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Abstract 

The speed and complexity of globalisation and reduction of natural resources on the one 

hand, and interests of large multinational corporations on the other, necessitates proper 

management of mineral resources and consumption. The need for scientific research and 

application of new methodologies and approaches to maximise Net Present Value (NPV) 

within mining operations is essential. 

 

In some cases, drill core logging in the field may result in an inadequate level of 

information and subsequent poor diagnosis of geological phenomenon which may 

undermine the delineation or separation of mineralised zones. This is because the 

interpretation of individual loggers is subjective. However, modelling based on logging 

data is absolutely essential to determine the architecture of an orebody including ore 

distribution and geomechanical features. For instance, ore grades, density and RQD 

values are not included in conventional geological models whilst variations in a mineral 

deposit are an obvious and salient feature. Given the problems mentioned above, a series 

of new mathematical methods have been developed, based on fractal modelling, which 

provide a more objective approach. These have been established and tested in a case 

study of the Kahang Cu-Mo porphyry deposit, central Iran. 

 

Recognition of different types of mineralised zone in an ore deposit is important for mine 

planning. As a result, it is felt that the most important outcome of this thesis is the 

development of an innovative approach to the delineation of major mineralised 

(supergene and hypogene) zones from ‘barren’ host rock. This is based on subsurface 
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data and the utilisation of the Concentration-Volume (C-V) fractal model, proposed by 

Afzal et al. (2011), to optimise a Cu-Mo block model for better determination of an ultimate 

pit limit. Drawing on this, new approaches, referred to Density–Volume (D–V) and RQD-

Volume (RQD-V) fractal modelling, have been developed and used to delineate rock 

characteristics in terms of density and RQD within the Kahang deposit (Yasrebi et al., 

2013b; Yasrebi et al., 2014). From the results of this modelling, the density and RQD 

populations of rock types from the studied deposit showed a relationship between density 

and rock quality based on RQD values, which can be used to predict final pit slope. 

Finally, the study introduces a Present Value-Volume (PV-V) fractal model in order to 

identify an accurate excavation orientation with respect to economic principals and ore 

grades of all determined voxels within the obtained ultimate pit limit in order to achieve 

an earlier pay-back period. 
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1.1    Problem Description  

Mineral excavation by open pit mining methods requires huge investment which will 

inevitably rise over the life of a mine due to increases in the amount of cumulative waste 

materials and mining costs (e.g., See Appendix. H for cumulative data; Caccetta and 

Giannini, 1988; Hustrulid and Kuchta, 2006; Akbari et al., 2008; Elkington and Durham 

2011). Before starting the mining operation, it is necessary to design the final shape and 

size of the pit in order to determine the minable reserve and amount of waste to be 

removed. Following this, an optimised block model should be produced showing ore 

grades, density and Rock Quality Designation (RQD). RQD is the method perhaps most 

commonly used for characterising the degree of jointing in drill cores and can be 

considered as an expression of intact core lengths greater than a threshold value of 0.1 

m along any bore hole. An increase in the number of joints in a rock mass causes a 

decrease in RQD (Bieniawski, 1984) and Net Present Value (NPV), the latter which is 

defined as the sum of all cash flows discounted to a specific time in an investor’s minimum 

rate of return, or discount rate. NPV is a measure of value created by investing in a project 

(a mining project in this scenario) and not investing capital in any other project at the 

minimum rate of return. NPV higher than zero is acceptable however; an NPV equal to 

zero is a breakeven. The cumulative NPV indicates the value of one additional year of 

cash flow and its impact on the overall project NPV (Stermole and Stermole, 2012). 

Calculation of the final pit limit, which this study aims to optimise, is a function of numerous 

variables, especially NPV, and may be re-evaluated many times over the mine life (Lerch 

and Grossmann, 1965; Dowd and Onur, 1992; Akaike and Dagdelen, 1999; Hustrulid and 

Kuchta, 2006).  
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Separation of different populations based on ore grades and consequently the ID of 

mineralised zones in geological modelling for excavation of minable ores, specifically 

identifying ‘barren’ host rock from the main ore body, is one of the fundamental issues 

within a mining operation. Conventional methods for characterising mineral assemblages 

(e.g. X-ray Diffraction (XRD), Electron Probe Micro Analyser (EPMA), Scanning Electron 

Microscopy (SEM) and Portable Infrared Mineral Analyser (PIMA)) have been used since 

the 1960s to delineate mineralised zones however these do not have enough detailed 

information based on ore grades particularly in the porphyry deposits due to variation of 

ore grade distribution within block models (Schwartz, 1947; Lowell and Guilbert, 1970; 

Cox and Singer, 1986; Sillitoe, 1997; Beane, 1982; Berger et al., 2008).  

 

Fractal geometry has a distinctive power to distinguish natural populations (zones) within 

orebodies. The research within this thesis utilises the Concentration-Volume (C-V) fractal 

model developed by Afzal et al. (2011) to delineate mineralised zones in terms of grades 

to obtain an optimised orebody model. Data from rock mass characterisation is then input 

into newly developed Density-Volume and RQD-Volume fractal models to determine an 

ultimate pit limit for a maximum NPV. 

