differences on the temporal evolution and
the estimation of NBP and NPP were found over certain ecosystems. In the
case of Africa | showed that the modelled NBP trend is opposite to that
simulated by atmospheric inversions, which was related to two regions (the
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Sahel and the Congo Basin). For the case of Mexico, models and observations
(satellite and field data) have a high spatial correlation, but disagree in the C
stored over low-density vegetated areas. These results show that modelled
NBP and NPP over semi-arid regions (e.g. grasslands, shrublands) needs to be
improved for a more accurate representation in future scenarios, particularly
since these regions are among the most susceptible to climate change
accordingly to the most recent findings (Poulter et al. 2015; Ahlstrom et al.
2015).

The attribution of the trends in NBP over the last 20 years was the main
focus of chapter 4. Here model results suggest NBP increased steadily primarily
as a result of CO; fertilization on NPP over the last 20 years (1990-2009),
however the trend was not homogeneously distributed across the globe, due to
trends in the climate. Several regions where NBP decreased were identified
(e.g. South Amazon, Mongolian Steppe or Southern USA) as a consequence of
decrease in precipitation.

Chapter 5 continues where chapter 4 left off, linking changes in dryness
to the trend in vegetation NPP. Here | found that, on average, arid ecosystems
faced a longer and more intense dry season over the last 17 years (1989-2005),
with the opposite is true for wet ecosystems. As a consequence climate lead to
a decrease of regional annual NPP. This decreasing pattern would be obscured
if using commonly annual aggregated water fluxes indices (e.g. PDSI or PSI),
as the change in the wet and dry seasons tends to be counterbalance although
their impact on NPP does not. Changes in the seasonality of water availability
(dryness/wetness) are the key drivers of annual NPP at the regional scale.

191



6.3. Bringing the thesis together: evaluation and development

One question that arises from the thesis is how both parts are linked together,
this is how model evaluation can help improve the models and lead to better
understanding of the processes driving land C. From the first two chapters —
model evaluation- two important conclusions arise: 1) models tend to
overestimate the length and trend of the growing season over the NH and 2) the
C budget over semi-arid regions. Both of this findings can help improve the
models and has done so already.

On the first hand our findings on LAI had already help improved
phenology on several models such as LPJ (Forkel et al., 2015) and SSiB4-
TRIFFID (Zhang et al., 2014). The integration of these findings and the novel
satellite data into the DGVMs has lead to a deeper understanding on the
controls of phenology over the NH. For example for the model LPJ, Forkel et al.
(2015) showed that its not only temperature, but also water availability what
controls the long-term trend of LAl in the NH. For the case of the model
TRIFFID, the implementation of interactive forage and foliage improved the
representation of the phenology and showed that vegetation distribution and
competition are key factors controlling LAl (Zhang et al., 2014). While additional
work is needed to improve the DGVMs phenology module, it is also noteworthy
that all models reproduce a consistent greening trend over the NH.

On the second hand our work showed that models tend to overestimate
the C stocks over semi-arid regions. This is a fundamental finding because
recent changes in the global C-cycle are driven by the response of semi-arid
ecosystems to climate (Ahlstrom et al., 2015; Poulter et al., 2015). From our
fingins in chapter 4, it seems that when the climatic signal is strong enough and
consistent over time (i.e. the increase in DSI over tropical South America), all
models display a similar response in the C-balance (i.e. a decrease in NBP
trend). However, in regions where the signal is not strong enough or not
consistent across different years (i.e. changes in DSI over Southern USA)
models do not agree on the regional response (Figure 6.1). Our findings that
DSl exert a strong control on annual NPP, may help improving model response
to drought and climate change, as we have shown a similar pattern for multiple
datasets coming from different sources (field data, satellite, DGVMs, ESMs).
The effect of accumulated stress climatic signals -for example DSI- on the

vegetation (i.e. the effect of continuous or prolonged dryness on vegetation
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mortality) may help improving the drought response in the models as suggested
by our findings, but comparison with other vegetation estimates (e.g. satellite

biomass) is imperative to have reliable results.
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Dry Season Intensity Trend (mm yr"2 ) NBP trend (gC m~2 yr‘2 )

Figure 6.1 Model agreements for the DSI trend (left) and NBP trend (right) over the period 1990-2009 for an ensemble of 9
DGVMs. Stippling represents regions where 66% of the models agree on the sign of the trend. Regions where the climatic
signal is strong show high model agreement, which translates into a strong signal and model agreement on the land-C
balance.



6.4. Limitations of this study and opportunities for developing future
research

| can find at least three important limitations to the studies presented in this
thesis: 1) the omission of Land Use Change (LUC) as a driver, the poor
representation of fire and nitrogen cycle in the DGVMs, 2) the need for more
comparisons with field observations to conduct a more in-depth model
evaluation and 3) the short time window analysed for most chapter, which
disregard the role that decadal variability may play in the Earth-System.

6.4.1 Missing Processes in the DGVMs used here

DGVMs have developed a great deal since their first versions in the 1980s-
1990s, however several important processes are either missing or not fully
evaluated in the latest generation of DGVMs. Three particularly important
processes are the effect of LUC, fire dynamics and a full nitrogen cycle.

The DGVMs used in this thesis do not include LUC —except for those
used on the analysis on the C-cycle of Mexico-, a process that can account for
a flux of C to the atmosphere of similar magnitude to annual NEP (Hurtt et al.,
2013). Managed ecosystems represent at least 40% of the total land
(Ramankuty and Foley, 1999), which means that for most regions of the globe
(e.g. central Africa, USA, Europe, India) the estimates of NEP are higher than
the actual carbon stored in reality. This was clear in Chapter 3, where the mean
NEP for Africa in the models was higher than the atmospheric inversions (that
do take into account LUC). Nontheless other chapter (e.g. LAl trends, drought
trends) are most likely not to be affected by LUC and the same spatial and
temporal patterns would emerge if LUC were included.

