
 

 
Enhancing Electrical and Heat Transfer Performance of High-Concentrating Photovoltaic 

Receivers 

 

Submitted by Leonardo Micheli to the University of Exeter 
as a thesis for the degree of  

Doctor of Philosophy in Renewable Energy 
In April 2015. 

 

 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

 

 

I certify that all material in this thesis which is not my own work has been identified 

and that no material has previously been submitted and approved for the award of 

a degree by this or any other University. 

 

 

 

Signature: ………………………………………………………….. 

 

 

  



ii 

  



iii 

 

 

 

 

 
ΣΤ. ήδη παρά τοϊσι φαρμακοπώλαις τήν λίθον  

ταúτην έόρακας, τήν καλήν, τήν διαφανή, 
άφ´ής τό πùρ άπτοuσι; 
ΣΩ. τήν üαλον λέγεις; 

ΣΤ. έγωγε. Φέρε, τί δήτ´ άν, εί ταuτην λαβών, 
όπότε γράφοιτο τήν δίκήν ό γραμματεuς, 

άπωτέρω στάς ώδε πρός τόν ήλιον 
τά γραμματ´ έκτηξαιμι της έμης δίκης; 

 
Strepsiades: Have you ever seen a beautiful, transparent stone at the druggists, with which you may kindle fire? 

Socrates: You mean a crystal lens. Well, what then? 
Strepsiades: Yes. If I placed myself with this stone in the sun and a long way off from the clerk, while he was writing out the 

conviction, I could make all the wax, upon which the words were written, melt. 
Aristophanes (“The Clouds”, 420 BC) 

 

  



iv 

  



v 

Abstract 

In a world that is constantly in need of a continuous, reliable and sustainable 

energy supply, concentrating photovoltaic technologies have the potential to 

become a cost effective solution for large scale power generation. In this light, 

important progresses have been made in terms of cell’s design and efficiency, but 

the concentrating photovoltaic industry sector still struggles to gain market share 

and to achieve adequate economic returns. 

The work presented in this thesis is focused on the development of innovative 

solutions for high concentrating photovoltaics receivers. The design, the fabrication 

and the characterization of a large cell assembly for high concentrations are 

described. The assembly is designed to accommodate 144 multijunction cells and 

is rated to supply energy up to 2.6kWe at 500 suns. The original outline of the 

conductive copper layer limits the Joule losses to the 0.7% of the global power 

output, by reducing the number of interconnections. All the challenges and the 

issues faced in the manufacturing stage are accounted for and the reliability of the 

fabrication has been proven by quality tests and experimental investigations 

conducted on the prototype. An indoor characterization shows the receiver’s 

potential to supply a short-circuit current of 5.77A and an open circuit voltage per 

cell of 3.08V at 500×, under standard test conditions, only 4.80% and 2.06% 

respectively lower than those obtained by a commercial single-cell assembly. An 

electrical efficiency of 29.4% is expected at 500 suns, under standard conditions. A 

prototype’s cost of $0.91/Wp, in line with the actual price of CPV systems, has 

been recorded: a cost breakdown is reported and the way to further reduce the 

cost have been identified and is accounted. 

In a second approach, the design of a natural convective micro-finned array to be 

integrated in a single cell receiver has been successfully attempted. Passive 

cooling systems are usually cheaper, simpler and considered more reliable than 

active ones. After a detailed review of micro-cooling solutions, an experimental 

investigation on the thermal behaviour of micro-fins has been conducted and has 

been combined with a multiphysics software model. A micro-finned heat sink 

shows the potential to keep the CPV temperature below 100°C under standard 
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conditions and the ability to handle the heat flux when the cell’s efficiency drops to 

zero. Moreover, a micro-finned heat sink demonstrates the potential to introduce 

significant benefits in terms of material usage and weight reduction: compared to 

those commercially available, a micro-finned heat sink has a power-to-weight ratio 

between 6 and 8 times higher, which results in lower costs and reduced loads for 

the CPV tracker. 
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 Introduction Chapter 1:

The Sun is the predominant source of energy for our planet and in one hour 

radiates on Earth much more energy than that consumed by humankind in one 

year. Despite that, the deployment of solar energy for power generation is still 

limited because it is not yet cost-competitive if compared to the conventional 

energy sources. In particular, photovoltaics, a method to directly convert the 

sunlight into electricity, had to benefit from national feed-in-tariffs to find application 

in the energy market worldwide. Concentrating photovoltaics has been proposed 

as a solution to lower the cost of this technology, but it is still in a deployment stage 

and the companies investing in this field are still struggling to achieve adequate 

earnings. This section gives an overview of concentrating photovoltaics, describing 

the limits and the recent progresses of this solution. Furthermore, a record of the 

concentrators’ geometries and a list of the most globally important installations and 

companies are reported, along with some comments on the potentials of this 

technology and the challenges that the concentrating photovoltaics community 

need to face. 

1.1 Introduction 

Energy represents one of the key issues for social and economic development of 

any country. Compared to 2012, the global consumption of primary energy 

increased by 2.3% in 2013 [1], driven by the emerging economies, whose energy 

demand accounted for 80% of growth. Nowadays, the most of the primary energy 

is supplied through fossils fuels [2], and, in developing countries, through fuelwood, 

still commonly used for heating and cooking [3]. Although continuing to lose market 

share, oil is still the dominant fuel, used for 32.9% of the global energy 

consumption [1].  

In 2013, more than $1600 billion were invested in the energy sector, and, out of 

that, $250 billion were directed to the renewable sources [4], which accounted for a 

record 5.3% of the global power generation [1]. In the same year, more than half of 

the yearly net addition to global power capacity was due to renewables [5]. As 

stated by the International Energy Agency, energy is considered “renewable” when 
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it derives from natural processes replenished at a faster rate than they are 

consumed. This definition falls within the concept of sustainable development, 

intended as “that development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” [6]. 

Moreover, the use of renewable energy is expected to provide the benefit of 

reducing the emissions of air pollutants and greenhouse gases  [7]. The renewable 

energy’s market share is currently lead by hydropower, but, between 2009 and 

2013, solar photovoltaics grew at a higher rate than any energy technology, and 

wind achieved the highest volume of power capacity added among renewables [5].  

The Sun is the most powerful energy source for our planet [8], and solar power 

generation is expected to become competitive with fossil-fuel power generation 

within the next decade [9]. Among several applications, the most common solar 

power generation solutions are the photovoltaics (PV) and the concentrating solar 

power technologies [10]. So far, PV has obtained the widest attention because of 

the modularity, the low operating costs, the high building integrability, the lack of 

moving parts, and the excellent safety record [11]. 

1.2 Photovoltaics 

The term “photovoltaics” refers to the direct conversion of solar radiation into 

electricity, firstly noted by Henri Becquerel in 1839 [11]. Despite the fact that the 

first silicon solar cell was developed at Bell Laboratories in 1954 [12], 98% of the 

current global PV capacity has been installed only after the 2004 [5]. Supported by 

strong national feed-in tariff policies, the PV technology has spread in the last 

decade, finding application both in on-grid and off-grid installations, and almost half 

of the current worldwide PV capacity has been installed after 2012 [5]. Since 1980, 

the photovoltaic market has grown by 37% per year [13] and, in 2013, for the first 

time, the new installed PV capacity was larger than that of wind [5], reaching a 

global installed capacity of 139GWp worldwidei [3]. This capacity is expected to 

grow up to 320GWp, or, in the most optimistic scenario, up to 430GWp by the end 

of 2018. Despite this impressive development, Peter Lund [13] reported a decline 

                                            
i
 The peak power is the maximum power that a PV module would produce under standard 
conditions: 1000W/m

2
 and 25°C [11].  It is expressed in Watt-peak, Wp. 
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of the economic returns for photovoltaic companies in recent years and defined as 

“poor or negligible” the prospects of initiating new investments in this market. Lund 

concluded that reducing the price of the technology and the manufacturing costs 

are keys to raise the profitability of this business. Along with that, in the last years, 

many countries have stopped or heavily reduced the feed-in tariffs [14], increasing 

the difficulties to have economic returns for the investors. 

1.3 Concentrating photovoltaics 

Despite the dramatic reduction of 75% in the cost of crystalline-silicon modules 

registered since 2011 [15], PV is not yet cost-competitive as compared to other 

conventional and renewable power generation sources, such as coal, natural gas, 

nuclear and wind [16]. The cost of a photovoltaic system is still strongly affected by 

the price of the semiconductor materials: according to the British Department of 

Energy & Climate Change [17], the module represents between 30% and 50% of 

the whole cost of the system. One strategy to decrease PV costs is reducing the 

amount of employed semiconductor material. Some companies are thinning the 

silicon wafer [18], whereas others use lenses or mirrors to concentrate sunlight 

onto smaller cells: the replacement of part of the semiconductor area with cheaper 

concentrating mirrors or lenses is a way to lower the cost of solar electricity. This 

solution, first proposed in the early 1970’s [19], is called Concentrating 

Photovoltaicsi (CPV) and has already shown the ability to reduce the contribution 

of the semiconductor to less than 10% of the whole system’s cost [20,21]. 

In 2014, the CPV installed capacity was reported to be 357.9MW [22] and almost 

70% of it was shared between the USA and China. In 2012, plants for a cumulative 

capacity of 471MW were under development in the USA [23]. China is currently 

holding the record for the largest operational CPV plant in the world: a 50MW plant 

was opened in 2013 [24]. According to GlobalData [22], the worldwide installed 

capacity is expected to reach 1GWp by 2020. 

                                            
i
 In literature, both the terms Concentrating Photovoltaics [18] and Concentrator Photovoltaics [25] 
have been extensively used and are commonly accepted. 
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One of the most important parameter for CPV is the geometric concentration ratio 

(CR), expressed as the ratio between the concentrating area and the cell’s active 

area. This ratio indicates the number of times that the solar light is concentrated 

and is generally expressed in Suns (1 Sun = 1× = 1000W/m2). The maximum 

theoretical concentration ratio achievable on Earth is 46,200× [25], and this is 

usually set to estimate the limit efficiencies for different types of solar cells. 

Unfortunately, the effective concentration (or intensity concentration [11]) is 

actually lower than the geometric CR. This reduction is due to the optic efficiency 

and to the fact that CPV uses only direct beam radiation, instead of the global 

radiation (used by flat-PV). Thus, if the concentrator has an optical efficiency of 

0.85 and, out of a conventional global radiation of 1000W/m2, the direct beam 

radiation accounts for 900 W/m2, the effective concentration would be 0.85 × 

900Wm-2 / 1000Wm-2 = 0.765 of the geometric concentration [11]. 

The most common way for classifying CPV systems is based on the concentration 

ratio. Although the ranges of concentration for each category have been differently 

defined in literature [18,26–29], CPV systems can be grouped as follow [30]: 

 Low Concentration (LCPV): concentration ratio varies between 1 and 10 

suns (1-10×); 

 Medium Concentration (MCPV): concentration ratio varies between 10 and 

100 suns (10-100×); 

 High Concentration (HCPV): concentration ratio is higher than 100 suns 

(>100×). 

Low concentration devices generally use traditional silicon cells and do not require 

a tracking system [18]. By reducing instead the semiconductive surface by 

hundreds of time, the use of high cost and high efficiency cells becomes beneficial, 

because the cell represents only a small fraction of the HCPV total cost. For this 

reason, the high concentration devices generally use more expensive, record-

efficiency multijunction cells. These cells are more sensitive to a wider spectrum of 

sunlight, thanks to the implementation of several layers of different 

semiconductors. Most of the CPV companies are investing in HCPV systems 
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[18,29], because of the best prospects in terms of efficiency enhancement and cost 

reduction: at the end of 2014, more than the 90% of the installed CPV capacity was 

designed for concentrations higher than 300× [31]. 

A new range of concentrations has recently attracted the attention of the research 

community. Ultra-High CPV (UHCPV) refers to systems with CR>1000×, which 

have the potential to further decrease the cost of CPV [26,32]. However, the 

maximum cell’s efficiency at ultra-high concentrations is still limited by factors such 

as series resistance losses and tunnel junctions breakdown [33]. Currently, the 

cells commercially available are optimized for concentrations up to 500× and, in 

some circumstances, to 1000×, and a limited number of studies are available on 

UHCPV.  

1.4 Concentrators: an overview 

The main challenges for concentrators are minimizing the losses and avoiding any 

variation of the solar spectrum. Moreover, concentrators are required to prevent 

non-uniformities in the focal plane, because an irregular distribution of the sunlight 

would generate mismatches between cells and dangerous hot spots [34,35]. 

Several different concentrating geometries have been proposed in the last decades 

[30,36,37] and, among all the potential designs, Fresnel lenses have been so far 

the most common concentrators [38]. Conventional lenses over 5 cm are too thick 

and costly to be practical [11], whereas Fresnel lenses have been preferred 

because of the small volume, light-weight, and low cost [38]. Fresnel lenses are 

optical elements with step-profiled surfaces, consisting of a series of concentric 

prismatic grooves designed to direct incident light into a common focus (Figure 1). 

Fresnel lenses are lighter and thinner and they have lower absorption losses than 

conventional lenses [39]. They are usually made of acrylic plastic, but Rumyantsev 

[40] reported that “a tendency exists to replace the ‘traditional’ acrylic material with 

more environmentally stable polymers”. The main drawback of linear Fresnel 

lenses is the low concentration ratio that can be achieved [41]. Doubts about the 

durability of Fresnel lenses have been raised [42]: the poly(methyl methacrylate) 

material (PMMA) they are usually made of has one of the highest optical 

durabilities among polymeric materials, but its optical and mechanical durability 
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under the harsh CPV conditions has not been investigated yet. Alternatively to 

PMMA, the more expensive silicon-on-glass lenses are expected to provide better 

performance and longer durability. 

 

Figure 1 - Comparison between conventional and Fresnel lenses, adapted from [36]. 

Parabolic mirrors represent an alternative to refractive lenses, because of the 

potential of being cheaper and reaching higher concentrations than a refractive 

setup [18]. In particular, by rotating a parabola around its axis, a point-focus 

configuration is obtained (parabolic dish), whereas by translating the parabola 

perpendicularly to its axis leads to a line-focus configuration (linear parabolic 

trough) [10]. These two schemes require different cells distributions: parabolic 

dishes are designed for single-cell configurations or for densely packed cells, 

whereas parabolic troughs are used to focus the light onto a row of cells. CPV 

systems often include both a primary and a secondary optics in series to increase 

tracking and alignment tolerance [18]. The secondary optics devices are 

sometimes exposed to high light intensities: they must be able to withstand high 

temperatures and to maintain the highest possible optical efficiency.  

1.5 CPV technologies: current trends and future perspectives 

One of the key drivers for HCPV is the high efficiency of the components, shown in 

Figure 2: since 2002, the multijunction (MJ) cell’s efficiency has increased by 0.9% 

per year [31]. Today 46.0% is the record efficiency for a solar cell [43], and an 

efficiency of 46.5% has already been announced [44], but not yet certified in a 

calibration laboratory [31]. The MJ cells are expected to achieve efficiencies over 

50% in the near future [32]. The theoretical maximum efficiencies are limited by the 

impossibility of fully matching the solar spectrum and by the radiative 
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recombination taking place in the cells [45]. Nowadays, MJ cells available in the 

market have efficiencies ranging between 37% and 42% [31]. 

 

Figure 2 - Record efficiencies of multijunction cells, CPV modules and CPV systems, adapted from 
[31,46]. The record efficiency data and the trend lines are reported by [46], whereas the recent data are 

reported by [31]. 

Several companies are working on CPV and each one of them has developed 

different concentrating technologies. In November 2014, a novel-concept module, 

equipped with both triple-junction and silicon cells achieved a certified efficiency of 

40.4% in outdoor testing at 365× [47]. The record for the module efficiency was 

previously owned by Fraunhofer ISE [48]: an efficiency of 36.7% has been 

registered for a module consisting of 52 four-junction solar cells provided by Soitec 

and Fresnel lenses achieving a concentration of 230×. Amonix [43], an American 

company currently owned by Arzon Solar, has modules equipped with triple-

junction cells and Fresnel lens, that reached an efficiency of 35.9% under standard 

conditions. Among the commercially available modules, in 2013, Semprius 

announced a record efficiency of 35.5%, using Frensel lenses in a 1100× module 
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[49]. The Japanese Daido Steel uses a dome-shaped Fresnel lenses for its 25.8% 

efficient CPV module [50].  

The largest CPV installation is currently located in China, and is owned by 

Suncore, a joint venture between the Chinese San'an Optoelctronics Co and the 

American EMCORE Corporation. The DDM-1090X module is used in this power 

plant: it has a peak efficiency of 28% under standard conditions and uses Fresnel 

lenses to achieve a concentration of 1090×. In 2013, Suncore acquired 

ZenithSolar, an Israeli solar energy company, which owned the patent of a 

combined heat and power system called Z20. It is composed of two 11m2-sized 

semi-parabolic collectors, mounted on a dual axis tracker that concentrates 

incoming solar power onto a receiver. The receiver consists of a CPV coupled to a 

heat exchanger and is able to achieve a combined efficiency of 72% [51]. In this 

case, multiple small flat mirrors are used to concentrate the sunlight on the receiver 

(Figure 3). 

 

Figure 3 - The ZenithSolar semi-parabolic systems [51]. 

Reflective concentrators are used by the American SolFocus too: primary and 

secondary mirrors concentrate sunlight 650 times onto the high-efficiency MJ solar 

cells [18]. Also Solar Systems, now Silex, an Australian based company, uses 

parabolic dishes, because of the highest performances and the highest 

maintainability [19].  

This image has been removed by the author of this thesis/dissertation for copyright reasons 
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Figure 4 - A CPV plant built by Solar Systems [19]. 

1.6 Conclusions 

The recent progresses of high CPV technology forecast attractive short-term 

enhancements in terms of efficiency and costs reduction [29]. However, although 

the number of publications has constantly increased from 2004 to 2013 (Figure 5), 

with an exception in 2008 and a dramatic rise in 2010, the concentrating 

photovoltaic technology has not been able yet to prove its competitiveness in the 

energy generation market. A number of PV and CPV companies have closed or 

have stopped their solar-related businesses in recent years [52]. In 2013, 

SolFocus, one of the leaders and owner of 18MW of CPV installed worldwide, went 

bankrupt [53], after having announced, in 2012, the plan of building a record 50MW 

CPV plant in Mexico [54]. In early 2015, Soitec, an international semiconductor 

manufacturer owing CPV installations for 31MW in 28 countries and deploying a 

44MW project in South Africa [55], announced the intention to exit the solar 

industry [56]. The delaying, the modification and the cancellation of contracts for up 

to 305MW to be purchased by solar power plants that would use Soitec’s CPV 

technology forced the company to abandon the market. Despite the closure of key 

companies, a consolidation in module and system suppliers and new strategic 

partnerships have been registered in the last years [5]. New CPV projects and 

small pilot plants have been completed or are under way worldwide [57–61].  

This image has been removed by the author of 

this thesis/dissertation for copyright reasons 
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Figure 5 - Number of publications per year classified within the topics “concentrating photovoltaic”, 
“concentrating photovoltaics”, “concentrator photovoltaic”, or “concentrator photovoltaics”.  Data 

sourced from  Web of Science
TM

, 2014. 

As proven by the impressive advancements registered in recent years in terms of 

cell efficiency and module reliability, concentrating the sunlight on high-efficient 

solar cells has still the potential to become a cost-effective way to supply energy in 

a large-scale and sustainable way. Moreover, the reduction in land occupancy and 

in usage of semiconductive material, still difficult to recycle or to sustainably 

dispose of, makes the CPV a fundamental player in the future energy market.  

In competition with common flat-PV technologies, CPV has particularly suffered the 

price drop of silicon-based PV, because of the high-cost and high-precision 

components that CPV is composed of. The CPV community has yet to work in the 

directions of price reduction, reliability and bankability in order to allow this 

technology to achieve a complete commercialization and to increase its market 

share. For these reasons, the goal of this research has been the investigation of 

innovative solutions able to enhance the performance of concentrating 

photovoltaics. The work has mainly focused on the receiver, the ultimate 

component of the system that converts the concentrated sunlight into electricity. 

Both the current extraction and the heat dissipation mechanisms are located in the 

receiver and will be reviewed in the next chapter. 
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 CPV receivers: state of the art Chapter 2:

This chapter gives an overview of the CPV technologies, reporting the most widely 

accepted definitions and resuming the most commonly employed components and 

materials. Moreover, it reviews the state-of-the-art of the cooling systems used to 

maintain the temperatures of concentrating photovoltaic systems within the 

acceptable operating range. Particular attention is dedicated to the passive cooling 

systems and to the micro-technologies, considered able to enhance the thermal 

behaviour of CPV systems, and, at the same time, to lower both costs and material 

usage. 

2.1 Introduction 

High Concentrating Photovoltaic (HCPV) systems achieve concentrations higher 

than 100 suns and are considered suitable solutions for the future energy market 

[29]. Despite the recognized potentials, concentrating sunlight onto a small surface 

introduces some criticisms that influence the design, the fabrication and the 

operation of CPV systems. The power outputs, the current densities and the heat 

fluxes have to be maximized, whereas the cost, the size and the weight of the 

systems need to be reduced. All these concerns make a CPV system much more 

complex than conventional flat-PV. In any CPV application, the choice of materials 

and components plays a fundamental role in terms of electrical performance and 

thermal management. 

Considering an optical efficiency of 85% and a cell with a record efficiency of 

46.0%, a 500× system operating under a direct normal irradiance (DNI) of 

900W/m2, as for the Concentrating Standard Operating Conditions [62], is 

expected to produce at least 20W/cm2 of waste heat. This energy has to be 

removed from the cell as rapidly as possible, since reduction of about 0.13% in 

efficiency per Kelvin degree has been registered in GaInP/GaAs/Ge cells at 500× 

[63,64]. Along with the performance drop, the temperature can lead to cell’s 

degradation and failures. Both active and passive cooling systems have been 

tested and can be applied in HCPV [65] and, in some cases, the recovered heat 

has been exploited for other purposes [66,67], increasing the overall efficiency.  
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In this chapter, the definition of solar receiver is reported and the materials and the 

components employed in CPV systems are described. The issues related to the 

cell’s temperature are then illustrated and, in conclusion, a review of the present 

and future potential CPV cooling mechanisms is presented. 

2.2 Receivers and cell assemblies 

2.2.1 Definitions 

The IEEE defines a CPV receiver as “an assembly of one or more PV cells that 

accepts concentrated sunlight and incorporate the means for thermal and electric 

energy removal” [68]. According to the IEC 62108 [69], a CPV receiver is made of 

an assembly of one or more solar cells, a secondary optics and a mechanisms for 

current extraction, for by-passing in shading conditions and for heat dissipation. 

The cells are allocated on an electrical substrate, called a cell assembly, along with 

the by-pass diodes, used to minimize electrical losses and damage when the cells 

are shaded. A complete system, able to convert the unconcentrated solar radiation 

into heat, is called a module [70] and is represented in Figure 6. The modules are 

usually mounted on a tracking system that continuously moves them, in order to 

optimize the incident angle of the sunlight on the cell. 
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Figure 6 - Structure of a CPV module, composed by primary and secondary concentrators, cells, 
diodes and heat sinks. Adapted from [13]. 

2.2.2 Materials and components 

2.2.2.1 Substrates 

CPV assemblies are usually made of three layers: a conductive layer, a heat 

spreader and a heat sink. The conductive layer is required to move the current 

photogenerated by the cell to the extraction mechanism minimizing the electrical 

losses. The heat spreader has to efficiently transfer the waste heat from the cell to 

the heat sink, which has then to dissipate it in the surrounding media.  

The electrically conductive layer is usually not self-supporting so it has to be placed 

over a dielectric surface that provides both mechanical support and electric 

insulation. Copper is the most convenient conductive material, due to its good 

compromise between cost and performance. Materials such as silver have better 

performances but, at the same time, higher cost.  

The most common substrates in electronics are the Printed Circuit Boards (PCB), 

laminated materials bonded with heat cured flame retardant epoxy resin and clad 
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on either one or both sides with copper. PCBs are widely used in electronics, 

because of their high flexibility and relatively low cost. The laminate materials are 

primarily chosen to grant a structural strength to the board, but electrical properties 

(i.e. dielectric constant and electrical strength) and environmental properties 

(thermal expansion, glass transition) also have to be taken into account, especially 

in CPV applications. Usually the laminated material is a low thermal conductive 

fiberglass, such as FR4 (Flame Retardant, type 4), a glass-reinforced epoxy resin, 

but it can be replaced with a metal baseplate. This way the thermal management of 

the system can be enhanced and the board is referred to as Insulated Metal 

Substrate (IMS). An IMS consists of a copper foil bonded to a metal base using a 

dielectric preimpregnated bonding layer. IMSs have been firstly developed for 

being used in LED (Light Emitting Diodes) applications, and they show a heat 

transfer management similar to that needed by concentrating photovoltaic 

technologies [71]. IMSs are considered the best choice in those applications where 

specific designs are needed, independently of the required quantity [72]. For these 

reasons, CPV assembly manufacturers’ interest in IMS technology is increasing 

[71,73–75]. Mabille and his group [73] have demonstrated that, when exposed to 

accelerated aging tests, IMSs behave similarly to the Direct Bonded Copper (DBC) 

boards, the most expensive [76,77] and most used substrates in CPV applications 

to date [78–81]. Normally, DBC boards have two layers of copper that are directly 

bonded onto an aluminum-oxide (also called alumina, Al2O3) or aluminum-nitride 

(AlN) ceramic base. Beryllium oxide (BeO) has been widely used in past because 

of the excellent electrical insulating properties and the high thermal conductivity. 

Despite that, the high toxicity of the beryllium oxide and the high cost of the raw 

material have now limited its use to those applications that specifically require its 

singular properties. According to Arenas et al. [82] alumina substrates provide 

excellent dielectric properties, good thermal properties and high rigidity to the 

assembly. Although AlN shows an higher thermal conductivity than Al2O3 (160-

170W/mK versus 24.5-26.8W/mK), alumina still results the most common dielectric 

for DBC, because of the lower costs, the excellent dielectric properties, and the 

good rigidity [81,82]. 
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An alternative substrate is represented by a silicon wafer: silicon has a similar 

thermal expansion coefficient to that of the materials used for the solar cells, it is 

easy to machine and the dielectric and the conductive layers can be directly 

sputtered on the substrate. Moreover, the silicon wafer can be easily adapted to 

work as a heat sink: fins or channel can be machined in it [83,84]. On the other 

hand, silicon is quite fragile and most expensive than the other substrates.  

2.2.2.2 Surface Mounted Components 

A solar cell assembly is composed of one or more cells, the by-pass diodes, the 

secondary optics, the encapsulant, the cooling system and the terminal tabs. 

Differently from well-established packaging technologies for back contact silicon 

solar cells, CPV requires more consideration in terms of reliability and durability, 

due to the high experienced fluxes. An initial investigation of components and 

materials has been conducted in order to build the solar cell assemblies presented 

in this work in the most appropriate way and is reported in the following 

paragraphs. 

2.2.2.2.1 Multijunction cells 

Photovoltaic cells are designed to capture the photons of the solar spectrum. When 

a photon hits a PV cell [11]: 

 If the photon has less energy than the band gap, it is not collected and 

passes through the cell; 

 If the photon has more energy than needed, the extra energy is lost as heat; 

 If the photon has the same energy of the band gap, the energy conversion 

works at the maximum efficiency. 

Silicon has been the most used material for photovoltaic cells because it is 

inexpensive and relatively well understood. The bandgap of silicon is estimated to 

be 1.1eVi, whereas the solar spectrum contains energy in the range between 0 and 

4eV, with 2.5eV at the peak of the spectrum [85]. This means that most of the 

infrared spectrum is not collected by silicon cells, limiting the maximum achievable 

efficiency. In order to increase the conversion rate, the solar spectrum can be 

                                            
i
 1eV ≈ 1.6 * 10

-19
J 
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instead divided into several regions: rather than converting the photon energies 

with a single cell exploiting a single band gap only, solar energy can be converted 

by several cells, each one tuned for a different region of the spectrum. 

The spectrum can be split across various semiconductors through two approaches: 

a spatial-configuration (Figure 7a) or a stacked-configuration (Figure 7b) [11]. In 

the first case, an optical device distributes photons with different energies into 

different locations, where they hit the “most appropriate” subcell [86]. This 

approach has recently shown high efficiency potentials for unconcentrated or low 

concentration PV applications [87–90], but it is still considered complex to be 

applied in a tracked HCPV [91]. The preferred approach in CPV is to arrange the 

cells in a stacked configuration, where different layers of semiconductors are piled. 

Due to this geometry, these cells are usually called multijunction (MJ) cells. The 

band gaps must decrease from the top to the bottom of the cell: this way, 

considering the light hitting the top of the cell, the top subcells act as low-pass 

photon energy filters, transmitting to the subcells below only the sub-bandgap 

photons. Larger wavelengths (with lower energy) pass through the upper subcells 

and are absorbed below. 
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Figure 7 - Configurations for multijunction spectrum splitting, adapted from [91]. 

Initially multijunction cells have been used for space applications, where high 

efficiencies are needed, extra costs are acceptable and high radiation-resistance is 

required [28,92]. They are still too expensive for flat-PV applications, but they have 

become desirable for CPV, where the required cell area is smaller [93]. 

Burnett [91] stated that “alloys of Group III and Group V elements lend themselves 

well to the design of multijunction cells. By carefully adjusting the compositions, a 

range of bandgap energies can be achieved. Such selections are usually made in 

conjunction with lattice-constant constraints”. The lattice constant measures the 

distance between atom locations in a crystal pattern. Lattice mismatches create 

defects and dislocations, increasing PV conversion losses. For this reason, the 

most common MJ cells are made of lattice-matched (LM) semiconductors (Figure 

8). 
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Figure 8 - Semiconductors lattice constants [94]. 

Lattice-matched GaInP/GaAs/Ge triple-junction cells are the most common MJ 

cells nowadays [43]. From top to bottom, they are composed by the following 

layers, represented in Figure 9: 

 GaInP is a semiconductor composed of indium, gallium, and phosphorus. It 

is used as high energy junction. It absorbs the ultraviolet and visible part of 

the solar spectrum (band gap ≈ 1.85eV); 

 GaAs is a III-V semiconductor composed of gallium and arsenic. It absorbs 

in the near infrared spectrum (band gap ≈ 1.42eV); 

 Ge absorbs lower photon energies in the infrared spectrum (band gap ≈ 

0.67eV). 
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Figure 9 - Spectral irradiance of the AM1.5 spectrum together with the parts of the spectrum that can 
be used by a triple-junction solar cell [94]. 

An additional optimization characteristic for MJ cells is the current matching. Due to 

the series-connected configuration, the output current of a MJ cell is equal to the 

smallest one among the currents produced by any subcell. Thus, it is important to 

design each junction to produce the same amount of photocurrent [91] and each 

layer’s thickness is selected to best match the currents of the other two subcells. 

The absorption coefficient for solar cell materials is not infinite: a cell of finite 

thickness will not absorb all the incident light above band gap [11] and a fraction of 

that light will be transmitted. The thinner the cell, the greater the transmission: 

thinning a subcell will decrease its current, increasing instead the current in the 

lower subcell. For this reason, a correct subcell sizing is important to obtain the 

current-matching. The terrestrial sun spectrum contains less high-energy light than 

the AM0i spectrum and, thus, in order to satisfy the current matching requirements, 

the thickness of the terrestrial top subcell has to be greater than that of a space cell 

[11].  

Multijunction cells’ efficiencies have recently increased at a rate of about 0.5-1% 

per year [18]. At the end of 2014, the highest efficiencies were demonstrated as 

27.6% and 46.0% for silicon single-junction cells and for multijunction cells 

respectively [43] under concentrated sunlight. In 1980, C. H. Henry [45] reported 

                                            
i
 Airmass (AM) indicates the amount of atmosphere that light must pass to reach the ground. It is a 
ratio between the optical path length and the optical path length when the sun is at zenith. AM1 
occurs if the sun is at zenith, whereas AM0 corresponds to the solar irradiance in space. The most 
used standard spectrum distribution for comparing the terrestrial solar cell performance is the 
AM1.5 spectrum normalized to a total power density of 1000W/m

2
 [11]. 



Chapter 2: CPV receivers: state of the art 

 

20 

that the efficiency limit for ideal 1-, 2-, 3-, and 36-junction cells would have been 

37%, 50%, 56%, and 72%, respectively, at 1000 suns concentration and with the 

solar cell held at room temperature. In the same year, A. De Vos  [95] reported that 

under 1 sun irradiance, an ideal 1-, 2-, and 3-junction solar cell could covert up to 

the 30%, 42% and 49% of the solar energy. Under the highest possible light 

concentration, instead, these efficiencies were set at 40%, 55%, and 63% 

respectively. The same author [95] then calculated an ideal efficiency of 68% and 

86.8% for an infinite-junction cell at 1 sun and at extreme concentration 

respectively. Cells with 4, 5, and 6 junctions have been recently grown and have 

the potential to replace the triple-junction cells in future [96]: ideal conversion 

efficiencies of over 59% for the 4-junction cells, and over 60% for the 5- or 6-

junction terrestrial concentrator cells are expected [97]. 

Traditional GaInP/GaAs/Ge cells are fabricated to have the same lattice constant in 

all the subcells. The semiconductors used in these cells can be grown with very 

high-quality [18], but the band-gap combination of the lattice-matched triple-

junction cells leads to large excess current in the Ge layer: a different set of 

semiconductors, would grant a better band-gap combination. A wide range of MJ 

cells other than the GaInP/GaAs/Ge ones are being investigated and might find 

application in the near future [98], such as the metamorphic and inverted 

metamorphic (IMM) cells. In contrast to LM cells, subcells of a metamorphic cell do 

not have the same lattice constant [99]. The monolithic growth of materials with 

different lattice constants leads to misfit dislocations that deteriorate the material 

quality: the introduction of buffer structures between the Ge bottom cell and the 

GaInAs middle cell is required to reduce the effects of the dislocations [94]. In the 

IMM cells instead, the top subcell is grown first on a lattice-matched substrate and, 

then, is followed by the other subcells [28]. This way, the material quality of the 

upper subcells is enhanced compared to the conventional MJ cells [94]. 

Alternatively, the subcells can be separately fabricated and then mechanically 

stacked [100]. Despite the high efficiencies [101], the high costs of mechanically 

stacked cells have limited their diffusion so far [94]. 
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In a different approach, silicon subcells can be used to replace the more expensive 

Ge subcells. But silicon introduces some problems [94]: a 4.1% difference in lattice 

constant and a difference in thermal expansion coefficients compared of GaAs 

(Table 1). Moreover, so far, GaInP/GaAs/Si triple junction cells have demonstrated 

lower efficiencies than GaInP/GaAs/Ge triple junction cells [43,94]. 

Table 1 - Semiconductors’ properties comparison. 

 Bandgap Linear thermal 
expansion at 25°C 

Lattice constant at 300K 
[siliconfareast.com] 

GaAs 1.4 eV 5.7 * 10
-6

 °C
-1

 5.653 Å 

Ge 0.7 eV 5.9 * 10
-6

 °C
-1

 5.646 Å 

Si 1.1 eV 2.6 * 10
-6

 °C
-1

 5.431 Å 

 

2.2.2.2.2 By-pass diodes 

Shading is an important matter to take into account when designing photovoltaic 

systems, since it has been identified as one of the main causes affecting the 

energy yield of grid-connected photovoltaic systems [102]. A shaded cell is not 

truly an open circuit, but it acts as an impedance added to the solar array. When 

reverse biased, the shaded cell dissipates power and generates heat. Thus, hot 

spots can then occur and damage the cell and the devices connected to it. 

Shading of a complete row of series-connected cells causes a power loss of almost 

100% and, for this reason, it can be treated as an open circuit [103]. Several 

models to calculate the power losses have been presented in literature [104–107]. 

The amount of power loss depends on the size and the shape of the shadow, the 

geometrical and electrical layout of the cells in the array, as well as on the number 

of shaded cells [104]. The ratio between the shaded semiconductive surface and 

the total surface is defined shading factor [108]: it has been demonstrated that, in 

stable ambient conditions, the CPV system power decreases linearly with the 

shading factor [109]. 

By-pass diodes (also known as shadow diodes or shunt diodes) can be used to 

prevent both the power dissipation and the hot spots in shading conditions of work. 

The basic function of by-pass diodes is protecting solar cells against hot spots and 

damage when the photovoltaic module is partially shaded. In regular operation, the 
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diode is reverse biased and, in this condition, only a small amount of leakage 

current flows through it (Figure 10). The device turns on when the cell is shaded 

(Figure 11) and, then, the current flows through the diode, by-passing the shaded 

cell. 

  

Figure 10 - Voltage-to-current curve of diode, adapted from [110]. 

 

Figure 11 - By-pass operation, adapted from [110]. 

Vorster and Van Dyk [111] analysed the current-voltage (I-V) characteristic of two 

series-connected point-focusing 335× HCPV modules. Each module consisted of 

sixteen series connected cells. Modules’ normal operation voltage varied between 

12V and 14V, while the maximum power point voltage was 11V. Initially a by-pass 

diode was connected across each eight-cell string. The authors changed the layout 

and installed one by-pass diode per cell: even if the maximum power remained the 
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same, the energy produced by the cells significantly increased. One bypass diode 

per cell limited the effects of the current mismatches and, since the mismatched 

cells were no longer reverse-biased, the resistive heating was limited and the 

module was found to operate at lower temperatures. 

The key parameters to take into account to select an appropriate by-pass diode 

are: 

 Physical size of diode compatible with the solar cell layout and the available 

space; 

 Lowest possible reverse leakage current; 

 Lowest possible forward voltage drop; 

 Lowest possible diode series resistance; 

 Capability to withstand temperature cycling without electrical failures. 

According to Janssen et al. [112] the application of common p-n junction diodes as 

by-pass results in high losses and is not practical. On the other hand, the 

application of Schottky by-pass diodes is considered economical and more 

efficient. Schottky diodes have a lower forward voltage drop and, therefore, lower 

losses and lower temperature while in by-pass operation. Usually they switch faster 

and are able to work with higher currents than the normal diodes. Schottky devices 

have been previously used in CPV [78,82]. 

As already stated, Schottky diodes show a small forward voltage drop (VF), even in 

case of high currents (IF). However, they do not perform so well when reverse 

biased: the reverse voltage drop (VR) across the diode strongly increases when 

increasing the reverse current (IR) flowing there-through. This is highlighted by the 

initial slope of the reverse characteristic curve, more enhanced than that of 

conventional diodes, as highlighted in Figure 12. In order to limit the enhancement 

in reverse voltage, oversized Schottky diodes have to be used. Moreover, it is 

known that diodes break more easily if they are working closer to the maximum 

rating [113]. So, over-dimensioned diodes are generally considered more durable 

and reliable, and are, thus, preferred. 
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Figure 12 - The characteristic curve of Schottky diode compared to a p–n diode, adapted from [114]. 

A promising alternative to Schottky diodes is represented by the so-called lossless 

diodes (or cool by-pass switches). These devices are composed by a diode, a 

charge pump, a capacitor and a trigger [115]. Compared to Schottky diodes, cool 

by-pass switches reduce the electrical losses both in reverse and direct bias 

conditions. The average forward voltage drop for the 10A SPV1001 cool by-pass 

switch produced by STMicroelectronics is 2-3 times lower than the one of a 

comparable 10A Schottky diode. The reverse leakage can drop up to 1000 times 

lower. The drop in electrical losses has a second benefit too: while operating under 

the same conditions, they have been found to work at lower temperatures than 

Schottky diodes [115]. Although the better performances, these devices are more 

complex, expensive and larger than common by-pass devices [112]. Moreover, the 

literature is still limited and their reliability in CPV applications has yet to be 

demonstrated. 

2.2.2.2.3 Die attaches 

Solderings and adhesives play an important role in the assembly, especially in 

terms of electrical and thermal resistances [116]. Soldering is usually 

recommended by the solar cell manufacturers because of the high thermal and 

electrical conductivities [117]. A uniform distribution of the solder paste below the 

cells is essential to optimize the cell’s performance and to avoid catastrophic 

failures [118,119]. 
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In some applications a thermally conductive adhesive can be used to replace 

solder paste. Adhesives help preventing delamination and maintaining good 

surface contact between substrates with different coefficients of thermal expansion, 

limiting the stresses [120]. However, thermal adhesives and pastes usually result in 

poor thermal conductivity, creating an interface with thermal resistance in the order 

of 20mm2K/W [121], and do not survive a large number of thermal cycles. 

Duckham and He [121] demonstrated that a high conductivity epoxy bond did not 

survive past 400 cycles, while a low conductivity epoxy bond was found to be more 

reliable, although showing signs of degradation with thermal resistance values 

increasing with the number of thermal cycles. The same result was reported by 

Ross et al. [122] for Epo-Tek, an electrically conductive epoxy developed by Epoxy 

Technology. Cao et al. [123] tested the durability of epoxies used as bonded 

material in a CPV cell and discovered that, at temperatures lower than 70˚C, the 

material started to break, causing the failure of the CPV module.  

A possible alternative solution to solder pastes and adhesives can be represented 

by NanoFoil®, produced by Indium Corporation and made of thousands of 

alternating nanoscale layers of aluminum (Al) and nickel (Ni). The solder is quickly 

realized at room temperature through a small pulse and can operate at high 

temperatures. It is electrically conductive, has high thermal conductivity (35 to 50 

W/mK) as compared to epoxy resins and has already demonstrated to be able to 

survive more cycles than other adhesives [121]. 

2.2.2.3 Interconnectors 

The triple junction cells used in this work have the positive terminal on the bottom 

Ag/Au alloy-finished surface, suitable for soldering, which grant at the same time 

the mechanical support and the required thermal and electrical conductivities. The 

negative terminal consists of two thin metallic tabs symmetrically placed on two 

edges of the active area on the front of the cells. The interconnectors link the front 

tabs of multijunction cells with the conductive layers and are expected to allow the 

current extraction only. Because of the reduced size of the tabs, usually less than 

0.5mm wide, micro-electronics process are required to achieve the high-quality 

expected for CPV systems. Micro-welding is the procedure generally exploited by 
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commercial companies to interconnect the front of the cell with the conductive layer 

[78], due to its high mechanical strength. It consists of a thin silver tab welded on 

the cell’s sides and soldered on the conductive layer. Wire bonding represents an 

alternative, lower cost solution: it has become a standard microelectronics 

technology, widely available and has already been exploited in CPV [124]. It is 

considered extremely reliable after the introduction of automatic wire bonding, low 

temperature bonding processes and effective pad cleaning methods [125]. Either 

gold or aluminium wires are generally used. High-conductive copper wires have 

been recently developed and are gaining much attention, but are not yet capillary 

available. A summary of the different materials properties is reported in Table 2. 

Table 2 - Properties of wire bonding materials, adapted from [126]. 

Material Properties Application 

Aluminium 

Best mechanical properties; 
High corrosion resistance; 
Applied at room temperature; 
Excellent bondability; 
Good loop stability. 

Automotive components; 
IC cards; 
Power components. 

Copper 

High conductivity 
High tensile strength; 
Good loop stability; 
Require inert atmosphere to bond. 

Discrete components; 
Semiconductor components. 

Gold 

High conductivity; 
High corrosion resistance; 
High cost; 
High temperature required to bond. 

High power components; 
High frequency applications; 
Opto-electric applications 
Integrated circuits. 

2.2.2.4 Encapsulation 

The encapsulation materials are used to protect the cells from environmental 

corrosion and mechanical damages and to provide electrical insulation. 

Encapsulants are exposed to high optical flux, including ultraviolet (UV) and 

infrared (IR) wavelengths. The light intensity and wavelength distribution are 

important considerations to take into account when choosing the most suitable 

encapsulant material. Another important criterion in the selection is the durability 

under the harsh CPV conditions. The cell encapsulant must remain optically stable 

over several years: it must not delaminate, discolour or crack. The industry 

generally requires a minimum of 20-year lifetime with minimal reduction of 

efficiency.  
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Ethylene-Vinyl Acetate (EVA) has traditionally dominated the flat panel PV 

application, due to the low cost and the proven durability [127]. In low and medium 

CPV applications, EVA and other hydrocarbon-based encapsulants should be 

capable of performing well for the whole service lifetime [127]. At high 

concentrations, instead, siloxane-based encapsulants, such as 

poly(dimethylsiloxane) (PDMS), have been predominantly used, because of the 

extreme high resistance to thermal and light-induced degradations.  

The US National Renewable Energy Laboratory (NREL) published several papers 

on this topic. As shown in Figure 13, Miller and al. [128] reported that PDMS, 

Poly(p-methylstyrene) (PPMS) and Poly(methyl methacrylate) (PMMA) were the 

materials providing the most efficient power production, because of the low-

absorptance in the PV specific wavelengths’ range. Kempe et al. [129] investigated 

the durability of some CPV encapsulant materials, exposing them to about 42 suns 

of UV radiation and found that PDMS materials did not show any sign of 

degradation after 4000 hours of exposure. 

 

Figure 13 - Optical absorptance for CPV encapsulant materials [128] 

In 2011, Miller and al. [130] tested the durability of polymeric encapsulation 

materials. They observed material decomposition, as well as fractures and haze 

formations, in CPV modules if no homogenizing optic was applied. The authors 

This image has been removed by the author of this thesis/dissertation for copyright reasons 
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tried adding soil, aluminium fillings, polymer fillings or voids to separate sets of 

EVA and PDMS and reported that: 

 Soil, aluminium and polyethylene facilitated the thermal decomposition of 

EVA; 

 Polyethylene facilitated the thermal decomposition of PDMS; 

 The soil and the aluminium filled sample became cracked within 2 days in 

the field; 

 The specimens with bubbles did not appear changed after 116 consecutive 

days, but voids reduced the optical transmittance. 

McIntosh et al. [131] found that the optical properties of the PDMS remained quite 

stable after exposures to a 30× concentration, while EVA had the highest tendency 

to absorb moisture, which resulted in scattering. 

Silicone has been used in PV modules on satellites and in LEDs. It has high optical 

transparency and aids in providing stress relief during thermal cycling, thanks to 

the low coefficient of thermal expansion (CTE). Norris and al. [132] stated that 

silicone is an ideal candidate for PV encapsulations, thanks to its high 

transparency in the UV-visible wavelength regions, very low ionic impurities, low 

moisture absorption, low dielectric constant and broad temperature use range. 

Moreover silicone shows excellent adhesion to the glass and cell substrates. The 

authors marked silicones as an excellent material for PV encapsulant. According to 

them, silicones will increase the module efficiency of about 0.5-2.5% as compared 

to equivalents modules encapsulated with EVA, due to higher transparency in the 

low-wavelength region. McIntosh et al. [131] stated that silicone showed very little 

degradation after 232 days on the 30× concentration, while EVA was reduced to 

char after 43 days. 

In 2011, Velderrain [133] investigated the benefits and the risks associated with 

using phenyl containing silicones versus non-phenyl silicones. Phenyl silicones 

demonstrated higher chemical resistance than non-phenyl silicone but, despite 

increasing the photon flux to the cell, it is more affected by external factors, such 

as dry heat or UV, than non-phenyl silicones. 
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Encapsulants and coverglasses can play an important role in CPV cooling. In fact, 

IR photons with energies below the lowest bandgap of multijunction cells cannot be 

used to produce energy and are converted into waste heat, increasing the cell 

temperature. Moreover, the Ge subcell in traditional multijunction GaInP/GaAs/Ge 

cells produces a significantly higher current than the other two subcells connected 

in series [134]. For these reasons, part of the near-infrared light can be reflected to 

reduce the amount of heat produced by the cells, and, thus, to contribute 

maintaining the cell’s temperature in the operating range [135]. Works presented in 

literature refer to inverted metamorphic cells [136,137] and space applications 

[134,138,139], whereas no previous research was found about terrestrial 

application of infrared reflecting encapsulant in triple junction cells. 

2.2.2.5 Considerations 

In HCPV, series-connected cells arrangement should be preferred because it 

would limit the current flowing into the connectors and, thus, minimize the Ohmic 

losses. This configuration requires a uniform sunlight over the cells, in order to 

avoid current mismatch: otherwise, the current value will be limited by the worst 

performing cell. Series-connected designs have been used both in several flat-

plane PV modules and in some multijunction applications [140,141]. However, the 

receiver shape and the cell distribution on it are important parameters to take into 

account before deciding connections layout.      

By-pass diodes are used to minimize output losses and to protect cells when they 

become shadowed. In strings of silicon cells, one by-pass diode may be connected 

to several cells. On the other hand, multijunction cells are particularly susceptible 

to damage when subjected to a reverse bias condition. Thus, in multijunction cell 

applications, the use of one by-pass diode per cell is generally recommended. 

Despite its application in common PV, all the researchers agree that EVA is not a 

convenient encapsulation material for CPV applications. For a 500× plant, the best 

solution seems to be the application of a silicone material, such as PDMS, which 

showed highest performance and longest degradation time.  
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2.3 Concentrating photovoltaic cooling 

Only a fraction of the incoming sunlight is used by the cell to generate electrical 

energy. The remaining part of the absorbed energy is converted into thermal 

energy [65] and increases the temperature if not removed. The cell temperature 

strongly influences the electrical performance. The efficiency of any photovoltaic 

cell decreases when the temperature increases and when the temperature is not 

uniform across its volume [11]. Martinelli and Stefancich [116] stated that “this fact 

can be viewed as a consequence of the second principle of thermodynamics 

imposing a limit on the conversion efficiency of energy coming from a source at a 

given temperature by a converter/sink having a finite temperature”. Moreover, the 

cells also exhibit long-term degradation if the temperature exceeds certain limits 

[65]. For these reasons, the solar cells employed in HCPV systems are generally 

kept at temperatures ranging between 50°C and 80°C [142,143] while in operation. 

Temperatures should not overtake 150°C [117]: this temperature is considered the 

maximum allowed limit in case of exceptional conditions (such as inverter’s or 

cooler’s failures). Long exposure to extreme temperatures can melt the solder 

paste and damage the circuitry. Higher temperatures are tolerable for short time 

periods only during the module’s fabrication. 

Cooling usually is not required in common flat PV systems, because of the large 

module surface and the limited irradiance. On the contrary, cooling becomes an 

important aspect in CPV systems, due to the reduction of the receiver surface and 

the rise in sunlight concentration. This section is intended to describe the effects of 

the temperature on the cells and will give an overview of the CPV cooling latest 

state of the art. 

2.3.1 The effects of the temperature 

The open circuit voltagei (Voc) of PV cells decreases with temperature [116]. 

Because of the stacked configuration, the Voc of a multijunction cell is the sum of 

the open circuit voltages of each subcell (Vocs). Thus, the temperature coefficient 

dVoc/dTcell can be obtained as the sum of the dVocs/dTcell [11]. According to the 

                                            
i
 Open circuit voltage: the output voltage of a solar cell with no current flowing from it [91]. 
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datasheet [144], the latest GaInP/GaAs/Ge cell released by AZUR SPACE Solar 

Power, faces a reduction in open circuit voltage of 0.135% per Celsius degree at 

500×, which corresponds to a drop of 4.2mV/°C. Higher concentrations reduce the 

percentage Voc drop, because Voc increases with the concentration [11]. 

The short circuit currenti of the system is positively influenced by the temperature. 

The subcell that gives the smallest output limits the current (Isc): usually the top and 

the middle subcells produce lower currents than the Germanium bottom one. 

Moreover, the subcells do not have the same temperature coefficients. The 

increase in cell temperature normally causes a red shift in the spectral response 

(Figure 14) and, consequently, a change to the current mismatch between the top 

and the bottom subcells [145]. The redshift increases the current of the top and the 

middle subcells, so the overall current is expected to increase. In particular, the 

short circuit current of a commercial cell increase by the 0.080% per Celsius 

degree at 500× [144]. Studying the space applications, Aiken et al. [146] concluded 

that solar cells are fairly insensitive to temperature in terms of current matching: a 

III-V cell designed to be current-matched at 28°C is current-mismatched by only 

3.3% at 100°C.  

 

Figure 14 - The red shift in the spectral response of a GaInP/GaAs/Ge cell [142]. 

                                            
i
 Short circuit current: the current produces by the cell when a zero-resistance is placed across its 
terminal [91]. 
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The fill factori (FF) is strongly influenced by current-limiting subcells [11], similarly 

to the current output. A reduction of 0.106% in fill factor is registered for each 

degree at 500× by the AZUR SPACE MJ cell [144]. The efficiency depends on the 

product  Voc×Isc×FF: it decreases almost linearly when temperature increases [11]. 

An average relative drop of 0.106% in efficiency is registered per each degree in a 

MJ cell working at 500× [144].  

Along with the drop in the electrical performance, overheating can introduce some 

mechanical issues in CPV systems. Long term degradation has been 

demonstrated for cells exposed to high temperatures [142]. The temperature rising 

can also lead to mechanical failures such as deformation on the cell surface, 

delamination of the transparent layer and development of micro-cracks on the cell. 

The difference in thermal expansion coefficients among the several materials that 

compose the cells and the assemblies can even cause immediate or fatigue 

failures of cells and fragile components. 

The cell temperature is a key parameter to be taken into account in any operating 

CPV system, but it is difficult to directly measure [70]. Moreover, it can be up to 

30°C higher than that of the heat sink [147] and depends on different factors, 

including the heat sink design, the thermal attachment, the location, the irradiance, 

and the wind speed. For this reason, many indirect methods to determine the 

temperature of the cell have been presented in literature and are based on: 

 meteorological data [143,148],  

 the electrical outputs [149],  

 the heat sink temperature [143],  

 the photo-luminesce emissions [150,151].  

The most suitable method is usually chosen depending on the application, the 

available data and the required accuracy [70].  

                                            
i
 Fill factor is a performance parameter, commonly used to describe the degree to which VMPP 
(voltage at maximum power point) matches Voc and IMPP (current at maximum power point) matches 
Isc. It can be expressed as:  
FF=(IMPP∙VMPP)/(Isc∙Voc)=PMPP/(Isc∙Voc) [91] 
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2.3.1.1 An experimental investigation 

A preliminary investigation on the temperature rising in HCPV was experimentally 

carried out. A 166× system was built, using a PMMA Fresnel lens to concentrate 

the AM1.5 light generated by a solar simulator on a commercial assembly 

equipped with a 37.2%-peak efficiency MJ cell [117]. The room was constantly kept 

at 25°C. A thermocouple was placed in contact with the side of the cell to measure 

the temperature and the temperature was recorded every 0.2 seconds. 

During the experiments, several setups were tested, using different heat sinks 

under the same conditions. The relevance of the heat sink for the thermal 

management of CPV can be noted in Figure 15. In the first case, no heat sink was 

added to the cell. The temperature quickly increased, going over 150°C in less 

than a minute. The test was repeated twice. In the second attempt, the test was not 

stopped at 150°C: the solder paste started melting and the assembly was 

damaged. In the second case, a 0.5 mm-thick copper plate (dimensions: 

12cm×12cm) was stuck to the backplate of the receiver through a thermally 

conductive adhesive. This way, the temperature raising was slower, reaching a 

temperature about 120°C in 10 minutes. In the third setup, a commercial 10-fin 

aluminum heat sink was used: in this case, after 600 seconds the temperature was 

about 50°C lower than the copper plate case. 

 

Figure 15 - Temperature rising with different heat sinks 

This investigation was useful to understand the variation in performance due to the 

temperature rising. An I-V tracer was used to measure the performance every time 

a 5°C growth in temperature was registered. As reported in Figure 16, a difference 
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of about 10% was registered between the power output at 40°C and the power 

output at 70°C. 

 

Figure 16 - Power vs. temperature. 

2.3.2 Passive and active cooling 

Usually cooling systems are classified as passive or active. Passive cooling does 

not require input of mechanical or electrical power because it acts through the 

exploitation of natural laws. Active cooling instead is obtained using a fraction of 

the cell power output and is usually independent of the work conditions and easily 

controllable. The use of part of the energy output reduces the overall system 

efficiency. 

In 2005, Royne et al. [65] published a complete review on the cooling system for 

photovoltaic cells under concentrated illumination. At the end of the report, the 

authors stated that passive cooling was not feasible for any densely packed cells 

or for linear concentrators with concentration ratios above 20 suns. They 

concluded that micro-channel heat sink or impinging jets, both active cooling 

systems, were found to be the most promising technologies for CPV cooling. In 

2008, Yeom and Shannon [152] wrote a review about micro-coolers, but only few 

among the reported technologies were passive. In 2007, Tseng et al. [153] applied 

Taguchi’s statistical method to optimize the passive cooling systems for electronic 

devices: they stated that passive cooling is more reliable than active cooling and 

reduces the damage probability caused by cooling failures. 
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Some references use a different definition for passive and active cooling. In [154], 

active cooling referred only to the so-called photovoltaic/thermal (PV/T) technology, 

where the PV waste heat is reused for other purposes. In this concept, 

technologies such as micro-channels or fluid jets impingement are not necessarily 

included. In this work, the terms “active” and “passive” are used according to the 

first reported meaning. 

2.3.3 Key features for CPV cooling 

The design of a CPV cooler depends on many factors, which are not limited to the 

concentration and the outdoor conditions. Firstly, the geometry of the optics plays a 

fundamental role. The most typical optical configurations in HCPV systems are 

shown in Figure 17. In those reflecting systems where no reflective secondary is 

applied, the receiver is usually located between the sun and the mirrors (Figure 

17a). This means that the receiver needs to be as compact as possible, to reduce 

the shading. Due to their higher thermal exchange coefficients, active coolers can 

achieve better performances while limiting the volume and, for this reason, are 

preferred. If, instead, a secondary reflector is present (Figure 17b) or the 

concentration is achieved through lenses (Figure 17c), the cooler would not create 

any risk of shading and larger surface would be available for cooling. In these 

cases, passive cooling may be preferred. 

 

Figure 17 - Typical optical configurations for HCPV devices: only primary reflecting optics (a), primary 
and secondary reflective optics (b) and refractive optics(c). In (a), the cooler must be compact to 

reduce shading, so that active cooling is usually preferred. In (b) and (c), a larger area is available for 
the cooler, so that passive cooling can easily operate. 

Secondly, the number of cells and their distribution on the receiver are key issues 

to be taken into account: cells are usually grouped either in single-cell, linear or 

densely-packed geometries [65]. In single cell geometries, concentrators focus the 
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sunlight onto an individual cell. This is a favourable configuration for cooling: 

ideally, an area equal to the surface of concentrators is available for heat 

exchanging purposes. In linear geometries two sides of each cell are in contact 

with the adjacent cells, reducing the available cooling surface. In densely-packed 

geometries, each cell is surrounded by cells on each side (excluding the cells on 

the side): the reduced surface available for cooling and the high thermal power 

densities make the application of passive cooling systems difficult. 

Thirdly, the choice of the fluid may depend on its availability. High thermally 

conductive fluids might be too expensive or not easy to provide in remote locations. 

Unfortunately water is not yet easy to access in many locations, especially in those 

areas, such as the desert lands, where irradiance is particularly high. For these 

reasons, in some applications, air can result the best fluid to be exploited, both for 

active or passive systems. 

Lastly, the inclination angle of the receiver changes continuously, since HCPV 

systems are usually tracked. Heat sinks in natural convection are particularly 

affected by the inclination angle and, in particular, a downward facing heat sink is 

the worst orientation for passive cooling. In spite of that, CPV systems may require 

such disadvantageous orientations for their cooling devices [155,156]. 

2.3.4 State of the art 

The simplest passive way to increase the thermal transfer of any surface is the 

addition of fins [157]. The performance of the fins in HCPV systems are not only 

dependant on the number, the spacing and the length [158], but are affected as 

well by the inclination angle and the temperature difference [155]. The heat 

management of any heat sink can be enhanced by a forced air flow. Due to the low 

heat capacity of air, water cooling has been applied in many high concentrating 

systems: impinging jets [159], water-immersion [160] and heat pipes [161]. Beyond 

all these proven technologies, more solutions, such as thermoelectric devices [162] 

or two-phase flows [163], can arise as a feasible way for efficient HCPV cooling. 

Due to the high power densities and the small volumes involved, micro and nano 

technologies can play an important role in HCPV cooling. Micro-channels have 
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already been successfully applied in CPV [164]. The suspension of high thermally 

conductive particles smaller than 100 nm into a fluid can be a way to enhance the 

performances of any system. Nanofluids have already been used in many 

applications [165], including PV/T cooling [166], but, despite their potential, the 

research on their application for heat transfer purposes seems to have lost appeal 

[167]. Among the emerging passive micro-technologies, carbon nanotubes and 

micro-fins are the most promising solutions [168]. More technologies, such as 

nano-wires or miniature heat pipes and thermosyphons may soon become suitable 

for HCPV. The integration of different technologies can lead to innovative and high-

performing solutions: hybrid schemes, such as hybridizations of jet impingement 

and micro-channels [169,170], have shown the capability of reaching high heat 

transfer coefficients and of improving the temperature uniformity [171]. Nowadays, 

the ratio of solar energy converted into heat is still higher in percentage than that 

converted into electricity. The re-use of the waste heat produced by HCPV 

represents already an opportunity to improve the overall system efficiency and, 

thus, to reduce the costs of the technology. According to Kribus et al. [172], adding 

a heat-recovery system to an actively-cooled or a passively-cooled HCPV system 

would increase the installation costs by no more than 5% and 10% respectively. 

Cogeneration is able to provide both electricity and heat at medium rather than low 

temperatures [173]. The recovered heat can be used in many domestic and 

industrial processes, such as air conditioning, water desalination or water heating. 

A detailed review of the CPV cooling systems presented so far in literature is 

reported in the following sections, according to the categorizations proposed by 

[65], and the main features of each technology are summarized in Table 3. 
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Table 3 - Main characteristics of different cooling system, adapted from [36]. 

Type Description Ref. 

Microchannels (i) Low thermal resistance; 
(ii) Low power requirement; 
(iii) Ability to remove a large amount of heat from a 

small area. 

[36] 

Impinging jets (i) Low thermal resistance. [65] 

Hybrid jet 
impingement/microchannel 

(i) High uniformity of temperature; 
(ii) Reduced pressure drops; 
(iii) High heat flux dissipation. 

[170,174] 

Two-phase forced convection (i) High heat transfer coefficient. [65] 

Water immersion (i) Minimized contact thermal resistance; 
(ii) Uniform. 

[175] 

Heat pipe (i) Simple; 
(ii) Reliable; 
(iii) Uniform; 
(iv) Costless; 
(v) Passive. 

[36] 

Heat spreader (iii) Simple; 
(iv) Passive. 

[176] 

Cooling fins (i) Well known; 
(ii) Simple; 
(iii) Reliable; 
(iv) Passive; 
(v) Costless. 

[155,158] 

2.3.4.1 Microchannels 

A microchannel heat sink (MCHS) suits well many electronics applications, 

because of its ability to remove a large amount of heat from a small area. As 

already remarked, Royne et al. [65] stated that this technology is the best 

performing active cooling system for HCPV.  

A MCHS cooling system is composed of many parallel micro-channels, with 

hydraulic diameters ranging from 10 to 1000nm. Coolant is forced to pass through 

these channels to carry the heat away [177]. In a MCHS the coolant flows close to 

the heat source and, this way, the contact area between the coolant and the 

cooling structure is enlarged. Convective heat transfer in microchannels has been 

found to be significantly higher than in conventional sized channels [178]. 

According to Karathanassis et al. [164], MCHS are particularly suitable for the high 

heat flux dissipations and can achieve thermal resistance values as low as 

0.0082K/W. In 2011, Mu ̈ller et al. [179] investigated the micro-channels 

performances in a ultra-high CPV. They showed that the system remained fully 

functional up to 4930 suns, registering drop of 1% in photovoltaic efficiency per 

each 100 suns concentration increasing. 
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Figure 18 - Schematic of a microchannel cooling system [180] 

One way to enhance the heat transfer in MCHS devices is the application of 

nanofluids, traditional heat transfer fluids - such as water or oil - containing 

suspended nano-particles (average size below 100nm) [181]. The use of metallic 

particles enhances the thermal behaviour of fluids: the addition of a small amount 

of nano-particles (less than 1% in volume) has been found to double the thermal 

conductivity of the fluid [181]. 

2.3.4.2 Impinging jets 

Thermal resistances as low as 10-6m2K/W can be achieved through the use of 

impinging liquid jets [65]. This is an active cooling solution, where high velocity 

liquid is forced onto the surface to be cooled. The number of nozzles per unit of 

area affects the performance of the system: a high number of jets would enhance 

both the overall performance and the uniformity of the cooling effect. 

 

Figure 19 - Schematic of a typical jet impingement arrangement [180]. 
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2.3.4.3 Hybrid jet impingement/micro-channel cooling 

Lee and Vafai [180] compared the performances of jet impingement and micro-

channel cooling systems. Jet impingement cooling usually required a very large 

coolant flow rate with a comparatively small pressure drop, whereas micro-channel 

cooling was subject to a large pressure drop even for a comparatively small flow 

rate. The authors stated that “the microchannel cooling is preferable for a target 

dimension smaller than 0.07m×0.07m, while the jet impingement is comparable or 

better than the microchannel cooling for a larger target plate if a proper treatment is 

applied for the spent flow after the impingement”. 

The successful applications of micro-channels and jet impingements leaded to the 

investigation of a hybrid solution [170,174], because “both technologies provide 

very high flux removal” but “do not offer adequate temperature uniformity on the 

receiver”. The combination of both solutions, shown in Figure 20, made it possible 

to maintain higher temperature uniformity across the cell’s surface. The efficiency 

of the hybrid system was found to be 48.5% higher than that achieved applying a 

classical micro-channel design, with pressure losses reduced by 90.5%.  

 

Figure 20 - Principle of operation of the hybrid cooling device [170]. 

2.3.4.4 Two-phase forced convection cooling 

By allowing the coolant to boil, the heat capacity of a fluid can accommodate a 

significantly larger heat flux [65]. The main advantage of this solution resides in the 

possibility of achieving high heat transfer coefficients using low coolant flow rates, 

requiring a reduced pumping power [182]. Royne et al. [65] proposed the two-
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phase forced convection as a viable active cooling alternative to micro-channels 

and impinging jets. 

2.3.4.5 Water immersion cooling 

Water immersion cooling is an active cooling solution, schematized in Figure 21: 

the solar cells are immersed in a circulating dielectric liquid. This way, the heat is 

transferred from two cells surfaces, rather than from the cell’s back surface only as 

for conventional CPV systems. Moreover, the contact thermal resistance between 

the cell and the cooling system is minimized [175]. 

 

Figure 21 - Design concept schematic of liquid immersed solar receiver, adapted from [183]. 

Zhu et al. [160] reported that the cell temperature under high concentrations could 

be maintained below 45°C and the convective heat transfer coefficient could be 

higher than 3000W/m2K. They demonstrated that at 250 suns the overall 

convective heat transfer coefficient could reach a value as high as 6000W/m2K. An 

analytical investigation by Han et al. [184] showed that a uniform temperature 

could be maintained in a liquid-immersed CPV receiver. Among the suitable fluids, 

Victoria et al. [185] found that the most appropriate fluids were paraffin and silicone 

oils, because the transmittance was only slightly affected by the UV radiation at 

AM1.5. 

2.3.4.6 Heat pipe 

A heat pipe is a vacuum tight device consisting of a working fluid and a wick 

structure (Figure 22). The heat input vaporizes the liquid working fluid inside the 

wick. Then, the vapour condenses and gives up its latent heat. The condensed 

liquid returns to the evaporator through the wick structure by capillary action [186].  



Chapter 2: CPV receivers: state of the art 

 

42 

 

Figure 22 - Heat pipe crossing section, © 2008 IEEE [161]. 

Anderson et al. [161] placed an array of fins around the heat pipe, as shown in 

Figure 23. The heat was distributed by the heat pipe to a series of fins, where it 

was removed by natural convection. This way, the heat pipe was suitable for single 

cell arrays at high concentration ratios (up to 1000 suns), and for linear 

concentrators at lower concentration ratios (up to 30 suns). 

 

Figure 23 - Heat pipe 3D representation, © 2008 IEEE [161]. 

2.3.4.7 Heat spreading 

One of the simplest approaches for passive cooling can be obtained using a heat 

spreader: in this case, heat is exchanged by a metal plate. Araki et al. [176] used a 

3mm-thick aluminium plate, represented in Figure 24, as large as the concentrator, 



Chapter 2: CPV receivers: state of the art 

 

43 

to cool a solar cell under 500× and demonstrated that the cell temperature would 

be only 18 degrees higher than ambient. 

 

Figure 24 - Araki et al. cooling device representation, © 2002 IEEE [176]. 

2.3.4.8 Cooling fins 

Natarajan et al. [158] investigated the use of cooling fins in a LCPV. The authors 

firstly observed that the thermal conductivity of the back plate of the receiver was 

important for reducing the solar cell temperature: the higher the conductivity, the 

lower the solar cell temperature. Moreover, the authors defined a maximum 

number of fins that appeared to be effectively convenient in the considered case. 

On the other hand, Natarajan and his colleagues found that the thickness of fins 

did not significantly influence the cell temperature: “use of larger fin thickness, 

increases the conduction heat loss, but at the same time suppresses the 

convection heat loss in between the fins”. The best configuration they tested was 

found to reduce the cell temperature by 35% compared to the worst case. A 

correlation between the fin spacing, the inclination angle and the temperature 

difference for a CPV setup cooled by a plate-fin heat sink was developed and 

reported by Do et al. [155] after a detailed investigation on the relationship among 

the thermal resistance, inclination angle and power input.  

2.3.5 Micro-and nano-technologies for cooling CPV systems 

Aluminum is generally used to fabricate heat sink and, according to [21], can 

contribute to more than 60% of the module’s weight. For this reason, reducing the 

weight of the heat sink would benefit in terms of both system’s efficiency and 

emissions’ drop. In this light, the development of micro-and nano-technologies 

offers new perspectives for CPV cooling. Due to the small dimensions and the 
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promising performances, micro-and nano-technologies can play an important role 

in CPV cooling. This section gives a critical overview of the potential technologies 

that could find application in the thermal management of concentrating photovoltaic 

systems. 

2.3.5.1 Principles 

The concentration of sunlight leads to a reduction of the irradiated surface. 

Mesoscale cooling device could be not appropriate to remove a great amount of 

heat from small surfaces. Micro-and nano-technologies, intended as technologies 

on a micro- or nano-scale that have application in the real world [187], can assure 

faster performance, requiring both less space and less material than common 

devices. On the other hand, when sizes drop below 100nm important changes in 

material properties can occur. Additionally, in the nano-meter domain there are 

new unique effects due to quantum phenomena and enhanced surface to volume 

ratios that have to be considered [188]. A lot of research has been focused on 

micro- and nano-cooling technologies, due to their growing importance in 

electronics: micro- and nano-scaled electronic devices have already been proven 

able to manage heat fluxes exceeding one thousand watts per centimetre square 

[152,188].  

2.3.5.2 Micro-and nano-cooling technologies  

Several papers were published on micro-cooling, but no one strictly focusing on 

passive micro-cooling and its application to CPV systems. In 1998, Gromoll [189] 

published a review of micro-cooling systems based on forced air cooling for high 

density packaging. Nano-scale thermal transport advances were reported in 2003 

by Cahill et al. [190] and in 2006 by Shakouri [188]. In 2008, Yeom and Shannon 

[152] wrote a review on micro-coolers, where nano-technologies, such as carbon 

nano-tubes and nano-wires, were not explored in detail. 

2.3.5.3 Micro-and nano-cooling manufacturing  

The nanotechnology manufacturing techniques can be divided into conventional 

and unconventional processes. The first, such as photolithography and electron 

beam lithography use light or electrons to generate patterns and are the most 
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widely used techniques. According to Gates et al. [191], the cost of purchasing, 

installing, and maintaining the tools they require limits their application in areas 

other than microelectronics. A summary of the conventional nanofabrication 

techniques are given in Table 4. The unconventional techniques are reminiscent of 

macroscopic molding, embossing, printing and skiving technologies, and are 

indicated as the ultimate, low cost solutions [192]. They are usually developed to 

overtake the technical or financial limitations of conventional methods.  

Table 4 - Comparison of conventional nanofabrication techniques, adapted by [192]. 

Technique Cost 

Contact lithography $ 

Proximity lithography $ 

Projection lithography $$$ 

Extreme Ultraviolet lithography $$$ 

 

2.3.5.4 Coolers 

A list of micro- and nano-technologies for passive cooling electronic devices will be 

reported in this section. The cooling technologies are summarized based on the 

working fluid [152]: 

 Air cooling: heat spreaders, natural convection in micro-channels, carbon 

nano-tubes, micro-fins, nano-wires; 

 Liquid cooling: natural convection of nano-fluids, micro-heat pipes, 

miniature thermosyphons. 

2.3.5.4.1 Micro-heat spreaders 

Micro-heat spreaders are thin layers of high thermally conductive, dielectric 

materials, with a high specific heat [193]. A good heat spreader should show a 

coefficient of thermal expansion (CTE) close to those characteristic for 

semiconductors, stability under thermal cycling in the operating temperature, low 

specific weight, easy manufacturability and low cost [194]. According to Bar-Cohen 

and Wang [195], due to the high thermal conductivity of silicon (∼150W/mK), only 

modest spreading improvements can be obtained from the use of traditional 

spreading materials, such as copper (390W/mK), beryllia (250W/mK), aluminum 

nitride (220W/mK). Aluminum and copper are good heat conductors, but their 
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coefficients of thermal expansion are higher than those of germanium or silicon. 

Composite materials such as Cu-W or Al-SiC are less expensive, but the thermal 

conduction is usually lower than 250W/mK. No common composite materials show 

thermal conductivity higher than 400W/mK (Figure 25). Higher thermal conductions 

can be obtained with pyrographite and diamond composites. Pyrographites plates 

are strongly anisotropic and thus cannot be easily applied [194]. Carbon nanotubes 

have been considered for composite materials, due to their high conductivity. 

Unfortunately, while showing important enhancements in mechanical proprieties, 

CNT composites cannot be considered a promising option yet [194]. 

 

Figure 25 - Thermal conductivities vs CTEs of different materials. 

Diamond is indicated as a very good material for electronic heat spreading 

[193,195,196] due to its extremely high thermal conductivity (500-2100W/mK, the 

highest values among all the known materials) and its very high electrical 

resistance (∼108Ωm). Bar-Cohen and Wang [195] defined the deposition of 

diamond on substrates, such as silicon, as a “reasonably mature technology” able 

to assure good results. This was also confirmed by Zhang et al. [197] and Twitchen 

and al. [198], who stated that the thermal conductivity of the best quality synthetic 

diamond grown by Chemical Vapour Deposition (CVD) is identical to that of high 

purity natural type diamond at room temperature (2200W/mK). Due to its important 

qualities, the deposition of a diamond layer on the receiver seems to be a good 

solution for CPV cooling. 
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Jagannadham et al. [193] noted that the low molar heat capacity of diamond made 

it good for distribution of energy rather than dissipation. For this reason, they 

suggested that the low heat capacity of the diamond could be compensated 

through a higher heat capacity substrate on which the diamond is then deposited. 

In their heat spreader design, the authors used an intermediate layer of aluminum 

nitride under a continuous layer of diamond. They obtained an increase in heat 

spreader characteristic and life compared to a single layer diamond and a 

molybdenum heat spreader. On the other hand, Zhang et al. [197] simulating in 

COMSOL the performances of a polycrystalline CVD diamond thermal substrate as 

a part of active cooling for power devices, observed that there was no improvement 

in cooling by replacing the aluminum nitride with diamond in a direct bonded 

copper, because of the higher value of the thermal convection resistance than that 

of the thermal conduction resistance. Once all the redundant layers were removed, 

they demonstrated an increase in power dissipation of the systems by two times by 

replacing the ceramic with the diamond. A further increase in performances was 

then obtained by depositing a layer of copper micro-pillars onto the backside of the 

diamond substrate. 

Diamond deposition is obviously an expensive process which is the main 

commercial limitation of this technology. The cost of the thermal diamond substrate 

can be within €1-10  per mm3 as reported by Zhang et al. [197]. Recently Abyzov et 

al. [194] reported the cost to be within $3 and $6 per mm3 for CVD diamond plates 

with a thermal conductivity of 1000 and 1800W/mK respectively. Hence diamond 

composite is still an expensive option compared to copper (a 99.9wt% purity 

copper plate costs about $0.06 per cm3) [194]. Sung et al. [199] addressed the 

high diamond film cost as well and obtained cheaper spreaders infiltrated with 

copper or aluminum with thermal conductivities respectively increased by factors of 

2 and 1.5 times compared to the copper one. Composites of diamond particles can 

be a good compromise between costs and performances. The cost of diamond-

copper composite material with a thermal conductivity between 800 and 

1200W/mK is less than 1/20 the cost of a CVD-diamond [194]. Reported analytical 

calculations estimated a price between $1-10 per cm3 for a copper material with 
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63% in volume fraction of diamond particles. This estimation did not take into 

account the production costs, however, underlined the differences in costs among 

copper, diamond-copper composite and CVD-diamond (Table 5). 

Table 5 - Cost comparison among copper, diamond/copper composites and diamond. 

Copper Cu/D composites Diamond 

~400 W/mK 800-1200 W/mK 1000-1800 W/mK 

$0.06 per cm
3
 $1-10 per cm

3
 $3000 and $6000 per cm

3
 

 

Cu/Dia is the most promising diamond composite because of the low cost and high 

thermal performances of the copper. Composites with diamond filler and metal 

binder can be made by sintering or infiltration process. These operations can be 

run at ultrahigh pressures (>1GPa) or at a pressure between 1 to 100MPa, 

depending on the materials [194]. Diamond composites’ production process is 

crucially important because the manufacturing process affects the thermal 

conductivity of the product [200]. In the worst case it can lead to a thermal 

conductivity of the composite lower than expected as reported by Nishiyabu et al. 

[200]. The diamond powder in air is thermally deteriorated at the conventional 

copper powder’s sintering temperature: this means that diamond powders can be 

thermally damaged when sintered with copper powders. Furthermore, the 

presence of small-sized pores between copper and diamond powders can 

negatively affect the thermal conductivity. The authors concluded their work stating 

that further studies to improve thermal conductivity were necessary. 

In the last years, graphene, a two-dimensional crystal, has gained lot of interest for 

its extra-ordinary properties [201]. Many experimentally measured graphene 

characteristics have exceeded those obtained by any other material, in terms of 

room-temperature electron mobility, Young’s modulus, and intrinsic strength [202]. 

In particular, the thermal conductivity was found to reach values up to 6600W/mK 

[203], making it interesting for heat spreading and dissipation purposes. In the near 

future, graphene is expected to find wide application, from electronics to energy 

generation and photonics. 
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2.3.5.4.2 Natural convection in micro-channels 

As previously reported, micro-channels are composed of many parallel micro-

cavities, have been extensively investigated for active cooling applications and 

have been considered the best systems for HCPV cooling [65]. On the other hand, 

natural convective gas flows in micro-channels have not received much attention 

yet [204].  

In 2005, Chen and Weng [205] analytically investigated the natural convection in 

micro-channels and reported that the volume flow rate at micro-scale was higher 

than that at macro-scale, while the heat transfer rate was lower. In 2010, Buonomo 

and Manca [206] carried out an investigation on natural convection in vertical 

micro-channels. They observed that the highest mass flow rate was obtained at the 

highest Knudsen number (Kn)i while no significant changes in the average Nusselt 

numberii was detected in terms of the heat flux ratio. In 2012, the same 

researchers [204] further investigated the natural convection in a vertical micro-

channel. They showed that wall temperature profiles increased with increasing Kn 

and the differences between wall temperature profiles, for different Kn values, 

decreased with increasing the channel height. Furthermore, mass flow rate 

increased with increasing Kn, whereas Nusselt number decreased with increasing 

Kn. Haddad et al. [207] studied laminar free-convection flow in open-ended micro-

channels filled with a porous medium and found that heat transfer decreased when 

increasing the Knudsen number and the thermal conductivity ratio. 

2.3.5.4.3 Micro-channels fabrication 

The fabrication approaches for micro-channels have been reported in several 

papers. In 1997, Tjerkstra et al. [208] listed four ways to fabricate micro-channels 

by etching: wet anisotropic, wet isotropic, dry anisotropic and dry isotropic. The 

basic approach for constructing channels in silicon is depicted in Figure 26. The 

silicon is first covered with a mask material which is patterned and then etched. 

The channels in Figure 26 are etched (a) isotropically, (b) anisotropically using 

                                            
i
 Kn is a dimensionless parameter defined as the ratio between the mean free path and a 
characteristic length. 
ii
 The Nusselt number compares the heat transfer due to natural convection and that due to 

conduction in a fluid layer. 
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Reactive Ion Etching (RIE), and (c) anisotropically in a KOH solution. Furthermore, 

Tjerkstra et al. [208] classified micro-channel machining methods in two groups: 

technologies involving bonding and not involving bonding. In 2000, Dwivedi et al. 

[209] presented a new wet anisotropic method to fabricate long and deep micro-

channels in silicon with really smooth sidewalls. 

 

Figure 26 - Schematic of making a channel in silicon, adapted from [208]: isotropical etching (a), 
anitropical RIE (b), anitropical in a KOH solution (c). 

Dry etching can be obtained using laser micro-machining. Alavi et al. [210] used 

laser melting and anisotropic etching to fabricate micro-channels with high aspect 

ratio. Kam et al. [211] developed a flexible and fast femtosecond laser ablation of 

micro-channels in silicon to develop branching networks to serve gas exchangers. 

Chen et al. [212] used this technique to produce 5µm diameter micro-channels in a 

silicon substrate by femtosecond laser with 800nm wavelength, which is in the 

absorption region of silicon.  

2.3.5.4.4 Carbon nano-tubes 

In 1991 Sumio Iijima [213] announced the synthesis “of a new type of finite carbon 

structure consisting of needle-like tubes”. Later literature referred to that paper as 

the first on Carbon nano-tubes (CNTs). CNTs consist of hollow cylinders made of 

graphite sheets, with diameters and lengths in the order of nm and µm, 

respectively. CNTs have high mechanical strength and good thermal conductivity. 

They are usually classified into two categories, shown in Figure 27, differing both in 

diameter and in thermal proprieties: 
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 Single-walled carbon nano-tubes (SWCNT): individual cylinders 1-2nm in 

diameter, consisting of a single rolled graphene sheet. SWCNTs have 

important electric proprieties, but are still very expensive to produce [214].  

 Multi-walled carbon nano-tubes (MWCNT): nested graphene cylinders 

coaxially arranged around a central hollow core and held together by 

interlayer van der Wall’s forces. Diameters range from a few nm to hundreds 

of nm and the length can be as high as 100nm. 

Sometimes CNTs with only two layers are grouped in a category other than 

MWCNT: they are called Double-walled carbon nano-tubes (DWCNT) [215]. 

 

Figure 27 - Conceptual diagram of a SWCNT (A) and a DWCNT (B) [216] 

CNTs attracted significant attention due to their important thermal and mechanical 

properties and several studies were conducted on their application for cooling. The 

potential uses of CNTs have been investigated in several fields, such as medicine, 

electronics, aerospace, field emission and lighting [217,218].   

In 2010, two reviews on carbon nano-tubes were published [214,219]. Shakouri 

[188] reported that upper bound for CNTs thermal conductance could be set at 

4∙109W/m2K at room temperature. An increase of 400% in the heat transfer 

coefficient was demonstrated by using CNT arrays on a chip surface [152]. In 2011 

Chiavazzo and Asinari [220] investigated CNTs as alternatives to nano-fluids in 

heat transfer. 

http://jnm.snmjournals.org/content/48/7/1039/F1.large.j
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Kim et al. [221] measured a thermal conductivity of 3000W/mK for a single carbon 

nano-tube. On the other hand, Jakubinek et al. [222] reported that “the heat 

dissipation ability of CNTs has not translated to bulk CNT materials”. Tong et al. 

[223] determined a thermal conductivity of 250W/mK for a MWCNT array, grown 

on Si wafer by chemical vapour deposition (CVD) process with transition-metal iron 

(Fe) as catalyst. As reported by the authors, taking into account an estimated fill-in 

ratio of 10%, this result matched the first one. 

Jakubinek et al. [222] used vertically aligned MWCNT arrays, grown by water-

assisted CVD to investigate thermal and electrical conductivities of CNTs. Nano-

tubes had a diameter of 10-20nm and were approximately spaced 70-100nm. The 

authors measured a thermal conductivity in the range of 0.5-1.2W/mK at 300K, 

with the shortest array having the highest values. Moreover, scaling the arrays’ 

values, they determined the thermal conductivity ranging between 18 and 42W/mK 

for an individual MWCNT. 

Berber et al. [224] conducted a simulation to determine the CNTs thermal 

conductivity and their dependence on temperature. Combining equilibrium and 

non-equilibrium molecular dynamics simulations with accurate carbon potentials, 

the authors obtained a value of 6600W/mK for an isolated nano-tube at room 

temperature. Their calculations suggested that at T=100K, carbon nano-tubes 

would show an unusually high thermal conductivity value of 37000W/mK. As 

highlighted by Han and Fina [219], this trend was in strong disagreement with the 

experimental results obtained by other works, regardless of temperature. 
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Figure 28 - Example of temperature dependence for a carbon nano-tube for temperatures below 400 K; 
adapted from [224] 

Kordas et al. [225] tested a 1.2mm long laser patterned CNTs on a 1mm2 silicon 

chip. Tests took place with various thermal loads (up to 7W) and cooling gas (N2) 

flow rates. The authors discovered that the application of the nano-structure 

allowed the dissipation of 30 to 100W/cm2 more power at 100ºC from a hot chip 

than that obtained by respectively natural and forced convections. According to the 

reported data, CNTs have been found to be one of the most interesting solutions 

for CPV passive cooling due to their high heat transfer proprieties. 

CNTs manufacturing 

There are four common methods for synthesizing CNTs: arc discharge, chemical 

vapour deposition, laser ablation and high pressure carbon monoxide (HiPco). The 

most important characteristics of these methods are reported in Table 6. 

Arc discharge 

In this method, CNTs self-assemble from a carbon vapour created by an arc 

discharge between two carbon electrodes. Arc discharge method was used by 

Iijima [213] in the first CNTs synthesis. Keidar [226] stated that CNTs produced by 

the arc discharge technique have fewer structural defects than those obtained by 

low temperature techniques, whereas Aqel et al. [214] wrote that arc discharge 
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method produced large quantities of impure material. Every year, several works 

are published on CNTs grown by arc discharge technique. 