The new runs for TRENDY now include some representation of LUC
(named S3) where all models have been forced by historical changes in crop
and pastures, hence considering LUC (LeQuéré et al., 2014). However, the fate
of carbon after land conversion and the description of croplands and pastures
are still relatively crude in most models.

In some particular years (e.g. high ENSO) fire can return the same
amount of C that is normally fixed by NEP (van der Werf et al., 2010). In other
words, it can quickly change an ecosystem from being a sink into a source. As a
result fire interannual variability (IAV) is captured in the IAV of atmospheric COo.
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Most models lack a fire module. Hence, they implicitily account for fire as part of
the heterotropical respiration, whose IAV is driven by other factors.

Another fundamental missing piece is the interaction between the C and
the nitrogen cycles (Ciais et al., 2013; Fernandez-Martinez et al., 2014; Wider et
al., 2015). Nitrogen concentration in the leaves is an important limitation for
photosynthesis and places with little nitrogen availability may have a smaller
GPP than modelled based on the C cycle alone (Fernandez-Martinez et al.,
2014). Only a few models include a full representation of the N cycle (Zaehle et
al., 2011; Clais et al., 2013). Other nutrients, such as phosphorus and
potassium may also play a similar role, but the inclusion of these elements in
DGVM is much less mature than nitrogen (Wieder et al., 2015).

Finally, ecosystem level processes such as forest gap dynamics, plant
mortality, or forest re-growth and succession are not explicitly included in most
DGVMs, which could also lead to discrepancies with observed data (Michaletz
et al., 2014). Different DGVMs groups are trying to include and evaluate the
processes mentioned above, a task that will likely continue over several years,
representing a fundamental opportunity for future research.

6.4.2 Lack of comparison with field-observed data

Nowadays it is clear that DGVMs need to be evaluated against observed data
to improve their performance. The availability of new products, such as satellite
observations (Liu et al., 2015) or atmospheric inversions (Pelyin et al., 2012)
represents a great opportunity to start benchmarking the models. On the other
hand observed field data, particularly long-term ecological data (Knapp et al.,
2001), the Free Air CO, enrichment experiments (Ainsworth and Long, 2004)
and forest inventory plots (e.g. Rainfor; Brienen et al., 2015), yield great insight
on ecosystem processes and provide direct measurments to test and evaluate
the models.

There is an increasing need to evaluate models in order to improve their
representation of different processes and nowadays there is already enough
observations for most part of the globe to do so. An implementation of different
evaluation benchmarks is needed and represents an important opportunity for
future research, and although this is already ongoing (e.g. Kelley et al., 2013;
Cadule et al., 2013; Blyth et al., 2010) efforts are still needed to implement it.
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6.4.3 The impacts of decadal variability

One fundamental part of analysing any Earth-System process is that different
drivers act at multiple time scales (Prentice et al., 2013). Our understanding of
seasonal and inter-annual cycle on NPP, NEP and NBP has increased a great
deal over the last 30 years, likewise for the long-term trend over the century.
However there is high uncertainty over the change in the drivers over
intermediate time periods (decadal time-scale). This means that decadal
changes in the carbon cycle may not be properly addressed when analysing
one or two decades, as it is the case of my thesis. This implicates that the
interpretation of some regional trends that appear in one direction, could
potentially shift when analysed over longer time periods. In other words, the
response of vegetation over the last 30 years may be partly driven by climate
variability rather than only by climate change. As more global observational
data is available for longer series of time, a re-analysis of the processes driving
NBP and NPP is needed; particularly, linking the vegetation C cycle and the

hydrological cycle.

6.5 Novel contribution to the field of study
The analysis developed in this thesis contributes to the field of study in two
ways. The first one is the creation of novel methodologies for the evaluation of
DGVMs. Chapter provides a simple benchmark to evaluate the phenology of
different DGVMs or different model versions, providing numeric estimates for
the performance of the models in reproducing observed satellite data.
Furthermore the same methodology can be applied using different
observational data at multiple scales. This benchmarking method has been
used by other to evaluate and improve their own models (e.g. Zhang et al. 2015
or Forkel et al. 2015). The results from Chapter 3 showed the need to improve
models over semi-arid and arid ecosystems (e.g. grasslands, shrublands);
however the main contribution of this chapter is the estimation of regional
budgets for the C cycle, a fundamental piece of information for stakeholders
and policy makers. For the particular case of Mexico, we estimated that the
country was a sink of C over the last 60 years, which is opposite to all other
available estimates.

The second main contribution of my research is the analysis of

processes affecting the C cycle. Chapter 4 provides a background study to
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identify the main driver of regional NBP and NPP trends, with the addition of
providing estimates for global land C fluxes, fundamental to our understanding
of the C cycle. Following this study, | analysed in-depth the regions where
simulated NPP decreased (chapter 5) and found that it was driven by an
increase in the dry season length and intensity. This is the first time, as far as |
know, that changes in annual NPP are explained by changes in seasonal water
fluxes. Furthermore, | showed that arid ecosystems are likely to face more
extreme conditions, with decline in NPP in the future. This builds upon recently
published papers showing that dryness and drought may play a bigger role in
regulating the land C cycle that previously expected (e.g. Poulter et al. 2014,
Doughthy et al. 2015, Ahlstrom et al. 2015).
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