Chemical Vapor Deposition synthesis 

Chemical Vapor Deposition (CVD) is the most used method to produce CNTs. In 

this method CNTs are grown using catalysis, which involves decomposition of a 

hydrocarbon gas over a transition metal catalyst and the initiation of CNT synthesis 

by some of the resulting carbon atoms. CVD generally results in MWCNTs or poor 

quality SWNCTs [214]. The growth of individual single-walled carbon nano-tubes 

by chemical vapour deposition have been tested on several elements [51, 52]. 

Laser ablation 

In this process, a high power laser beam impinges on a volume of carbon 

containing feedstock gas. The CNTs formed by the laser ablation method are of a 

higher quality than those produced by the arc discharge method. However, the 

production rate is low, and the pulsed laser vaporization or laser ablation method is 

both capital and energy intensive [229]. In 2002, laser ablation techniques were 

reviewed by Maser et al. [230], which concluded that these methods were not 

compatible with large scale production. Furthermore, they added that a large 

potential in using different lasers and combination of lasers was still unexplored 

and that cheaper feedstock materials and more efficient processes were the 

milestones for low cost production. 

High Pressure Carbon Monoxide 

The high pressure carbon monoxide is a low-cost gas-phase catalytic process 

developed in 1999 at Rice University by Richard E. Smalley and his co-workers 

[231] to grow SWCNTs. It consists of the decomposition of Fe(CO)5 in CO at high 

pressure and temperature. According to the authors, the HiPco process can run 

continuously. In some works, it is reported as a CVD process (“via the 

decomposition of volatile metallo-organic compounds within the reactor, without the 

use of a substrate”) [232]. Other authors reported it by itself [233]. 
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Table 6 - Comparison of the established techniques for CNT Synthesis, adapted from [57]. 

Method Arc discharge 
Chemical vapour 

deposition 
Laser ablation 

High pressure 
carbon monoxide 

Description 

Arc evaporation of 
graphite in the 

presence of inert 
gas; CNT formed on 
electrodes, during 

quenching 

Decomposition of 
hydrocarbons over 

transition metal 
catalyst to form CNT 

Vaporization of 
graphite target by 

laser; CNTs formed 
on receiver during 

quenching 

Nucleation surface 
for the growing of 
CNT provided by 

the reaction of 
Fe(C0)2 and CO 

Operating 
temperature 

>3000°C <1200°C >3000°C <1200°C 

Operating 
pressure 

50-7600Torr 
generally under 

vacuum 
760-7600Torr 200-750Torr 7600Torr 

Advantages Good quality CNTs 
Easy scale up; 
synthesis on 

templates possible 

Good quality CNTs; 
single conformation 

SWNT formed 
(10,10) 

High-quality 
SWCNTs, run 
continuously 

Disadvantages Difficult to scale up 
Quality of CNT not 

as good 
Difficult to scale up; 

expensive 
N.A. 

Alternative processes 

Apart from the above methods, other CNT synthesis processes can be found in 

literature, such as plasma torch method [234–236], electrolysis [237], and flame 

synthesis, which is one of the most extensively researched alternative method [53, 

60–62]. Unfortunately, although these methods can produce large quantities of 

CNTs, the cost is generally still too high to make any large-scale applications. 

Continuous synthesis of CNTs allows growing large quantities of CNTs effortlessly. 

According to Ying et al. [215], which published a review of continuous synthesizing 

methods in 2011, research in the continuous synthesizing processes has made 

some progresses in both arc discharge and CVD. 

CNTs usually contain impurities whose type and amount depend on the synthesis 

process. These impurities influence CNT properties and limit their applications. 

Several purification processes have been proposed, such as oxidation [241–243], 

acid treatments [244] and filtration [245]. Different techniques can be combined to 

improve purification [246]. 

Some groups investigated high purity synthesis methods to avoid the purification 

processes, which usually cause changes in CNTs proprieties. In 2006 Hong et al. 

[247] firstly proposed a high purity CNTs production process. Through the catalytic 

decomposition of methane with NiO/TiO2 as a catalyst, they obtained MWCNTs 

with 99.9wt% purity. In 2007, Dasgupta et al. [248] fabricated high-purity CNTs by 
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a catalytic chemical vapour deposition of acetylene diluted with nitrogen. Cobalt 

formate supported on carbon black was used as the catalyst. The purity of the 

obtained nano-tubes was as high as 96%. In 2012, a model to determine and 

compare the cost of the SWCNT synthesized by arc discharge, CVD and HiPco 

was developed by Isaacs et al. [233]. Their results showed a cost per gram 

respectively of $1906, $1706 and $485. According to the authors, the HiPco 

method resulted in the lowest cost because it was able to re-circulate CO in a 

continuous process [233]. Fleury et al. [249] noted that the prices of CNT-polymer 

nanocomposite could rise if safety costs for CNT polymer nanocomposites 

production, such as safe process design, workplace organization, personal 

protective equipment and safety management during the maintenance procedures, 

were considered. Starting from the data exposed by Isaacs et al. [233], Ok et al. 

[250] estimated the costs for SWCNT manufacturing using a Monte Carlo model 

they developed. The results confirmed the cheapness of the HiPco process, when 

compared to the arc discharge and CVD. Furthermore, they predicted the variation 

in prices due to a voluntary implementation of higher EHS standards by the 

industries. 

2.3.5.4.5 Micro-fins 

Heat transfer around macro-fin arrays has been extensively researched. Fins 

increase the heat transfer of a surface by extending the heat exchanging surface. 

Macro-fins are widely used, from radiators to printed circuits boards, and they have 

been used for CPV cooling too [158].  

Although many papers focused on macro-fins in natural convection conditions, only 

few researches on micro-fins arrays [251–253] were found. Kim et al. [251] 

demonstrated that the heat transfer correlations used for macro-finned arrays could 

not be applied in micro-scaled systems. Moreover, the authors found an 

enhancement in heat transfer up to 10% after the introduction of micro-fins and 

concluded that the orientation had no effects at micro-scales. Mahmoud et al. [252] 

carried out an experiment to investigate the effects of micro-fin geometry on natural 

convection heat transfer of horizontal micro-fins on a copper surface. The authors 

discovered that the values of convective heat transfer coefficient increased when 
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the fin height decreased or the fin spacing increased (Figure 29). The effect of fins 

thickness on the thermal exchange was not considered by any of the previous 

studies. 

 

Figure 29 - Effect of fin height and spacing on the heat transfer coefficient [252]. 

Shokouhmand et al. [253] conducted a numerical investigation on natural 

convection and radiation heat transfer from micro-fin array heat sinks, taking into 

account temperatures ranging between 80 ºC and 100ºC. They discovered that the 

contribution of radiative exchange could not be neglected, and that it should be 

included in the studies on natural convective micro-fin heat sinks. 
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Overall, micro-fins look like a simple and reliable solution to improve the cooling of 

a CPV system, even if their performance seems to be lower than CNTs. More 

studies on naturally convective micro-finned heat sinks are required in order to find 

out the optimized geometries for a HCPV application. 

Micro-fins fabrication 

Micro-fins are usually obtained through standard subtracting manufacturing 

methods such as wet or dry etching. Mahmoud et al. [252] used a micro-electro 

discharge wire machining (m-EDWM) process to fabricate their prototypes. Kim et 

al. [251] fabricated micro-fin arrays with fin heights of 100 and 200µm in a bulk 

silicon wafer using microelectromechanical systems (MEMS) process. The 

procedure was divided into two major steps: the metal deposition process for the 

electric heater, and the deep etching process for fin geometries. The second step 

was realized through Deep Reactive Ion Etching (DRIE, from (f) to (h) in Figure 

30). DRIE is a widely used process for deep trench etching of a silicon wafer. The 

most common DRIE technique is the Bosch process, patented by Robert Bosh 

GmbH in 1994 [254] and based on alternating multiple steps of etching and 

sidewall passivation. Even Peles et al. [255] used DRIE process to evaluate the 

forced convective heat transfer across a bank of micro-fins. In 2009 Bopp et al. 

[256] presented a new DRIE process to obtain different micro-and nano-structures, 

i.e. fins and nano-wires, arranged on two or more levels in bulk silicon.  

 

Figure 30 - Fabrication procedure of Kim et al. micro-fin arrays, adapted from [251]. 
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Dry etching techniques, also known as Reactive Ion Etching (RIE), are processes 

that combine physical and chemicals effects to remove material from the wafer 

surface [257]. Wet etching should be faster than dry etching, but has some 

disadvantages which were reported by Murakami et al. [258]. Required structures 

could not always be fabricated by wet etching process because the etched 

geometry depended on the crystalline orientation. In addition, micro-structures 

were often stuck together during dry up after the wet procedure because of the 

surface tension force of liquid. On the other hand, the authors stated that dry 

etching procedure could solve these problems. A cryogenic RIE process was used 

to fabricate 3-dimensional silicon micro-structures with high aspect ratio. According 

to Laermer et al. [257], the most important feature of RIE, compared to wet etching, 

was the capability of directional (anisotropic) etching without relying on crystal 

planes of the material. DRIE is considered an extension of the RIE and grant 

higher-rate etching of deep and narrow structures. Furthermore, DRIE usually 

allows better selectivity and process controllability than RIE. Kos ̧ar et al. [259] used 

RIE process to remove oxide in wafer places not protected by the resist and then  

DRIE process to etch silicon and to fabricate their low aspect ratio micro-pin fins. In 

2008, Abdolvand and Ayazi [260] developed a new DRIE method, modifying the 

Bosch process. Adding an argon/oxygen plasma pulse between the passivation 

and etching steps and a short oxygen clean step at the end of each cycle, the 

authors obtained very high aspect-ratio sub-micron trenches in silicon. 

2.3.5.4.6  Nano-wires 

A nano-wire is a one-dimensional nano-structure: its length is much greater than its 

diameter, which is constrained to tens of nano-meters. According to Zhang [261], in 

the last decade nano-wires have been applied in several fields, such as biosensors 

and electronic devices. In addition, in 2009, Li et al. [262] designed a PV module 

made of periodic Si nano-wire arrays. The authors found that silicon nano-wire 

arrays can reach the same efficiency than Si films with the same thickness. 

Nano-wires are usually used as thermoelectric devices [263], due to the high 

electrical conductivity and low thermal conductivity [84, 85]: they are used to 
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directly convert heat into electricity. Due to their low thermal conductivity, they are 

not suitable for passive cooling. 

2.3.5.4.7  Natural convection of nano-fluids 

One of the most important problems in the development of energy-efficient heat 

transfer systems is the low thermal conductivity of fluids. In 1993, Masuda et al. 

[266] firstly investigated the thermal conductivity of water containing Al2O3 

nanoparticles. Choi and Eastman [267] in 1995 proposed the concept of nano-

fluids: fluids with nano-particles suspended in them. Nano-particles are generally 

expected to have at least one of the principal dimensions smaller than 100nm. The 

choice of nano-particle in nano-fluids is crucial to achieve good thermal properties. 

The following criteria, reported by Rafati et al. [268], can be the benchmark to 

choose nano-particles for different applications:  

 High stability in selected base fluid and lower tendency to agglomeration 

and settling; 

 High thermal performance in suspension even at low concentration; 

 Availability and reasonable price; 

 Non-toxicity and environmental friendliness. 

Even if nano-fluids nowadays find application in several fields, from biomedical to 

heat transfer applications [165], limited and contradictory experimental results have 

been reported on their performance in natural convection conditions [269,270]. 

Significant discrepancies among the characteristics measurements (i.e. thermal 

conductivity and viscosity) have been reported: this is possibly due to the lack of 

standards for nano-fluid preparation, to the different nanoparticle manufacturing 

processes employed, to the various stabilization methods and to the different time 

durations between the preparation and the measurement. 

Ouelasti and Bennacer [271] numerically studied and compared the heat transfer 

performances of three nano-fluids in natural convection in a differentially heated 

square cavity. They reported that Cu nano-particles yield better results than Al2O3 

and TiO2 nano-particles. Hwang et al. [272] investigated theoretically the thermal 

characteristics of natural convection in a rectangular cavity heated from below with 
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water-based nano-fluids containing alumina (Al2O3). The authors found that the 

stability of natural convection in the nanofluid was enhanced when the volume 

fraction of the nano-particles increased, the size of the nano-particles decreased, 

the average temperature of nano-fluids increased. Differently, the heat transfer 

coefficient was found to be positively affected when the size of nanoparticles was 

reduced, or the average temperature of nanofluids was increased. 

In 2003, Putra et al. [273] took into account the suspensions of Al2O3 and CuO 

nano-particles in water. They reported a systematic and definite deterioration in 

natural convective heat transfer. This deterioration was not present in case of 

forced convection. In another study [274], the convective performance of nano-

fluids has been even tested on an electronic heat sink by using CuO/water nano-

fluids to actively cool down an aluminum block heated by a 150W-cartridge heater: 

a maximum increase of 29.63% in convective heat transfer was achieved for a 

nano-fluid with a volume fraction of 0.2% compared to deionized water at a fixed 

volume flow rate [274]. 

In 2009 Nieto de Castro’s group presented the concept of ionanofluids [275]: these 

are a specific type of nano-fluids made of nanomaterials suspended in ionic liquids. 

Ionic fluids have good heat transport and storage capabilities and very good 

solvent proprieties. In 2010, the same group [276] obtained an enhancement in 

thermal conductivity ranging between 2 and 9%, with a weak dependence on 

temperature by comparing several ionic fluids with a 0.01 mass fraction of 

suspended MWCNTs. In 2012, Nieto de Castro’s group [275] investigated the 

effect of temperature and concentration of MWCNT on the effective thermal 

conductivity and specific heat capacity of several ionanofluids. They demonstrated 

that the higher the concentration of MWCNTs, the higher the enhancement in 

thermal conductivity, while the temperature effect seemed to be negligible.  

Further investigations are required on natural convection of nano-fluids, in order to 

understand their thermal effectiveness and to prove their durability. Moreover, the 

development of a design able to fit the requirements of a tracked CPV system is 

needed. 
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Nano-fluid fabrication 

The preparation of nano-fluids requires a correct dispersion of nano-particles. Two 

methods are commonly used to produce nano-fluids: a one-step method and a 

two-step method. According to Yu and Xie [277] the two-step method is the most 

widely used for nano-fluids preparation. In this method, the nano-particles 

production and dispersion are different operations. Nano-particles are first 

produced as dry powder, and then dispersed in the fluid. The two-step method is a 

quite cheap process, because nano-particles are already produced by several 

companies and commercially available. The main problem in this procedure is the 

low-stability of the synthesized nano-fluid.   

On the other hand, the one-step process consists of simultaneously making and 

dispersing the particles in the fluid. This process leads to the production of high-

stability and uniform nano-fluid. According to Li et al. [270], only low vapour 

pressure fluids can be used in this process. This fact limits the application of the 

one-step method. In addition, other techniques, such as a continuous-flow micro-

fluidic micro-reactor for Cu nano-fluid developed by Wei and Wang [278], have 

been presented [277], but they are not as popular as the one-step and the two step 

methods. 

Carbon Nano-tube based nano-fluids 

The use of CNTs as particles for nano-fluids has been found to be very effective to 

obtain fluids with high thermal conductivity. Amrollahi et al. [279] measured an 

enhancement of 20% by adding a 2.5vol% of CNTs to ethylene glycol in thermal 

conductivity and demonstrated that traditional macro suspensions models, such as 

Maxwell and Hamilton-Crosser ones, could not foresee the behaviour of CNT 

nano-fluids. In 2008, Venkata Satry et al. [280] presented a new model to predict 

the heat transfer in nano-fluids. In particular, they investigated the formation of 

extensive three-dimensional CNT chains in the liquid. They discovered that it 

depended on the CNT length, the volume fraction, the thermal conductivity of the 

base liquid, and the technique deployed to prepare the nano-fluid. Finally, the 

authors suggested the introduction of a new dimensionless number, termed as ∏, 

which represents the ratio of thermal resistance of the liquid to that of the CNT 
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chains and that was able to characterize the thermal conductivity of the MWCNT 

nano-fluid suspension within an accuracy of ±5%. With a 1vol% MWCNT loading, 

the thermal conductivities of poly-alpha-olefin oil, water and ethylene glycol were 

enhanced by more than 150% [281], 40% [282], and 30% [283] respectively. In 

another study Kumaresan et al. [284] reported the increase in thermal conductivity 

and heat transfer co-efficient of CNT based nano-fluids to optimize the ratio of the 

CNT in nano-fluids. They suspended MWCNTs in a mixture of 70vol% de-ionized 

water and 30vol% ethylene glycol, obtaining a high enhancement in performances 

with a concentration of CNT in the base liquid of 0.45vol%. An enhancement of 

19.73% and 159.3% in thermal conductivity and average heat transfer coefficient 

respectively were reported. The same group of researchers [285] demonstrated 

that 0.45vol% of CNT was the optimal concentration when using ethylene glycol as 

base liquid. Other thermo-physical proprieties of the nano-fluids were also found to 

be changed, such as the density that increased with the MWCNTs concentration, 

whereas the specific heat decreased with an increase in the MWCNTs 

concentration. Carbon nano-tubes based nano-fluids have been used both in 

micro-heat pipe and in thermosyphon. In spite of enhanced thermal conductivity of 

the CNT based nano-fluids, the stability and the lifetime are still major concerns.  

Nasiri et al. [286] carried out an investigation on the stability of CNT based nano-

fluids by comparing the performances of SWCNTs, DWCNTs and MWCNTs 

suspended in water. While all the suspensions were found to be stable for months, 

SWCNT suspension demonstrated the best stability and the higher improvements 

in thermal conductivity. The thermal conductivity of all suspensions decreased with 

time due to agglomeration. Similarly, also the reduction rates of thermal 

conductivity decreased with the time. However, the researchers reported an 

enhancement in thermal conductivity with the increase in temperature. Meibodi et 

al. [287] reported the optimum conditions for CNT/water nano-fluids production and 

operation to attain a better stability. However, it was mentioned that the more 

stable nano-fluids did not necessarily have the higher enhancement in thermal 

conductivity.  



Chapter 2: CPV receivers: state of the art 

 

64 

Several reviews underlined the lack of agreements among the data [269,288,289]. 

Some papers showed that more stable fluids were not necessarily best performing 

[287,289]. More works are needed on nano-fluids and the standardization of the 

measurement procedures is necessary to avoid discrepancies in data. Nano-fluids 

have certainly shown their potential as heat transfer solution and they look a 

promising solution for devices requiring high heat removal power. Nevertheless, 

further investigations are required on natural convection of nano-fluids in particular. 

The application of CNTs in nano-fluids has shown interesting results. Finally, the 

development of a design able to fit the requirements of a tracked CPV system is 

needed. 

2.3.5.4.8  Micro-heat pipes 

The use of micro-heat pipes (MHP) can provide a good transfer of heat flux and 

can then reduce the thermal resistance between the cell and the cooler. Cotter 

[290] defined a micro-heat pipe as a heat pipe “so small that the mean curvature of 

the vapour-liquid interface is necessarily comparable in magnitude to the reciprocal 

of the hydraulic radius of the total flow channel”. In scientific literature, micro-heat 

pipes have been found both in active and in passive configurations [291]. Yeom 

and Shannon [152] summarized the efforts on MHPs from 1996 to 2007, reporting 

that the heat fluxes removed by the MHPs ranged from a few to over 300W/cm2. 

Taking into account this wide extent of thermal performance, micro-heat pipes can 

be considered as a feasible solution for passive CPV cooling. 

Cross sections 

As reported by Hung and Sang [292], the thermal performances of micro-heat pipe 

is intimately related to the cross-sectional geometry. Different cross sections have 

been designed and tested in order to enhance the backflow of working liquid. 

As shown in Figure 31, Peterson et al. [293] demonstrated that the performance of 

a triangular micro-heat pipe was better than that of the rectangular one, due to the 

higher capillary pumping effect. Moon et al. [294] confirmed this result, using MHP 

with curved sections. Suman and Kumar [295] developed an analytical model to 

study MHP performances. They considered MHPs with two different cross 
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sections: an equilateral triangular heat pipe with side equal to 400µm and a 

400µm×800µm rectangular heat pipe. Pentane was used as working fluid and 

silicon was employed as substrate. Suman and Kumar [295] demonstrated that the 

performance of a heat pipe degrades when the number of sides increases. 

 

Figure 31 - Thermal conductivities of a silicon wafer with a rectangular heat pipe array, with a 
triangular heat pipe array and withouth heat pipe array, adapted from [293] 

Kang and Huang [296] fabricated a star grooved MHP and a rhombus grooved 

MHP. They reported an increase in thermal conductivity of 33.6% for the star 

grooved MHP and of 39.1% for the rhombus grooved MHP when compared with a 

traditional triangular MHP. The authors stated that better capillarity action was 

provided by more acute angles and micro-gaps in the star- and rhombus-groove 

devices. 

As reported by Hung and Seng [292], the acuteness and the number of sharp 

corners are two important basic geometrical factors that govern the capillarity 

pumping ability and hence the performance of a micro-heat pipe. For regular 

polygonal shapes, the acuteness of the corner and the number of corners are 

dependent: the corner apex angle decreases when the number of corners 

increases. In star-grooved MHP, number of corners and corner apex angles do not 

affect each other. For these reasons, Hung and Seng [292] stated that star-

grooved micro-heat pipes rendered higher capillary pumping power and hence 

higher heat transport capacity compared to those of regular polygonal micro-heat 

pipes. Furthermore, they discovered that the increase in total length of the micro-

heat pipe resulted in decrease in its heat transport capacity. 

Wang and Peterson [297] proposed a wire-bonded aluminum-acetone micro-heat 

pipe, obtained by sandwiching an array of cylindrical wires between two flat plates. 
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The authors discovered that the maximum heat transfer capacity increased when 

the wire diameter and the operating temperature were increased. Moreover they 

demonstrated that increasing the spacing between wires could increase the 

maximum heat transport capacity. In their following work, Wang and Peterson [298] 

confirmed this statement, but added that there was a spacing value where this 

improvement was overshadowed by the decrease in the number of heat pipes in 

the array, and the maximum heat transfer capacity became limited. The optimum 

spacing distance was found to vary with the diameter. 

MHP with arteries 

This design consists of one vein channel which is the traditional MHP and two 

neighbour arterial channels distributed on both side of the vein and connected 

together at both ends. In the vein, vapour carries the latent heat flowing to the cold 

end where it condenses. In the arteries, the liquid is transported to the hot end by 

the capillary force applied by the V-grooves in the micro-triangle pipes. Due to the 

liquid pressure difference between the cold end of the artery and the MHP, the 

liquid accumulated at the condenser section can be transported back to the 

evaporator sections. 

 

Figure 32 - Working principle of MHP with arteries [299] 

Liu et al. [299] compared MHPs with and without arteries, concluding that 

implanted arteries could effectively enhance the capillary force, improve the 

capability to transport the liquid from the cold end back to the hot end, and limit the 

propagation of the dry-out region. 
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Working fluids 

The working fluid is an important aspect for the efficiency of micro-heat pipes, 

which are two-phase cooling devices. In 2003, Chien et al. [300] proposed the use 

of nano-fluids into the micro-heat pipes. Using nano-gold particles suspended in 

water, instead of pure water, the authors obtained an average decrease of 40% in 

the MHP thermal resistance. Over 30 papers on the application of nano-fluids into 

heat pipes had been published at the time this investigation was conducted [301]. 

For the purposes of this review, only the works on micro-grooved heat pipes have 

been considered. A summary of the results is reported in Table 7: each research 

showed an enhancement in MHP thermal exchange due to the use of nano-fluids. 

Liu Z.-H. and Li Y.-Y. [301] reported three main reasons for these enhancements in 

thermal transfer: the effective thermal conductivity of nano-fluids increased; the 

physical proprieties of nano-fluids changed, increasing the capillary force in the HP 

and making the liquid extending in the micro-grooves; nano-particles formed a thin 

porous layer on the wall, which increased the capillary force.  

Table 7 - Nano-fluids in micro-grooved heat pipes publications, adapted from [301]. 

Shape of micro-
grooved heat 
pipe 

Best performing working liquid 
type (nanoparticle size and 
optimal concentration 

Maximum reduction in 
thermal resistance (fluid 
compared with) 

Researchers 

Disk-shaped Au/Water (17 nm) Average of 40% (DI water) Chien et al. [300] 

Cylindrical  
Ag/Water (10nm) 
Ag/Water (35nm) 

50% (water) 
80% (water) 

Kang et al. [302] 

Cylindrical Ag/Water (10nm) 44% (water) Wei et al. [303] 

Cylindrical CuO-water (50nm, 1.0wt%) 39% (water) Yang et al. [304] 

Flat Al2O3-water (38.4 nm, 0.8wt%) 47.7% (DI water) 
Do K.H. and Jang 
S.P. [305] 

Flat-shape TiO2-water (20nm, 4.0wt%) 27% (water) 
Shafahi et al. 
[306] 

Cylindrical TiO2-water (10nm, 4.0wt%) 25% (water) 
Shafahi et al. 
[307] 

Cylindrical CuO-water (50nm, 1.0wt%) About 50% (water) Liu et al. [308] 

Cylindrical CuO-water (50nm, 1.0wt%) 50% (water) Wang et al. [309] 

MHP Fabrication 

Micro-heat pipes fabrication usually involves standard micro-systems technologies. 

Ivanova et al. [310] fabricated a silicon/water MHP using two silicon wafers. Deep 

plasma etching was used to obtain the micro-capillary wick. On one wafer, small 

diameter holes were laser-drilled for filling. The two wafers were assembled 

through a silicon direct bonding technique. Finally, a thermal annealing under inert 
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gas leaded to irreversible bonding due to the formation of covalent bonds between 

the two surfaces 

In 2002 Le Berre et al. [311] fabricated and tested two types of silicon micro-heat 

pipes. The first one (shown in Figure 33a) consisted of a series of 55 parallel 

triangular shaped, 230µm-wide, 170µm-deep and 20mm-long channels, that were 

micro-machined into a silicon wafer with a spacing of 130µm. A second wafer was 

then sealed to the first one to hermetically close the device. For the second design 

(Figure 33b), arteries were added for the liquid transport: the liquid independently 

returned via etched channels to the evaporator. In this case, the first wafer 

consisted of 25 triangular 500µm-wide and 320µm-deep grooves, etched 

throughout the wafer. The second wafer contained 25 triangular grooves too. The 

fabrication started with thermal growth of a 1.5µm oxide layer on the device wafer. 

The oxide on both sides of the device wafer was patterned in order to be used as 

an etching mask. Triangular grooves were etched by using a 40wt% aqueous KOH 

solution at 60°C. Plain silicon wafers were used to seal the MHP arrays (Si-Si 

direct bonding). 

 

Figure 33 - Transverse cross-sections of a MHP developed by Le Berre et al. MHP, adapted by [311]  

Kang and Huang [296] fabricated a star grooved MHP formed by three silicon 

wafers. They used photolithography wet etching technology, to produce a series of 
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31 parallel V-grooves. Then the three layers of the wafers were eutectic bonded to 

form the MHP. The whole process is represented in Figure 34. 

 

Figure 34 - Fabrication process of the star grooved MHP, adapted from [296] 

2.3.5.4.9  Miniature two phase closed thermosyphon 

Two phase closed thermosyphons are also known as wickless heat pipes (Figure 

35). Lee [312] defined them as the heat pipes which do not use the capillary force. 

Thermosyphons exploit gravitational laws: so, they cannot be used in orientation-

dependent applications. Thus, they cannot be easily applied to CPV, where 

tracking systems are usually employed.  
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Figure 35 - Conceptual Design of the Loop Thermosyphon, © 2002 IEEE [313] 

Wickless micro-heat pipes were conceived first in 1984, by Cotter [290]. He 

investigated a cooling system “for applications calling for close temperature control, 

but having only modest cooling requirements”. In 1998, Gromoll [189] stated that 

thermosyphons could be used for power loss densities up to 30W/cm2: at higher 

temperatures the film began to boil, decreasing cooling efficiency. On the other 

hand, in 2007, Yeom and Shannon [152] reported a maximum heat flux of 

200W/cm2. 

Pal et al. [313] tested two working fluids: deionized ultra-filtered water and PF5060, 

a dielectric liquid. They stated that water was a better working fluid, because of its 

better thermal properties than those of PF5060. However, they proposed the 

exploitation of a proper degassing procedure to improve the performance of the 

PF5060 charged system. Several works have been published on the exploitation of 

nano-fluids in closed two-phase thermosyphons [301], but only the few of them 

focusing on miniature thermosyphons and are reported in this work. Presenting the 

considerations of Liu Z.-H. and Li Y.-Y. [301] about the reliability of nano-fluids in 

thermosyphons is interesting for the aims of this review. The authors realized that 

the nanoparticles generally proved to be able to increase the heat transfer in the 

majority of the experiments, but that few works reported the opposite results. This 

discrepancy should depend on several factors: the porous sediment in the boiling 

process, the impact of the operating temperature on the thermal performance, the 

preparation of the nano-fluids. The same group [314,315] carried out two 

experiments to discover the performance of an active miniature thermosyphon 

using a water-CuO nano-fluid or a carbon nano-tube based nano-fluid. Firstly, they 

demonstrated that the heat transfer performance of the miniature thermosyphon 
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could evidently be strengthened by using water-CuO nano-fluid [314]. In the 

second work [315], the researchers obtained a lower thermal resistance and a 

more uniform temperature distribution in the micro-thermosyphon using carbon 

nano-tube suspension instead of deionized water. Furthermore they stated that 

mass concentration of 2.0% corresponded to the optimal heat transfer 

enhancement. 

Ramaswamy et al. [316] investigated the effect of channel width on the miniature 

thermosyphon performance. The authors discovered an increase in heat 

dissipation when increasing the pore size. 

Thermosyphon fabrication 

Ramaswamy et al. [316] tested several micro-fabrication techniques to fabricate a 

silicon thermosyphon. Wafer dicing, laser milling and wet etching were used to etch 

the channels into the silicon wafer. According to them, wet etching seemed to be 

the most promising method for bulk fabrication and resulted in very clean channels. 

Furthermore several bonding techniques were tried, including direct wafer bonding, 

eutectic bonding, and epoxy bonding. The authors stated that very good bonding 

was attained with an aluminum-silicon eutectic and cyanate ester epoxy. 

2.3.5.5 Considerations 

This review investigated micro- and nano-technologies which could be used for 

passive CPV cooling. The fabrication processes have also been covered. Among 

the reported solutions, carbon nano-tubes have been found able to offer the best 

cooling performances, as described in Table 8, whereas micro-fins looked like the 

most suitable technology for CPV applications because of the low-cost and the 

intrinsic simplicity. 
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Table 8 - Comparison of different micro- and nano-technologies 

Cooling 
technologies 

Manufacturability References Remarks 

Heat spreaders 
Chemical vapour 

deposition 
[193,195,198] 

Mature technology, able to assure 
extremely high thermal conductivity. 

Natural convection in 
micro-channels 

Wet etching; 
Dry etching 

[204–206] 
Further investigations on material 

specifications are required. 

Carbon Nano-tubes 

Arc discharge; 
Chemical Vapour 

Deposition; 
Laser ablation 

[188,214,219] 
Highest heat transfer performances among 
reported technologies. Material stability is 

an issue that needs to be addressed. 

Micro-fins Dry etching (DRIE, RIE) [158,252,253] Simple solution, suitable for CPV. 

Nano-wires  [261–263] 
Not suitable for passive cooling, due to low 

thermal conductivity. 

Natural convection of 
nano-fluids 

One-step method; 
Two-step method. 

[267,269,277] 
Further investigations are required. 

Suitable for active cooling. 

Micro-heat pipes 
Standard etching 

technologies 
[291,296,310] 

High heat removing capacity. Suitable for 
passive CPV cooling. 

Miniature 
thermosyphons 

Standard micro-
fabrication techniques 

[189,312,316] 
Not suitable for orientation-dependent 

applications. 

 

A lot of research was carried out on CNTs in the last two decades, due to their 

important thermal and mechanical proprieties. High thermal conductance and high 

performance improvements have been demonstrated in several papers using 

carbon nano-tubes. CNTs fabrication processes are mature techniques: several 

synthesizing methods have been developed and tested. High-purity carbon nano-

tubes have been obtained by different groups without the application of a 

purification process. 

Micro-fins represent a reliable, simple solution, with the potential of increasing the 

thermal performance of CPV without affecting the cost, even if more studies are 

needed on their natural convection application. Another promising technology is 

the high-conductive coating: a diamond layer can be fabricated through a well-

known chemical vapour deposition process. However to overcome the high costs 

and, at the same time, to maintain high performances, the exploitation of 

composite materials has to be taken into account. Micro-heat pipes can also be 

considered as plausible solutions for passive CPV cooling. Further investigations 

are required on nano-fluid in natural convection to understand the real potentials of 

these solutions. 
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Only in a limited number of cases, micro-and nano-technologies were applied to 

concentrating photovoltaic systems. More experimental researches are needed to 

investigate the applicability and the performances of these technologies to CPV, 

but the present comparisons may provide a good background. 

2.4 Conclusions 

In the present section, an investigation on the materials and components of CPV 

system has been reported. Along with that, a detailed review of macro- and micro-

scaled cooling systems has been presented.  

The CPV receiver, intended as the assembly of PV cells that accepts concentrated 

sunlight and incorporates the means for thermal and electric energy removal, has 

been the main subject of the presented research work. The cells are mounted on a 

substrate that gives the mechanical support to the structure and is expected to 

collect the generated current with minimized electrical losses and to efficiently 

favour the transfer of waste heat from the cell to the heat sink. Direct bonded 

copper boards have been the most common substrate employed so far in HCPV, 

but insulated metal substrates are gaining attention due to their lower costs and 

good performance. Due to the dramatic reduction in semiconductive surface 

associated with HCPV, the more expensive multijunction cells are generally 

employed to replace the lower-efficiency silicon solar cells for concentrations 

higher than 300 suns. Record efficiencies of 46.0% have already been achieved by 

multi-junction cells and further progresses are expected in the near future. The 

cells are electrically connected to the circuitry by soldering, which also confers 

bonding strength to the connections, and by metallic wires bonded on the front 

tabs. Schottky by-pass diodes are generally used in CPV applications to reduce 

the electrical losses and the risk of damages in case of shading: installing one 

diode per cell has been shown to be the most convenient configuration. The 

components and the interconnectors are generally protected by a clear 

encapsulating material: so far, silicone materials have been reported to be the best 

performing in terms of optical transmittance and durability. 
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The high concentrations achieved in HCPV lead to the generation of high amounts 

of waste heat that need to be removed from the cells. High temperatures 

deteriorate the performance of any photovoltaic cells and can cause mechanical 

failures in the receiver: for this reason, the CPV cells are usually kept in a 50°C to 

80°C temperature range. Many cooling approaches have been attempted in the 

recent years and, among the different systems, micro-channels and jet-

impingements have been reported to be the most effective, achieving thermal 

resistances as low as 10-6m2K/W. Due to the lack of moving parts and external 

inputs, passive cooling is likely to increase the reliability of CPV systems and, at 

the same time, to reduce the costs. Moreover, micro- and nano-technologies have 

the potential to offer innovative solutions for a reliable CPV cooling. In this light, a 

review of passive micro-and nano-cooling technologies has been reported in the 

chapter: micro-fins in natural convection conditions have been found to be a simple 

solution, suitable for CPV, but further investigation on the thermal performance are 

needed. 

The aim of the present thesis is to investigate novel solutions to enhance the 

performance of HCPV receivers: in this light, two different approaches have been 

attempted. Firstly, a large, high-efficiency, 144-cell cell assembly for HCPV has 

been designed and fabricated. It is part of a 500× CPV system developed in 

partnership with the Indian Institute of Technology Madras (India) within the scope 

of the EPSRC/DST-funded BioCPV project. The aim of this research is to develop 

an innovative design for HCPV installations and, at the same time, to guide the 

future researchers and industrials across the issues and the challenges that can 

occur while producing a high CPV receiver. Secondly, the performance of a 

passive micro-cooling system for HCPV is investigated. So far, the research on 

micro-technologies for CPV cooling has been limited and only few examples of 

CPV micro-cooling systems have been found in literature.  

After reporting in Chapter 3 the materials, the instruments and the procedures used 

in the research, the initial thermal simulations conducted for the selection of the 

components are reported in Chapter 4. Chapter 5 and Chapter 6 focus, instead, on 

the development of the large active-cooled receiver: in the first, the design of the 
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electrical circuitry, the selection of the components and the fabrication processes 

are explained, whereas, in the second one, the results of the quality tests and the 

electrical characterizations are reported. Chapter 7 describes the investigation on a 

micro-passive cooling system for HCPV: it starts from an experimental research on 

the heat transfer at micro-scale, and ends with the development of a model to 

predict the performance of a micro-finned CPV receiver in natural convection.  
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 Materials and Methods Chapter 3:

This chapter lists the equipment employed to carry out the present work, including 

the software packages used for modelling and designing, and describes the 

specifications and the operated practices. The most common laboratory materials 

are illustrated as well: the featured specifications are reported along with the 

recommended processing methods. Lastly, the procedures adopted during the 

experimental investigations and the prototype’s fabrication are detailed. 

3.1 Components and experimental materials 

3.1.1 The solar cell 

The 3C40C triple-junction cells developed by the German company AZUR SPACE 

Solar Power were employed in this work. These cells were rated to a peak 

efficiency of 37.2% and a power of 18.6W at maximum power point (MPP) under 

standard conditions at 500×. They were chosen because, despite the lowest peak 

efficiency (Table 9), they were the most cost convenient among those available in 

2012 [317].  

Table 9 - Cell's cost and performance comparison [317]. Cost refers to orders for more than 2000 cells 
in 2011. Data are reported for AM1.5, 1000 W/m² DNI, T= 25°C conditions at 500×. 

Supplier 
Cost 

(£/cell) 
Efficiency 

(%) 
Short circuit  
current (A) 

Open circuit 
Voltage (V) 

Power at 
MPP (W) 

Fill 
factor 

AZUR SPACE 5.70 37.2 6.587 3.17 18.6 89.1 

Spectrolab 7.17 39.2 7.19 3.21 19.6 85.1 

Cyrium 9.35 38.0 7.2 3.0 19.0 88.0 

Emcore 9.68 38.5 7.06 3.15 19.03 85.5 

 

These GaInP/GaAs/Ge cells had an active area of 100mm2 and a thickness of 

190µm. The GaInP top subcell and the GaAs middle subcell were current-matched 

and produced currents of 14.5mA/cm2, whereas the bottom subcell generated at 

least 40% of current in excess. The effects of the temperature on the cell’s 

efficiency are shown in Table 10 and Figure 36.  
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Table 10 - 500× temperature coefficients (25 - 80°C, Beginning of life) [117]. 

Parameter Value 

ΔIsc/ΔT 1,596mA/°C 

ΔVoc/ΔT -4,130mV/°C 

ΔPMPP/ΔT -6,194mW/°C 

Δη/ΔT - 0,034 %(abs.)/°C 

 

 

Figure 36 - Efficiency as function of Sun concentration and temperature [117]. 

3.1.2 The solar assembly 

The commercial solar assembly employed in this work was the 3C40A, supplied by 

AZUR SPACE. It used a 3C40C multijunction cell, attached to a direct bonded 

copper (DBC) substrate using a Sn96,5Ag3,5 solder paste. The DBC was made of an 

upper 0.25mm-thick copper layer, a 0.63mm-thick Al2O3 layer and a lower 0.25mm-

thick copper layer. The middle ceramic plate had dimensions of 3.7cm and 3.2cm, 

while the two layers of copper were about 0.3cm shorter on each side. The 

assembly was equipped with two parallel 10A Schottky surface mounted diodes. 

3.1.3 Sylgard 184 

Sylgard® 184 is a clear silicone resin solution produced by Dow Corning. It is a 

Polydimethylsiloxane elastomer suited for the protection of electrical and electronic 

components and had been already used in CPV because of its high optical 

transmittance and its wide operating temperature range (-45°C to 200°C). A 

summary of the typical properties is reported in Table 11. 

 



Chapter 3: Materials and Methods 

 

78 

Table 11 - Sylgard’s datasheet properties 

Mix 
Ratio 

Thermal 
Conductivity 

Linear Coefficient of 
Thermal Expansion 

Dielectric 
Strength 

Volume 
Resistivity 

Operating 
Temperature 

10:1 0.2 W/mK 3.1·10
-4

K
-1

 21kW/mm 
1.2×1014 

Ω·cm 
-45 to 200°C 

 

The optical transmittance was measured using the spectrometer: a comparison 

between the transmissivity of a bare 2mm-thick Borofloat glass and that of the 

same glass covered with a 3mm-thick layer of Sylgard is reported in Figure 37. 

Borofloat® is a borosilicate high-quality clear glass manufactured by Schott. It is 

commonly used for solar applications due to its high transparency and low specific 

weight.   

 

Figure 37 - Optical transmittance of 3mm-thick thick Sylgard poured on a 2mm-thick Borofloat glass 
between 250 and 2200nm. It is compared with the transmittance of the bare 2mm-thick Borofloat glass. 

Sylgard 184 was provided as two-part liquid component. The base and the curing 

agent have to be mixed in a 10:1 ratio by weight. After mixing, they were manually 

stirred for about 10 minutes and the solution was left for 10 minutes resting for 

allowing any air bubbles to be expelled from the liquid. In order to remove any 

remaining air bubbles, the solution was placed in a vacuum chamber and the 

process was repeated 2 to 4 times, until bubbles were no longer visible. The pre-

pouring treatment was generally completed within one hour. 
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Sylgard was then dispensed directly onto the encapsulating surface, taking care 

not to damage fragile components (i.e. cells or interconnectors) and trying to 

spread it as uniformly as possible. Depending on the application, Sylgard could 

then be cured at room temperature for 48 hours, at 100°C for 45 minutes or at 

150°C for 10 minutes. 

3.1.4 Silver-loaded epoxy 

The silver-loaded epoxy was a two-part solution, provided by RS Components (RS 

Stock No. 186-3616). It was used for bonding different electrical components if 

soldering was not suitable. It granted high mechanical strength, excellent electrical 

conductivity and good thermal conductivity. The operating temperature range (-55 

to 150°C) matched the CPV requirements. A summary of the properties is reported 

in Table 12. 

Table 12 - Silver loaded epoxy’s datasheet properties 

Mix Ratio Volume Resistivity Thermal Conductivity Operating Temperature Typical Thickness 

1:1 0.005 ohm-cm 1.59 W/mK -55 to 150°C 0.127 mm 

 

The two parts, an adhesive and a hardener, needed to be mixed with a 1:1 ratio, 

either by weight or volume. The solution was stirred for about 5 minutes, until it 

appeared homogeneously coloured and was then spread using a small brush 

within one hour, the maximum recommended pot life. The epoxy could be cured 

either at room temperature for 36 hours, or at 100°C for 15 minutes. The maximum 

conductivity and bond strength were usually achieved in 36 hours, so room 

temperature curing is generally preferred. 

3.2 Instruments 

3.2.1 Spectrometer 

The optical properties were measured through a Perkin Elmer Lambda 1050, which 

could scan a material’s transmittance, reflectance and absorbance in the range 

between 175nm and 3300nm, with a resolution that could be set down to 0.5nm. A 

deuterium and tungsten halogen lamp was used as light source: the light passed 
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through a monochromator and some filters before reaching the sample. The 

sample was placed in a sample holder: transmittance and absorbance were 

measured with reference to air, whereas the reflectivity with reference to a 

calibrated reflective white surface (Labsphere SRS-99-020 AS-01161-060, 

certificate reflectance between 250-2500nm: 99%). The Perkin Elmer Lambda 

1050 used a PMT, InGaAs and PbS 3-detector module. 

3.2.2 Solar simulator 

Two different solar simulators were used for those experiments that required a 

controlled light source.  

An Abet Technologies Sun 2000 Solar Simulator was employed in Heriot-Watt 

University for the initial tests on the effects of temperature. It was equipped with 

Xenon Arc Lamps and its AM1.5G spectral match was grouped as Class A. The 

15cm×15cm wide illuminated area had a non-uniformity lower than 5% from a 

working distance of 200mm. Through the introduction of a filter, the solar simulator 

was used to reproduce an AM1.5 spectra (Figure 38). 

 

Figure 38 - Solar spectrum of the ABET solar simulator: the original Xenon lamps irradiance, the 
irradiances after the AM0 and the AM1.5G filters.  

A WACOM WXS-300S-50 AM1.5G solar simulator was used instead for the 

characterization of the receivers in the University of Exeter. The continuous 

simulator is equipped with a 5000W DC Xenon Lamp, which yielded a high non-
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uniformity and a temporal instability lower than 2% on an irradiated surface of 

300mm×300mm. This device achieved a Class AAA spectral match (Figure 39). 

 

Figure 39 - Solar spectrum of the WACOM solar simulator: comparison between AM1.5G spectrum and 
the AM1.5G irradiance sourced by the simulator.  

All the tests were conducted at Concentrator Standard Test Conditions (CSTCs): 

AM1.5G, 1000W/m2, 25°C. The lamps used in the simulators needed time after 

being switched on to reach a steady energy flux. For this reason, after switching 

the simulators on, a one hour delay was used before starting the calibration.  

A calibrated silicon photo-diode was used to tune the solar simulator before each 

test: the current flowing into the photodiode was the trusted parameter to calibrate 

the instrument. In particular, the irradiance of the solar simulator was tuned in order 

to get in the illuminated photodiode a current of 37.2±0.2uA, measured with the 

sourcemeter. A temperature controller kept the diode’s temperature at 20°C. The 

temperature-controlled photodiode was placed at the centre of the light flux, at the 

same distance from the light source.  

3.2.3 Sourcemeter 

The performances of the PV cells tested in the solar simulator were measured 

using a Siemens 2440-C 5A Sourcemeter. This instrument could measure voltages 

up to 6V and currents up to 5.25A. All the values of current and voltage accuracy 

are reported in Table 13 and Table 14. 
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Table 13 - Current programming accuracy 

Range Programming resolution Accuracy (1 year) at 22 °C (±5 °C) 

10µA 50pA 0.033% + 2nA 

100µA 5nA 0.031% + 20nA 

1mA 50nA 0.034% + 200nA 

10mA 500nA 0.045% + 2uA 

100mA 5µA 0.066% + 20µA 

1A 50µA 0.067% + 900µA 

5A 50uA 0.10 % + 5.4mA 

 

Table 14 - Voltage measurement accuracy 

Range Default resolution Input resistance Accuracy (1 year) at 22 °C (±5 °C) 

200.000mV 1µV >10GΩ 0.012%+300µV 

2.00000V 10µV >10GΩ 0.012%+300µV 

10.0000V 100µV >10GΩ 0.015%+750µV 

40.0000V 1mV >10GΩ 0.015%+3mV 

 

3.2.4 I-V tracer 

An EKO MP-160 I-V tracer was used for the characterization of the solar 

assemblies. This instrument operated in the range between 0.5V and 300V and 

0.005A and 10A, as shown in Figure 40, with a maximum power of 300W [318]. A 

four-wire configuration was used to extract the electrical outputs from the cell. It 

was coupled to a software tool able to calculate several parameters, such as the 

open-circuit voltage, the short circuit current, the maximum power and the fill 

factor. Moreover, the system gave in output the I-V curve of the cell.  

 

Figure 40 - EKO MP-160 I-V tracer measurable range [318]. 
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3.2.5 Vacuum oven 

The EQ-DZF-6210 oven was used for material curing and for investigations about 

the coefficient of thermal expansion. It was a high temperature vacuum and 

atmosphere oven, able to work at temperatures up to 270ºC and equipped with 

three temperature controllers. 

3.2.6 Infrared Camera 

The FLIR T425 was a thermal imaging infrared camera able to measure 

temperatures between -20ºC and 1200ºC with a resolution of 0.05ºC. It provided a 

±2% accuracy and it was equipped with a built-in 3.1Mp digital camera. For an 

accurate output, the thermocamera required in input the emissivity of the target, 

the distance from it and the ambient temperature. 

3.2.7 Thermocouples and temperature recorder 

Type K thermocouples were used in this work. The outputs were logged using an 

Omega RDXL12SD Temperature Recorder. This device could record data from 12 

thermocouples at the same time, with 0.4% accuracy, and store them in SD 

memory cards of up to 16GB capacity. The thermocouples were calibrated 

according to the temperature of melting ice at atmospheric pressure (0°C). 

3.3 Software packages 

3.3.1 COMSOL Multiphysics 

COMSOL Multiphysics is a graphic simulation software platform that can be 

exploited for different applications. Versions 4.3, 4.4, and 5.0 have been used. The 

module “Heat Transfer” was employed for modelling natural convective cooling and 

to understand the effects of the light non-uniformity on the performance of the 

receiver. The module “AC/DC” was, instead, exploited to analyse the electrical 

behaviour of the components and to predict the effects of the Joule losses. 

The simulations were conducted in a three dimensional environment and in 

stationary modes. The modelled geometries were reproduced in the graphic 

window, generally using millimetres and degrees as length and angular units 

respectively. Each volume was modelled as a solid or a fluid material and, 
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depending on the studied physics, nodes and boundary conditions were 

opportunely added. The geometry was automatically discretized into a large 

number of small elements. Once the model was developed, COMSOL 

automatically generated the solver sequence and computed the solution. The 

results were plotted in the graphic window and can be personalized, in terms of 

analysed points, surfaces or volumes, considered ranges of values, employed units 

and visualized scales. 

3.3.2 AutoCAD 

AutoCAD is a 2D Computer Assisted Design software tool developed by Autodesk. 

The freeware student versions released in 2010 and 2015 were used for designing 

and dimensioning of solar receivers, heat sinks, and experimental setups. The 

artworks produced in AutoCAD could be easily integrated or used with other 

software platforms.  

Both basic shapes and complex designs could be replicated in AutoCAD, whose 

successful features were the large number of functions available to modify the 

drawings and the user-friendly interface. The length and the angles of the 

components could be reproduced with high accuracy at any scale.  

3.3.3 DesignSpark PCB 

DesignSpark PCB is an electronics design freeware platform, developed by RS 

Components. The versions 5.1 and 6.0 were used. DesignSpark PCB was 

employed to design the electrical circuitry and the layers of the solar cell receivers. 

The different layers of any PCB and IMS were reproduced using this software tool: 

the aluminium substrate, the conductive pattern, and the paste and the solder 

masks. Moreover, the holes to be drilled were drawn and the sizes and the 

specifications of each component were reported. DesignSpark PCB plotted the 

Gerber files of each layer, which were then processed by the supplier to produce 

the substrates. 
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3.4 Measuring the cell’s temperature 

For the preliminary studies of the effects of the temperature on the cell 

performance, a thermocouple was placed in contact with the side of the cell. 

Indeed, the backplate of the assembly is not a good point to measure the 

temperature: Figure 41 shows that an important temperature difference between 

the cell and the backplate can occur in CPV receivers and it usually ranges 

between 10˚C and 30˚C [147]. Moreover, the thermocouple was not placed over 

the cell to avoid any shading. All the tests were conducted respecting the CSTCs: 

AM1.5 spectrum, with a direct normal irradiance of 1000W/m2 and an ambient 

temperature of 25˚C. The temperature was measured and recorded every 0.2 

seconds.  

 

Figure 41 - Differences between cell's and backplate's temperatures under the same conditions 

A resistor was connected in series with the cell to allow current to flow. During the 

measurements, the circuit was kept closed, otherwise all the sunlight would have 

been converted into heat. When a CPV cell was correctly working, a part of the 

sunlight was converted into electricity and, thus, the heat produced was lower than 

that produced by a cell in open circuit conditions. The difference can be seen in 

Figure 42, where after 20 minutes the open circuit temperature of a 1cm2-sized cell 

at 166× was found to be higher than that of the close circuit case. 
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Figure 42 - Difference in temperature between open and close circuit 

3.5 Production of the PCB and IMS 

The conductive pattern of a PCB or an IMS is usually produced through a 

subtractive method: either chemical etching or mechanical milling. The quality of 

the chemical process mainly relies on the accuracy of the photomasking and on 

the feature of the chemicals. On the other hand, the quality of the mechanical 

process depends on the size, the sharpness, the speed and the control of the 

milling devices. 

In the present work, the chemical etching process was employed, because 

generally cheaper and less time-consuming than mechanical milling. Although the 

same process could be applied to both the substrates, the chemical etching was 

carried out in a local workshop for the PCBs and outsourced for the IMSs used in 

the cell assembly development. This way, an enhancement in quality of the IMS-

based final receivers was achieved. Both the processes are described in the 

following sections. The selection and the design of the substrates will be reported 

in section 4.4 and chapter 5 respectively. 

3.5.1 In-house PCB development 

The PCB fabrication was carried out using the facilities of the Concept Shed 

workshop, in Falmouth (UK). Due to the toxic chemicals involved in the process, 

safety equipment (gloves, protection glasses and lab coat) was used and an 

adequate waste disposal was managed. 
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3.5.1.1 Printing the PCB 

3.5.1.1.1 Artwork 

The copper circuity was designed in AutoCAD and the 1:1 scaled artwork was 

printed in black and white onto an A3 tracing paper using a laser printer.  

3.5.1.1.2 Exposure 

The board was then exposed for a variable period under UV lamps (Figure 43), 

using the previously-printed artwork as a mask (Figure 44). An optimal contact 

between the mask and the board was ensured to avoid a bad edge definition. 

 

Figure 43 - The high resolutions UV lamps 

 

Figure 44 - The mask placed over the lamps 

The exposure time was determined by exposing some samples to different times. 

A short exposure time could lead to an incomplete development, while a long 

exposure time could cause holes or flaws in the final circuit.  
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3.5.1.1.3 Development 

Immediately after the exposure, the laminate was immersed into a developer. In 

this device, the previously exposed photosensitive resin was removed by the 

developer solution.  

3.5.1.1.4 Etching 

The laminate was then moved into the etching tank (Figure 45), in which the pre-

heated etchant solution removed the copper which was no longer protected by the 

resin. The solution was made by mixing 50ºC water with Fine Etch Crystals 

supplied by Mega Electronics. The etching period was set by checking periodically 

the laminate during the process. If the etching time was too short the solution 

would have not correctly removed the copper, whereas over etching could cause a 

bad edge definition.  

 

Figure 45 - The laminate into the etching solution 

3.5.1.1.5 Resin removal 

The laminate was re-exposed under the UV lamp and then immersed into the 

developer solution (Seno 4006 Liquid Photoresist Developer Concentrate, Figure 

46): the resin was then removed and the etching process was complete. The 

exposure time was the same used in the first step. 
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Figure 46 - The PCB board removed from the developer solution at the end of the process 

3.5.1.2 Populating and interconnecting the PCB 

PCBs of different dimensions were printed. As a first approach, few cells were 

manually soldered on the printed substrates using a Sn96,4Ag3,6 lead-free solder 

paste (Figure 47 a and b). A small paste mask was fabricated by milling the 

footprints of the diode and the cell on a thin 2mm×2mm silicone rubber sheet, 

shown in Figure 47c.  

 

Figure 47 - A bare PCB (a), a populated PCB (b) and the paste mask (c). 

The interconnections were firstly made of 3mm-wide tinned copper flat wires 

soldered on the cell’s tabs (Figure 48), but they exhibited low reliability for this 

application: part of the ribbon covered portions of the cell’s active area and, in 

some regions, the cell seemed to be damaged by the high temperatures required 

for the wire’s soldering. Overall, the quality of the soldering and connections was 

quite poor, with a high solder paste contamination left on the surfaces and a non-

negligible risk of causing short-circuiting. 
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Figure 48 - Manually picked, placed and soldered components 

In a different approach, the interconnectors were ultrasonic soldered (Figure 49). 

As for the previous experience, the solder paste could not be placed with the 

required accuracy, and part of the paste covered the active area of the cell.  

 

Figure 49 - Ultrasonic soldered cell's interconnections 

In a last attempt, realized by Custom Interconnect Ltd. in Andover (UK), a silver 

epoxy (Loctite Ablebond 84-1LMI) was used to make the interconnections between 

the cell and the electric circuitry. A bead of non-conductive epoxy (Emerson & 

Cumin Stycast 50400-1) was applied between the cell’s tabs and the copper pads 

to avoid short-circuiting the top and the bottom of the cells. Once cured, the silver 

epoxy was dispensed to create the electrical connection. This approach had some 

drawbacks, because of the low electrical conductivity of the silver epoxy and 

because it tended to deteriorate with prolonged exposure to UV. Moreover, this 

method showed a low repeatability: a large number of the interconnected cells 

were found to be short-circuited. For these reasons, this solution could not be 

applied in the full scale cell assembly and, so, the wire bonding technology was 

preferred for interconnecting the cells. 
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Figure 50 - The interconnected cell: the dispensed non-conductive epoxy (a), then covered by the 
conductive epoxy (b). 

3.5.2 Outsourced IMS printing 

In order to achieve a higher quality of the substrate, the insulated metal substrates  

were outsourced. The IMS was populated in the Cubik Innovation workshop and 

the wire bonding performed by Custom Interconnect Ltd. 

3.5.2.1 Production of the IMS 

In this case, a Gerber file was made by using DesignSpark PCB. In the Gerber file, 

the designs of the different layers of the IMS were reproduced, such as the copper 

pattern, the solder mask and the paste mask. The size and the materials were 

specified, as well as the size and the position of the holes to drill, the surface’s 

finishing and the tolerances. 

The surface of the copper conductive layer was finished with an Electroless 

Nickel/Electroless Palladium/Immersion Gold (ENEPIG). This finish, introduced in 

mid-90s, had already gained much attention among the Pb-free applications. Sn-

Ag-Cu/ENEPIG solder joints had already proven a high mechanical robustness 

[319] and a strong wire bondability [320]. Moreover, the surface mounted 

components benefitted from the extreme planar surface granted by ENEPIG [321]. 

The insulated metal substrate, shown in Figure 51, was covered by a thin green 

resistive layer, called solder mask, in order to electrically insulate and to protect the 

conductive layer. The same coating prevented the solder paste from spreading out 

of its planned places. The resistive coating needed to be appropriately designed to 

accommodate the surface mounted components. The cell’s mounting pad layout 

Cell Cell 

Non-conductive epoxy Conductive epoxy 

(a) (b) 
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(Figure 52a) was increased by 1mm per side compared to the cell surface, in order 

to take into account the tolerances. The diode’s mounting pad layout (Figure 52b) 

was designed according to the datasheet.  

The paste mask was used to produce the metallic stencil employed to dispense the 

solder paste on the substrate. The solder footprints of the components were 

accurately reproduced on the mask to assure a homogenous distribution of solder 

paste under the components:  

 The cell’s solder footprint was split into 9 parts (Figure 52c), to facilitate the 

uniform solder paste distribution under the cell’s weight; 

 The diode’s solder footprint (Figure 52d) was designed according to the 

guidelines provided in the datasheet: one large surface for allocating the 

cathode and two smaller apertures for the anodes. 

 

 

Figure 51 - The bare insulated metal substrate, covered by a thin green electric resistive layer. 
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Figure 52 - Particulars of solder mask and paste mask. The mounting pads of cells and diodes are 
respectively shown in (a) and (b). The solder footprints of cells and diodes are respectively shown in 

(c) and (d). 

3.5.2.2 Populating the IMS 

The population of the IMS took place through a few steps, described in the 

following subsections. It was realized using the Cubik Innovation’s facilities, in 

Bristol (UK). 

3.5.2.2.1 Solder paste dispensing 

Considering the AZUR SPACE’s recommendation to use 3% silver content solder 

paste for III-V cells in order to enhance the joining strength, the Sn96.2Ag3.2Cu0.6 

solder paste was employed to paste the surface mounted components on the 

board. The solder paste was dispensed onto the board by using the paste mask, a 

0.125mm-thick stainless steel stencil where the footprints of the surface mount 

components were reproduced (Figure 53). The past mask was accurately 

positioned over the board, and both the elements were then held by an external 

frame. Using a paste squeegee, the solder paste was spread until the entire stencil 

was uniformly covered. The paste mask was then removed by using a mechanical 

arm to avoid any solder paste misplacing. 
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Figure 53 - Image of the paste mask used for the population of the 144-cell assembly. 

3.5.2.2.2 Pick and Place 

The surface mounted components were manually placed onto the plate (Figure 

54), by using a vacuum pick-up system. The dimensions of the board, the low 

number of boards to be produced and the cells delivered in a diced wafer and 

mounted on a tape made it impossible to use an automatic pick-and-place 

machine. Hand-placing did not affect the correct positioning of the components, 

because any small offset was naturally corrected due to a phenomenon known as 

“self-alignment” [116]. The wetting force of the liquid-state solder paste moved the 

components to the correct position, according to the corresponding solder footprint. 

 

Figure 54 - The 144-cell board being populated. 
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3.5.2.2.3 Soldering 

After the placement of the surface mounted components, the whole setup was 

moved into a reflow oven to allow the solder paste curing (Figure 55). The use of a 

reflow oven improved the action of the self-alignment effect [322]. The oven was 

set at a temperature of 217°C, the melting point of the solder paste. When the 

oven’s atmosphere reached that temperature, moisture was automatically 

evacuated and the plate was actively cooled through water jets on the rear surface.  

 

Figure 55 - The populated board placed in the reflow oven 

3.5.2.2.4 IMS cleaning 

At the end of the population process, a first visual inspection was conducted and 

some solder paste contamination was found on the surface of the plate (Figure 

56a). Soiling can affect the strength of the wires and enhance the risk of failures 

during the wire bonding: it has been previously demonstrated that cleaning 

improves the strength of the bonds [323]. For this reason, a cleaning process was 

undertaken: the substrate was immerged firstly in deionized water, secondly in 

water and thirdly in a solution of water and deionized water. During the whole 

cleaning the plate was kept in the dark in order to prevent any potential short-

circuiting that could have occurred among the subcells when in contact with water. 

The plate was then dried in a 135°C oven for short time. The effects of the cleaning 

are clearly shown in Figure 56b. Once cleaned, the metallic wires could be bonded 

on the cell’s front tabs. 
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Figure 56 - Comparison between particulars of the pre-cleaning plate (a) and the post-cleaning plate 
(b). 

3.6 Investigation on heat transfer at micro-scale 

3.6.1 Experimental apparatus 

The experimental investigations on micro-scaled, natural convective heat transfer 

reported in this work were conducted by using the setup reproduced in Figure 57. 

Micro-fin arrays were mechanically diced on different 5cm×5cm squared silicon 

wafers. Each array was heated using 10W flexible heater (Omega KHLV-202/2.5), 

bonded through a conductive adhesive (3M tape 966, 0.18 W/mK). Each sample 

was placed in a 1.5cm-thick case made of fibre thermal material (0.05W/mK), 

back-covered with a 1cm-thick polystyrene block (0.03 W/mK), to minimize the 

heat losses from the surfaces other than the fins.  
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Figure 57 - Schematic of the experimental setup and of the exploded structure of the sample case. 

The power input to the heater was controlled through a DC power supply (Weir 

413D, Figure 58a), whose output ranged between 0 and 10W. The voltage was 

manually set through the analogical control of the power supply and both voltage 

and current were measured respectively using a Fluke 8050A (Figure 58b) and a 

Fluke 115 (Figure 58c) digital multimeters.  

The maximum temperature of the silicon arrays was measured through an infrared 

camera (FLIR T425, Figure 58d), perpendicularly placed 30cm away from the 

sample. The emissivity of the silicon wafer, required as an input to the 

thermocamera, was set to 0.72: it was calculated by measuring the reflectance in a 

Perkimeter Lambda 1050 spectrometer and then applying Kirchhoff's law. The 

emissivity used for the infrared imaging was obtained by the average emissivity 

across the wavelength range the thermocamera works (750µm to 1300µm). Three 

K type thermocouples were placed on the sides of the fins. The contact between 

thermocouples and sample’s walls was assured using a high temperature Kapton 
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adhesive tape (Tesa 51408). A fourth and a fifth K type thermocouples were placed 

in proximity of the samples: the average of their measurements was used to 

calculate the ambient temperature. One more thermocouple was placed at the 

centre of the back surface of the insulating material. A 12-Channel Temperature 

Recorder (Omega RDXL12SD, Figure 58e) was used to record the thermocouples 

measurements. The room temperature was kept constant at 25°C and measured 

through a digital thermohygrometer (Testo 608-H1). 

 

Figure 58 - Picture of the experimental apparatus: (a) the DC power supply, (b) the voltmeter, (c) the 
ampere-meter, (d) the IR camera, (e) the temperature recorder. 

In order to isolate the fins array from any external interferences, the sample was 

placed inside a 25cm×25cm×25cm box open on top [251] and made of fibre 

thermal insulating sheet (Figure 59f). On one side of the box, a 10cm×10cm 

removable opening was placed (Figure 59g): while under test, it was keep closed, 

and it was opened for only few seconds to let the infrared camera focus on the fins 

array at steady state, reached in about 20 minutes. The thermocouples data were 

recorded every two seconds and stored in a database.   

(a) 

(c) 

(b) 

(d) 

(e) 
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Figure 59 - Picture of the experimental apparatus: (a) the DC power supply, (b) the voltmeter, (c) the 
ampere-meter, (d) the IR camera, (f) the 25cm×25cm×25cm box, (g) the 10 cm×10 cm removable 

opening. 

The heat sink was mounted on an inclinable holder. The inclination angle (θ) was 

defined according to [155] as the angle between the heat sink base plate and the 

vertical orientation, as shown in Figure 60. Zero degree described the heat sink in 

vertical position and 90° the horizontal fin array facing downward, whereas 

negative values indicated an upwards facing orientation. The tilt angle was varied 

using a screw on the heat sink holder and measured using an angle gauge with an 

accuracy of ±0.1°. Seven tilt angles were considered for each sample: -90°, 0°, 

30°, 50°, 60°, 70°, 80° and 90°. Each sample was tested at variable power inputs 

(a) 

(c) 

(b) 

(d) 

(f) 

(g) 
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from 2.5W to 10W. Each test was conducted three times and the average value of 

the outputs was considered. 

  

Figure 60 - Definition of the inclination angle (θ) 

The nomenclature used to describe the fin arrays is shown in Figure 61. Two fin 

types were investigated: parallel rectangular plate fins (Figure 61a) and square pin 

fins (Figure 61b). 

 

Figure 61 - Description of the parameters: (a) plate fin array, and (b) pin fin array.  
L is the length of the fins, W the width of the fin array, H the height of the fin, t the thickness of the fin, 

s the spacing between two adjacent fins, tb the thickness of the base. 

3.6.2 Thermal losses 

The aim of this work was to investigate, in different conditions, the heat transfer 

coefficients of micro-fins arrays (hfins), defined as: 
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ℎ𝑓𝑖𝑛𝑠 =
𝑄𝑓𝑖𝑛𝑠

𝐴𝑓𝑖𝑛𝑠 ∙ (𝑇𝑓𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏)
 (1) 

where Qfins is the heat dissipated through the fins by convection, Afins is the area of 

the finned surface, Tfins corresponds to the fins temperature, measured by the 

thermocamera and considered uniform across the fins, and Tamb is the ambient 

temperature, registered by the thermocouples. The heat transfer coefficients were 

considered as constant for the whole finned surface. 

The power load convectively dissipated by the fins (Qfins) was taken into account 

after the radiated heat transfer (Qr) and the losses happening on the back and the 

sides of the samples (Qloss), in order to estimate the heat transfer coefficient of the 

fins in the most accurate way. It was thus expressed as: 

𝑄𝑓𝑖𝑛𝑠 = 𝑄𝑖𝑛 − 𝑄𝑟 − 𝑄𝑙𝑜𝑠𝑠 (2) 

where Qin represents the heat produced by the heating film, calculated by 

multiplying the voltage (VDC) and the current (IDC) provided by the power supply: 

𝑄𝑖𝑛 = 𝑉𝐷𝐶 ∙ 𝐼𝐷𝐶 (3) 

The heat dissipated by the flat plate (Qflat) was calculated similarly to Qfins. The total 

heat transferred by radiation from the fin array was expressed by the Stefan-

Boltzmann equation as the sum of the radiative heat transfers happening in the 

different fin surfaces (top, side, face and base): 

𝑄𝑟 = ∑ 𝜀 ∙ 𝜎 ∙ 𝐴𝑖 ∙ 𝐹𝑖,𝑘 ∙ (𝑇𝑓𝑖𝑛𝑠
4 − 𝑇𝑎𝑚𝑏

4 )

𝑖

 (4) 

where ε is the emissivity of silicon, σ is the Stefan-Boltzmann constant 

(5.67·10−8W/m2K4), Ai is the area of the correspondent i-surface of the fins, Fi,k are 

the view factors between the surfaces i and k. In this case, an average emissivity 

of 0.78 was considered. The view factors depended on the geometry of the fins 

and were different for each fin surface. They were calculated using the model 

presented by [324]. The fin wall (Figure 62a) exchanged radiative heat with the 

base (Figure 62b), the side wall of the adjacent fin (Figure 62c) and the ambient 

(Figure 62d).  
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Figure 62 - Schematic of the micro-fin array: the fin walls (a), (c), (e), (f); the base (b); and the ambient 
(d). 

The view factor between the fin wall and the base (Fa,b) was estimated as [324]: 

𝐹𝑎,𝑏 =
1

𝜋 ∙ 𝑦
{𝑦 ∙ tan−1 (

1

𝑦
) + 𝑥 ∙ tan−1 (

1

𝑥
) − (𝑥2 + 𝑦2)0.5 ∙ tan−1 (

1

(𝑥2 + 𝑦2)0.5)

+
1

4
ln (

(1 + 𝑥2) ∙ (1 + 𝑦2)

1 + 𝑥2 + 𝑦2 (
𝑦2 ∙ (1 + 𝑥2 + 𝑦2)

(𝑥2 + 𝑦2) ∙ (1 + 𝑦2)
)

𝑦2

(
𝑥2 ∙ (1 + 𝑥2 + 𝑦2)

(𝑥2 + 𝑦2) ∙ (1 + 𝑥2)
)

𝑥2

)} 

(5) 

where x=s/L and y=H/L. 

The view factor between two adjacent fins’ walls (Fa,c) was estimated as [324]: 

𝐹𝑎,𝑐 =
2

𝜋 ∙ 𝑥 ∙ 𝑦
∙ {ln (

(1 + 𝑥2) ∙ (1 + 𝑦2)

1 + 𝑥2 + 𝑦2
)

0.5

+ 𝑥 ∙ (1 + 𝑦2)0.5

∙ tan−1 (
𝑥

(1 + 𝑦2)0.5) + 𝑦 ∙ (1 + 𝑥2)0.5 ∙ tan−1 (
𝑦

(1 + 𝑥2)0.5 ) − 𝑥 ∙ tan−1𝑥 − 𝑦 ∙ tan−1𝑦} 

(6) 

where x=H/s and y=L/s. 

The view factor between the fin wall and the ambient (Fa,d) was then estimated by 

using the equation for an enclosure with four surfaces [325]: 

𝐹𝑎,𝑏 + 𝐹𝑎,𝑐 + 𝐹𝑎,𝑑 = 1 (7) 

The view factor between the fin’s base and the fin’s wall (Fa,b) was obtained by 

exploiting the reciprocity relation [325]: 

𝐴𝑎 ∙ 𝐹𝑎,𝑏 = 𝐴𝑏 ∙ 𝐹𝑏,𝑎 (8) 

The view factors of the surfaces “e” and “f” were set equal to 1. The contribution of 

the radiative exchange increased with the power input. Out of a maximum 10W 
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power input supplied to the heater, a percentage ranging between 35% and 42% 

was found to be dissipated because of radiative exchange of the fins.  

The Qloss were due to the heat dissipation happening on the unfinned surfaces of 

the assembly: these were the radiative and the convective thermal exchanges 

taking place on the sides and on the back of the structure. The radiative 

component was estimated considering the emissivity of polystyrene (0.60) and 

fibre sheet (0.85) and a view factor of 1. The convective exchange happening on 

the back surface of the insulator was calculated considering the equations reported 

in [326]: 

ℎ𝑙𝑜𝑠𝑠 =
𝑘𝑎𝑖𝑟

𝐿
∙ 𝑁𝑢𝑙𝑜𝑠𝑠 (9) 

where kair is the thermal conductivity of the air and Nuloss the Nusselt number, 

which was calculated according to the orientation of the surface [326]:  

𝑁𝑢𝑙𝑜𝑠𝑠 = 0.13 ∙ (𝑅𝑎)1 3⁄  if the surface is horizontal and faces upwards; (10) 

𝑁𝑢𝑙𝑜𝑠𝑠 = 0.59 ∙ (𝑅𝑎)1 4⁄  if the surface is vertical; (11) 

𝑁𝑢𝑙𝑜𝑠𝑠 = 0.58 ∙ (𝑅𝑎)1 5⁄  if the surface is horizontal and faces downwards. (12) 

Ra is the Rayleigh number, defined as: 

𝑅𝑎 =
𝑔 ∙ 𝛽𝑎𝑖𝑟 ∙ 𝑃𝑟 ∙ 𝑠4 ∙ (𝑇𝑏𝑎𝑐𝑘 − 𝑇𝑎𝑚𝑏)

𝐿 ∙ 𝜈𝑎𝑖𝑟
2  (13) 

where g is the gravitational acceleration, βair is the volumetric thermal expansion of 

the air, Pr is the number of Prandtl, vair is kinematic viscosity of the air and Tback is 

the temperature measure by the thermocouple placed on the back surface of the 

insulator. All the properties were evaluated for an air temperature of (Tback+Tamb)/2, 

with the exception of the thermal expansion, estimated at ambient temperature 

[324].  

All the tests were conducted for Ra>106, condition needed for applying the 

reported equations of convective heat transfer. The losses averagely account for 

26% of the total power input, with comparable contributions from the convective 

and the radiative heat transfers. 
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3.6.3 Experimental uncertainty 

Any experimental investigation is affected by an uncertainty due to the accuracy of 

the instruments and to the non-ideal working conditions. In this case, the related 

overall uncertainty was calculated according to the propagation of error for 

independent variables [327]: 

𝑈ℎ𝑓𝑖𝑛𝑠

ℎ𝑓𝑖𝑛𝑠
= √(

𝑈𝑄𝑓𝑖𝑛𝑠

𝑄𝑓𝑖𝑛𝑠
)

2

+ (
𝑈𝐴𝑓𝑖𝑛𝑠

𝐴𝑓𝑖𝑛𝑠
)

2

+ (
𝑈𝑇𝑓𝑖𝑛𝑠

𝑇𝑓𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏
)

2

+ (
𝑈𝑇𝑎𝑚𝑏

𝑇𝑓𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏
)

2

 (14) 

where the uncertainties are indicated with the prefix “U”. The area of the fin array 

was calculated with an uncertainty of ±4%. Tfins was measured with the 

thermocamera, which had an uncertainty of measurement of ±0.2%. The 

uncertainty on the emissivity could not be neglected [251], and was considered 

equal to ±0.2. This value corresponded to an additional fin temperature uncertainty 

of ±3.5°C. Tamb is obtained as an average of the thermocouples’ measurements, 

read from the temperature recorder (accuracy: ±0.4%). The thermocouple data 

were adjusted according to the offset measured in a preliminary investigation: an 

uncertainty of ±1.0°C was considered. The maximum uncertainty was found to be 

±8.25%, and occurred at low power inputs. This value fell within the range reported 

by similar studies [251,252]. 

3.6.3.1 Data extraction and digitization 

Some of the results analysed in the work were obtained by processing the data 

available in graphical format in [252]. Whereas not explicitly mentioned, the data 

were extracted by using Engauge Digitizer 4.1 (M. Mitchell, Engauge Digitizer, 

http://digitizer.sourceforge.net), an open source software platform that allows 

converting graphs into numbers. The authors of [252] reported an experimental 

uncertainty of ±9.4%. Repeating the digitization twice, a repeatability uncertainty of 

±1.0% was found. Moreover, the size of the markers introduced an additional 

uncertainty of ±3.1%. Overall, the uncertainty on the digitalized heat transfer 

coefficients was found to rise up to ±9.9%.  
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3.6.4 Experimental validation 

3.6.4.1 The thermal model 

In order to verify the reliability of the experimental setup, a computation analysis 

was carried out using the “Heat Transfer” module of COMSOL Multiphysics 4.4. 

The flat plate sample was modelled and the outputs of the simulation were 

compared with the experimental results. The setup was validated for the two 

conditions studied in the present work: horizontal and tilted orientations. 

In both cases, the heater was modelled as a 0.254-mm thick copper plate, bonded 

to the 1.4mm thick silicon sample (Figure 63a.3) through the adhesive, represented 

as a thermal resistive layer (0.06mm-thick, 0.18W/mK). Both the heater and the 

silicon sample size 5cm×5cm and built-in silicon and copper materials were chosen 

(130W/mK and 400W/mK respectively). The insulating structure was reproduced 

around samples: it was composed of a 1cm-thick fibre sheet (0.05W/mK, 

1900kg/m3, 1369J/kgK; Figure 63a.2), back-covered by a 1cm-thick polystyrene 

block (0.33W/mK, 960kg/m3; Figure 63a.1). The heater was set as a “Heat 

Source”, which required the total thermal power in input. The interface contact 

between the heater and the insulator was considered as a 0.5mm-thick air layer. 

The “Convective Heat Flux” function was applied to all the external surfaces: the 

heat transfer coefficient was automatically defined by COMSOL for each surface 

according to its orientation and geometry. COMSOL considered the material 

properties at temperature of (Ts+Tamb)/2, where Ts is the temperature of the closest 

surface. All the external surfaces were set to exchange radiative heat with the 

environment. The emissivities were fixed to 0.78 for silicon, 0.85 for the fibre sheet 

and 0.60 for the polystyrene. The automatic “physics-controlled” mesh generator 

was chosen and a “finer” size was selected. The simulator solved 242803 degrees 

of freedom (Figure 63), converging to solution in 1 minute. 
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Figure 63 - The geometry of the experimental setup modelled in COMSOL (a): the polystyrene block (1), 
the fibre sheet case (2), and the flat plane sample (3). In (b), the tetrahedral mesh is reported.  

The maximum temperature of sample’s external surface predicted by COMSOL 

was then compared with that measured by the IR camera, as shown in Figure 64. 

All the tests were carried out in stationary mode. 

 

 

Figure 64 - Comparison between the top view of the sample taken from the IR camera (a) and the 
COMSOL model results (b). Conditions: sample facing upwards, heat power imput 10W. 

3.6.4.2 Horizontally orientated fins 

The thermal behaviour of horizontally orientated fins was studied in both facing 

upwards and facing downwards conditions. Power inputs of 2.5W, 5W, 7.5W and 

10W were considered. The difference between the experimental and the simulated 

data ranged between 2°C (for the lowest power) and 8°C (for the highest power). 

These results were in line with the one reported by [252]: the discrepancies were 

due to a number of factors. In particular, the model took into account fixed values 

of the materials’ properties (e.g. thermal conductivity, and density), whereas these 
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properties, in the real case scenario, strongly depended on the temperature. 

Moreover, some divergences between the thermal contact resistance modelled by 

COMSOL and those recorded in the experimental setup might have contributed to 

this discrepancy. 

In order to understand the reliability of the experimental setup, the experimentally 

and numerically obtained heat transfer coefficients were compared. The heat 

transfer coefficients were determined as follows, by removing the heat transferred 

by radiation and the thermal losses: 

ℎ𝑓𝑙𝑎𝑡 =
𝑄𝑖𝑛 − 𝑄𝑟 − 𝑄𝑙𝑜𝑠𝑠

𝐴𝑓𝑙𝑎𝑡 ∙ (𝑇𝑓𝑙𝑎𝑡 − 𝑇𝑎𝑚𝑏)
 (15) 

As shown in Figure 65, the heat transfer coefficients were found to increase with 

the power input. As expected, the increasing rate lowered at high power input: this 

was due to the contribution of the radiative heat transfer, which, at constant 

ambient temperature, increased with the forth power of the surface temperature. 

The COMSOL model consistently overestimated the heat transfer in downward 

facing conditions, with an average discrepancy of 6.07% and a maximum of 7.18%. 

In the upward facing conditions, the average difference dropped to 2.84%, with a 

maximum of 4.66%. All these discrepancies fell within the uncertainty expected for 

this experimental setup (8.25%) and could be considered as acceptable values for 

an experimental investigation on natural convection [328]. 
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Figure 65 - Comparison between the COMSOL simulation outputs and the experimental real-case 
measurements 

3.6.4.3 Tilted fins 

The behaviour of the tilted setup was validated through both analytical and 

numerical processes. The measured heat transfer coefficients were compared with 

those obtained according to the natural convection correlations summarized in 

[324]. A wide range of tilt angles were considered: 0°, 30°, 50°, 60° and 90°. No 

correlations to predict the behaviour of a naturally-convective flat surface for angles 

of 70° and 80° had been found. The Rayleigh number (Ra), product of the two 

dimensionless Grashof and Prandtl numbers (respectively Gr and Pr), was 

calculated as: 

𝑅𝑎 = 𝐺𝑟 ∙ 𝑃𝑟 =
𝑔 ∙ 𝛽𝑎𝑖𝑟 ∙ 𝑃𝑟 ∙ (𝑇𝑓𝑙𝑎𝑡 − 𝑇𝑎𝑚𝑏) ∙ 𝐶𝐿3

𝑣𝑎𝑖𝑟
2  (16) 

The properties of air reported in [329] were used and they were considered for 

temperatures of (Ts+Tamb)/2. CL was the characteristic length of the sample: for 

vertical and inclined surfaces it corresponded to L, whereas for horizontal surfaces 

it was equal to the ratio between the area and the perimeter.  

Based on the equation proposed by [330], the Nusselt number (Nu) was obtained 

as [324]: 
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𝑁𝑢 = 0.68 +
0.67∙(𝑅𝑎∙cos 𝜃)0.25

[1+(0.492/𝑃𝑟)0.5625]0.4̅ for 0°≤θ≤60° (17) 

𝑁𝑢 = 0.27 ∙ 𝑅𝑎0.25 for θ=90° (18) 

The heat transfer coefficient (hflat) depended on the thermal conduction of air (kair): 

ℎ𝑓𝑙𝑎𝑡 = 𝑁𝑢 ∙
𝑘𝑎𝑖𝑟

𝐶𝐿
 (19) 

Comparing the results of the numerical investigation and the outputs (Figure 66), 

an average discrepancy of 3.0% for all the experimented tilt angles was found at 

10W power input, with a maximum difference of 6.8% at 0°. This divergence fell 

within the uncertainty range: the setup was considered as reliable for the planned 

experimental investigation. 

 

Figure 66 - Comparison of heat transfer coefficients for tilted flat surfaces, according to the 
experimental data and the analytical calculations. Power input: 10W. 

Due to the some limitations in the thermal equations of the COMSOL model, the 

behaviour of the fins could be modelled at few representative tilt angles only: 0° 

(vertically oriented fins), 30°, and 90° (horizontally downward facing fins). In order 

to reproduce the heat transfer coefficients in the most accurate way, the orientation 

and the characteristic length of each surface were specified in COMSOL (Table 

15).  
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Table 15 - Methods used for solving the Convective heat flux functions for the various surfaces at 
different tilt angles; in bracket the characteristic length is reported. The surface number refers to the 
nomenclature in Figure 67. 

Tilt\Surface (1) (2) (3) (4) (5) (6) 

0° 
Vertical wall 

(5cm) 
Vertical wall 

(8cm) 
Vertical wall 

(1.5cm) 

Horizontal 
plate, 

downside 
(0.6cm) 

Vertical 
wall 

(8cm) 

Vertical wall 
(8cm) 

30° 
Inclined wall 

(5cm) 
Inclined wall 

(8cm) 
Inclined wall 

(1.5cm) 
Inclined wall 

(2cm) 

Vertical 
wall 

(2cm) 

Inclined wall 
(8cm) 

90° 

Horizontal 
plate, 

downside 
(0.125cm) 

Horizontal 
plate, 

downside 
(0.6cm) 

Horizontal 
plate, 

downside 
(0.6cm) 

Vertical wall 
(2cm) 

Vertical 
wall 

(2cm) 

Horizontal 
plate, upside 

(0.2cm) 

 

 

Figure 67 - (a) Geometry of the experimental setup reproduced in COMSOL: the sample (A), the fibre 
sheet case (B) and the polystyrene block (C). (b) The results of the simulation for θ=90°, Qinput=10W.  

The COMSOL model underestimated the maximum temperature of the sample, 

with a maximum difference of 4°C compared to the IR camera measurements. 

These results were in line with those reported by [252] and obtained in the 

previously-considered conditions. Moreover, the thermal behaviour predicted by 

the model appeared similar to the experimental one. The deviations in heat transfer 

coefficient were found to vary from 0.08% to 6.63%, with an acceptable average of 

2.38%. For these reasons, the experimental setup was considered reliable for the 

conducted investigations. 

3.7 Conclusions 

The different materials and components, along with the instruments and the 

calibration processes used in the present research work had been listed in this 

chapter. The solar cell and the solar assembly were purchased from AZUR 

(1) 

(2) (3) 

(a) 
(b) 

(2) 
(3) 

(5) (4) 

(6) 

A 

B 

C 
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SPACE, a German company specialized in multijunction cells and CPV systems. 

The 1cm2-sized triple-junction cells considered for this application have a peak 

efficiency of 37.2% at 500× under standard testing conditions. A clear PDMS was 

used for encapsulation purposes and a silver-loaded epoxy was employed for 

bonding surfaces when soldering was not available. Both the materials were cured 

using a vacuum oven. 

The characterization of the materials and the assemblies were conducted using the 

instruments of the solar laboratory. The spectrometer was used to measure the 

transmissivity and the reflectivity of different materials, such as the encapsulant 

and the silicon wafers. Two solar simulators were used for the indoor 

characterization of the cell assembly, whose performances were monitored through 

an I-V tracer and a sourcemeter. A photodiode was used to calibrate the light flux 

of the simulators. The thermal measurements were conducted using an infrared 

camera and K-type thermocouples, connected to a temperature recorder. Different 

software platforms were used: COMSOL Multiphysics was used for thermal 

modelling, whereas AutoCAD and DesignSpark PCB were employed for the design 

of the components. 

Different-sized prototypes were manufactured during the work: the printed circuit 

boards were produced by chemical etching and the whole fabrication process has 

been described. The population of the boards has been detailed as well: the solder 

paste was dispensed through specially made paste masks and the components 

were manually picked-and-placed. 

In section 3.6, the chapter reports the methodology followed for the experimental 

investigation on the micro-scaled heat transfer. The experimental apparatus has 

been described and the thermal losses were calculated using referenced 

procedures. A prediction of the uncertainty was reported as well: a maximum 

uncertainty of 8.25% was expected, in agreement with the previous studies. The 

whole experimental setup, whose structure was based on similar investigations 

presented in literature, had been validated through both analytical and numerical 

studies. 
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 Thermal management of CPV receivers Chapter 4:

The largest part of the waste heat is removed from the cell through thermal 

conduction. For this reason, the substrates and all the materials composing the 

receivers have to be adequately selected to enhance heat transfer. This chapter 

describes the assumptions made and the simulations conducted to choose the 

most appropriate substrate for each application and to predict the thermal 

behaviour of the CPV receivers presented in this thesis. The densely packed and 

the single cell receivers have distinct geometries and, thus, need to be designed 

taking into account different priorities and solutions. The investigations presented 

in this chapter compare the thermal behaviours, the geometries and the costs of 

the potential receivers’ designs, in order to understand the most adequate solution 

for each application.  

4.1 Introduction 

The CPV receivers are designed to maximize the extraction of electrical energy, to 

enhance the transfer of thermal energy and to assure adequate mechanical 

support. Several CPV receivers geometries have been already proposed 

[21,78,116,331,332]: the choice of the geometry and the selection of the materials 

depend on many factors, such as the concentration and the cost, as well as the 

thermal management. The structure of the receiver and the order of the materials 

in the stack are primary topics for heat dissipation, because most of the heat 

removed by the HCPV cells is transferred by thermal conduction [333]. So, the 

thermal behaviour of the receiver, which mainly depends on the employed 

substrate, is one of the major issues to take into account when designing a CPV 

device and, for this reason, is investigated in this chapter.  

In this work two different receiver geometries were developed: an actively-cooled, 

densely packed receiver and a passively-cooled, single cell version. In this chapter 

an overview of the thermal conductivities of the CPV receivers layers is firstly 

reported, in order to highlight the strengths and the weaknesses to be addressed 

when designing it. This initial analytical investigation was essential to understand 

the priorities that needed to be taken into account to choose the most adequate 
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substrate. Secondly, three-dimensional models were developed to optimize the 

design of the receivers according to the different operating conditions. The 

geometries were reproduced and tested in COMSOL. The results of the 

simulations predicted the thermal behaviour of each substrate under the CPV 

operating conditions. The chapter ends with the description of the substrates 

chosen for the two different applications: the structure and the materials reported 

are then used in Chapters 5, 6 and 7 to design and develop the CPV systems.  

4.2 Thermal conductivity of the receiver 

It had already been demonstrated that the steady-state heat conduction in 

homogenous materials behaves analogously to steady-state electrical conduction 

[328]. Using this thermo-electrical analogy, the thermal behaviour of a CPV 

receiver could be described through a simple one-dimensional thermal model. In 

this approach, the difference in temperature between the cell and ambient 

corresponded to the driving potential for the heat flow, as the voltage was the 

driving potential for current [334]. The aim of any model was to represent a real 

case in the most appropriate way, but some approximations needed to be taken 

into account. This model assumed a uniform illumination on the cell and constant 

isotropic properties in any material. Moreover, each layer was assumed to have a 

constant temperature throughout its volume.  

The present equivalent thermal circuit was developed in one dimension, 

perpendicularly to the widest surfaces of each layer. A traditional 1cm2-sized triple 

junction cell (represented in Figure 68) was generally 190µm-thick. The three 

visible surfaces were named A, B and C: considering the heat to be generated at 

the centre of the cell’s volume, it had to travel a distance 50 times shorter to reach 

A than needed to reach B or C. For this reason, the largest portion of the 

generated heat flew along the low-resistance path to A and the heat dissipation 

occurring on the thinnest surfaces could be neglected with only a small resultant 

error.  
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Figure 68 - Thermal circuit of a cell. The heat source is placed in the centre of the volume and heat can 
follow the three paths, long a/2, b/2 or c/2, to reach one of the three surfaces, respectively named A, B, 

C. 

The equivalent thermal circuit for a general CPV assembly is shown in Figure 69. 

Since it is a one dimensional model, all the resistances are reported here per unit 

area and will be referred to as surface specific resistance (R*). It is important to 

highlight that neglecting the conduction on the other two dimensions and the 

thermal exchanges taking place in all the layers other than the coverglass and the 

heat sink is a limitative assumption. Despite this approximation, this approach, 

which had already been used in literature [65], helped to estimate the performance 

that the cooling system has to achieve. 

 

Figure 69 - One dimension equivalent thermal circuit. 

Each layer of the assembly introduced a thermal resistance to the path between 

the cell and the environment, which respectively represented the source and the 

ground. The overall thermal resistance of the heat path (R*HP) was expressed as: 
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𝑅𝐻𝑃
∗ =

𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏

𝑞𝑐𝑒𝑙𝑙
∙ 𝐴𝑐𝑒𝑙𝑙 (20) 

where Tcell and Tamb are the cell’s and the ambient temperatures, qcell is the waste 

heat produced by the cell and Acell corresponds to the cell’s surface. Taking into 

account the 20W/cm2 of waste heat produced by a 46%-efficient cell at 500×, a 

maximum cell’s operating temperature of 100°C and an ambient temperature of 

25°C, a cooling system with an overall resistance lower than 3.75·10-4Km2/W had 

to be designed. Whatever the concentration, the maximum cell’s operating 

temperature was expected not to exceed 100°C under CSTCs: since the cell’s 

efficiency was not linearly increasing with the concentration, higher concentrations 

required lower thermal resistances. In Figure 70, the maximum values of surface 

specific resistance were reported for concentrations up to 1500×, assuming a 

constant record cell efficiency of 46%. Any point below the line would let the cell 

work at a temperature lower than 100°C. In particular, at constant concentration, 

the further the point is from the line, the lower the temperature, and, then, the 

higher the cell’s efficiency. 

 

Figure 70 - Maximum surface specific thermal resistance per different concentrations 

As shown in Figure 69, the heat was removed by the cell by conduction across the 

different layers of the receiver first and then dissipated in the ambient. There were 
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two main conductive directions that the heat can follow: moving from the cell to the 

heat sink, or moving up to the coverglass. Once at the bottom of the heat sink or at 

the top of the coverglass, the heat was transmitted to the environment through 

radiation and convection. In the present chapter, only an analysis of the conductive 

heat exchange, the main mechanism responsible for heat removal from the cell, 

was analysed. The radiative and convective heat exchanges were modelled here 

as dissipative heat fluxes only and have been further investigated in chapter 7. 

The cover glass and the encapsulant are not usually required to perform high 

thermal conductivity: the thermal conductivity of a clear silicone encapsulant 

(0.27W/mK) is much lower than that of the substrate’s materials. For this reason, 

the heat dissipated by these layers is limited and the present section only focuses 

on the layers placed below the cell (assuming the light hitting the cell from the top), 

where the largest amount of heat flows. Taking into account a cell assembly 

developed on a Cu-AlN-Cu direct bonded copper substrate [116], a more detailed 

model of the thermal transmission from the cell to the heat sink is reproduced in 

Figure 71. The assembly was considered to be attached to a flat 1.5mm-thick 

aluminium heat sink (HS) through a thermal interface material (TIM). 

 

Figure 71 - One dimension equivalent thermal circuit of the layers below the cell. 
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The GaInP/GaAs/Ge cell was composed of multiple layers of different materials: a 

widely accepted procedure allows modelling it as a single block of germanium 

[335,336]. The same approach has been used in all the simulations presented in 

this thesis. The equivalent surface specific thermal resistance of the receiver 

(R*receiver) was calculated as the sum of the individual layer resistances. 

𝑅𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟
∗ = 𝑅𝑐𝑒𝑙𝑙

∗ + 𝑅𝑠𝑜𝑙𝑑𝑒𝑟
∗ + 𝑅𝑇𝑜𝑝𝐶𝑢

∗ + 𝑅𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
∗ + 𝑅𝐵𝑜𝑡𝑡𝑜𝑚𝐶𝑢

∗ + 𝑅𝑇𝐼𝑀
∗ + 𝑅𝐻𝑆

∗  (21) 

where each resistance could be estimated through the thickness and the thermal 

conductivity of each layer (Table 16). An overall thermal resistance of  

3.35·10-5Km2/W was calculated for the considered receiver. 
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Table 16 - Materials considered in the model of the receiver 

Layer Material Thickness 
[mm] 

Thermal 
conductivity at 25°C 

[W/mK] 

Surface specific 
resistance 
[K·m

2
/W] 

Ref 

Cell Germanium 0.190 60 3.167·10
-6

 [337] 

Solder paste Sn–Ag–Cu 0.125 78 1.602·10
-6

 [338] 

Substrate 

Top Copper 0.3 400 7.500·10
-7

 [337] 

Aluminium 
Nitride 

0.63 285 2.210·10
-6

 [337] 

Bottom 
Copper 

0.3 400 7.500·10
-7

 [337] 

Thermal interface 
material (TIM) 

Epo-tek 0.050 2.83 1.767·10
-5

  

Heat Sink Aluminium 1.5 160 9.375·10
-6

 [337] 

 

 

Figure 72 - Breakdown of the layers’ surface specific thermal resistances 

Figure 72 shows the contribution of each layer to the thermal resistance of the 

considered receiver. The thermal interface material placed between the substrate 

and the heat spreader was the largest challenge for heat dissipation, representing, 

despite the limited thickness, 50% of the overall thermal resistance. This issue 
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could not be neglected, especially when a passive cooling system was designed. 

For this reason, two different approaches were chosen for the two receivers to be 

designed.  

The densely packed receiver was coupled to a water-based, active cooling system 

[339], which was designed by a research team of the Indian Institute of Technology 

Madras in Chennai (India) to recover the waste heat produced by the 144 solar 

cells. The employment of an active cooling system limited the concerns related to 

the thermal behaviour of the receiver. Moreover, the large dimensions of the board 

made it essential to give the same consideration to the electrical and thermal 

performance as well as to the cost of the whole CPV system. On the other hand, 

the single-cell receiver was conceived to be applied in natural convective 

conditions. In this case, the thermal behaviour of the receiver was the key factor for 

the system’s reliability and it was prioritised over the costs. In order to limit the 

thermal resistance of the receiver, the passive system was integrated in it, in order 

to avoid the employment of a thermal interface material. In this chapter, the thermal 

model used in this chapter is described and the results of the simulations are 

reported and commented upon. 

4.3 The thermal model: equations and conditions 

The following simulations were conducted taking into account the CSTCs: a 

1000W/m2 DNI and an ambient temperature of 25°C. The cell was modelled as a 

heat source: considering the AZUR SPACE 3C40C cell’s peak-efficiency of 37.2% 

at 500× and an optical efficiency of 85%, an overall heat production of 26.7W/cm2 

was predicted. When the worst case conditions were taken into account, the cell’s 

efficiency was considered to fall to 0%: the heat production then rose to 42.5W/cm2 

and a maximum cell’s temperature of 150°C was accepted. 

4.3.1 Governing equations and boundary conditions 

The simulation was developed using the COMSOL’s “Heat Transfer in Solids” 

module. The equations used in the simulation are reported below.  

The stationary pure conductive heat transfer equation was used to model the heat 

exchange between solids. The heat flux depended on the conductivity of the 



Chapter 4: Thermal management of CPV receivers 

 

120 

material (k) and on the temperature gradient between the opposite surfaces (∇T). 

The conduction heat flux vector (q) was written as [334]: 

𝒒 = −𝑘 ∙ 𝛁T (22) 

The heat transfer in solids was expressed through the Fourier’s law [334,340]:  

𝜌𝐷 ∙ 𝑐𝑝 ∙
𝜕𝑇

𝜕𝑡
= 𝑄𝑣

′ + 𝑘 ∙ 𝛁2T (23) 

where ρD is the density, cp the specific heat capacity, t the time, and Q’v the 

volumetric rate of heat generated. ∇2 is the Laplace operator and k∙∇2T expresses 

the heat flux in the three dimensions of an isotropic medium [341]. In Cartesian 

coordinates it is reported in the following form: 

𝛁2T =
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2  (24) 

In this case, the steady-state temperature was not dependent on time and, then, 

∂T/∂t=0. So the equation (23) reduced to the Poisson equation [334]: 

𝑄𝑣
′ = −𝑘 ∙ 𝛁2T (25) 

Taking into consideration the number of cells on the plate (Ncell) and the volume of 

each cell (Vcell), the heat produced by all the cells of the receiver (Q) was 

expressed as: 

𝑄 = 𝑄𝑣
′ ∙ 𝑉𝑐𝑒𝑙𝑙 ∙ 𝑁𝑐𝑒𝑙𝑙 (26) 

Some boundary conditions were set. All the media-facing surfaces were thermally 

insulated (27), with the exception of the backside of the prototype. A convective 

heat flux was introduced on the back surface of the heat sink to model the action of 

the cooling system or of the natural convection. The equation (28), based on the 

Newton's law of cooling [341], explains how this condition was modelled, taking 

into account the difference between in temperature between the surrounding media 

and the surfaces of the board (Tamb and Ts respectively), and requiring in input the 

value of the heat transfer coefficient (h). This parameter describes the thermal 

properties of the convective exchange between a surface and the surrounding 

media and is influenced by different conditions such as the geometry of the 

surface, and the properties and the motion of the fluid [329]. The solder paste and 
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the thermal interface materials were modelled as thin thermally resistive layers. 

The heat fluxes across these layers are described in (29) and (30), where the u 

and d subscripts refer respectively to the upside and the downside of the layer. For 

thermally resistive layers, only the thermal conductivity (ktrl) and the thickness (ttrl) 

were required in input. 

𝒒 = 0 (27) 

𝒒 = ℎ ∙ (𝑇𝑠 − 𝑇𝑎𝑚𝑏) (28) 

𝒒𝑢 = −𝑘𝑢 ∙ 𝛁𝑇𝑢 = −𝑘𝑡𝑟𝑙 ∙ (𝑇𝑢 − 𝑇𝑑)/𝑡𝑡𝑟𝑙 (29) 

𝒒𝑑 = −𝑘𝑑 ∙ 𝛁𝑇𝑑 = −𝑘𝑡𝑟𝑙 ∙ (𝑇𝑑 − 𝑇𝑢)/𝑡𝑡𝑟𝑙 (30) 

The “Joule Heating” interface was used to model the heating effects of the resistive 

losses. This feature was based on a modified version of the heat equation at the 

steady state (26). In this case, the definition of Q was improved to add the 

contributions due to the electromagnetic losses taking place in each i-cross section 

of the semiconductor (QJ,i) as boundary heat sources in the heat transfer 

computation: 

𝑄 = 𝑄𝑣
′ ∙ 𝑉𝑐𝑒𝑙𝑙 ∙ 𝑁𝑐𝑒𝑙𝑙 + ∑ 𝑄𝐽,𝑖

𝑖

 (31) 

The expression of QJ derives from the Ohm’s law [342] and was written as: 

𝑄𝐽 = 𝐼2 ∙ 𝑅𝑒𝑙 (32) 

where Rel is the resistance of the conductor. Considering the length (l) and the 

cross-sectional area (A) of the conductor, as well as the electrical conductivity of 

the material (σel) it is made of, the resistance was expressed as: 

𝑅𝑒𝑙 =  
𝑙

𝜎𝑒𝑙 ∙ 𝐴
 (33) 

All the surfaces facing the air and the dielectric were considered electrically 

insulated: 

−𝑛 ∙ 𝐽 = 0 (34) 

where J represents the magnitude of current density across the conductor, 

expressed as: 
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𝐽 = 𝐼/𝐴 (35) 

4.3.2 Receiver geometry and materials 

In the first approach, a single cell geometry was reproduced in the software 

environment (Figure 73): the solar cell (CC) was placed onto the copper layer 

(CuL), which was accommodated onto a 21mm×21mm heat sink through a 

dielectric layer. The interconnectors (IC) were modelled as 0.025mm-thick silver 

tabs. The diode (Ds) was not considered in these thermal investigations, due to the 

small current flowing through it when the system was in operation. In this 

investigation, the copper pattern was inspired by the design of the commercial 

AZUR SPACE assembly, and the densely packed design was obtained by 

repeating the conductive patterns on the large aluminum board. 

 

Figure 73 - Front view and cross section of the single cell receiver developed in COMSOL. 

The simulations were conducted to predict the steady-state thermal behaviour of 

the receiver. Depending on the application, different substrates were considered: a 

printed circuit board (PCB), a direct bonded copper (DBC), an insulated metal 

substrate (IMS) or a silicon wafer. The thicknesses of the layers were established 

on the basis of the commercially available products or references and are reported 

in Table 17.  
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Table 17 - Thicknesses and materials for the modelled substrates 

Layer PCB DBC IMS Si wafer 

Interconnectors 0.025mm Ag 0.025mm Ag 0.025mm Ag 0.025mm Ag 

Cell 0.190mm Ge 0.190mm Ge 0.190mm Ge 0.190mm Ge 

Solder paste 0.125mm solder 0.125mm solder 0.125mm solder 0.125mm solder 

Conductive layer 0.035mm Cu 0.30mm Cu 0.035mm Cu 0.001mm Cu 

Dielectric 
4.5µm marble 

resin 
0.63mm AlN 

4.5µm marble 
resin 

0.001mm Si3N4 

Heat sink 1.6mm FR-4 0.30 mm Cu 1.6mm Al 0.55 mm Si 

Ref. [337] [116] [337] [84] 

 

The COMSOL’s “Heat transfer” module, used in this simulation, required three 

proprieties for each material: the thermal conductivity, the density, and the heat 

capacity at constant pressure. Wherever available, the COMSOL built-in materials 

were used, such as copper and aluminum. In other cases, the values were set 

according to external references (Table 18). 

Table 18 - Proprieties of materials (Materials marked with * are COMSOL built-in materials) 

Materials 
Thermal conductivity 

[W/Km] 
Density 
[kg/m

3
] 

Heat Capacity 
[J/kgK] 

Aluminum Nitride 285 3260 740 

Aluminum* 160 2700 900 

Copper* 400 8700 385 

FR-4 1.7 1850 600 

Germanium 60 5323 320 

Silicon* 130 2329 700 

 

The solder pastes used in all the substrates and the marble resin, which acted as a 

dielectric in the considered PCBs and IMSs, were modelled as thin thermally 

resistive layers: for this function, COMSOL required in input the thickness and the 

thermal conductivity only (Table 19). 

Table 19 - Conductivity and thickness of the thermally resistive layers 

Materials 
Thermal conductivity 

[W/Km] 
Thickness 

[mm] 

Marble resin 3.0 0.0045 

Solder paste 4.5 0.1250 

 

The Joule heating calculations required in input the electrical conductivity of the 

materials where the current was flowing, such as the cells and the conductive 

layer. The resistive heating happening in the soldering layer was not considered. 

The parameters used in the simulation are shown in Table 20. 



Chapter 4: Thermal management of CPV receivers 

 

124 

Table 20 - Electrical parameters employed for the investigation on the Joule losses (Materials marked 
with * are COMSOL built-in materials) 

Materials Electrical conductivity [S/m] 

Copper* 5.997∙10
7
 

Germanium 2.000∙10
4
 

  

The following pictures show the temperature distribution and the isothermal 

contours: the scale gradually ranges from red, for high temperatures, to blue, for 

lower temperatures. The 3D rendering of the simulations are generally shown from 

either one or two views: a front view of the top surface and a lateral 3D view. All 

the temperatures are in °C. 

4.4 Actively-cooled, densely packed cell assembly 

The present investigation was conducted in COMSOL 4.3. Firstly, a single cell 

model was developed to compare the performance of the potential substrates. 

Because of its cost and fragility, the silicon wafer was not considered a suitable 

substrate in this large application. So, the investigation was limited to three 

substrates: PCB, IMS and DBC. Secondly, after an analysis of the costs and of the 

manufacturability, a full scaled 144-cell model was developed and the assembly 

was tested under different conditions: concentrator standard test, worst case, and 

non-uniform irradiance conditions. The effect of the Joule losses was also  

analysed. 

In order to reproduce the action of the active water-based cooler, a uniform 

convective heat flux was introduced on the back of the heat sink. An initial heat 

transfer coefficient of 104W/m2K was considered, because it had been reported as 

the minimum value required for densely-packed systems operating over 150 suns 

[65].  

COMSOL measured the temperature distribution across the 144 cells modelled on 

the board. The temperatures were recorded at the middle of the active area of the 

cells. Due to the slightly asymmetrical design (described in chapter 5), out of 144 

cells, the four cells on the corners and the four cells at the centre of the plate were 

found to have, respectively, the lowest and the highest temperatures in any 

simulation. For this reason, the model was implemented to automatically sort out 
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the maximum and the minimum temperatures of these cells: these are the values 

presented in the captions. In the figures, instead, the temperature distribution 

across both the cells and the substrates are shown: the substrate was found to 

work at lower temperatures than the cell and, so, the pictures depict a wider range 

of temperatures than that experienced by the cells alone. 

4.4.1 The CPV system’s geometry 

The densely packed receiver was designed as part of the BioCPV project [343]. 

The objective of the project was to develop and to integrate highly efficient solar, 

biomass and hydrogen energy technologies to produce non-interrupting power 

supplies to the rural communities. The presented cell assembly was part of eight 

500× CPV units designed for this project. The geometry of the CPV system, shown 

in Figure 74, was agreed with the project’s partner, the Indian Institute of 

Technology Madras (India), whose team was in charge of the design and the 

development of optics, cooling system and tracker, as well as the inverter and the 

power electronics for current transmission. 

 

Figure 74 - The 3D rendering of the CPV system. Courtesy of the Indian Institute of Technology Madras. 
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Each CPV unit had two modules made of a primary concentrator and a receiver 

each (Figure 75). The receiver consisted of the 144-cell assembly presented in this 

thesis, a 4× secondary concentrator and an active cooling system. The primary 

125× and the secondary 4× optics resulted in an overall geometric concentration of 

500×: a summary of the concentrator specifications is reported in Table 21. 

 

Figure 75 - Schematic of the system configuration and particular of the receiver. 

Table 21 - Concentrator specifications 

Primary concentrator Secondary concentrator 

Geometric Concentration Ratio 125× Geometric Concentration Ratio 4× 

Aperture area 3m × 3m Cell side aperture area 10mm × 10mm 

Rim angle 20° Acceptance angle 30° 

Focal length (f) 3.37m Length of CPC 25mm 

f/d ratio 0.794 Length of homogenizer 10mm 

 

The 125× primary concentrator was a parabolic dish with a square opening and 

was made up of four sections to achieve an entry aperture area of 9m2. The 

secondary concentrator was made of 144, three-dimensional, 25mm-high 

compound parabolic concentrators (CPCs) with a squared 2cm×2cm entrance 

aperture and a square 1cm×1cm exit aperture. The CPCs were arranged in a 

12×12 array and each CPC reflected the light on a single solar cell. A 10mm length 

homogenizer was placed at the exit of each CPC to uniformly illuminate each cell. 

In Figure 76, the cross-sectional views of a 12-CPC array and of a single CPC are 

presented. Due to the geometry of the secondary concentrators, the 144 cells on 

the boards were allocated in 12 rows and 12 columns. The CPCs had an entry 

aperture of 2cm×2cm and the side walls of the concentrators were 1mm-thick: for 

this reason, a distance of 1.1cm was fixed between each couple of adjacent 1cm2-

sized cells. 
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Figure 76 - Cross sectional view of the secondary optics 

A continuous tracking system allowed moving the assembly in order to follow the 

Sun and to let the cells work at their maximum power point. An active cooling 

system was developed to control the temperature of each receiver of the plant.  

4.4.2 Single cell model 

The aim of this preliminary single cell simulation was to investigate the thermal 

behaviour of the potential substrates. The model was developed in stationary mode 

and was set to stop the simulation when converging within a relative tolerance of 

10-3. A heat production of 26.7W/cm2 and a cooling flux of 104W/m2K on the back 

of the cell were considered. The results are reported in the pictures below (Figure 

77, Figure 78, and Figure 79).  

 

Figure 77 - Temperature distribution (a) and isothermal contours (b) in the PCB based assembly, in °C. 
Max cell’s temperature: 153.14°C. 
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Figure 78 - Temperature distribution (a) and isothermal contours (b) in the DBC based assembly, in °C. 
Max cell’s temperature: 31.573°C. 

 

Figure 79 - Temperature distribution (a) and isothermal contours (b) in the IMS based assembly, in °C. 
Max cell’s temperature: 33.232°C. 

As expected, the PCB based assembly was the worst performing (Figure 77). In 

the considered conditions, it reached a maximum cell’s temperature of 153.14°C, 

above the acceptable CPV range and more than 100 degrees higher than those 

recorded for the DBC and IMS assemblies (Figure 78 and Figure 79 respectively). 

The flat profile of the isothermal contours in Figure 77 clearly showed the difficulty 

for heat to move from the cells through the PCB: the heat was concentrated in the 

cell and was not effectively transferred to the bottom of the substrate. For this 

reasons, a PCB was considered as a reliable substrate for high CPV applications, 

even in presence of a well-performing active cooling system. The performances of 

the DBC and the IMS assemblies were instead similar and acceptable: both the 

substrates showed cell’s temperatures lower than 40°C. These values were below 

the usual CPV operating temperature range and indicated an over-sized cooling 

system. In order to predict the thermal behaviour of these substrates in more 



Chapter 4: Thermal management of CPV receivers 

 

129 

realistic conditions, the performance of the cooling system was lowered: the heat 

transfer coefficient was reduced to 1250W/m2K. 

 

Figure 80 - Temperature distribution (a) and isothermal contours (b) in the PCB based assembly, in °C. 
Max cell’s temperature: 204.7°C. 

 

Figure 81 - Temperature distribution (a) and isothermal contours (b) in the DBC based assembly, in °C. 
Max cell’s temperature: 75.6°C. 

 

Figure 82 - Temperature distribution (a) and isothermal contours (b) in the IMS based assembly, in °C. 
Max cell’s temperature: 73.8°C. 
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This second investigation confirmed that DBC and IMS behaved similarly in terms 

of heat removal, even in presence of a less performing cooler, with peak 

temperatures of 75.6°C and 73.8°C respectively. So, both the substrates had the 

potential to be applied to the designed CPV system. 

4.4.3 Cost analysis and manufacturing restrictions 

In the first design, the full scale receiver was planned to have a size of 

26.2cm×25.5cm, because it would have allocated 144 multijunction cells, 1cm2-

sized and placed at a 1.1cm distance from each other. Moreover, some space had 

to be added for allocating the terminal tabs used for the current extraction and 

some tolerances on the edges needed to be considered as well. Different suppliers 

were contacted to fabricate the required substrates and a resume of the most 

competitive solutions sorted out in the survey is shown in Table 22. 

Table 22 - Specifications of the DBC and the IMS 

Specifications DBC IMS 

 Front dimensions 13cm×13cm 26.2cm×25.5cm 

Layers 
0.127mm Cu - 0.63mm AlN -  

0.127mm Cu 
0.070mm Cu - 0.0045mm resin -  

2.003mm Al 

Cost £409 £330 

 

It was not possible to find a supplier able to produce a 26.2cm×26.2cm DBC. The 

proposed solution consisted of producing four 13cm×13cm boards, at a cost of 

£409 each, to be later assembled in one receiver. Interconnecting four substrates 

to make one assembly would have increased the risk of failures and made the 

structure of the receiver more complex and fragile. On the other hand, the 

production of a large IMS was found to be easier and more cost-competitive: the 

cost of one 26.2cm×26.2cm IMS was £330, significantly lower than that of DBC. 

Moreover, the aluminum base of the IMS could be easily attached to the cooling 

system, typically made of aluminum too. For these reasons, the IMS substrate was 

preferred in this application. 

4.4.4 The Joule effects: a 16-cell assembly model 

A first densely packed investigation was conducted to understand the thermal 

response of the assembly and to study the effects of the Joule losses on the 
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thermal management [337]. A 16-cell IMS-based assembly was modelled on a 

10cm×10cm board: the results of the simulation conducted under CSTCs are 

shown in Figure 83. Forcing the cell’s short circuit current across the electrical 

circuit (Figure 84), the effect of the Joule losses on the maximum temperature was 

found to be negligible in terms of maximum temperature increasing. For this 

reasons, the Joule losses was not further considered for the following thermal 

simulations. 

 

 

Figure 83 - Temperature distribution on a 16-cell IMS based assembly, in °C. Max cell’s temperature: 
81.2°C. 

 

Figure 84 - Temperature distribution on a 16-cell IMS based assembly after the Joule losses have been 
considered, in °C. Max cell’s temperature: 81.5°C. 
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4.4.5 Full scale model 

In order to further test the thermal performance of the board, a full scale simulation 

was developed. The simulation demonstrated the thermal response of the 

assembly and its ability to remove the waste heat even in a densely packed 

configuration. The results are shown in Figure 85 and Figure 86: the first image 

reports the distribution of the temperature across the plate and the second 

presents the temperature contours. The final maximum temperature was similar to 

that reached in the single cell simulation: 76.5°C. This meant that the large IMS 

could perform well when coupled to an appropriate cooling system: the plate was 

able to remove the heat from the cells to let the system work at steady state in a 

suitable operating temperature range. A maximum difference of temperature of 

14°C was registered among the cells installed in the assembly: the minimum 

temperature, achieved by the cells on the edge, was due to the 1cm room left on 

one side of the board to allocate the tabs for current extraction. Unfortunately, it 

was not possible to reduce that space and, on the other hand, adding the same 

room in the other edges would have increased the temperature gradient, the 

materials employed and therefore the costs, without any positive effect on the 

system’s performance. As agreed with the Indian Institute of Technology Madras 

(IITM) team, the cooling system would have been designed to take care of this 

issue. 

 

Figure 85 - Temperature distribution of the full scaled board, in °C. Max cell’s temperature: 76.5°C. Min 
cell’s temperature: 62.5°C. 
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Figure 86 - Isothermal contours in the assembly of the full scaled board, in °C. 

In order to predict the behaviour of the system under a wider range of conditions, 

the system was then tested under the worst case conditions, when all the 

concentrated sunlight was converted into heat.  As shown in Figure 91 and Figure 

92, the insulated metal substrate was able to successfully handle the large amount 

of heat: the cell’s temperature was expected not to overtake the maximum limit of 

150°C.  

 

Figure 87 - Temperature distribution of the full scaled board in the worst case conditions, in °C. Max 
cell’s temperature: 115.6°C. Min cell’s temperature: 91.9°C. 

 

Figure 88 - Isothermal contours of the full scaled board in the worst case conditions, in °C. 
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4.4.6 The effects of non-uniform light distribution 

The efficiency of a densely packed system strongly depended on the uniformity of 

irradiance. In case of non-homogenous illumination, the illumination was not 

homogenous, the cells would have worked at different concentrations and, thus, at 

different efficiencies. Moreover, because of the dissimilar efficiencies and 

concentrations, each cell would have been expected to generate different currents 

and waste heat amounts. The dissimilar heat produced by each cell would have 

negatively affected the efficiency itself as well. So, the most uniform irradiance 

profile had to be achieved in any CPV system. In the real scenarios, the irradiance 

profile generally followed a Gaussian distribution [344], with a peak intensity for the 

cells in the centre of the receiver. At the time the thesis was concluded, no 

predictions of the sunlight distribution were available for the CPV system in 

development. Despite that, it was considered essential to carry out a preliminary 

investigation to check the thermal behaviour of the receiver in these conditions too.  

In the absence of modelled and experimental data, the non-uniform irradiance was 

reproduced according to a standard normal distribution (standard deviation, σG=1; 

mean, µG=0). The average unconcentrated irradiance across the cells was kept 

equal to 1000W/m2, with a maximum and a minimum of 1366W/m2 and 966W/m2 

respectively (Figure 89 and Figure 90). 

 

Figure 89 - Section of the irradiance distribution across one of the central rows/columns of the 
assembly. 
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Figure 90 - 3D image of the Gaussian distribution of the irradiance on the 144 cells of the board.  

In the COMSOL model, the amount of heat produced by each cell was introduced 

according to Figure 90. A fixed cell’s efficiency of 37.2% was considered for all the 

cells, independently of the concentration they face. The results, shown in Figure 91 

and Figure 92, predicted that the maximum temperature of the cells in conditions of 

non-uniform irradiance would have been below 100°C. The cells in the centre 

would have reached temperatures up to 91.2°C. As expected, the gradient of 

temperature among the cells would have become more enhanced than in the 

previous cases, doubling the maximum temperature difference (14°C vs. 30°C) 

registered for the uniform irradiance case. 

  

Figure 91 - Temperature distribution of the full scaled board under non-uniform irradiance, in °C. Max 
cell’s temperature: 91.3°C. Min cell’s temperature: 61.0°C. 
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Figure 92 - Isothermal contours of the full scaled board under non-uniform irradiance, in °C.  

As for the previous investigations, the receiver was tested under the worst case 

conditions too (Figure 93 and Figure 94). The temperature was expected to rise up 

to 133.4°C, still below the maximum 150°C allowed in these situations. The 

temperature gradient would have further increased up to almost 50°C under these 

conditions. 

 

Figure 93 - Temperature distribution of the full scaled board under non-uniform irradiance in the worst 
case conditions, in °C. Max cell’s temperature: 133.4°C. Min cell’s temperature: 85.3°C. 

 

Figure 94 - Isothermal contours of the full scaled board under non-uniform irradiance in the worst case 
conditions, in °C. 
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4.4.7 Considerations 

The large insulated metal substrate chosen for the densely packed CPV system 

showed a successful thermal management under all the modelled conditions 

(Table 23). The design of the electrical circuit and the manufacturing processes 

employed to fabricate the full scale assembly have then been detailed in the 

chapter 5.  

Table 23 - Summary of the results of the full scale simulations conducted on the insulated metal 
substrate board. 

Conditions 
(DNI, cell efficiency) 

Heat waste per cell Max cell’s 
temperature 

Min cell’s 
temperature 

Standard conditions 
(1000W/m

2
, ηcell=37.2%) 

26.7W 76.5°C 62.5°C 

Worst case conditions 
(1000W/m

2
, ηcell=0%) 

42.5W 115.6°C 91.9°C 

Non-uniform irradiance 
(avg. 1000W/m

2
, ηcell=37.2%) 

25.8W to 36.5W 91.3°C 61.0°C 

Non-uniform irradiance  and worst case conditions 
(avg. 1000W/m

2
, ηcell=0%) 

41.0W to 58.0W 133.4°C 85.3°C 

 

4.5 Passively-cooled, single cell receiver 

In the present section (4.5), the investigations on the thermal behaviour of the 

single cell receiver’s substrate are reported. During the previous investigation 

(4.4.2), the PCB was found not to be a suitable solution for CPV applications, even 

when an over-sized cooling system had been applied. So, it had been no longer 

considered: the suitable substrates were limited to an IMS, a DBC and a silicon 

wafer.  

4.5.1 Geometry, materials and components 

The thermal behaviour of a CPV system depends on different factors other than 

the concentration and outdoor conditions only. Firstly, the generated waste heat is 

proportional to the size of the cell. Secondly, the geometry of the concentrators and 

the number and the distribution of the cells on the assembly limit the surface 

available for the heat exchange and influence the orientation of the heat sink. 

When no active cooling system is designed, all these concerns have to be taken 

into account, because the cooling action depends on the convection of air and on 

the emissivity of the receiver’s materials only. Each kind of substrate has a 
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different thermal behaviour and this affects the temperature of the cells. For this 

reason, in the next subsections, an analysis of the thermal behaviour of each CPV 

component is reported and commented. After that, the simulations conducted to 

estimate the heat management abilities of the different receivers in a single cell 

configuration are described.  

4.5.1.1 Cell’s size and distribution 

The range of commercially available multijunction cells has become wider in the 

recent years. When this investigation was conducted, AZUR SPACE offered the 

square cells summarized in Table 24, whose peak efficiencies at 500× maximum 

power point (MPP) ranged between 40.9% and 42.5%.  

Table 24 - Comparison of AZUR SPACE’s cells performance at 500×. An anti-reflective coating adapted 
to glass is considered. The waste heat is calculated taking into account 1000W/m

2
 DNI, 25°C 

temperature, AM1.5 spectrum, and 15% optic losses. 

 10mm×10mm cell 5.5mm×5.5mm cell 3mm×3mm cell 

Efficiency 40.9% 41.6% 42.5% 

Short circuit current 7.53A 2.31A 0.70A 

Heat generated at MPP 25.12W 7.51W 2.20W 

Heat generated in worst case conditions 42.50W 12.86W 3.83W 

 

In this passive application, the performance of a 3mm×3mm multijunction cell was 

considered. Along with the lowest amount of heat generated because of the 

reduced size, this cell has the highest efficiency and, thus, the lowest rate of waste 

heat produced per unit of active area. Among the different geometries, the single 

cell configuration was the most favourable for passive cooling and, for this reason, 

was used in this receiver.  

4.5.1.2 Concentrating optics 

The optics has a high impact on the thermal management of CPV systems. In this 

application, an optics configuration where the receiver was not placed between the 

concentrators and the Sun, such as those represented in Figure 95, was selected. 

As previously pointed out, using these geometries, there was no risk for the cooling 

system to shadow the concentrators and, thus, larger surfaces were available for 

cooling. Despite this advantage, it was important to consider that, the heat sink, in 
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these configurations, was mainly downward orientated and so, it was not in the 

optimal conditions for natural convection [156]. 

 

Figure 95 - The concentrators’ geometries considered for the present passively cooled CPV system:  
(a) primary and secondary reflective concentrators, (b) Fresnel lens. 

4.5.2 Dimensions of the substrate 

The waste heat produced by a cell is moved by conduction to the heat sink, where 

it is then transferred to the ambient. Any object placed in contact with a fluid 

exchanges heat with it through natural convection and radiation and this happens 

for a solar receiver mounted in an outdoor CPV system too. The heat transferred 

by natural convection (qc) is approximately proportional to the temperature 

difference between the cooling surface and the free stand fluid, respectively 

reported as THS and Tamb: 

𝑞𝑐 = 𝐴𝐻𝑆 ∙ ℎ𝑐 ∙ (𝑇𝐻𝑆 − 𝑇𝑎𝑚𝑏) (36) 

where AHS stands for the area of the heat sink and hc represents the convective 

heat transfer coefficient. This coefficient depends on the fluid, the state of the flow 

and the geometry of the system. The heat transfer coefficient for air in free 

convection usually ranges between 3 and 25W/m2K [334]. On the other hand, the 
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heat transferred by radiation (qr) is a function of the difference between the 

temperatures’ fourth powers: 

𝑞𝑟 = 𝜎 ∙ 𝐴𝐻𝑆 ∙ 𝐹𝑖−𝑘 ∙ 𝜀 ∙ (𝑇𝐻𝑆
4 − 𝑇𝑎𝑚𝑏

4 ) (37) 

where σ is the Stefan-Boltzmann constant, Fi-k the view factor between the surface 

and the ambient, and ε the emissivity of the surface’s material. 

The simplest solution to dissipate the waste heat generated by the cell was to use 

a large, flat heat sink, placed at the bottom of the heat spreader. Aluminium is the 

material generally chosen to fabricate the heat sinks due to its good balance 

among thermal performances, weight and costs. Combining the two equations (36) 

and (37), and considering the bottom surface only, it was then possible to calculate 

the minimum area (AHS) the CPV heat sink required to work properly. 

𝐴𝐻𝑆 =
𝑞𝑐𝑒𝑙𝑙

ℎ𝑐 ∙ (𝑇𝐻𝑆 − 𝑇𝑎𝑚𝑏) + 𝜎 ∙ 𝐹𝑖−𝑘 ∙ 𝜀 ∙ (𝑇𝐻𝑆
4 − 𝑇𝑎𝑚𝑏

4 )
 (38) 

Assuming that [325]: 

 all the heat generated by the cell reached the heat sink, 

 only the flat bottom surface of the receiver exchanged heat with the 

ambient, 

and considering: 

 an upper bound for emissivity of 0.09, 

 a view factor of 1, 

 an optimistic value of 25W/m2K for the air heat transfer coefficient, 

 a heat sink surface temperature of 60°C,  

 and an ambient temperature of 25°C,  

a dissipating area of 0.0025m2 for the aluminium heat sink was found to be 

necessary for passively cooling a 3mm×3mm sized cell. It corresponded to a 

5cm×5cm aluminium plate. Assuming the same surface’s temperature, a silicon 

wafer would have needed a smaller surface because of the higher emissivity than 

aluminium, but, because of 5cm×5cm were standard sizes for the three considered 
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substrates and similar to those of standard commercial receivers, the same 

dimensions were taken into account to compare the behaviour of the three 

substrates. 

4.5.3 Choice of the substrate 

The three 5cm×5cm substrates were reproduced in COMSOL and the results are 

shown in the figures below. The geometries were the same shown in Table 17: the 

DBC was 1.23mm-thick, the IMS 1.64mm-thick and the silicon wafer 0.55mm-thick. 

In order to make the comparison easier, the results are shown using the same 

scale: the temperature scale starts from 35°C (dark blue) to 75°C (dark red). In this 

passively-cooled system, air was naturally acting as cooling fluid: this action is 

modelled considering a convective heat flux of 10W/m2K at an ambient 

temperature of 25ºC. 

 

   

Figure 96 - The temperature distribution on the three substrates: a) direct bonded copper, b) insulated 
metal substrate, c) silicon wafer direct bonded copper. 

All the receivers achieved cell temperatures between 50°C and 80°C, within the 

operating range of CPV systems [142,143]. The direct bonded copper (Figure 96a) 

and the insulated metal substrate (Figure 96b) showed similar maximum 

temperatures of 75.0°C and 72.8°C respectively. The silicon wafer (Figure 96c) 

instead achieved the lowest temperature (53.3°C) and, for this reason, appeared to 

be the most suitable substrate for a passive cooled CPV application. 
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As further proof of reliability, the performance of the three substrates under the 

worst case conditions was investigated as well. The results are shown in Figure 97, 

and similarly to the previous investigation, the scale has not been varied among 

the studies: from 40°C (dark blue) to 120°C (dark red). The simulation confirmed 

the better thermal behaviour of the silicon wafer, expected to reach a maximum 

cell’s temperature of 78°C, about 30 to 40°C degrees below the other two 

substrates’ temperatures. 

      

Figure 97 - The temperature distribution on the three substrates under the worst case conditions: a) 
direct bonded copper, b) insulated metal substrate, c) silicon wafer direct bonded copper. 

      

4.5.4 Considerations 

The silicon wafer was found to show the best performance in terms of heat removal 

for a single cell configuration in natural convective conditions. According to a 

survey made among different suppliers, the average cost of a 5cm×5cm silicon 

wafer was about £55 each, for an order larger than 10 wafers. The 5cm×5cm DBC 

and IMS instead costed respectively £15 and £10 each for more than 50 units. 

Despite the highest cost, the silicon wafer was preferred even because of the 

highest emissivity of the material, compared to aluminum and copper, and because 

silicon micro-machining had already been widely deployed [168]. As already 

pointed out, the receiver’s layers could be directly sputtered onto the wafer [83,84]. 

So, the silicon wafer was chosen as substrate for the single cell receiver to be 

designed and has been furthered investigated in chapter 7. 
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4.6 Conclusions 

CPV substrates are designed to give the mechanical support to the whole receiver, 

to remove the waste heat from the cell and to allocate the electrical circuitry. In the 

present chapter, a thermal investigation on the substrates to be employed for the 

development of CPV cell assemblies has been presented. The choice of the most 

appropriate cooling system depends on the features of the systems. Active cooling 

systems usually grant excellent thermal performance and are easy to control. So, 

an active cooler was employed for the large high concentration receiver designed 

in this work, where a high number of packed cells were accommodated. On the 

other hand, passive cooling systems are generally more simple and reliable. 

Therefore, a passive cooler was preferred for the single cell CPV systems, where 

an extended surface was available for heat exchanging.  

In the densely packed receiver designed in this work, where an active cooling 

system was mounted, an insulated metal substrate was found to be the most 

convenient board. The IMS proved to have a thermal behaviour analogous to that 

of the DBC, since the maximum cell’s temperatures shown by the two boards 

under the same conditions were similar. Overall, the IMS was found to be more 

advantageous in terms of costs and fabricability. First of all, producing the IMS for 

the present application was less expensive than producing a DBC with the same 

characteristics. Secondly, no supplier was found to be able to deliver a DBC with 

the required dimensions: it would have been needed to fabricate four different 

boards and to interconnect them in a later stage. The large IMS could, instead, be 

produced in one piece, improving the quality and the reliability of the final receiver. 

On the other hand, a silicon wafer was preferred for the single cell application. 

Despite the high costs, this substrate had lowest cell’s temperature as compared to 

DBC and IMS. Moreover, the high emissivity of the silicon wafer further enhanced 

the benefit in terms of passive cooling. Silicon was a well-known material and the 

cooling system, such as the micro-fins, could be easily machined in it. This way, 

integrating the cooling system in the substrate, would have reduced the receiver’s 

thermal resistance that was particularly affected by the thermal interface materials 

used to attach the substrate and the heat sink. 
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In the following chapters, the design and development of the large receiver for 

active cooled, densely packed systems and the studies about an integrated 

passive cooling system for high CPV applications are reported. 
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 Densely packed cell assembly: design and Chapter 5:

fabrication 

After the selection of the most appropriate substrate, this chapter describes the 

design of the electrical circuitry and the fabrication of the densely packed 144-cell 

assembly. The original outline of the conductive copper layer is developed to 

minimize Joule losses by reducing the number of interconnections among the cells 

in series. The whole pattern fits the standards requirements and restrictions, and 

matches the optics’ design. Schottky diodes are employed for by-passing 

purposes: they are oversized to increase the safety factor. The plate is 

manufactured using standard electronic processes presented here.  

5.1 Introduction 

The cost-effectiveness of HCPV depends on the annual energy yield: each 

material, component and fabrication process has to be designed to maximize the 

energetic and economic performance. The cells are mounted on a cell assembly, 

which collects and conveys the current output to the inverter, facilitates the 

transport of the heat towards the heat sink, and gives mechanical strength to the 

structure. The present chapter describes the design of a densely packed cell 

assembly for high concentrating photovoltaic systems. The assembly allocated 144 

cells and was rated at a peak power output of 2.6kWe at 500× under CSTCs. It was 

conceived to be coupled with the concentrators developed by the Indian Institute of 

Technology Madras (India) and represented in Figure 98: a primary 125× parabolic 

mirror and a set of 144 secondary 4× concentrating parabolic compounds. An 

active cooling systems and a continuous tracker were being fabricated by the same 

Institute.  
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Figure 98 - Schematic of the system: a parabolic 3m×3m mirror reflects the light onto the receiver, 
composed by the secondary concentrators, the homogenizers, the cell assembly and the active 

cooling. Dimensions are not to scale. 

The design was developed to limit to the risk of experiencing failures or 

performance issues [345]. In the first case, one or more components of the CPV 

stop performing the original designed function, such as a cell that is no generating 

power. In the second case, instead, the power output of the system drops by at 

least a 5% for reasons other than irradiance variation, spectral variation, cell 

temperature variation, tracker alignment, module alignment, or external soiling. For 

these reasons, the instructions of the standards were followed and adequate safety 

factors and tolerances were considered. Moreover, limitations related to the 

fabrication processes, the safety and the transportability had to be considered, 

and, therefore, are here accounted. 

The high electrical currents and power densities taking place in HCPV systems 

were concerns that had to be taken into account at any stage between the design 

and the production of a reliable and durable cell assembly [346]. All these concerns 

increase the complexity of a cell assembly, restricting the opportunity of employing 

procedures commonly used for fabrication of flat-PV or silicon cells. Although in the 

last decade the development of new CPV assemblies had been presented in many 

researches [347–349] and patents [350–352], and new CPV power plants had 

been deployed worldwide [353–355], only limited information and experiences on 
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the cell assemblies fabrication were available at the time [21]. In this light, the main 

aim of this chapter is to illustrate the design procedures and the fabrication 

processes realized to develop the novel densely packed solar cell assembly for 

500× CPV applications. 

5.2 The by-pass diodes 

Along with the cells, the diodes were allocated on the assembly. Taking into 

account the investigation presented by Vorster and van Dyk [111], one by-pass 

diode per cell was installed in the presented assembly to maximize the 

performance even in conditions of shading. The diodes applied in the systems 

were surface-mount technologies, because of the reduced cost compared to the 

discrete ones [356]. The Vishay V10P45S Schottky diode was chosen because of 

granting the best compromise between dimensions and performance among the 

commercially available ones. Analysing the commercial CPV assemblies (Table 

25), a safety factor of at least 1.5 was found out to be needed to reduce the 

reverse voltage drop and the risk of breakage. In some application, safety factors 

to 10 could be considered to achieve a more conservative approach [113]. 

Table 25 - Comparison of the safety factors used by CPV industries and in the developed system 

Company 
Assembly 

code 

Cell 
dimensions 
[mm×mm] 

Max 
CR 
[×] 

Max cell 
current 

[A] 

No of 
diodes 
per cell 

Maximum 
forward current 

per diode 
[A] 

Safety 
factor 

AZUR 
SPACE [78] 

3C40A 10×10 1000 13.088 2 10 1.5 

Emcore [80] 
CTJ Receiver 

Assembly 
5×5 1000 4.4 1 10 2.2 

Spectrolab 

[79] 
CCA 100 
C3MJ 1A 

10×10 500 6.95 1 12 1.7 

Ergonsolair 

[357] 

CPV 
submounts 

and modules 

5.5×5.5 500 2 1 10 5.0 

7×7 500 4.5 1 10 2.2 

10×10 500 7 1 12 1.7 

University 
of Exeter 

144-cell 
receiver 

10×10 500 6.587 1 10 1.5 

 

Taking into account the cell’s short circuit current in the presented scheme 

(6.587A), a 10A Schottky diode granted an acceptable safety factor of 1.5. The 

peak repetitive reverse voltage was always higher than the cell voltage, even when 

a conservative safety factor was applied: the cell voltage was less than 75% of the 
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peak repetitive reverse voltage. Using two diodes would have enhanced the safety 

factor, but there was no available space to allocate them.  

5.3 The conductive pattern 

The design of the electrical circuit was developed to incorporate all the 

components, to have a high efficiency and to be easy to realize. In order to 

enhance the performance, the same copper plate was used to directly connect the 

negative pad of the cell with the positive pad of the following cell. This way, the 

number of connections was reduced, limiting the contact resistances. To facilitate 

the manufacturing, the whole copper pattern was designed to be made of only few 

shapes, periodically repeated in the space to obtain the final drawing.  

The pattern was realized taking into account the requirements and the restrictions 

of the optical geometries and the recommendations of the standards, which are 

listed in the paragraph 5.3.1. In the design stage, AutoCAD was used to check the 

matching between the receiver’s geometry and the optics systems restrictions. 

Different conductive patterns were proposed before the final design: the 

geometries and the features of each version are described in the following 

paragraph, along with the improvements introduced at each step. A symbolic 

representation of the CPV key components is shown in Figure 99: the same 

symbols are used in all the drawings reported in this chapter.  

 

Figure 99 - Key of the components schematics: (a) diode, (b) bare cell and (c) cell with front 
interconnectors. 

The electrical circuit was composed of two series of 72 cells each: each series was 

expected to produce 6.440A at about 208V at the maximum power point. The main 

challenge was to fit all the components in the available space. A 4× secondary 

system was placed above each 1cm2-sized cell: this meant that the available 

surface to allocate the cell, the diode, the interconnectors and the conductive 
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layers, inclusive clearances and tolerances, was four times larger than the cell’s 

active area (10mm×10 mm).  

A 4.5µm-thick layer of marble resin was used to bond the aluminum substrate and 

the conductors. It worked as a dielectric as well and had to be able to withstand a 

maximum open circuit voltage of 230V per series. It had a DC dielectric strength of 

60∙103V/mm, which means that it would have been able to support maximum 

voltages of 270V.   

5.3.1 The IPC standards restrictions 

The design was drawn up according to the IPC-2221 Generic Standards on Printed 

Board Design [358], produced by the Association Connecting Electronics 

Industries. The width of the conductor (w) was set according to the following 

equation [358]: 

𝑤 =
(

𝐼
𝑐1 ∙ ∆𝑇𝑐2

)
1 𝑐3⁄

𝑡
∙ 𝑐4 (39) 

where I is the current, ΔT is temperature rise due to the current flowing in the 

conductor, and z is the thickness of the conductor. The constants have values of: 

c1=0.048, c2=0.44, c3=0.725 and c4=6.541∙10-7. A 70µm-thick copper was 

considered for this application: the most common 35µm thickness was not enough 

to safely carry the nominal currents in the restricted volumes available in CPV. In 

order to be able to limit the temperature raise to 5°C, the minimum 70µm-thick 

copper widths had to be equal to or larger than 1.17mm (Figure 100a) where a 

maximum short-circuit current of 3.293A was expected to flow and than 3.05mm 

(Figure 100b) where the short circuit current could raise up to 6.587A. Table 26 

shows the minimum width required for a 70µm-thick copper plate depending on the 

conductor’s temperature and on the maximum current flowing into it.  

By limiting the effects of the Joule losses, the temperature of the system was 

decreased: so, the cell would have been able to work at lower temperatures and 

higher efficiencies. At the same time, a lower temperature reduced the thermal 

stresses and the risks of fatigue failures. In the proposed designs, a 10%-tolerance 
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and the effects of the thermal expansion were considered as well and the minimum 

widths were increased accordingly.  

 

Figure 100 - Current distribution across the C2 copper shape. The dimensions are in mm. 

Table 26 - Minimum width (in mm) of the 70µm-thick copper, for ambient temperature of 25°C, 
depending on current and copper’s temperature (according to the IPC-2221 Standards). 

Current vs 
Temperature rise 

3°C 4°C 5°C 15°C 25°C 35°C 45°C 55°C 65°C 

6.5870A 4.26 3.58 3.12 1.60 1.18 0.96 0.82 0.73 0.66 

3.2935A 1.64 1.37 1.20 0.62 0.45 0.37 0.32 0.28 0.25 

 

Across the plate, adjacent copper shapes faced various voltages while in 

operation. In conditions of open circuit at 500×, the negative pads of two 

consecutive cells faced a difference up to 3.17V. The ends of two consecutive rows 

met a maximum difference of 76.08V. The largest voltage difference was 

registered between the last pad of one series and the first one of the other series: 

there, the shapes faced a maximum difference of 228.24V. The standards struck 

clearly out the required electrical clearance between DC external coated 

conductors: 0.13mm for any for voltages lower than 100V and 0.40mm for voltages 

up to 300V. 

5.3.2 Version 1.0 

A particular of the first version (V1.0) of the conductive pattern is shown in Figure 

101. All the dimensions are in millimeters and shown in Figure 102. All the cells 

were aligned and placed at a distance of 10mm from the adjacent ones. A 

tolerance of 0.5mm was introduced in the two cell’s sides. A gap of 1.0mm was 

considered between the negative and the positive pads of each cell to reduce the 

risk of shorticircuiting when the interconnectors were mounted, and a gap between 
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of 0.5mm between each row was considered as well. The pattern was based on 

the three shapes shown in Figure 102, and the subsequent rows of cells were 

designed to be connected by a ribbon.  

 

Figure 101 - A four-cell V1.0 pattern. In (a) the cells and diodes are reported with dimensions in mm. In 
(b) the copper shapes employed for the pattern are highlighted. 

 

Figure 102 - The three shapes of the V1.0: C1 recurs 12 times, C2 recurs 132 times, and C3 recurs 12 
times in the 144-cell design. Dimensions are in mm. 

5.3.3 Version 2.0 

The distance between adjacent cells was increased from 10mm to 11mm to take 

into account the secondary optical concentrator wall’s thickness. The distance 

between the cell and the diode was then increased from 1.0 to 2.0mm to avoid 

contacts between the walls of the optics and the diodes. A 0.5mm tolerance was 

considered on the third side of the cell too, and the diode’s distance from the edge 

was reduced from 1.0mm to 0.5mm instead. The room gained on each side of the 
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copper made it possible to increase the gap between the rows to 1.0mm. A 

symmetry was introduced by equalizing the width of the conductors where the 

interconnectors were allocated: each of them sized 3mm.  

 

Figure 103 - A four-cell V2.0 pattern. In (a) the cells and diodes are reported with dimensions in mm. In 
(b) the copper shapes employed for the pattern are highlighted. 

 

Figure 104 - The three shapes of the V2.0: C1 recurs 12 times, C2 recurs 132 times, and C3 recurs 12 
times in the 144-cell design. Dimensions are in mm. 

5.3.4 Version 3.0 

The version 3.0 was made of four shapes (Figure 105 and Figure 106), instead of 

the three used for the previous designs. The ends of two adjacent rows of cells no 

longer needed to be externally interconnected: the connection was made with a 

novel copper shape, C4, which was placed at the end of each row, recurring 10 
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times in the 144-cell design. The gaps were reduced to 0.5mm, in order to increase 

the volume of the board occupied by copper and, thus, to reduce the Ohmic losses. 

 

Figure 105 - A four-cell V3.0 pattern. In (a) the cells and diodes are reported with dimensions in mm. In 
(b) the copper shapes employed for the pattern are highlighted. 

 

Figure 106 - The four shapes of the V3.0: C1 recurs twice, C2 recurs 132 times, C3 recurs twice, and C4 
recurs 10 times in the 144-cell design. Dimensions are in mm. 

5.3.5 Version 3.1 

After a meeting with the board supplier, a small modification was made to the 

pattern: some room was added to C1 and C3 to make it possible to allocate the 

terminal tabs for current extraction at the end of each series. The terminal tabs 

required a minimum landing pad of 6.5mm×8.0mm. 
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Figure 107 - A four-cell V3.1 pattern. In (a) the cells and diodes are reported with dimensions in mm. In 
(b) the copper shapes employed for the pattern are highlighted. 

 

Figure 108 - The four shapes of the V3.0: C1 recurs twice, C2 recurs 132 times, C3 recurs twice, and C4 
recurs 10 times in the 144-cell design. Dimensions are in mm. 

The main differences between the 2.0 and final 3.1 pattern versions are highlighted 

in Figure 109: each change is marked with the same letter in both the designs. 

Firstly, C1 and C3, respectively placed at the positive (a) and the negative (b) pole 

of each series, were modified to accommodate the terminal tabs. Secondly, C4 

was introduced to replace the interconnections between the ends of two rows and, 

thus, to reduce the Ohmic losses of the copper pattern (c). Furthermore, the gaps 

the conductive materials were reduced (d) to gain space to extend the conductive 

area. Thanks to this change, the minimum copper width (e) could be enlarged.  
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Figure 109 - Particulars of the old and the new designs, respectively on the left and the right hand side. 
The differences are marked with letters from a to e. 

The version 3.1 was the final version of the pattern, and was used to print the CPV 

receiver’s substrate. A full scale image is shown in Figure 110: the copper pattern 

sized 251.0mm×258.5mm. An aluminum board sized 255.0mm×262.5mm was 

used as baseplate because a minimum of 2mm distance between the copper and 

the aluminum edges were required to realize the chemical etching.  

The large, 144-cell conductive layer was composed by 146 copper elements, 

opportunely etched on the substrate. C2 was repeated 132 times. C3 recurred 10 

times: it was used at the end of each row, excepted for the start and the end of 

each series, where C1 and C4 were respectively placed. C1 and C4 were then 

present twice each on the 144-cell plate, respectively at the positive and the 

negative ends of each series. 
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Figure 110 - Complete assembly: the dimensions of the aluminum board are shown. 

5.3.6 Features of the novel design 

In any electronic application, interconnectors represent one of the weakest points, 

because of the high electrical contact resistance and the fragility of the bonding. 

The original design of the copper pattern designed in this work had only one set of 

interconnections between adjacent cells: one shape of copper was used both as 

landing surface for the interconnectors coming from the negative pole of the cell 

and as mounting pad for the positive pole of the adjacent cell. This approach 

allowed lowering the electrical resistance of the circuit and, thus, the electrical 

losses.  

+
 

+
 

- 
- 
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A second feature of the design was the scalability: it could be easily adapted to 

allocate a different number of cells. Opportunely combining the copper shapes, it 

was possible to create less or more populated arrays of aligned cells. In the 

present work, the design was used to produce several single cell receivers, a 16-

cell receiver (Figure 111) and the presented 144-cell receiver [337].  

 

Figure 111 - Densely packed 16-cell assembly 

5.3.7 Thermal expansion analysis 

An investigation about the effects of the thermal expansion on the electrical 

circuitry was then undertaken, in order to prevent problems due to the high 

temperatures involved. The plate was designed and manufactured at a room 

temperature of 25°C. The maximum working temperature was 100°C, but for a 

tracking or a mechanical failure the system could face a higher stagnation 

temperature of 150°C. A maximum difference of temperature of 125°C 

(ΔTcu=150°C-25°C) was then considered between the operating and the designing 

temperatures. 

Copper has a coefficient of thermal expansion (αcu) of 17ppm/°C and the maximum 

dimension (Lmax) in the presented design was 20.5mm. According to the standard 

equation for the linear thermal expansion (40), the maximum expected deformation 

(ΔLmax) due to the temperature was the 0.00435mm for the considered geometries. 

The linear thermal expansion equation is expressed as: 
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∆𝐿𝑚𝑎𝑥

𝐿𝑚𝑎𝑥
= 𝛼𝑐𝑢 ∙ ∆𝑇𝑐𝑢 (40) 

Considering the expansion of both the copper shapes that were facing the gap, a 

maximum decrease in distance of about 0.01mm was expected and this would 

have still maintained the width of the gap above the minimum value recommended 

by the standards (0.4mm).  

5.3.8 A different cell’s configuration 

As noted in 4.4.6, the CPV concentrators generally showed a non-uniform sunlight 

distribution on the receiver, which could be described by a Gaussian function, with 

a higher irradiance in the centre of the assembly. The same standard normal 

distribution shown in Figure 89 and Figure 90 was considered: a mean, maximum 

and a minimum DNI of 1000W/m2, 1366W/m2 and 966W/m2 respectively were 

accounted. In the present application, this distribution resulted in differently-

irradiated cells and, so a cells’ series configuration different than the proposed one 

would have offered the opportunity to enhance the electrical performance of the 

system. 

When considering the configuration of cells in a densely packed geometry, it was 

important to design the same voltage output across each cells’ series. Cell’s 

voltage can be assumed as constant while slightly varying the irradiance [11], so 

the same number of cells needed to be planned on each series. In the considered 

standard normal distribution, the sunlight intensity was quite uniform across the 

cells on the edge of the boards: a maximum difference in intensity of 0.6% was 

expected among the cells placed in the three rows closer to each edge. Among the 

remaining cells, instead, the difference grew up to 40%. So, in this approach, it was 

decided to divide the cells in the centre, in order to maximize the performance of 

the rest of the cells which were similarly irradiated. Three 48-cell series were 

designed, as shown in Figure 112: two symmetric series connected the cells on the 

edges and one series connected instead the cells in the centre. The equivalent 

electrical circuits of the old and new configurations are compared in Figure 113. 
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Figure 112 - Densely packed assembly in a three series configuration. The three series are represented 
by different colours. 

 

Figure 113 - Equivalent electrical circuits of the two series (a) and the three series (v) configurations. 
The cells are represented as current sources. 

The assembly proposed was conceived to be installed on the same 

282.0mm×275.2mm aluminum-based IMS considered earlier. Due to the presence 

of the central series, some copper shapes were modified to allocate all the same-

polarity terminal tabs on the same side of the substrate. The requirements of the 

standards (Table 27) were considered as well: the new maximum short-circuit 

current (𝐼𝑠𝑐𝑥
) of 9.0A was calculated, taking into account the maximum irradiance of 

1366W/m2, as follow [359]: 

𝐼𝑠𝑐1366
= 𝐼𝑠𝑐1000

∙
1366𝑊/𝑚2

1000𝑊/𝑚2 (41) 
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where 𝐼𝑠𝑐1000
 is the reference short circuit current under CSTCs. The minimum 

copper width in this new design was 1.85mm where a maximum short-circuit 

current of 9.0A was expected, meaning that the current flow would lead to an 

increase in temperature of 25°C.  

Table 27 - Minimum width (in mm) according to the IPC-2221 Standards, for ambient temperature of 
25°C and non-uniform irradiance. 

Current vs Temperature rise 5°C 15°C 25°C 35°C 45°C 55°C 65°C 

9.0 A 4.80 2.47 1.81 1.47 1.27 1.12 1.01 

4.5 A 1.85 0.95 0.70 0.57 0.49 0.43 0.39 

 

A preliminary analytical investigation was conducted to understand the benefit of 

this three-series approach under a non-uniform illumination. Combining the 

irradiance predictions and the data reported on the cell’s datasheet, the new 

configuration had the potential to enhance the overall maximum power output up to 

the 25% (Table 28). The overall voltage output was expected to decrease 

according to the reduction in number of cells per series, whereas the sum of the 

short circuit currents of the three series was expected to increase because of the 

larger number of series. The higher currents would have increased the Ohmic 

losses, which had not been taken into account in these preliminary calculations. 

Despite the promising results, in lack of data about the real performance of the 

concentrators and because of the simpler design and the wider operating 

temperature range, the original two-series configuration was adopted for the 

fabrication of the receivers. 

Table 28 - Comparison of performance between the different configurations under a standard Gaussian 
concentrated sunlight distribution. 

 

2-series under  
uniform 

illumination 

2-series under non 
uniform 

illumination 

3-series under  
non uniform 
illumination 

Difference between the 
two configurations under  
non uniform illumination 

Overall power 
output [W] 

2678.40 1568.09 1973.80 25.87% 

Sum of short-
circuit currents [A] 

13.17 14.50 16.53 13.97% 

Open circuit 
voltage [V] 

228.24 204.21 152.16 -25.49% 
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5.4 Interconnections 

As anticipated, the wire bonding technology was selected to interconnect the front 

tabs of the cell with the conductive layer. In this application, aluminium wires were 

bonded because of the higher mechanical strength, the lower temperature required 

for the bonding process and the lower cost of aluminium compared to gold. 

5.4.1 System sizing 

In view of lack of recognized standards the approach suggested by Shah [360] was 

used to dimension the wires bonded on the receiver. This method was based on 

the principle that at steady state all the heat produced by the Joule losses (Qg) on 

the wires needed to be removed (42). This procedure was centred on the 

conservative assumption that the heat was dissipated only through thermal 

conductivity and did not take into account radiative nor convective exchange: the 

amount of heat dissipated through the wire (Qd) needs to equalize Qg. In the 

present case, the amount of heat generated on the wire (43) was directly 

proportional to the square of the current flowing through the wire itself (Iw), with the 

proportion given by the electrical resistance of aluminum (Rel_Al).  

𝑄𝑔 = 𝑄𝑑 (42) 

𝑄𝑔 = 𝐼𝑤
2 ∙ 𝑅𝑒𝑙_𝐴𝑙 (43) 

The amount of heat removed by the wire was estimated through the equation of 

the heat transfer by conduction, given as: 

𝑄𝑑 =
𝑘𝐴𝑙 ∙ 𝐴𝑤 ∙ ∆𝑇𝑤

𝑙𝑤
 (44) 

where kAl represents the thermal conductivity of aluminum, Aw and lw are 

respectively the sectional area and the length of the wire, and ΔTw indicates the 

difference of temperature between the two ends of the wire. 

The electrical resistance depends on the electrical resistivity of the material (ρAl), 

the length and the cross-sectional area of the conductor. Applying the definition of 

electrical resistance (45), and considering the circular section of the wire, Shah 



Chapter 5: Densely packed cell assembly: design and fabrication 

 

162 

[360] obtained (46), which was used to determine the maximum (Iw) current 

allowed to flow through one wire, with a diameter Dw. 

𝑅𝑒𝑙_𝐴𝑙 =
𝜌𝐴𝑙 ∙ 𝑙𝑤

𝐴𝑤
 

(45) 

𝐼𝑤 =
𝜋

4
∙

𝐷𝑤
2

𝑙𝑤
∙ √

𝑘𝐴𝑙 ∙ ∆𝑇𝑤

𝜌𝐴𝑙
 (46) 

The current generated by the cell (Icell) was distributed on different wires. The 

minimum number of wires needed to carry it safely (Nw) was established through 

the ratio between the total amount of current and the maximum current per wire 

(47). 

𝑁𝑤 ≥
𝐼𝑐𝑒𝑙𝑙

𝐼𝑤
 

(47) 

Aluminum had a thermal conductivity of 205W/mK and an electrical resistivity of 

2.82*10-8Ωm. Standard aluminium wires were being used in this application: their 

diameter was 32µm. The distance between the front contacts on the cell and the 

landing pads on the copper was 2mm and this corresponded to the length of the 

wire. Considering a difference of temperature of about 15°C between the two 

terminals of a wire, 50 wires were needed to safely carry the expected maximum 

short circuit current. 

5.4.2 Safety factor 

In addition to the employment of a conservative sizing method, a surplus of 20 

wires per cell was bonded. Installing 70 wires per cell led to a safety factory of 1.4 

and was considered necessary to overcome two issues that could have occurred 

during manufacturing and operation: wire bond non-sticks and non-uniform current 

generation. Some wires were found not to stick on the tabs, as shown in Figure 

114, because of some solder paste contamination left on the surface even after the 

cleaning process. In the present system, 3.75% of the connections were found to 

be faulty or unstuck after the fabrication: this meant that an average of 3 

connections was missing on each cell, out of 70 bonded. A peak of 14 missing 

connections per cell was counted, with a maximum of 10 per cell’s side. The 
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surplus of bonded wires prevented the system from dangerous overcurrents that 

would damage the remaining operating wires: in the case of a wire failure, the most 

of its current would flow in the nearest wires. So, the safety factor reduced the load 

for each wire in case of missing connections too. Furthermore, the excess of wires 

allowed the system to accommodate any potential non-uniformity in current 

generation due to partial shading or non-homogeneous light distribution onto the 

cell’s surface. Under a non-uniform illumination, each cell locally operates at higher 

irradiance [35]: a larger number of interconnections than designed helped to fairly 

distribute any surplus of current, in order not to overload some of the wires.  

 

Figure 114 - A completely bonded cell's tab (left) and a cell's tab with two missing wires (right). 

5.4.3 Bonding 

Wire bonding machines were usually able to handle systems up to 400cm2. The 

board used in this application went over this limit, sizing about 670cm2. This meant 

that the machine had to be stopped time by time, to let the operator move the 

panel. After that, the machine could be re-threaded, and then started again. During 

the fabrication of the presented 144-cell receiver, the operator needed to take 

action approximately every 120 wires. Considering 70 wires per cell and 144 cells 

on the plate, it meant about 85 human interventions per plate and higher 

manufacturing costs. 
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5.5 Ohmic losses 

The plate was designed to work at a peak power of 2.678kWp: this was the 

expected output from 144 cells working at the maximum power point under 500× at 

25°C. In any circuit, part of the electrical energy is wasted in the copper circuit and 

in the interconnectors. Therefore, an analytical investigation was conducted to 

determine the Ohmic losses taking place in those conditions. These two cases 

were separately studied, in order to understand the effect of the interconnections 

on the performances of the system.  

The 144-cell copper pattern was made of 146 copper components, with a common 

thickness of 70µm. The overall power losses (QΩ) was calculated as the sum of the 

losses on each i-copper shape, as reported in Table 29, taking into account the 

current flowing (I), the width (w) of each section and the electrical resistivity of 

copper (ρ), the length (L) and the thickness (z) of the shape:  

𝑄𝛺 = ∑
𝜌

𝑧
∫ 𝐼2(𝑥) ∙

𝑑𝑥

𝑤(𝑥)

𝐿

𝑥

146

𝑖
 (48) 

A representation of the current flow is reported in Figure 115. Considering an 

electrical resistivity of 1.62·10-8Ωm for copper, a loss of 10.50We was estimated 

while in operation. This value represented about the 0.4% of the whole power 

output.  

Table 29 - Power losses breakdown in the conductive pattern. 

Component 
Code 

Geometry Power losses per piece 
[W] 

Number of repetition in 
144-cell design 

Total power 
losses [W] 

C1 
 

 

0.013 2 0.026 

C2 
 

 

0.077 132 10.202 

C3 
 

 

0.067 2 0.134 

C4 

 
 

0.014 10 0.140 
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Figure 115 - Current flow (a) and current density (b) across a 4-cell design. 

The power losses taking place in the wires were calculated using the equations 

and procedures reported in the paragraph 5.4.1. On each cell, 70 aluminum wires 

were installed, to transfer a current of 6.440A at the maximum power point. Taking 

into account an electrical resistivity of 2.82∙10-8Ωm, about 0.063We were expected 

to be wasted on each cell and, then, about 9.00We to be lost on each plate (0.34% 

of the power output). In the presented plate, an average number of 3 wires were 

missing on each cell: this issue raised the power losses to 9.40We, with an 

increase of 4.5% compared to the ideal case. It is interesting to highlight that the 

interconnectors caused almost half of the Joule losses on the plate. The wires 

were designed to operate safely when up to 20 of them fail on each cell. With only 

50 wires working on each cell, the power loss would have raised to 12.60We (+40% 
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compared to the 70-wire case). The losses would have decreased by using 

materials with higher electrical conductivity: 70 gold wires per cell and 70 copper 

wires per cell would have dropped the losses per plate respectively to 7.80We (-

12%) and 2.68We (-70%).  

The effect of the solder joint on the overall electrical resistance had not been 

considered. Taking into account the current flowing perpendicularly to the cross-

section of the solder and the copper for a length l, the global electrical resistance 

can be calculated as [328]: 

𝑅𝑒𝑙 =
1

1
𝑅𝑠𝑜𝑙𝑑𝑒𝑟

+
1

𝑅𝑐𝑜𝑝𝑝𝑒𝑟

=
1

𝐴𝑠𝑜𝑙𝑑𝑒𝑟

𝜌𝑠𝑜𝑙𝑑𝑒𝑟 ∙ 𝑙
+

𝐴𝑐𝑜𝑝𝑝𝑒𝑟

𝜌𝑐𝑜𝑝𝑝𝑒𝑟 ∙ 𝑙

 
(49) 

The electrical resistance is inversely proportional to the thickness and to the 

electrical conductivity of the material. Therefore, despite the lower electrical 

conductivity, the solder, which had a thickness much higher than the copper layer 

(Table 17), increased the area of the cross-section normal to the current flow and, 

so, was expected to reduce the electrical losses. A simplified electrical circuit is 

reproduced in Figure 116.  

 

Figure 116 - Equivalent electrical circuits of the solder joint. 

5.6 Encapsulation 

During the wire bonding, no encapsulation of the interconnectors was attempted, in 

order not to risk the dark encapsulant to cover part of the cell’s active area: an 

example of encapsulated interconnectors, realized on a previously-developed 

single cell sample, is shown in Figure 117. Moreover the size of the board would 
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have made the interconnectors globing more challenging, expensive and time-

consuming to realize.  

 

Figure 117 - Example of encapsulated interconnectors 

Nonetheless, a transparent encapsulation of the plate was considered essential to 

reduce the risk of damages to the components, protecting them from external 

agents and accidental collisions. The clear Sylgard 184 was used in this 

application and its effects on the cell performance were preliminary tested using a 

spectrometer. An average transmittance of 85.77% was registered for the whole 

absorption band of the MJ solar cell. The optical transmittance (tSyl) for each 

subcell’s bandgap is shown in Table 30. The drops in short-circuit current within 

each i-subcell (ΔIsci) and the whole MJ cell, caused by the encapsulant, was 

estimated using (50) and (51) respectively, adapted from the correlations reported 

in [361,362]. 

∆Isci =
∫ Eref(λ) ∙ tsyl(λ) ∙ SRi(λ) dλ

∫ Eref(λ) ∙ SRi(λ) dλ
 (50) 

∆Isc =
min(∫ Eref(λ) ∙ tsyl(λ) ∙ SRi(λ) dλ)

min(∫ Eref(λ) ∙ SRi(λ) dλ)
 

(51) 

where Eref(λ) is the reference spectrum AM1.5d ASTM G-173-03, tSyl(λ) is the 

optical transmittance of Sylgard and SRi(λ) is the spectral response of the i-subcell. 

As reported in Table 30, Sylgard did not affect the current-matching among the 

subcells: the current drops in the GaInP and the GaAs subcells were comparable, 

whereas the it was higher for the Ge subcell. This discrepancy was balanced by 

the excess current produced by the Ge subcell compared to the other two subcells, 
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which usually settled at about 30% [363,364]. Overall, a reduction of 7.30% in the 

cell’s short circuit current was expected due to the transmittance of Sylgard. 

Table 30 - Transmissivity of Sylgard (tSyl) and drop in Short-circuit current (ΔIsci) per subcell at 500×, 
1000W/m2, AM1.5d, 25°C 

 GaInP  GaAs  Ge  

tSyl 89.95% 92.33% 84.69% 

ΔIsci 92.72% 92.79% 89.61% 

 

Sylgard was poured as uniformly as possible across the surface, thick enough to 

cover all the components and the interconnections. The board was then placed in a 

vacuum oven for 35 minutes at 100°C to cure the Sylgard solution. The whole 

encapsulation process was completed in less than 90 minutes, as per Sylgard 

datasheet’s requirement. 

5.7 Improving safety and transportability 

After the production of the first prototype, it was decided to increase the size of the 

aluminum base of the IMS in order to improve the handleability: one centimetre 

was added to each side (Figure 118), leading the dimensions to 

282.5mm×275.0mm. This modification increased the safety in handling the board, 

by reducing the risk of damaging the components and the wires when touching the 

edges (Figure 119). 

 

Figure 118 - Comparison between the geometries of the prototype and the final board. Dimensions are 
in mm. 
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Figure 119 - Particulars of the edges of the boards: the prototype design (a) and the improved one (b). 

Moreover, four holes were drilled on the edges of the aluminum for transportation 

purposes. One female-female standoff was placed between two boards and fixed 

to them through M3.5 screws inserted in the holes (Figure 120a). This way, two 

boards were safely packed together and the components were protected from 

hurts (Figure 120b). Once the plates were delivered, screws and standoff were 

removed and the holes were used for assembling the receiver.  

 

Figure 120 - The standoff placed on a cell assembly (a) and two packed assemblies (b). 

The assembly was initially conceived to be mounted on a thick aluminum layer, 

which would have been in contact with the channels of the water-based cooling 

system. In the final design instead, in accordance with the requirement of the 

Indian Institute of Technology Madras, the thickness of the aluminum baseplate 

was increased to 3mm. This way, the substrate had enough strength to resist to 

the water pressure without any additional aluminium layer. Removing one 

additional structure layer and one thermal interface material decreased the thermal 

resistance of the receiver, and was then expected to improve the thermal 

performance of the whole system.  

5.8 Conclusions 

This chapter described the design and the fabrication of a new, densely packed 

assembly for 500× CPV applications, developed on an insulated metal substrate. 



Chapter 5: Densely packed cell assembly: design and fabrication 

 

170 

This assembly was a novelty for the unique low-resistance design of the 

conductive layers and the application of IMS represented a step ahead towards the 

awaited cost-cutting for CPV. The receiver was designed to accommodate 144 

cells and to work at a peak power output of 2.6kWe. Although a number of 

publications emphasized on the design of new, high efficiency CPV receivers, a 

lack of information on CPV fabrication was recorded. Manufacturing strongly 

influenced the performance, the durability and the cost of a system, especially in 

CPV, where requirements for small volumes, high electrical power densities and 

high heat fluxes had to be satisfied. Due to the large number of cells and the high 

concentration, the leading issues were to design a receiver able to handle the large 

waste heat generation, to keep high electrical performance and to assure long term 

reliability of the system. The geometry of all the components was designed to fit 

the requirements of the standards and to grant acceptable thermal management 

and electrical performance to the assembly. The shape of the electrically 

conductive layer was conceived to minimize the electrical resistance, by reducing 

the number of interconnections. The simple design could be used in different 

applications with few changes: it could be easily scaled to be used in a more or 

less populated configuration. All the assumptions and the analytical investigations 

made during the design stage have been reported in the text. Schottky diodes were 

employed in the receiver to avoid damages to shaded cells and to reduce the 

power losses in case of current mismatch among different series-connected cells. 

The diodes were slightly oversized, consistently with the safety factors applied in 

commercial applications, in order to ensure better performance and a longer life to 

the device. Aluminum wires were bonded to interconnect the cells and the 

conductive layers: they were sized to safely work even in presence of overcurrents. 

In the following chapter, the results of experimental tests on the reliability of the 

components and the interconnections, and the electrical characterization of the 

produced assembly are described.   
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 Densely packed cell assembly: analysis Chapter 6:

and characterization 

This chapter describes the tests conducted on the materials and on the 

components of the large receivers. The interconnectors and the cell’s die attach 

are studied applying standard electronic tests, a microscope image allowed to 

visually inspect the solder paste distribution below the solar cell, and some 

experiments are conducted on the encapsulant to prove its reliability. Both indoor 

and outdoor characterizations of the assembly are presented to complete the 

survey about the reliability of the designed product. In conclusion, an analysis of 

the costs is introduced, along with some considerations on how the economy of 

scale affected the fabrication. 

6.1 Introduction 

The design and the choice of the materials and the components of the cell 

assembly were carried out to optimize the performance of the system and, at the 

same time, to limit the expense. Similarly, the manufacturing processes were 

selected to achieve the highest quality. CPV systems were expected to survive 20+ 

years in outdoor conditions [345], and, thus, engineering testing of components 

was generally recommended. The die attaches were reported to be one of the 

major causes of failure [25]: for this reason, firstly, the strength of the cell’s 

soldering was appropriately tested following the guidance of international 

standards. Similarly, the bonding strength of the interconnecting wires was proven. 

The thermal stresses due to different coefficients of thermal expansions were also 

investigated. The high resistance of IMS to thermal cycles had been already 

proven in literature [73], whereas the high thermal expansion coefficient of Sylgard 

could have led to failures: for this reason, it was experimentally studied and the 

results are commented upon in the chapter. In addition to the mechanical 

concerns, the electrical performance of the assembly was tested: an indoor, one-

sun characterization was conducted to firstly check the quality of the electrical 

circuitry. After success in these tests, the assembly was mounted outdoors to carry 

out a full scale investigation. The preliminary results of this test are presented in 

the chapter. The main goal of the CPV community is to delivery reliable, high-
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efficiency and cost-competitive systems for power generation. In this light, the 

chapter ends with an analysis of the costs of the CPV: a breakdown of the 

expenses is reported and compared with the data available in literature. Systems 

such as the CPV are strongly affected by the economy of scale: it was found that a 

production of a larger number of assemblies would have lowered the prices of the 

systems.  

6.2 Quality tests 

In order to prove the quality of the fabrication processes, some tests were carried 

out on the components of the assembly. The die attaches and the interconnectors 

were analysed through both visual inspection and standard destructive tests. A 

thermal test was then conducted on the encapsulant, to study the effects of the 

thermal expansion.  

6.2.1 Solder paste inspection 

The design of the paste mask was optimized to improve the adhesion between the 

cell and the copper and to prevent the presence of voids in the solder  joint. The 

die attach was monitored through a visual analysis and a die shear strength test 

[365,366]. The full visual analysis was conducted taking a cross-sectional 

Scanning Electron Microscope (SEM) scan. The low vacuum SEM (JEOL JSM-

5400LV) used an electron beam to examine the sample and produce digital 

photomicrographs with a resolution of 1μm, displayed in Figure 121. The cross-

sectional scan showed a uniform solder paste distribution between the cell and the 

mounting pad. 

 

Figure 121 - SEM cross sectional photomicrograph of the cell assembly. 
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After the visual investigation, a mechanical test was conducted: the die shear 

strength test. In this test, a force was applied using a linear motion tool, moving 

along the plane of the substrate and perpendicularly to the cell (Figure 122). The 

force needed to break the joint was registered, and, according to the latest 

microelectronic standard MIL-STD-883 [367], any die area larger than 0.04cm2 

shall have withstood a minimum force of 4.9kgF without any separation.  

 

Figure 122 - Schematic of the die shear strength test, adapted from [365]. 

Five single cell assemblies were used to carry out the tests. The cells were found 

to break before the solder joints, under an average force of 10.337kgF, and a 

minimum force of 5.998kgF was experienced. All the samples successfully passed 

the test, as for the standard’s requirements. 

6.2.2 Wire bonding strength 

A wire bond pull strength test was then carried out to check the quality of the 

interconnections. In this test, a hook pulled the wire in a direction normal to the 

substrate (Figure 123), while the cell assembly was clamped. According to the 

standards [368,369], 32µm aluminum wires should have not failed under forces 

smaller than 3gF. 

 

Figure 123 - Schematic of the wire bond pull strength test. 

Out of fifty wires tested, only one wire was found to break below the minimum 

requirement, at 2.954gF. All the remaining wires successfully passed the test, with 
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an average load of 10.169gF and a standard deviation of 2.244gF. As shown in 

Figure 124, the wires predominantly broke in connection with the substrate bond. 

In almost 30% of the cases, however, the wires were found to lift from the cell’s 

tab, under an average force of 7.861gF. The registered failure happened because 

of lifting and was probably due to solder paste contamination left on the cells. 

Overall, the average force needed to break the wire on the substrate bond was 

11.102gF, more than twice the minimum force required by the standards. The 

number of failures was lower than the surplus of wires installed on the cell, and 

proved the reliability of the interconnections. 

 

Figure 124 - Causes of the wire breaking during the wire bond pull test results. 

6.2.3 Thermal expansion of the encapsulant 

Despite the operating temperatures usually ranging between 50 and 80°C 

[143,148], CPV cells can face temperatures up to 150°C while in operation. Among 

the board’s components, Sylgard presented the highest coefficient of linear thermal 

expansion (CTE, αSyl=3.1·10-4K-1): its CTE was about one order of magnitude 

higher than that of aluminum (αAl=2.3·10-5K-1). Considering a pouring temperature 

of 25°C and the maximum board length of 26.5cm, linear thermal expansions of 

2.8mm and 10.2mm were expected at 60°C and 150°C respectively. In the same 

temperature range, the linear thermal expansion of aluminum spanned between 

0.21mm and 0.75mm. A simple visual experiment was then conducted to quantify 

the effect of the thermal expansion on the board, using the FLIR T425 infrared 

thermal imaging camera and pouring Sylgard on the surface of a non-populated 

assembly. The setup is shown in Figure 125: the test board was placed in the 
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vacuum oven, a digital camera was used to record the expansion of Sylgard and 

the thermo-camera was employed to check the temperature of the board. 

 

Figure 125 - Setup of the thermal expansion experiment 

The test was carried out raising the oven’s temperature from the ambient 

temperature of 30°C to the maximum temperature of 150°C. The temperatures 

were set using the oven’s controls, but the real temperature of Sylgard was 

measured through the thermal imaging camera. The emissivity was set to 0.86 for 

Sylgard [370]. The digital camera was used to record the images of the sections of 

Sylgard at different temperatures. The investigation, whose results are summarized 

in Table 31, did not show any effect of the expansion due to the rise in 

temperature, because of the high bonding strength between the Sylgard and the 

surface of the cell assembly.  

Table 31 - Images of the visual inspection conducted to check the thermal expansion of Sylgard. 

Oven temperature: 30°C 
Sylgard temperature: 28.5°C 

Oven temperature: 100°C 
Sylgard temperature: 98.5°C 

Oven temperature: 150°C 
Sylgard temperature: 144°C 

   

6.3 Indoor characterization 

In order to quickly verify the reliability and the quality of the assembly before 

installing it in outdoor conditions, an indoor characterization was conducted using 

the WACOM solar simulator. Due to the dimensions of the assembly, the 

characterization was carried out only at one sun under the following conditions: 

1000W/m2 DNI, AM1.5, and 28°C temperature. The measured I-V curves are 

shown in Figure 126: the two series of the boards were separately characterized 



Chapter 6: Densely packed cell assembly: analysis and characterization 

 

176 

and therefore named A and B, because the I-V tracer could not work with voltages 

higher than 300V. In this study, it was not possible to vary the irradiance, because 

of the impossibility for the I-V tracer to measure at the same time currents lower 

than 10mA and voltages higher than 30V, as previously shown in Figure 40. 

  

Figure 126 - I-V curves of the series of the fabricated assembly at 1× under 1000W/m
2 

DNI, AM1.5, and 
28°C temperature. 

A short-circuit current of 11.6mA was measured and open circuit voltages of 181V 

and 180V were recorded for the two cell series on the assembly. The discrepancy 

in the voltage outputs was probably due to the hand-placement of the components 

and to the solder paste contamination found during the wire bonding. The fill factor 

ranged between 80.3% and 80.9%. The high values of fill factor proved a low 

series resistance in the board, whereas the shape of the I-V curve meant that the 

fabrication was properly realized: the lack of steps in the curve was due to the 

good connections and to the absence of mismatches between the cells.  

The measured outputs, shown in Table 32, were compared with those of the AZUR 

SPACE’s 3C40A single-cell assembly tested in the same conditions. The average 

outputs of each cell of the large cell assembly were calculated and the I-V curves 

are compared in Figure 127. 
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Table 32 - Electrical outputs per cell of the two series of the produced cell assembly, compared with 
those of the commercial 3C40A assembly, under AM1.5, 1000W/m

2
, at 28°C. 

Assembly No of cells Isc [mA] 
Voc  

per cell [V] 
PMPP  

per cell [mW] 
IMPP [mA] 

VMPP  
per cell [V] 

F.F. 

Series A 72 11.57 2.50 23.58 10.31 2.29 0.814 

Series B 72 11.59 2.51 23.38 10.32 2.26 0.801 

3C40A 1 12.11 2.58 25.64 11.00 2.33 0.820 

 

 

Figure 127 - Comparison of the I-V curves of one of the cells mounted on the large cell assembly and 
that of the 3C40A single cell receiver produced by AZUR SPACE. The curves are measured in the same 

conditions: 1× under 1000W/m
2 

DNI, AM1.5, and 28°C temperature. 

For a better prediction, the measured values were refined to simulate a full scale 

characterization. In the following numerical investigation, the values of the series A 

only were considered: an average open circuit voltage of 2.50V per cell was 

generated. The equations reported in [359] were used to estimate the performance 

of the cell assembly at the designed 500× concentrations. The intensity of the 

current (I) at any concentration (X) was estimated as: 

I(X) = X ∙ I(X = 1) (52) 

The voltage (V) was instead obtained according to 
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V(X) = 𝑉(X = 1) +
n ∙ k𝐵 ∙ T

q𝑒𝑙
ln(X) − 𝐼(𝑋) ∙ 𝑅𝑠 (53) 

where n is the ideality factor, kB is the Boltzmann’s constant (1.38∙10−23J/K), T is 

the cell’s temperature, qel is the elementary charge (1.60∙10−19C) and Rs the series 

resistance of the circuit. Cell’s ideality factors are influenced by recombination and 

concentration ratio [371]. For multijunction cells, which consisted of a stack of 

series-connected cells, the ideality factor usually ranged between 3 and 4 [359]: an 

average factor of 3.5 was considered for this application. The measurements were 

conducted at a temperature of 28°C, 3 degrees higher than the standard one. For 

this reason, the values obtained by (52) and (53) were corrected according to the 

temperature coefficients reported in the cell’s datasheet [117]. Rs was calculated 

as described in Section 5.5. 

A minimum short-circuit current of 5.77A and an average open circuit voltage per 

cell of 3.08V were predicted at 500×, under CSTCs. The current and the voltage 

measured for the large receiver were respectively 4.80% and 2.06% lower than 

those obtained for the commercial single-cell assembly under the same conditions 

[372]. This discrepancy was justified by the difference in the cell’s number between 

the 144-cell plate and the single cell receiver and by a potential non-uniformity in 

the solar simulator irradiance, which affected the largest assembly only. 

Table 33 - Refined electrical outputs of the two series of the produced cell assembly, compared with 
those of the commercial 3C40A assembly for a concentration of 500× under AM1.5, 1000W/m

2
, at 25°C. 

 Isc(500×) [A] Voc-cell(500×) [V] 

Series A 5.77 3.08 

Series B 5.78 3.09 

3C40A 6.04 3.16 

 

In a similar way, the maximum power point values were predicted. At 500×, each 

cell was expected to work at a maximum power point power of 14.7W, achieving, 

under 1000W/m2 DNI, an efficiency of 29.4%. The commercial assembly instead 

reached an efficiency of 31.9%. The difference between the two efficiencies was 

due to the dimensions of the tested boards: the larger assemblies were expected 

to be more affected than the single cell receiver by any non-uniform light flux 
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generated by the simulator. Moreover, the larger number of components increased 

the risks of manufacturing imperfections and, thus, the related losses.  

The cell’s datasheet reported a peak efficiency of 37.2% at 500×, under standard 

test conditions. The discrepancy between the cell’s and both the assemblies’ 

efficiencies was probably partly due to the spectrum of the simulator, which was 

optimized for silicon cells, whereas was less performing when triple-junction cells 

were tested. Moreover, the characterization was conducted at one sun, instead of 

at full 500× scale: the cells were designed to work at high concentrations, so they 

were expected to behave differently at one sun.  

 

6.3.1 Improving the performance: higher-efficiency cells 

In 2013, AZUR SPACE introduced a new 1cm2-sized MJ cell [144], named 3C42, 

with a peak-efficiency of 40.3% at 500× under standard conditions (Table 34).  

Table 34 - AZUR SPACE’s 3C42 cell's performance. Data are reported for AM1.5, 1000 W/m² DNI, T= 
25°C conditions at 500× [144]. 

Cell (year) 
Efficiency 

(%) 
Short circuit  
current (A) 

Open circuit 
Voltage (V) 

Power at 
MPP (W) 

Fill 
factor 

3C40 (2011) 37.2 6.587 3.17 18.6 89.1 

3C42 (2013) 40.3 7.39 3.11 20.25 88.1 

 

One prototype of the large assembly was produced using these higher-

performance cells. The new board was fabricated with the same procedures 

presented before. The cell short-circuit current increased from 6.587A to 7.39A: the 

width of the conductive layer was still sufficient to let the system safely work. In this 

case, the characterization was carried out at one sun under the following 

conditions: 900-1150W/m2 DNI, AM1.5, and 28°C temperature. The I-V curves of 

the two series are shown in Figure 128. As expected, the open circuit current and 

the power at maximum power point were found to increase according to the 

irradiance, whereas the variation in open circuit voltage was found to be negligible. 
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Figure 128 - I-V curves of the two series composing the produced board. Testing conditions: DNI 900-
1150W/m

2
, AM1.5, and 28°C temperature. 

A comparison of the performance of the old and the new boards is shown in Figure 

129: in line with the values reported in the datasheet [144], the new cells enhanced  

the short-circuit current and the maximum power output, while no significant 

variations in voltage was found. The fill factor instead increased up to the 84%, 

achieving an absolute improvement of more than 3% compared to the previous 

boards. Using the same procedure employed before, the efficiency was found to 

increase up to the 32.4%.  

 

Figure 129 - Comparison of I-V curves for the fabricated assemblies at 1× under 1000W/m
2 

DNI, AM1.5, 
and 28°C temperature. 

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

C
u

rr
e

n
t 

[m
A

] 

Voltage [V] 

3C40: Series A
3C40: Series B
3C42: Series A*
3C42: Series B*



Chapter 6: Densely packed cell assembly: analysis and characterization 

 

181 

6.4 Outdoor characterization 

6.4.1 Limits of the indoor characterization 

In a real full-scale scenario, a combination of optical, mismatch and Ohmic losses, 

along with the impacts of the temperature and the spectra, can occur and 

negatively affect the performances of the system [363]. The indoor characterization 

was a fast and cost-effective testing procedure, but a lack of appropriate 

characterization instruments for CPV systems had been already pointed out by 

previous researchers [373]. Solar simulators were widely used for flat plane 

photovoltaics, but presented some issues when used for concentrating 

photovoltaics: these difficulties were mainly related to the spectrum, the beam 

collimation, and the size. Firstly, due to the multi-junction cell’s geometry, which 

consisted of three series-connected subcells, replicating the spectrum in the most 

realistic way became particularly important to limit any current mismatch. Solar 

simulators were classified on the basis of the spectral match: the spectral match 

was determined by measuring the deviation of irradiance share for different 

portions of the spectrum in the range between 400nm to 1100nm [374]. The best 

performing solar simulators had spectral matches ranging between 0.75 and 1.25 

as compared to the AM1.5G standard spectrum. The gap between the real 

spectrum and the simulated one was one of the causes of discrepancies between 

experimental and real data. Secondly, the reproduced solar beam should have had 

an angular size similar to that of the Sun (±0.275º) [375]. Flat PV was not affected 

by this phenomenon and, thus, conventional simulators did not reproduce this 

behaviour, whereas the beam collimation had already been pointed out as possible 

cause of optical losses and mismatches between the results of CPV indoor and 

outdoor tests [376]. In 2008, the first solar simulator for triple-junction cells in a 

CPV system was presented by Domínguez et al. [377]: it replicated the light 

collimation, but could not accept CPV modules larger than 2 meters in diameter. 

Thirdly, CPV systems could reach concentrations of thousands of suns, meaning 

that out-sized reflective or refractive areas could be needed when densely packed 

systems were considered. In this application, the primary concentrators sized 
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3m×3m and an outdoor characterization was the only way to conduct a full scale 

investigation on the performance of the assembly. 

6.4.2 Preliminary tests 

The first prototype of the board was delivered in November 2013 and then firstly 

outdoor tested in April 2014, in the facilities of the Indian Institute of Technology 

Madras, India. The overall system is shown in Figure 130: each pillar supported 

two modules, each one equipped with a primary and a secondary optics and the 

receiver plate. Two 4m×4m mirrors were installed, instead of the designed 3m×3m 

concentrators. A ceramic plate replaced one of the receivers and was used to 

identify the focal point of the reflectors. 

 

Figure 130 - Experimental setup: the ceramic plate on the left hand side mirror and the receiver on the 
right hand side one. 

A set of thermocouples were installed on the plate and connected to the control 

room. The electrical outputs of one 72-cell series were measured using a Mastech 
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MS8217 digital multimeter (for the voltage) and an Escort ECT-689 clamp-on meter 

(for the current), both shown in Figure 131. 

  

Figure 131 - Multimeter (a) and the clamp-on meter (b). 

Since the I-V tracer had not been delivered, five 10W light bulbs were initially used 

to check the flow of current. The bulbs were connected in parallel to the CPV, 

along with a voltmeter. Each bulb had its own switch, to be independently 

connected or disconnected (Figure 132).  

  

Figure 132 - A picture and a schematic of the five bulbs system. 

(a) (b) 
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Figure 133 - Two bulbs on the left side and the control panel on the right side. 

A first test was conducted at 500× using both the concentrators. No current was 

shown, whereas a voltage of about an open circuit voltage of 180V was registered 

when the board was on focus. When the bulbs were connected, the voltage was 

found to drop, no bulbs were illuminated and the instruments did not show any 

current. A non-uniform illumination appeared on the secondary (Figure 134), 

raising doubts about the matching between the 4m×4m primary and the secondary, 

designed for a 3m×3m primary optics. 

 

Figure 134 - Non uniform illumination on the secondary. 

Since no current was flowing and in order to overtake any potential problems due 

to the optic mismatch, the secondary concentrator (Figure 135) was removed to 

visually check the illumination over the cells. 
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Figure 135 - The plate mounted without the secondary. 

Without the secondary, the heat sink could be fixed only if the pipes and the pumps 

were removed. So, no active cooling was applied in this primary-optics only 

configuration. A thermocamera was then used to instantaneously measure the 

temperature of the plate, in order to be able to stop the test when the board 

reached a temperature of 150°C. 

A new test was conducted under natural sunlight at 440W/m2 DNI, 28°C ambient 

temperature. An off-track voltage of 150.8V was measured. Once on-track, four 

complete rows of cells (two per series) were still shaded both in vertical and in 

horizontal directions, as clearly shown in Figure 136. 
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Figure 136 - The non-uniform illumination on the board. 

When the tracker moved the plate in the focal point, no current was measured by 

the instruments, but some current was flowing in a 10W bulb used as load, as 

shown by red filament in Figure 137. The voltage dropped down to few units (4-

5V). 

 

Figure 137 - The current flowing in the central bulbs. 



Chapter 6: Densely packed cell assembly: analysis and characterization 

 

187 

The presence of open circuit current and of a low current in the bulbs was 

considered a first positive sign, since the electronic circuit did not seem to be 

damaged by the current flow. The cause of the low performance was addressed to 

the strong shading, but more information could be obtained with a more accurate 

electrical performance reading. For this reason, for the following test, four resistors 

(Figure 138), one analog amp meter and one analog volt meter (Figure 139) were 

mounted. During the tests, the resistors had to be manually set to change the 

resistance and no digital output was coming out from the instruments: this system 

was fine for a qualitative test, not for a quantitative one.  

 

Figure 138 - The four rheostats. 

 

Figure 139 - The Amp and Volt meters. 

A few-second test was conducted at 125× (without the secondary), getting a 

maximum current of about 1A and a voltage of 50V per series. During the tests, at 

least three rows were found to be not illuminated: 18 cells out of 72 per series were 

by-passed, as shown in Figure 140. Considering a DNI of 750W/m2 (measured 
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global irradiance: 840W/m2), and a geometric concentration of 125 suns, the 

illumination on the board was about 18.8% of that reported in datasheet for 

1000W/m2 and 500×. Considering a linear relation between irradiance and current 

[11], a short circuit current of about 1.24A was expected. The efficiency of the 

concentrators might be one of the causes of the lower registered value. Apart from 

the shaded cells, the low voltage (0.93V per non-shaded cell) might be due to 

some resistances in the contacts between the board and the instruments, as well 

as to the high cell temperatures. 

 

Figure 140 - The non-uniformly illuminated board 

A uniform illumination and an adequate temperature controlling systems are 

required when the CPV modules are rated. In this case, the use of a primary 

concentrator larger than designed and the combination of non-uniform irradiance 

and lack of active cooling compromised the tests and led to the damaging of the 

board. The cell temperature could not be checked properly and, due to the hot 

spots, four cells were found to be broken (red square in Figure 141). So, it was 

decided not to conduct any further test before the concentrators and the active 

cooler had been fixed. At the time the thesis was submitted, no outdoor 

characterization had been completed yet. 
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Figure 141 - The damaged board and a zoom on the four damaged cells. 

6.5 Cost analysis 

The price of a CPV system was expected to be as low as $1.20/Wp by 2020 [378]. 

In 2013, an average price of $2.62/Wp was reported [379] whereas, at the time the 

thesis was submitted, the cost was ranging between $1.55/Wp and $2.42/Wp [31]. 

In 2011, the module still represented 41.5% of the whole CPV cost [378]. This 

quote included the optics, the cell assembly and the cooling system. In the present 

work, the cell assembly only was considered and was fabricated with an expense 

of £0.57/Wp, which, at the time of the fabrication, corresponded to about $0.91/Wp, 

the 34.7% of the full module’s average price in 2013i. It is interesting to report a 

cost breakdown of the presented cell assembly (Figure 142). The largest part of 

the expenses was due to the multijunction cells, whose price was strongly 

influenced by the volume ordered. The other components (diodes and 

interconnectors) represented about a fourth of the overall price. The remaining part 

was due to the aluminum board and to the workload required for assembling.  

 

                                            
i
 Conversion rate for November 2013: £1=$1.610311 (Source: X-rates

TM
) 
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Figure 142 - Cost breakdown of the produced cell assembly 

The development of prototypes and the low volume fabrication usually present 

higher costs than the high-quantity production. This is due to the inverse 

proportionality between the cost and the quantities of materials and components. 

All the components used in this work were influenced by the economy of scale: 

according to the prices of components used in this application, a drop of 17% in the 

total cost of a single cell assembly could have been achieved by increasing the 

number of units, only because of the reduction in the component’s cost per unit. 

Moreover, a small scale fabrication usually limits the possibility of exploiting 

automatic processes that generally require longer setting times, but eventually 

enable lower cost for large volumes productions. 

6.6 Conclusions 

After the description of the fabrication, the results of the tests conducted on the 

receiver’s prototypes to prove the reliability of the design and the components were 

reported in the chapter and commented. Along with a visual inspection, both the 

die attaches and the bonded wires were tested using the destructive tests 

described by international standards. The cell’s soldering showed a bonding 

strength almost twice higher than the minimum requirement of the standards. 

Board 
9% 

Assembling 
14% 

Interconnect
ors 
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Cells 
52% 
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Similarly, the results of the wire bonding strength test proved the reliability of the 

interconnections, with a rate of failures fully balanced by the safety factor 

considered during the installation. An experimental investigation was conducted to 

understand the effects of the thermal expansion on the encapsulant. The receiver 

were then indoor tested and showed a short circuit current of 0.011A at one sun 

and an open circuit voltage of 2.5V per cell, similar to the one exhibited by a 

commercial receiver under the same conditions. A peak efficiency of 29.4% was 

predicted at 500× and the fill factor ranged between 80.1% and 81.4%. The 

efficiency and the fill factor were improved up to 32.4% and 84% respectively by 

using more efficient cells. A full scale outdoor characterization was being 

undertaken at the time this work was conducted, to test the durability of the 

materials and their resistance to cycles. A preliminary outdoor characterization was 

attempted and was described in the chapter, but no further results were yet 

available: the cooling and the concentrating optics had to be firstly fixed and tested 

before conducting an appropriate electrical characterization at full scale. For a 

more complete analysis of the fabrication process, a summary of the costs have 

been reported and commented. The scale economy strongly affected the 

production of CPV cell assemblies: in this case, the price of the cell assembly 

would have been decreased by the 17%, if the number of produced units was 

increased.  
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 Natural convective micro-fins for high CPV Chapter 7:

receivers cooling 

This chapter investigates the opportunity of integrating a micro-passive cooling 

system in a HCPV receiver. The results of an original experimental investigation 

and the data available in literature are merged and analysed to first better 

understand natural convection at the micro-scale. After an initial investigation on 

the correlations among geometry, orientation and heat transfer coefficient at micro-

scale, different heat sink metrics is considered, such as the fin effectiveness and 

the mass specific heat transfer coefficient. The introduction of micro-fins is found 

not to be always beneficial in terms of heat transfer, although always positive in 

terms of material usage. Moreover, the results of the investigation are used to 

identify the most effective micro-fin geometries for HCPV passive cooling: a 

thermal model is developed to prove their efficacy compared to conventional 

macro-scaled heat sinks. Overall, micro-fins are found to be particularly 

advantageous in those applications requiring a minimized weight of the heat sinks, 

such as concentrating photovoltaics. 

7.1 Introduction 

The temperature of any CPV cell needs to be minimized in order to enhance the 

electrical efficiency, to limit the thermal stresses, and to avoid mechanical 

damages. The low operating temperature is not the only goal that a CPV cooling 

system needs to achieve. The uniformity of the temperature has to be considered 

as well, both for single cells and for series of connected cells. Temperature 

gradients across the cell are generally due to non-uniform illumination on the active 

area, cause power losses and may lead to damage [35]. Series-connected cells 

working at different temperatures generate different currents and the overall series 

current is limited by the least performing cell. An optimal CPV cooling system 

should prevent the occurrence of current-mismatch due to non-uniform 

temperature. Moreover, the cooler is generally required to be simple, in order to 

assure high reliability and not to strongly affect the CPV plant cost. A reliable 

system is essential: any failure can cause damage to the cells and long 

interruptions to power generation.  
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After having investigated the electrical properties of a densely packed receiver, this 

chapter focuses on the opportunity of employing a micro-passive system for 

cooling a single cell high-CPV receiver. In the literature review, the micro-fins were 

found to be one of the most promising solutions to improve the CPV cooling. The 

effects of the CPV system’s geometry and cell’s size on the thermal behaviour 

were previously described, and a silicon wafer was found to be the most 

appropriate substrate to develop a single cell CPV receiver with an integrated 

passive cooling system. Due to the limited number of publications available on the 

performance of micro-fins in natural convection, an experimental investigation was 

initially conducted to examine the correlations between the fin geometry and the 

thermal performance. Electrically heated micro-fin arrays were tested in a 

controlled, natural convective environment: the results of the experimental 

investigation are reported and commented upon and were then used to determine 

the best solution for passive CPV cooling purposes. To conclude, a thermal model 

was developed to predict the performance of the designed micro-finned array in 

HCPV. 

7.2 Methodology and scope 

7.2.1 Previous investigations 

Fins are widely used to enhance the heat transfer from a surface to the 

surrounding fluid. Despite that, as already reported in the literature review, the 

studies conducted on naturally convective micro-scaled fins were still limited at the 

time this work was conducted. Kim et al. [251] investigated vertically orientated 

micro-fins and demonstrated the impossibility of using the macro-fin heat transfer 

correlations for micro-scaled systems. Mahmoud et al. [252] firstly showed the 

correlation between the fin height, the fin spacing and the heat transfer coefficients. 

Shokouhmand and Ahmadpour [253] numerically demonstrated that the 

contribution of the radiative exchange could not be neglected in a micro-fin array. 

In the light of further contributing to understand the heat transfer phenomena at 

micro-scale, a preliminary experimental investigation was considered essential. 
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7.2.2 Experimental setup 

The configuration and the validation of the experimental setup was already 

described in Section 3.6 and shown in Figure 57. In the current study, 1.4mm-thick, 

5cm×5cm-sized squared undoped silicon wafers were employed. Eleven different 

fin geometries were diced and tested, and their thermal behaviours were compared 

with that of a flat silicon wafer. The micro-fins arrays were firstly designed using 

AutoCAD and then fabricated through a mechanical dicing machine. The fin 

dimensions were measured using a microscope and are reported in Table 35, 

according with the nomenclature shown in Figure 61. 

Table 35 - Fin dimensions 

Type 
Width, 

W 
[mm] 

Length, 
L 

[mm] 

Fin 
thickness, t 

[µm] 

Fin 
spacing, s 

[µm] 

Fin height, 
H 

[µm] 

Base 
thickness, tb 

[µm] 

Number 
of fins, 

Nfin 

Flat 49.9 49.9 - - - - - 

Plate fin 50.0 49.7 200 200 600 800 121 

Plate fin 49.8 49.8 200 200 800 600 124 

Plate fin 50.0 49.9 200 400 1000 400 83 

Plate fin 50.0 49.9 200 800 600 800 50 

Plate fin 49.9 49.9 400 200 1000 400 83 

Plate fin 49.9 49.9 400 400 600 800 61 

Plate fin 50.0 49.9 400 800 600 800 41 

Plate fin 50.1 49.9 800 400 800 600 42 

Plate fin 49.8 49.9 800 800 600 800 31 

Pin fin 49.8 49.8 200 200 600 800 15376 

Pin fin 50.2 50.0 400 400 600 800 3844 

Uncertainty 0.05% 0.05% 4% 4% 6% 6% - 

 

The fin temperature was recorded using the FLIR infrared camera: it was 

considered constant across the whole volume of the fin array. An overall 

experimental uncertainty on the calculation of the heat transfer coefficient 

(Uhfins/hfins) of 8.25% was evaluated: it fell within the range of uncertainties 

considered by previous researchers, resumed in Table 36. In the present 

investigation, power inputs of 1.0kW/m2, 2.0kW/m2, 2.5kW/m2, 3.0kW/m2, 

3.5kW/m2 and 4.0kW/m2 were supplied to the heater: these values were higher 

than those previously considered (Table 36) and were closer to the waste heat 
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generation rates of MJ cells working at 500×. In this experimental setup, it was 

found that, despite the employment of insulating materials, an average of 26% of 

the heat in input was dissipated by surfaces other than the fins. This value was 

higher than those reported for the previous researches on micro-fins [252]: the 

difference was due to the configuration of the setup. In the present work, similarly 

to the study on tilted macro-fins in [155], the setup was moved in different 

orientations, and, so, a limited volume was available for the insulating case 

surrounding the sample. Moreover, a percentage ranging between 44% and 56% 

of the heat in input was found to be exchanged by radiation through the fins. This 

was due to the high emissivity of silicon and to the temperature achieved during 

the tests, higher than those experienced by previous micro-fins investigations 

[251,252]. 

Table 36 - Summary of the radiative thermal transfer and of the losses. 

Ref. Scale Orientation Uhfins/hfins Power density  
in input 

Radiative (Qr) Losses (Qloss) 

Current work Micro-fins Tilted 8.25% 1.0-4.0kW 44-56% 26% 

[251] Micro-fins Horizontal 5.1-6.5% N.A. 24% N.A. 

[252] Micro-fins Vertical 9.4% 0.2-1.0kW 9-13% 6% 

[155] Macro-fins Tilted ≤5% 0.1-0.3kW N.A. 24-26% 

 

7.2.3 Motivation of the research 

Firstly, the effects of the fin geometry was investigated for power loads not 

previously considered, in order to give a contribution towards the optimization of 

geometries for micro-finned heat sinks in natural convection. In particular, the 

correlation between thickness and heat transfer, which had not been analysed 

before, was investigated for the first time and commented. The previous micro-fins 

research used to consider the same conditions, horizontal upward facing or vertical 

micro-finned heat sinks. In real applications, instead, the designer might be forced 

to orientate the heat sinks in different, less-effective directions, such as in 

downward facing position [380]. For this reason, the second scope of this research 

was to report the differences in thermal performance between an upward facing 

and a downward facing micro-fins array. The effects of orientations other than 

horizontal or vertical were considered as well, in order to achieve a wider 
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understanding towards the application of passive cooling micro-technologies in 

CPV systems.  

7.3 Correlations among geometry and heat transfer coefficient for 

upward facing oriented fins 

7.3.1 Effects of fin thickness, spacing and height 

The correlation between fin geometry and thermal performance for upward facing 

fins array was investigated in order to improve the temperature range considered in 

[252], which was limited to power loads up to 1W and maximum temperatures in 

the order of 100°C. The experimental data collected in this study were found to be 

consistent with the outcomes of the previous research: the values of convective 

heat transfer coefficient increased when the fin spacing as increased (Figure 143) 

and the fins height was decreased (Figure 144). As stated by the authors [252], 

this behaviour was due to the complex relations between the upward and the 

downwards currents. Increasing the fin height could cause a reduction in the 

convective motion between the fins, decreasing therefore the heat transfer 

coefficient. On the other hand, larger fin spacings facilitated the convective 

exchanges between the fins and the ambient. 
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Figure 143 - Effects of fin spacing on the heat transfer coefficient: (a) for t=0.2mm and (b) for t=0.4mm. 

(a) 

(b) 
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Figure 144 - Effects of the fin height on the heat transfer coefficient. 

For the first time, the effects of the fin thickness on the heat transfer were 

investigated. As shown in Figure 145, the heat transfer coefficient was found to 

increase when the fin thickness increased. This behaviour can be explained 

because, at micro-scale, within the narrow air volumes between two adjacent fins, 

the conduction is dominant over the natural convection [251], and, thus, the air 

trapped within two micro-fins transfers heat by conduction mainly. The silicon fins 

and the air volumes are acting as parallel thermally conductive layers along the 

heat path. Increasing the fin thicknesses while keeping the spacing constant raises 

the high-conductive volume of silicon compared to the low-conductive volume of 

air, and, so the overall thermal conductance is enhanced. For this reason, the 

micro-fin thickness has to be taken into account when dimensioning an optimal 

micro-finned heat sink and should not be neglected.  



Chapter 7: Natural convective micro-fins for high CPV receivers cooling 

 

199 

 

Figure 145 - Effects of the fin thickness on the heat transfer coefficient and the thermal resistance. 

As noted by [252], the heat transfer coefficient tends to increase when the 

temperature increases. Although, at the higher temperature differences 

experienced in the present study, the enhancement of the heat transfer coefficient 

was lower and, in each test, the coefficient was found to reach a maximum value 

before starting decreasing. This was probably due to the viscosity of air that 

increases with the temperature [329]: the higher the temperature, the more difficult 

are the convective movements of air and this negatively affect the convective heat 

transfer. Moreover, the high temperatures benefitted the radiative heat transfer, 

whose contribution was proportional to the fourth power of the temperature 

different and, so, grew at higher rate than the convective one when the 

temperature difference rises. So, at the high temperatures achieved in this work, 

the radiation became the dominant player for heat transfer. For these reasons, at 

high temperature differences, the heat transfer coefficients were found to 

decrease.  

7.3.2 Nusselt number correlations 

Natural convection conditions are usually described by dimensionless numbers, 

which make it possible to reduce the number of total variables. Among these 

parameters, the Nusselt number compares the heat transfer due to natural 

convection and that due to conduction in a fluid layer [328]. It is generally used to 

estimate the heat transfer coefficient in natural convective conditions. For upwards 
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micro-finned array, the following empirical equation was proposed by Kim et al. 

[251]: 

𝑁𝑢 = 1.18 ∙ [𝑅𝑎𝑟 ∙ (
𝑟

𝐻
)

4

∙ (
𝑟

𝐿
)

4

]
0.147

 (54) 

where r is the hydraulic radius and the Rayleigh number for micro-finned surfaces 

is expressed as: 

𝑅𝑎𝑟 =
𝑔 ∙ 𝛽 ∙ (𝑇𝑓𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏) ∙ 𝑟3

𝑣 ∙ 𝛼𝐷
 (55) 

where αD and ν are the thermal diffusivity (m2/s) and the kinematic viscosity (m2/s) 

of air respectively, as reported by [329]. The hydraulic radius (r) is a function of the 

geometry of the fins and, for horizontal finned surfaces, is expressed as [252]: 

𝑟 =
2 ∙ 𝐻 ∙ 𝑠

2 ∙ 𝐻 + 𝑠
 (56) 

The experimental Nusselt numbers obtained in the present investigation and those 

predicted by equation (54) showed an average deviation of 10.59%. This was an 

acceptable value, taking into account the uncertainty reported by the authors of the 

correlation (6.3%) and that predicted in this work (8.25%). For this reason, the 

correlation in (54) could be considered as verified for upward facing silicon micro-

finned array and the range of validity of the Nusselt correlation could be extended, 

as reported in Table 37. 

Table 37 - Extended range of validity of the Nusselt correlation for micro-finned arrays. 

Parameters Original range Present range Extended range 

H 0.1 mm to 1 mm 0.6 mm to 1 mm 0.1 mm to 1 mm 

L 10 mm to 20 mm 50 mm 10 mm to 50 mm 

s/H 0.15 to 7.7 0.19 to 1.45 0.15 to 7.7 

 

As already pointed out, at micro-scale the fin thickness had a non-negligible effect 

on the heat transfer coefficient, which was not accounted in (54). In the previous 

investigations [251,252], fins with a fixed thickness had only been considered: in 

the present study instead, the average discrepancy between the real and the 

predicted Nusselt numbers was found to get wider when the thickness increases 

(Figure 146). 
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Figure 146 - The average percentage discrepancies between real and predicted Nusselt numbers, 
depending on the fin thickness. 

In order to introduce the thickness in the Nusselt correlation, equation (54) was 

adapted as follow: 

𝑁𝑢∗ = 1.18 ∙ [𝑅𝑎𝑟 ∙ (
𝑟

𝐻
)

4

∙ (
𝑟

𝐿
)

4

]
0.147

∙ [1 + (
𝑡

𝑟
)

2

]

0.147

= 1.18 ∙ [𝑅𝑎𝑟 ∙ (
𝑟

𝐻
)

4

∙ (
𝑟

𝐿
)

4

∙ (1 + (
𝑡

𝑟
)

2

)]

0.147

 (57) 

In equation (57), the Nusselt number increased when thickness was increased. 

Equation (54) was proposed for t<<r: in those same conditions, Nu* equalized Nu. 

Using the new correlation, the average discrepancy was found to drop to 6.05% 

and ranged between 5% and 8% at different thicknesses. 

Despite the samples’ dimensions (H=0.25-1.00mm, L=31.75mm, S/H=0.5-4) fell 

within the range of validity of equation (54), Mahmoud and his colleagues [252] 

reported a discrepancy of 29% between the experimental and the predicted 

Nusselt numbers. Digitalizing their data, it was found that equation (54) 

consistently underestimated the Nusselt number of copper micro-fins with an 

average deviation of 26%, still too high to be considered as due to the 

experimental and data-digitalization process’ uncertainties only. In [252], the 

thickness was higher than that tested in [251]. Moreover, the conductivity of 

copper, much higher than that of silicon, could have enhanced the discrepancy. As 

depicted in Figure 147, using the modified Nusselt number correlation in equation 

(57) reduced the average discrepancy from 26% to 7.41%. The validity range of 

the modified correlation (57) could then be extended to those arrays where H 

ranges from 0.25mm to 1.0mm, L from 31.75 to 50mm, and S/H from 0.2 to 2. For 



Chapter 7: Natural convective micro-fins for high CPV receivers cooling 

 

202 

a more accurate Nusselt number estimation, further investigations on a wider 

range of micro-fin dimensions are needed to understand the influence of thickness. 

 

Figure 147 - Comparison of the present experimental results (□), the experimental results reported in 
[252] (■), the predictions of the Nusselt correlation for micro-finned heat sinks proposed by [251] (Δ), 

and the modified correlation presented in this work (+). 

7.3.3 Plate fins vs pin fins 

In this section, the performance of plate fin and pin fin arrays were compared. The 

two geometries were based on the same dimensions: spacing (s), fin thickness (t), 

fin height (H) and base thickness (tb) were the same for each couple of plate/pin 

finned geometries. The dimensions are reported in Table 38.  

Table 38 - The dimensions of the plate/pin fins arrays 

Plate/Pin Fins  
Sample No. 

T 
[µm] 

s 
[µm] 

H 
[µm] 

tb 
[µm] 

Number of fins 
(Plate fins - Pin fins) 

#1 200 200 600 800 121 - 15376 

#2 400 400 600 800 61 - 3844 

 

The use of pin fins instead of plate fins reduced the volume of the heat sink: the 

overall pin-finned wafer volume was found to decrease by 13% compared to the 

plate-finned one. On the other hand, since in both the considered geometries the 

fin spacing was equal to the fin thickness, no change in surface was registered 

between the pin-finned and the plate-finned configurations. Despite that, the 

thermal exchange was expected to change: in a pin-finned geometry, an 
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enhancement in the extension of the fin base surface and a reduction of the top fin 

surface were registered.  

In the present study, the contribution of radiation was estimated by using the model 

in [324] to determine the view factors. Since two different fin structures were now 

compared, a different model should have been used for estimating the view 

factors. Unfortunately, at the time the work was conducted, no model to estimate 

the view factor in a pin fin array was found. In lack of that, it was preferred to 

consider the overall heat exchanged by the fins, intended as the sum of the 

radiative and convective heat transfers happening through the fins (Qtot): 

𝑄𝑡𝑜𝑡 = 𝑄𝑓𝑖𝑛𝑠 + 𝑄𝑟 (58) 

A combined heat transfer coefficient, named average heat transfer coefficient by 

[381], was then calculated: 

ℎ𝑡𝑜𝑡 =
𝑄𝑡𝑜𝑡

𝐴𝑓𝑖𝑛𝑠 ∙ (𝑇𝑓𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏)
 (59) 

As shown in Figure 148, the pin fins had better average heat transfer coefficients 

than plate fins and consistently showed lower fin temperatures for the same power 

inputs. It means that more heat was transferred from the heat sink by radiation and 

convection in pin fins than in plate fins. This was probably due to the increased 

surface of the pin fin configuration, which balanced any loss due to the reduction of 

the fin tip extension, which was the surface where the heat transfer was usually 

maximized.  
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Figure 148 - Comparison between heat transfer coefficients in flat and pin fin configurations 

7.3.4 The contribution of the radiative exchange 

As pointed out by Khor et al. [382], among the studies on thermal performance of 

finned heat sinks, only in few cases the effect of radiation had been considered. 

Despite that, neglecting the effects of the radiative heat transfer can lead to errors 

higher than 30% in estimating the heat transfer coefficients. This error could rise up 

to more than 60% if radiation was considered discarding the view factors. The test 

presented in this chapter confirmed the importance of the radiative exchange in a 

micro-heat sink in natural convection conditions, in accordance with the numerical 

investigation in [253], which was conducted for a 10mm-width and 40µm-thick heat 

sink with an emissivity of 0.70. In that work, the authors predicted a maximum 

radiative contribution of 22% for power inputs between 1.7 and 1.8mW and 

temperatures of 100°C. In the conditions considered in the present work, instead, 

the radiative exchange was found to dissipate up to the 56% of the heat 

exchanged by the fins, so it should be neglected when designing a micro-passive 

cooling system under natural convection. Figure 149 shows the combined 

convective and radiative heat transferred by the fins (Qtot), as calculated in (59). 

The overall heat was compared with the contributions given by the radiative and 

the convective components. As expected, at high temperatures the radiative 

component contributed more than the convective one to the heat transfer, because 

of the dependence on the difference of the fourth power of the temperatures. The 



Chapter 7: Natural convective micro-fins for high CPV receivers cooling 

 

205 

intersection point between the two trends varied at different geometries: when 

dimensioning a micro-finned heat sink, the contribution of the radiative exchange 

has to be taken into account using one of the models available in literature. The 

high contribution showed made these micro-scaled systems interesting for spatial 

applications too, where radiation was the dominant heat transfer mode.  

Usually, when finned heat sinks were selected, the convective heat transfer only 

was taken into account. The results shown in this chapter proved, instead, that, 

when a heat sink is dimensioned, the radiation should not be neglected. In this 

light, further studies are needed to develop models able to predict the combined 

contributions of radiation and convection.  
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Figure 149 - Global heat exchange at different fins geometries. 
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7.4 Alternative heat sink metrics 

7.4.1 Definitions 

So far, the behaviour of the fins was evaluated using the heat transfer coefficient 

only. In the real world applications, instead, engineers and system designers look 

for thermal resistance, compactness, weight and cost of the heat sinks and, 

therefore, they are required to understand the effective heat transfer enhancement 

introduced by the fins compared to the original flat surface. The heat transfer 

coefficient measures the thermal property per unit of surface and it is not an 

indicator of the thermal performance of the whole heat sink, because it does not 

take into account the extension in thermal exchanging surface due to the fins. For 

this reason, a different metric, called fin effectiveness, is usually employed to 

evaluate the performance of fins. It compares the heat transfer of the finned 

surface and that of the unfinned surface [329,383]: 

𝜀𝑓𝑖𝑛𝑠 =
𝑄𝑓𝑖𝑛𝑠

𝑄𝑓𝑙𝑎𝑡
 (60) 

where Qfins and Qflat are the heat transferred by the fins and by the flat plate 

respectively. The fin effectiveness measures the improvement in thermal exchange 

due to the fins: if εfins>1, the fins have enhanced the thermal behaviour of the 

unfinned surface. 

Micro-fins are usually obtained through material subtractions, such as dicing, 

etching or electrical discharge machining. Along with the effects on the heat 

transfer, a benefit in terms of mass reduction is expected. This feature becomes 

particularly important in portable or tracked systems, such as the concentrating 

photovoltaics, where reduced weights mean reduced loads for the tracker. The 

mass specific heat transfer coefficient measures the effectiveness with which fin 

material is utilized in the promotion of heat transfer [157] and is expressed as: 

ℎ𝑚 =
𝑄𝑓𝑖𝑛𝑠

𝜌𝐷 ∙ 𝑉𝑓𝑖𝑛𝑠 ∙ (T𝑓𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏)
 (61) 

where ρD is the density of the fin material and Vfins is the volume of the whole 

micro-finned heat sink.  
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7.4.2 Fin effectiveness 

Kim et al. [251] measured a heat transfer enhancement up to 10% due to the 

installation of fins, in agreement with the findings of previous researches on micro-

fins under forced flow conditions [384]. In particular, the fin effectiveness was found 

to increase when the fin spacing decreased. This was explained because of the 

limited fin spacing decreased the volume of air compared to that of the higher-

conductive fin material, increasing the overall thermal conductance. The reduced 

enhancement was confirmed in the present experimental investigation, where the 

fin effectiveness was found to range between 0.98 and 1.02. This meant that the 

introduction of micro-fins for natural convection was not necessarily positive for the 

overall heat transfer. The same results were obtained by analysing the data 

reported by [252], where the fin effectiveness was found to range between a 

minimum of 0.86 and a maximum of 1.14. In Figure 150, a summary of the 

effectivenesses presented in this work and in [252] is reported. The data from the 

two investigations showed an average effectiveness of 0.985. 

 

Figure 150 - Number of recurrence per fin effectiveness, merging data from the present research and 
[252]. 

No clear correlations between geometry and fin effectiveness was found. Further 

studies needed to be conducted to understand how to optimize the design of a 

micro-fins array for natural conductive applications.  
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7.4.3 Mass specific heat transfer 

The mass specific heat transfer coefficient measures the thermal performances per 

unit of mass of the heat sink. Even when the traditional heat transfer coefficient 

was negatively affected, the mass specific heat transfer coefficient was found to be 

always enhanced by the introduction of fins. It means that that the benefit in weight 

reduction due to the material subtraction was more effective than the change in the 

thermal performance. 

The correlations between the mass specific heat transfer and the fin geometries 

are not consistent with those reported for the heat transfer coefficients. It was 

found that the specific mass heat transfer increased when increasing the spacing 

of the fins (Figure 151), and/or increasing the height (Figure 152). The increase in 

fin height means a drop in the heat sink weight, because the base thickness is 

decreased. Similarly, the mass heat transfer increased when the fin thickness 

decreased (Figure 153). These results confirmed that the drop in weight, instead of 

an enhancement in heat transfer, was the most important benefit obtained by 

dicing micro-fins on a flat cooling surface. This made micro-finned heat sinks 

particularly preferable for moved systems, where the weight had to be limited. 

 

Figure 151 - The effects of the fin spacing for horizontal fin arrays on the mass specific heat transfer 
coefficient. 
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Figure 152 - The effects of the fin height for horizontal fin arrays on the mass specific heat transfer 
coefficient. 

 

Figure 153 - The effects of the fin thickness for horizontal fin arrays on the mass specific heat transfer 
coefficient. 

7.4.4 Considerations 

Heat transfer from extended surface is more complex at micro-scale than in macro-

scale conditions. This is due to the fact that, in the small air volumes, the 

conduction is dominant over the natural convection. When confined in the narrow 

space between two fins, the air tends to behave as an insulating layer, because of 

the low thermal conduction and the higher viscous forces than the buoyancy. For 

this reason, a reduction in heat transfer coefficient was registered when micro-fins 

were added to a flat plane surface. The drop in thermal convection could be 
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balanced by the increase in thermal exchanging surface: the effectiveness of 

micro-fins in natural convection was found to be as high as 1.14, but the correlation 

between it and the fin geometry had yet to be formalized. The introduction of micro-

fins gives always a benefit related to the material usage when it was referred to the 

unit of mass. The present investigation showed that introducing micro-fins in CPV 

system could, at the same time, improve the thermal performance and reduce the 

weight of the system. The current investigation considered only fins in upward 

facing orientation, whereas, in the following sections, the effects of the orientation 

on the thermal performance of CPV are presented. 

7.5 Performance of tilted fins 

HCPV are usually tracked systems: the cell and the whole receiver are 

continuously moved, to be normal to the sunlight. This means that the heat sink is 

not static, but changes its orientation during the day. Moreover, in the configuration 

selected for this application, the fins are likely to be facing downwards during the 

hours when the Sun is higher and the irradiance is more intense. All the previous 

research on passive micro-fins arrays used to consider fixed heat sink, vertically or 

upward orientated [251,252]. Previous studies showed the effects of the orientation 

on a macro-finned heat sink [156] and some correlations between the inclination 

angle and the thermal exchange had been proposed [155]: a similar behaviour 

could be expected at micro-scale. No researches were found for micro-scaled 

systems, and, for this reason, the behaviour of tilted fins was analysed in the 

present work. 

7.5.1 Horizontal fins: upwards vs downwards orientation 

It was already known that downward facing was not the best orientation for natural 

convective heat sinks [380] and this was confirmed also in the present 

experimental investigation on micro-fins. In this case, the thermal resistance of the 

fin array (Rfins) was taken into account:  
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𝑅𝑓𝑖𝑛𝑠 =
𝑇𝑓𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏

𝑄𝑓𝑖𝑛𝑠
 (62) 

Figure 154 shows the behaviour of the thermal resistance when varying the power 

input for different fin arrays. An average discrepancy of 12% in thermal resistance 

was found between the heat sinks’ performance in upward and downward 

orientation. 

 
Figure 154 - Thermal resistance of the different fin geometries: upward vs. downward 

As shown in Figure 155, the behaviour of the downward facing heat sinks was 

found to be similar to that of the upward facing ones: the heat transfer coefficients 

increased when increasing the fin thickness and the fin spacing, and when 

decreasing the fin height. Each trend of heat transfer coefficient reached a 

maximum at high temperature, before decreasing. As expected, compared to the 

upward conditions, the downward trend was shifted down, similarly to the case of 

an horizontal downward facing plate [341]. This could be physically explained 

because, when the heated surface faced downwards, the plate itself represented 

an obstacle to the tendency of the warm air to ascend, lowering the heat transfer. 

In upwards configuration, instead, the heat transfer was due to descending and 

ascending columns of cold and warm fluids respectively: because of the space 

vacated by the heated fluid was occupied by the cooler and heavier fluid, the heat 

transfer was more effective in this case. 
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Figure 155 - Effect of geometry on the thermal behaviour of downward facing heat sink. 

7.5.2 Vertical vs horizontal oriented fins 

The vertically orientated fins consistently showed higher values of heat transfer 

coefficients than those horizontally oriented: the vertical convective movements of 
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the air facilitated the convection within the narrow spacing between the fins. As 

already pointed out, instead, when in horizontal position, the small air volumes kept 

in the fin spacing exchange heat by conduction mainly, lowering the thermal 

performance. This behaviour was confirmed when the fin effectiveness was 

studied: it was usually higher at a tilt angle of 0°. Due to the increased movement 

of the air, the enhancement in surface obtained by dicing vertical fins became more 

significant. The increase in fin effectiveness between the horizontal and the vertical 

positions varied between 2% and 11%. In particular, the highest enhancement was 

achieved for the arrays with the largest spacing (Figure 157): this proved that 

convective movements were facilitated and the heat transfer was then enhanced in 

larger air volumes. 

 

Figure 156 - Behaviours of the heat transfer coefficient depending on the tilt angle, under a constant 
heat input of 10W. The tilt angles are reported in radians: 0 rad (0°) stands for vertical heat sinks, 1.57 

rad (90°) for horizontal downward facing heat sinks.  
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Figure 157 - Average fin effectiveness enhancement between tilt angles of 90° and 0°. 

7.5.3 Tilted fins 

The correlation between micro-fin geometry and heat transfer coefficient was found 

to be consistent at different tilt angles: the heat transfer coefficient increased when 

the fin spacing increased (Figure 158), the fin height decreased (Figure 159) 

and/or the fin thickness increased (Figure 160). 

 

Figure 158 - Heat transfer coefficient vs fin spacing for 10W of power input at different tilt angles 
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Figure 159 - Heat transfer coefficient vs fin height for 10W of power input at different tilt angles 

 

Figure 160 - Heat transfer coefficient vs fin thickness for 10W of power input at different tilt angles 

As shown in the graphs above, the heat transfer coefficient decreased while 

increasing the tilt angles. In agreements with the outcomes reported by Do et al. 

[155], a limited reduction in the heat transfer coefficient was registered between 0° 

and 50°, whereas major performance drops took place for higher tilt angles. 

Do et al. [155] first presented an experimental correlation between the tilt angle 

and the heat transfer coefficients of macro-finned heat sinks. In their study, the 

authors took into account the fin spacing, and the fin height of the array. A similar 

correlation between the tilt angle and the thermal performance of micro-fins would 
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be a useful tool to design of passive micro-finned heat sinks and it was being 

investigated when this thesis was submitted.  

7.6 Micro-finned heat sink for CPV 

The experiments described in the previous paragraphs was conducted in 

conditions of low thermal exchanges from all the surfaces other than the fins and 

using a heater sized as the heat sink (5cm×5cm). In the real scenario, all the 

surfaces of the system exchange heat with the ambient and the heat source 

coincide with the cell, so it has a limited extension compared to the heat sink. In 

order to predict the realistic behaviour of micro-fins in a CPV system, a COMSOL 

simulation was conducted, using the heat transfer coefficients determined by the 

experimental investigation and a heat source sized as the solar cell (3mm×3mm). 

The unfinned and finned geometries reproduced in COMSOL are shown in Figure 

161. 

 

Figure 161 - Geometries of: (a) unfinned flat silicon wafer, (b) micro-finned silicon wafer. 

7.6.1 Best performing fin geometries 

The research presented in this chapter led to several outcomes. Firstly, it was 

found that the heat transfer coefficient increased when the fin spacing and the fin 

thickness increased and when the fin height decreased. Secondly, the mass 

specific heat transfer was found to increase when the fin spacing and the fin height 

increases and when the fin thickness decreased.  

In this section the best performing micro-plate fin arrays among the ones available 

for the experimentation were considered and modelled. The thermal management 

of the fins was compared with that of the flat plane silicon wafer. The first plate fin 
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geometry was chosen in order to enhance the mass specific heat transfer 

coefficient: the maximum fin spacing, the maximum fin height and the minimum fin 

thickness were considered. This array was expected to be able to handle the heat 

generated by the cell, limiting the weight of the heat sink.  

In a second approach, the fin array with the best effectiveness was selected: it 

corresponded to the one with the highest values of fin thickness and spacing. In 

this case, the array was expected to improve the thermal performance of the silicon 

wafer, but the heat sink weight would not be as low as for the previous micro-

finned array. All the fin dimensions are reported in Table 39.  

Table 39 - Dimensions of the modelled heat sinks. 

Type 
Width, W 

[mm] 
Length, L 

[mm] 

Fin 
thickness, t 

[µm] 

Fin 
spacing, 

s 
[µm] 

Fin 
height, 

H 
[µm] 

Base 
thickness, 

tb 
[µm] 

Number of 
fins, Nfin 

Best mass 
specific 

heat 
transfer 

50.0 49.9 200 800 600 800 50 

Best 
effectivene

ss 
50.0 49.9 800 800 600 800 31 

 

In the previous investigation, it was found that pin-finned arrays had a better 

thermal behaviour than plate-finned ones. Unfortunately, it was not possible to 

quantify the contributions of radiation and convection. For this reason, the 

performance of a micro-pin finned array could not be modelled at this stage and 

will be presented in future works. 

7.6.2 Heat transfer coefficients 

The fins were modelled at 500× under CSTCs (1000W/m2 DNI, 25°C ambient 

temperature, 42.5% cell efficiency) and worst case conditions (1000W/m2 DNI, 

25°C ambient temperature, 0% cell efficiency). The cell was modelled as a heat 

source: in the first case the power input was 2.20W, whereas in the second case 

the power input was increased to 3.83W. An optical efficiency of 0.85 was 

considered. In all the simulations, the fins were modelled facing downwards: this is 
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the most challenging condition a CPV cooling system has to face while in 

operation. 

The same assumptions made in section 4.5 were considered in the present model: 

the fins were reproduced in COMSOL and their heat transfer coefficients were set 

according to the results of the experimental investigation. Because of the 

experimental losses accounting for the 26% of the heat in input, DC power inputs 

of 2.6W and 4.1W were supplied to the experimental setup to measure the heat 

transfer under CSTCs (2.20W) and worst case conditions (3.25W) respectively. 

Natural convection from the upper surface was considered as well: it was set 

according to the experimental heat transfer of the horizontally facing upward flat 

plane. All the heat transfer coefficients are summarized in Table 40. 

Table 40 - Values of the heat transfer coefficients experimentally obtained and used in the thermal 
model 

Surface\Qcell 2.20W 3.25W 

Upper flat surface (upwards) 3.72W/m
2
K 4.73W/m

2
K 

Unfinned surface (downwards) 3.44W/m
2
K 3.80W/m

2
K 

Best mass specific heat transfer (downwards) 2.44W/m
2
K 2.85W/m

2
K 

Best effectiveness (downwards) 3.33 W/m
2
K 3.65W/m

2
K 

 

The emissivity was taken into account as well: a silicon emissivity of 0.78 was 

introduced. The view factors of the fins were calculated according to the 

methodology reported in the section 3.6.2. 

7.6.3 Results of the thermal model 

7.6.3.1 Flat plane 

The results of the simulation are shown in Figure 162 and Figure 163. A maximum 

cell temperature of 78.7°C was registered for the flat silicon wafer under CSTCs. 

Also the performances under the worst case scenario conditions were modelled, 

and the cell temperature should not exceed 150°C: in this case, the temperature 

rose up to 111°C. In both cases, the temperatures were acceptable, falling within 

the CPV operating range and confirming the quality of the assumptions made in 

4.5.2, when the substrate was initially dimensioned. As expected, the maximum 

temperatures were higher than those shown during the experimental investigation: 
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in this case, the heat was generated by the cell which had a smaller surface than 

the electrical heater. For this reason, the real heat distribution was not uniform as 

in the experiment, but a higher density of heat was concentrated close to the cell 

and this led to higher local temperatures. 

  

Figure 162 - Temperature distribution in the unfinned flat wafer under CSTCs (maximum cell’s 
temperature: 78.7°C). 
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Figure 163 - Temperature distribution in the unfinned flat wafer under CPV worst case conditions 
(maximum cell’s temperature: 111°C).  

7.6.3.2 Best mass specific heat transfer array 

The cell temperatures achieved by the best mass specific heat transfer array were 

shown in Figure 164 and Figure 165. A maximum cell temperature of 73.0°C was 

predicted under CSTCs and fell within the range usually accepted for CPV. The 

temperature was lower than that registered for the flat plane silicon. 
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Figure 164 - Temperature distribution in the best mass specific heat transfer micro-finned array under 
CSTCs (maximum cell’s temperature: 73.0°C). 

A maximum cell’s temperature of 103°C was predicted instead under the worst 

case conditions, almost ten degree lower than the unfinned case. Both the 

temperatures recorded for this array were below the temperature limits imposed for 

CPV applications and the temperatures of the unfinned silicon wafer 
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Figure 165 - Temperature distribution in the best mass specific heat transfer micro-finned array under 
CPV worst case conditions (maximum cell’s temperature: 103°C).  

7.6.3.3 Best effectiveness array 

The maximum cell temperatures of the best effectiveness array are shown in 

Figure 167 and Figure 169. A maximum cell’s temperature of 70.4°C was predicted 

under CSTCs. As expected by the geometry with the best fin effectiveness, the 

temperature was the lowest among the ones obtained by the simulation for the 

three modelled heat sinks. Similarly, a maximum cell’s temperature of 99.9°C was 

predicted in the worst case conditions, below the maximum CPV requirements. 
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Figure 166 - Temperature distribution in the best effectiveness micro-finned array under CSTCs 
(maximum cell’s temperature: 70.4°C). 
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Figure 167 - Temperature distribution in the best effectiveness micro-finned array under CPV worst 
case conditions (maximum cell’s temperature: 99.9°C). 

In order to predict the performance of a micro-finned array in a wider range of 

environments, the Concentrator Standard Operating Conditions [385] were taken 

into account as well: the DNI was reduced to 900W/m2 and a wind speed of 2m/s 

was introduced. The drop in DNI leads to a reduction in heat generation: 

considering the same 42.5% efficiency at 500×, the 3mm×3mm produced 1.98W of 

heat at maximum power point. Taking into account the thermal losses experienced 

in the experimental investigation, a power input of 2.5W was supplied to the heater. 

The wind was reproduced using a 10cm-diameter fan and its intensity was 

measured through a digital anemometer (Vktech GM8908 Digital Anemometer). 

The fan was placed 5cm away from the setup and was blowing the wind 

horizontally. Under these conditions, the heat transfer coefficient was found to 

increase up to 17.80W/m2K. According to the COMSOL investigation, the cell 

temperature of the CPV cell decreased to 48.2°C under the Concentrator Standard 

Operating Conditions (Figure 168). 



Chapter 7: Natural convective micro-fins for high CPV receivers cooling 

 

226 

 

Figure 168 - Temperature distribution in the best effectiveness micro-finned array under Concentrator 
Standard Operating Conditions (maximum cell’s temperature: 48.2°C). 

7.6.3.4 Summary 

In this chapter, the thermal behaviour of three different heat sinks was compared: a 

flat 5cm×5cm squared silicon wafer, the best-mass specific heat transfer fin array 

and the best effectiveness fin array. The selected micro-fins were found to 

introduce a benefit in terms of heat management, lowering the temperatures both 

under the operating and the worst case conditions compared to the flat silicon case 

(Table 41). A maximum drop in temperature of 8.4°C was predicted between the 

flat silicon wafer and the best performing fin geometry. Taking into account the 

temperature coefficients of the cell (-0.106%(rel)/°C), reducing the cell’s temperature 

of 8.4°C was expected to lead to a relative improvement in cell’s efficiency of 

0.89% under standard test conditions. 

Table 41 - Resume of the maximum cell’ temperatures predicted by the thermal investigation. 

Heat sink CSTCs Worst case conditions 

Unfinned silicon wafer 78.8°C 111°C 

Best mass specific heat transfer 73.0°C 103°C 

Best effectiveness 70.4°C 99.9°C 
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In order to demonstrate the important contribution of the radiative exchange, a new 

simulation was conducted not taking into account the emissivity of the materials. 

As shown in Figure 169 and Figure 170, the temperature of the finned silicon wafer 

dramatically raised to 131°C and to 125°C for the best mass specific heat transfer 

and the best effectiveness cases respectively under CSTCs. These results 

confirmed that the radiative exchange should not be neglected when designing a 

micro-finned array. 

 

Figure 169 - Temperature distribution in the best mass specific heat transfer micro-finned array under 
CSTCs (maximum cell’s temperature: 131°C) without the emissivity.  
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Figure 170 - Temperature distribution in the best effectiveness micro-finned array under CPV operating 
conditions (maximum cell’s temperature: 125°C) without the emissivity. 

7.6.4 Mass specific power 

In tracked systems, the weight of the heat sink is a factor that can sensibly affect 

the overall performances. The heat sink was one of the heaviest components of a 

CPV receiver and, for this reason, reducing the weight would have lowered the 

tracker’s load and, thus, increased the system’s efficiency. The mass specific 

power expresses the ratio between the electrical power output and the heat sink 

weight. The higher the mass specific power, the lower is the weight of the heat sink 

per unit of power output. Considering the same electrical output conditions, 

systems with a high mass specific power are lighter than those with a low mass 

specific power. Unfortunately, only a limited number of studies reported the 

dimensions of the heat sinks used in CPV applications, as listed in Table 42. 
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Table 42 - Properties and mass specific power of passive cooled systems presented in literature. 
Whereas not reported, a density of 2700 kg/m

3
 for aluminum and a 1cm

2
 sized cell, with a power output 

of 20.71W at 500× maximum power point, have been considered. 

Ref. 
Type of heat 

sink 
Weight of the heat 

sink/receiver 
Cell’s 
size 

Max electrical power output 
(concentration) 

Mass specific 
power 

[176] 
Heat 

spreader 
0.405 kg 1cm×1cm 20.71We (500×) 51.13 We/kg 

[386] Radial finned 0.600 kg 1cm×1cm 34.99We (1000×) 58.32 We/kg 

 

By using a smaller cell, it was possible to increase the mass specific power: the flat 

silicon wafer used for a 3mm×3mm cell had a mass specific power about 5 times 

higher than the one of the heat sinks used for the 1cm×1cm cells. The introduction 

of the micro-fins was found to further enhance the mass specific power of 50% 

compared to the unfinned case (Table 43).  

Table 43 - Properties and mass specific power of passive cooled systems studied in the present work. 

Type of heat sink 
Weight of the 

heat sink 
Cell’s size 

Max electrical power 
output at 500× 

Mass specific 
power 

Flat 0.007798kg 0.3cm×0.3cm 1.96We 251.34We/kg 

Best mass specific heat 
transfer 

0.005135kg 0.3cm×0.3cm 1.96We 381.71We/kg 

Best effectiveness 0.006126kg 0.3cm×0.3cm 1.96We 319.95We/kg 

 

The best mass specific heat transfer array was found to have a better mass 

specific power than the best effectiveness array. Taking into account the maximum 

temperatures of the cells, it was possible to refine the previous predictions, revising 

the expected maximum electrical power outputs according to the temperature’s 

coefficient reported in the cell’s datasheet (-1.8mW/°C). As shown in Table 44, the 

drops in mass specific power due to the effect of the temperature on the cell’s 

efficiency were in the order of magnitude approximately of 5%. 

Table 44 - Refined mass specific powers of passive cooled systems studied in the present work. 

Type of heat sink 
Max predicted 
temperature 

Refined max electrical 
power output at 500× 

Weight of the 
heat sink 

Mass specific 
power 

Flat 78.8°C 1.86We 0.007798 kg 238.52We/kg 

Best mass specific 
heat transfer 

73.0°C 1.87We 0.005135kg 364.18We/kg 

Best effectiveness 70.4°C 1.88We 0.006126kg 306.88We/kg 

 

Despite the low number of heat sinks that could be compared, these results 

confirmed that the micro-fins were able to introduce two benefits to an unfinned 
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surface: a reduction in maximum temperature and a stronger improvement in terms 

of mass specific power. This outcome strengthens the thesis that the reduction in 

weight is the main achievement of micro-fins. Therefore, micro-finned heat sinks 

can find application in many fields, where the reduction of volumes, weight and 

costs is a priority, such as the mobile phones, the tablets or laptop markets. 

The research of novel heat transfer solutions for electronics packages had been 

constantly increasing, following the miniaturization of the electronic components. In 

particular, much effort has been spent on the thermal management of LEDs 

[387,388]. Table 45 lists different solutions proposed in the last years and 

compares the masses and the thermal resistances with those of a referenced heat 

sink presented in [389]. The thermal resistance and the mass of each heat sink 

varied with the application, so no exhaustive analysis could be conducted in this 

case. Despite that, the comparison confirmed that the reduction in weight is the 

main benefit of micro-fins: compared to the reference heat sinks, the micro-fins 

showed a reduction in mass much important than the increase in thermal 

resistance.     

Table 45 - Comparison of various referenced fin arrays developed for LED applications. 

Ref. 
Type of heat 

sink 
Power 

[W] 
Mass 
[kg] 

Thermal 
Resistance [°C/W] 

Mass/ 
Ref. Mass 

Thermal resistance/ 
Ref. thermal resistance 

[389] Radial 5.30 0.230 2.97 Ref. Ref. 

[389] Radial 5.30 0.179 3.44 0.778 1.160 

[389] Radial 5.30 0.251 2.90 1.091 0.978 

[390] Triangular fins 1 N.A. 97.57 N.A. 32.852 

[391] Plate fins 112 3.930 0.16 17.08 0.054 

- 
Best mass 

specific heat 
transfer 

2.2 0.005 21.82 0.022 7.346 

- Plate micro-fins 2.2 0.006 20.64 0.027 6.948 

 

The deployment of different fin geometries can further enhance the thermal and 

weight benefit of micro-fins. In particular, pin fins were already found to perform 

better, in terms of heat transfer, than plate fins with the same dimensions. 

Moreover, pin fins would introduce a significant reduction in weight, leading to an 

important increase in mass specific power.  
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7.7 Conclusions 

The present chapter reported the investigation on a passively-cooled solar receiver 

for high concentrating applications. Micro-finned surfaces were found to be one of 

the most promising solutions for passive CPV cooling and can find use in many 

applications, such as electronics or communications. In lack of literature on the 

thermal behaviour of natural convective micro-fins, different fin geometries were 

diced on the back surface of a silicon wafer and tested in a controlled environment. 

The correlations between the geometry and the thermal performance were 

presented: the heat transfer coefficient was found to increase when the fin spacing 

and the fin thickness were increased and to decrease when the fin height was 

increased. These correspondences were found to be consistent if the arrays were 

tilted. A refined Nusselt number correlation for horizontal fin arrays was presented: 

for the first time, the effects on the thermal behaviour of the micro-fin thickness 

were considered. The new equation was able to predict the Nusselt number with 

the highest accuracy so far reported: the average discrepancies dropped from 

10.59% and 26% to 6.05% and 7.41% for the data obtained in the present 

experimental work and in literature respectively. The contribution of the radiative 

exchange should not be neglected in the study of a micro-fin array in natural 

convection, since up to the 56% of the heat transferred in the conducted 

experiment was exchanged by the fins through radiation.  

Different heat sinks metrics were considered, since the heat transfer coefficient 

was not sufficient to predict the thermal performance of a heat sink in natural 

convection. The micro-fins were found not to be always effective: a ±14% variation 

in heat transfer was calculated for different geometries compared to a flat surface. 

It meant that in some applications, due to the small dimensions and the small air 

volumes involved at micro-scale, the introduction of micro-fins could lead to the 

deterioration of the thermal exchange. Although no clear correlation was found 

between the fin effectiveness and the geometry, the results indicated that the fin 

effectiveness tended to be higher for vertically orientated arrays. On the other 

hand, the micro-fins were proven to benefit in terms of mass and weight reduction 

compared to flat heat sinks: in particular, the specific mass heat transfer was found 
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to increase when increasing the fin spacing or the fin height and decreasing the fin 

thickness.  

A thermal investigation of the micro-finned heat sink was reported to prove the 

reliability of this solution in CPV. The geometry that maximized the specific mass 

heat transfer and that one that maximized the fin effectiveness were taken into 

account. The fins were tested using the input data from an experimental 

investigation to predict the thermal management of CPV under standard operation 

and worst case conditions. Under both these conditions, the fins performed well, 

keeping the solar cell at a lower temperature than the maximum acceptable one 

and below that predicted for a flat silicon wafer. Along with good thermal 

performance, the fins showed an increased mass specific power compared to 

similar solutions currently applied in CPV and LEDs. In particular, the highest value 

of mass specific power was registered for the array that optimized the mass 

specific heat transfer: it was about 20% higher than that of the best effectiveness 

array. This parameter is expected to be further enhanced by different fin 

geometries, such as the pin fins: along with the proven benefit in heat transfer, pin 

fins would furtherly decrease the weight of the heat sink and, then, improve the 

mass specific heat transfer. Reducing the heat sink’s weight would reduce the load 

for the solar tracker and, then, improve the system’s efficiency.  

Despite the high potential, natural convective micro-fins are still a widely 

unexplored subject. Only a limited number of papers have been published, and the 

wide knowledge available for macro-scale heat transfer cannot be applied at micro-

scale. Further investigations need to be carried out, in order to reveal the full 

potentials of this technology. In particular, a correspondence between fin 

effectiveness and geometry would be useful to design optimized micro-finned 

systems. In this light, more geometries and materials need to be tested for a wider 

understanding. Moreover, defining the correlation between the thermal behaviour 

and the tilt angles of the fin array would be a practical tool for designing naturally 

convective micro-finned heat sinks for tracked or mobile applications. 
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 Conclusions and future work Chapter 8:

8.1 Summary 

Theoretical and experimental investigations on innovative solutions to improve the 

performance of high concentrating photovoltaic receivers have been presented in 

this thesis. The research followed two directions: the development of a densely 

packed cell assembly for a 500× CPV system and a study on the applicability of 

micro-fins for the passive cooling of single cell HCPV receivers. Both these studies 

were conducted with the aim to contribute to the development of a low-cost and 

reliable HCPV, able to increase its share in the competitive power generation 

market. The most important outcomes of the work are resumed in the following 

paragraphs. 

8.1.1 Selection of materials and components for CPV receivers 

The solar receiver is the part of the CPV where the concentrated sunlight is 

focused and where the current is extracted. It consists of several components: one 

or more solar cells, by-pass diodes, interconnections, an encapsulant layer, a 

substrate, and a heat sink. A summary of the most common materials for CPV and 

the most suitable ones has been first presented. The surface mounted 

components, such as cells and diodes, are allocated on a substrate, which 

mechanically supports the whole receiver, transferring the waste heat from the cell 

to the cooling system and allocating the electrical circuitry. Among the different 

available substrates, the most appropriate materials were selected through a 

thermal investigation. A 3D model of the substrates was developed and both the 

operating and the worst case conditions were reproduced to check the maximum 

temperatures achieved by the CPV cells. 

 Multijunction (MJ) cells were selected because widely recognized as the 

most convenient device for HCPV applications. Indeed, the commercial 

triple-junction cells have achieved now efficiencies ranging from 37% to 

42%.  

 MJ cells are particularly susceptible to the effects of shading, thus, one by-

pass diode per cell was installed to reduce electrical losses and risks of 
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damages. In particular, Schottky diodes were the most suitable ones for 

HCPV because of the reduced forward voltage drop that led to lower losses 

and a lower operating temperature.  

 The interconnectors were realized by employing the wire bonding 

technology, considered a reliable solution able to extract the current 

generated by the cells with limited losses and low costs.  

 The encapsulation was made of PDMS, a clear silicone resin solution 

already employed in CPV systems because of its high transmittance and the 

long degradation time.  

 Despite a thermal behaviour similar to that of the direct bonded boards, the 

most common substrate used in HCPV applications, insulated metal 

substrates were preferred for the development of the 144-cell receiver 

because of the lower costs and the easier manufacturability. The cheap and 

common printed circuit boards, instead, showed an inappropriate thermal 

management for the high thermal fluxes of HCPV.  

 Despite the higher costs, a 5cm×5cm silicon wafer was selected for the 

single cell, passively-cooled application, because of the lower temperatures 

attained. Moreover, the opportunity of integrating a cooling system in the 

receiver with no need of an intermediate bonding layer was expected to 

enhance the thermal performance of the system. 

8.1.2 Design and fabrication of a densely packed cell assembly  

The development of a novel, 144-cell densely packed cell assembly, rated for a 

peak power of 2.6kWe under standard test conditions, has been presented. The 

extreme conditions in which CPV systems operate, as well as the high electrical 

currents and power densities faced, make the design of CPV more complex than 

that of flat-PV. In the present thesis, the design of the densely packed cell 

assembly has been explained: the pattern of the electrical circuit, the choice and 

the size of the components, and the expected electrical and optical losses have 

been reported in detail and are summarized below. The receivers were 

manufactured by using standard micro-electronic processes and the whole 

fabrication process has been detailed in the thesis also. 
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 The innovative design of the conductive pattern was realized to limit the 

electrical losses and to minimize the risks of failures, according to the 

specifications reported by the international standards. Overall, Joule losses 

were expected to affect the total power output for less than the 1%. 

 The cell assembly was conceived to limit the raise in temperature due to the 

current flow to 5°C. Conservative approaches were followed to size the 

diodes and the aluminum bonded wires: safety factors of 1.5 and 1.4 were 

respectively introduced. These initiatives, along with the consideration of 

adequate mechanical tolerances, enhanced the reliability of the receiver.  

 The conductive pattern consisted of four simple copper shapes that, 

repeated in space, formed the whole electrical circuit and could be easy 

scaled and adapted to different applications.  

 The losses due to the non-ideal optical transmittance of the encapsulation 

were estimated: out of an average 85.77% optical transmittance, the drop in 

current output was limited to 7.30% due to the current mismatch between 

the bottom and the two top-junctions of the cells. 

 The insulated metal substrate was produced by chemical etching and the 

components were manually picked-and-placed. A tin based solder paste 

with a 3%-content of silver was used to enhance the mechanical strength of 

the joint. The solder paste was displaced through a specially made thin 

metallic paste mask. 

 Before bonding the wires, the board was cleaned to remove any solder 

paste left on the surfaces. Despite this process, the 3.75% of the bonded 

wires were found to unstick, a number that was anyway balanced by the 

safety factor introduced while dimensioning the wires.  

 The methods to enhance the safety of the board when handled or moved 

have been described in the thesis: some room was left between the cells 

and the edges of the boards to protect the components from hurts, and four 

holes were drilled on the boards to allow a safer packaging. 

 The design of the substrate was conceived to be directly mounted on the 

active-cooling system, without any intermediate epoxy or bonding layers. 
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8.1.3 Analysis and characterization of a densely packed cell assembly 

The quality and the reliability of the produced cell assembly were verified through 

standardized tests and electrical characterizations. Particular effort was spent to 

demonstrate the strength of the electrical joints, generally the most fragile 

components in any electric device. Both indoor and outdoor characterizations were 

conducted to predict the electrical performance of the system while in operation. 

The first prototype was tested using an AAA solar simulator: due to the size of the 

board, only a one sun characterization could be conducted in indoor conditions. 

The experimental data were refined by using a referenced methodology to predict 

the performance at 500×. The electrical outputs were compared to those of a 

commercial receiver equipped with the same solar cell. A breakdown of the costs 

has been reported as well, along with the predictions on the potential cost cutting. 

 A cross-sectional visual inspection of the solder joint conducted through a 

Scanning Electron Microscope showed an uniform distribution of the solder 

paste below the cell, which was expected to enhance the electrical and 

thermal performance of the system. A die shear strength test was carried 

out as well. All the tested samples succeeded, showing higher mechanical 

strength than the minimum requirement of the international standards: out of 

a minimum limit of 5.998kgF, the joints were found to break under an 

average force of 10.337kgF.  

 Similarly, a wire bonding strength test was conducted on the 

interconnectors. Only one out of the 50 tested wires was found to fail below 

the minimum force imposed by the standards, probably due to some solder 

paste contamination left despite the cleaning. The number of faulty 

connections was well balanced by the adopted safety factor. Overall, the 

average registered force of 10.169gF was more than three times higher than 

the minimum load of 2.954gF recommended by the standards. 

 An experimental investigation proved the negligible effect of the 

encapsulant’s thermal expansion, due to the high bonding strength of the 

silicone. 
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 It was found that the short circuit current generated by the board was 4.80% 

lower than the one of the commercial receiver under the same testing 

conditions. Similarly, the open circuit voltage of 3.08V per cell was about 

2.06% lower than that of the commercial receiver. 

 A peak electrical efficiency of 29.4% was predicted: it was raised up to 

32.4% by using more efficient cells. In the same way, the fill factor was 

enhanced from 81% up to 84%. 

 A preliminary outdoor characterization was conducted: the first results 

demonstrated the reliability of electrical components under the high current 

expected for HCPV applications. 

 The first cell assembly prototypes were produced with a cost of $0.91/Wp, 

which represents about one third of the actual cost of modules reported in 

literature.  

 A drop of 17% in costs was expected by increasing the number of produced 

units, merely because of components’ price reduction if the number of 

ordered units was increased. Moreover, the exploitation of automatic 

manufacturing processes would further lower the costs. 

8.1.4 Thermal performance of micro-fins in natural convection 

A detailed review of cooling technologies for HCPV has been presented. The 

research focused on suitable passive micro/nano solutions. Among all the reported 

technologies, micro-fins in natural convections were found to be one of the most 

attractive because of the simplicity, reliability and potential ability to handle the high 

fluxed of a 500× CPV system. Despite the wide range of applications of macro-fins 

and the considerable number of papers published on micro-fins in forced flow 

conditions, only a restricted number of studies on naturally conductive micro-fins 

were found. For this reason, a preliminary experimental investigation was 

conducted to broaden the knowledge on this solution and to contribute to the 

identification of optimal micro-fin geometries.  

 An experimental apparatus was prepared following the methodologies 

presented in literature: an uncertainty of 8.25% was predicted, which was in 

line with those reported by the previous investigations. 



Chapter 8: Conclusions and future work 

 

239 

 In agreement with previous studies, the experimental results indicated that 

the micro-fin heat transfer coefficient increased with the fin spacing and 

decreased with the fin height. 

 For the first time, the fin heat transfer coefficient was found to increase with 

the thickness of the fins. At micro-scale, the fins and the air volumes acted 

as parallel conductive layers, thus increasing the fin thicknesses while 

keeping the spacing constant enlarged the high-conductive volume of silicon 

compared to the low-conductive volume of air. So, the overall thermal 

conductance of the array was enhanced by a larger micro-fin thickness. 

 The heat transfer coefficients were shown to increase with the difference 

between the fin and the air temperatures till a maximum value. For the first 

time, the heat transfer coefficient was found to decrease after a peak at high 

temperatures. This was due to the heat transferred by radiation that grows 

at higher rates than that transferred by convection. 

 A refined Nusselt number correlation was proposed. For the first time, the fin 

thickness was taken into account and the new equation was able to 

minimize the difference between predicted and experimental data, with an 

average discrepancy as low as 6.05%. 

 Pin fins were found to perform better than plate fins, in terms of heat transfer 

coefficients. 

 Radiation contributed up to the 56% of the heat transfer and was shown to 

significantly enhance it when increasing the difference between the fin and 

the air temperatures. 

 Micro-fins were found not to always enhance the heat transfer of a flat 

surface: the fin effectiveness of the considered experimental data ranged 

between 0.86 and 1.14. 

 The mass specific heat transfer was found to increase when fin spacing or 

height increased, and/or the fin thickness decreased. These results 

supported the thesis that the drop in weight was the main goal achieved by 

dicing a micro-fins array on a flat surface.  
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 The correlations between the heat transfer coefficients and the fin geometry 

were found to be qualitative consistent when the orientation of the fins was 

varied. 

 The average thermal resistance of micro-fins was found to increase by 12% 

when the fins had a downward orientation, as compared to the upward 

facing ones. 

 The fin effectiveness was found to achieve higher values for vertically 

oriented fins: the observed enhancement between horizontal and vertical 

fins ranged between 2% and 11%. 

8.1.5 Applicability of micro-finned heat sinks for passive cooling of 

HCPV 

The experimental investigation conducted on micro-fins under natural convection 

led to the identification of two optimal fin geometries to be applied for the passive 

cooling of HCPV. The first geometry enhanced mass specific heat transfer and, 

was, thus, expected to minimize the weight of the receiver, whereas the second 

one maximized the fin effectiveness and was expected to optimize the thermal 

exchange. A 3D thermal model was developed, taking into account the heat 

transfer coefficients measured in the experiment. The thermal behaviours of the 

two considered fin geometries were compared with that of an unfinned silicon 

wafer. Both the operating and the worst case conditions for a 500× CPV system 

were considered. The numerical investigations showed the outcomes listed below. 

 Both fin geometries were found to keep the cell temperature below the 

maximum allowed limits for CPV and showed enhanced thermal 

performance than the unfinned surface. 

 The best mass specific heat transfer array showed temperatures of 73.0°C 

in operating conditions and 103°C in the worst case conditions. 

 The best effectiveness array showed the lowest cell’s temperatures: 70.4°C 

in operating conditions and 99.9°C in the worst case conditions. 
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 The cell temperature of the best effectiveness array was found to drop to 

48.2°C by reducing the DNI to 900W/m2 and considering a wind speed of 

2m/s. 

 The contribution of radiation was demonstrated to be not negligible, since 

ignoring the emissivity of the material would have increased the cell 

temperature of the two micro-finned receivers to over 125°C under operating 

conditions. 

 Overall, the employment of micro-fins was found to lead to an improvement 

of 0.89% in terms of electrical efficiency, as compared to an unfinned 

surface. Along with that, a significant reduction in the heat sink’s weight was 

achieved. 

 The mass specific power of commercial HCPV heat sinks was found to 

range between 50 and 60We/kg. The micro-fins studied in this work showed 

the potential to increase it up to more than 350We/kg, strongly reducing the 

load for the tracker. 

 Micro-fins enhanced the mass specific power by almost 75% as compared 

to an unfinned surface. Further enhancements were expected by employing 

micro-pin fins instead of micro-plate ones. 

8.2  Achievements 

In 2011, among the research priorities to be addressed by the CPV community, the 

European Union [46] identified the development of larger modules and the design 

of effective cooling systems as key targets. The present study was conceived as 

an effective contribution towards those goals. This thesis reported novel proposals 

for the optimization of high concentrating photovoltaic receivers. A new densely 

packed cell assembly was developed, introducing an original low-resistance design 

of the conductive layers. The exploitation of standard micro-electronics 

manufacturing processes can lead to a cost reduction, without any negative effect 

on the quality of the module. Moreover, the use of an insulated metal substrate 

represented an improvement towards the awaited cost-cutting for CPV. For the first 

time, all the stages of the design and fabrication of a CPV cell assembly were 

described. The specific knowledge accumulated on the issues and the challenges 
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connected with the fabrication of receivers were made available in literature, 

contributing to the development of more reliable and competitive CPV devices. 

The deployment of passively-cooled single cell receivers represents an attractive 

alternative to large, actively-cooled receivers. Passive cooling systems were 

proven to be more reliable than active ones and to reduce the risks of damages to 

the CPV components. Moreover, they are generally cheaper and the employment 

of micro-technologies can decrease the mass usage required for the heat sink, 

thus reducing both the costs and the load for the tracker. The investigation on 

micro-fins in natural convection conditions led to novel fundamental outcomes on 

the basics of the micro-scaled heat transfer. For the first time, the effect of the fin 

thickness on the thermal performance was identified and explained. A refined 

equation to determine the Nusselt number was proposed to predict the heat 

transfer of different micro-fin geometries. The investigation took into account heat 

power and temperature ranges that had not been considered before. More 

importantly, micro-fins were found not to be necessarily beneficial in terms of heat 

transfer. Despite being unusual and unexpected for extended surfaces, this 

behaviour was explained because of the conduction is dominant over natural 

convection when air is constrained within the narrow volumes between micro-fins.  

The experimental investigation carried out in this study allowed identifying the most 

favourable micro-fin geometry to be applied to CPV. As for the employment of 

micro-fins for the passive cooling of HCPV, no previous attempts were reported in 

literature. Micro-fins machined on a silicon wafer showed the potential to introduce 

a double benefit: decreasing the CPV cell temperature and, at the same time, 

reducing the heat sink weight. Along with that, the use of micro-fins can likely 

enhance the mass specific power of the receiver as compared to the currently 

available heat sinks and micro-scaled flat silicon wafers. These results suggest that 

the employment of cooling micro-fins can be beneficial in several mobile or tracked 

applications where the reduction of weight and costs are primary requirements. 
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8.3 Recommendations for future works 

The major objectives of the project were achieved and have been reported in detail 

in the present thesis. However, some of the BioCPV project’s tasks have yet to be 

concluded. The full scale prototype was being installed in the Indian Institute of 

Technology Madras, India: a full scale outdoor characterization would allow refining 

the design of the presented receivers, in order to enhance the electrical and the 

thermal performance of the system. A long term outdoor testing would also prove 

the durability of the developed receivers and highlight which modifications need to 

be introduced. Moreover, the fabrication of the single cell receiver would allow a full 

scale characterization, in terms of electrical and thermal performance. Finally, new 

ideas to be investigated emerged during the current study. Hence, a list of 

recommendations for future works is reported here:  

 Minimize the non-uniform optical losses from the CPV module to improve 

the electrical performance. 

 Evaluate different configurations of the cells’ series on the densely-packed 

cell assembly in order to maximize the electrical performance according to 

the distribution of light. As pointed out, a significant enhancement in power 

output (up to the 25%) can be achieved by increasing the number of series 

and dividing the central cells from those on the sides. In this light, further 

experimental data about the light distribution are needed. 

 Improve the quality of the manufactured receivers, through the employment 

of automatic processes. 

 Perform accelerated weather tests to enhance the stability of the cell 

assembly. 

 On-field installation and continuous monitoring of the produced receiver to 

get more information on the long term performance and on the durability of 

the components. 

 Evaluate the effect of dust on the performance of the densely packed 

receiver. 

 Investigate the behaviour of MJ cells under IR reflecting coverglasses. 

 Analyse the levelized cost of energy (LCOE) of the whole CPV system. 
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 Investigate the correspondence between the fin effectiveness and the fin 

geometry to optimize the design of micro-finned heat sinks. In particular, the 

benefits for CPV cooling due to the introduction of micro-pin fins instead of 

plate ones should be studied. 

 Perform a detailed energy analysis of the benefits of a light, micro-passive 

cooling heat sink as compared to an active cooling system. 

 Develop and test the single cell receiver with an integrated micro-finned 

array. 

These recommendations are expected to improve the performance and reduce the 

costs of CPV systems. These investigations could not be conducted earlier 

because of time constraints, and because they were out of the primary scope of 

the PhD project, but would definitely contribute to CPV cost-cutting and to its 

diffusion in the future power generation market. Moreover, the installation of the full 

BioCPV project power system will allow broadening the investigation: researches 

on the integration of different energy sources and on the opportunity of providing 

reliable and continuous renewable power to rural areas will be presented.  

The study on micro-technologies for passive CPV cooling led to the discovery of a 

high potential solution which has been yet limitedly investigated. More research on 

the fundamentals of micro-fin heat transfer should be conducted. Moreover, further 

experimental investigations on the application of micro-fins for cooling purposes 

are recommended because they can be beneficial for both the scientific and the 

industrial communities. Possible approaches in this respect are: 

 Research on fin geometries different than plate or pin fins, on a wider range 

of fins dimensions, including the nano-scale, and on a broader variety of 

materials. 

 Investigate the behaviour of micro-finned arrays made of different materials. 

 Experimental investigation on the cooling performance of micro-fins for a 

concentrated heat source. So far, the heat transfer in micro-fins has been 

experimentally studied only for uniform heat sources, with a heating surface 

as large as the heat sink. 
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 Correlation between the thermal behaviour and the orientation of the fins. 

This research would be useful for the prediction of the thermal performance 

of tracked systems, such as CPV. 

Micro- and nano-technologies can address the requirements for smaller volumes 

and lower costs that are currently sought after by industries and customers. When 

the dimensions of the components are scaled to the micro- or nano-range, 

important changes in the materials properties take place. These changes need to 

be investigated to maximize the benefits that micro- and nano-technologies can 

provide to our everyday life.  
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