 

The importance of zone separation in porphyry ore deposits is as follows: 

 

1. The key property of porphyry ore deposits is their low ore grades and high tonnage. 

However, the importance of this issue should be attributed to this fact that the different 

mineralised zones (leached, oxidised, supergene and hypogene) of those deposits are to 
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be distinguished carefully in order to demonstrate a comprehensive mine design and 

planning (Sim et al., 1999; Cheng and Agterberg, 2009; Sadeghi et al., 2012). For 

example, supergene enrichment zones are generally accepted to be the primary target 

when mining porphyry deposits (Hartley and Rice, 2005; Berger et al., 2008; Asadi et al., 

2015). They are enriched in ore elements especially copper. The supergene enrichment 

zone consequently has high values in terms of money pay-back due to high grades. It is 

also usually located near surface which can reduce the costs of mining (Alpers and 

Brimhall, 1989; Sillitoe, 2005). In addition, the concentrator capacity is usually determined 

during the pre-feasibility study so it is necessary that the various zones with 

corresponding different grades and tonnage be identified to regulate the concentrator 

(Hustrulid and Kuchta, 2006). Detailed theoretical and experimental investigations of 

porphyry ore deposits have provided us with a good knowledge of how they were formed. 

It is now relatively easy to establish natural geochemical variability in terms of ore grades. 

However, geoscientists are now able to decipher the reasons for extreme variability in 

element concentrations using mathematical-oriented practices such as fractal modelling. 

This type of approach would continue to enhance the potential to identify relations 

between ore grade and their spatial distribution within a deposit (Monecke et al., 2005; 

Davies and Mundalamo, 2010; Spalla et al., 2010; Sadeghi et al., 2012). 

 

2. The hypogene zone, which often comprises the bulk of a porphyry Cu deposit, is 

generally located below the supergene enrichment zone and contains lower grades with 

high tonnages of ore. Therefore, the location of this zone must be accurately determined 
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because huge amount of feed input to the processing plant is generally from this zone 

(Atapour and Aftabi, 2007).  

 

3. The oxidised zone, which overlies the enriched supergene blanket, contains generally 

low but variable levels of Cu. By the end of the 20th century, this zone was generally 

treated as waste but after developing leaching and bioleaching methodologies, Cu has 

been exploited from this zone (e.g., copper (I) oxide or cuprous oxide for example cuprite 

(Cu2O), copper (II) oxide or cupric oxide for instance tenorite (CuO), copper carbonates 

such as azurite and malachite, copper sulphate mineral such as chalcanthite, copper 

silicates for example chrysocolla and dioptase). Therefore, determination of the 

boundaries for this zone is fundamentally important so as to specify the distinct section 

exposed to leaching. 

 

4. The discrimination of ‘barren’ host rock from the orebody and delineation of the zone’s 

boundaries play a significant role in determining an optimised block model to be examined 

for final pit limit and correspondingly pit optimisation. Unfortunately, in most cases the 

‘barren’ host rock is mistakenly identified as ore and consequently the size of the reserve 

is exaggerated (Agterberg et al., 1993; Panahi et al., 2004; Zuo et al., 2012; Zuo and 

Wang, 2015). This results in egregious errors during production planning. On the other 

hand if ‘barren’ rocks and ore are not properly delineated, some parts of the ore deposit 

may be lost. As a result, an exact determination of the boundary and the locations of the 

zones is necessary for the long-term planning of Cu mines and consequently should not 

be subject to major changes during mining. For example, if basic requirements are not 
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met, the formerly selected input feed grade (considering plant initial ore grade) to the 

processing plant will be lowered significantly which will reduce production. This is typically 

the case in the large copper mines of Chile and the USA (Carrasco et al., 2004; Parhizkar 

et al., 2011 and 2012). 

 

The use of geological data including structure, lithology and mineralogy, main ore types 

and associated secondary elements, geophysical and geochemical anomalies as well as 

morphology of the ore deposit is considered to be the most important method for 

separating the various mineralised zones in descriptive models which were proposed and 

developed by Cox and Singer (1986). These models have major disadvantages as 

follows: 

 

1. Geological core-logging is subjective rather than quantitative. In the event that both 

thin and polished sections of all cores are prepared to improve the accuracy, this process 

is both costly and time-consuming.  

 

2. The grade of the ore element (particularly Cu) is not observed (visual assessment) with 

these methods while the variation of the grades in each zone is an obvious and salient 

feature which has to be always measured in a laboratory. Fractal modelling has proved 

their superiority to the classical statistical and conventional geological methods as follows: 

 

 In classical statistics, for the purpose of determining the boundaries in mineralised 

zones, frequency distribution of a related ore element in an intended area must 
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adhere to a normal distribution. In addition, separation of different populations 

based on mean and standard deviation should be carried out with normalised data. 

This requirement is not always met in data. In addition, local neighbourhood 

statistics can provide less statistical information which is less biased than that of 

global statistics, such as mean and SD, because geochemical data generally 

satisfy non-normal distributions and contain outliers. However, there is no need to 

normalise data when the distribution of elemental concentrations is determined 

through fractal modelling (Agterberg et al., 1993; Cheng et al., 1994; Agterberg et 

al., 1996; Sim et al., 1999; Zhang et al., 2007). 

 

 Traditional methods consider only the frequency distribution of the elemental 

concentration and ignore its spatial variability. Specifically, the information about 

the spatial correlation is not always available. Moreover, statistical methods e.g., 

by histogram analysis or Q–Q plots assume normality or log-normality and do not 

respect the shape, extent and magnitude of a studied area (Armstrong and 

Boufassa, 1988; Clark, 1999; Reimann and Filzmoser, 2000; Limpert et al., 2001). 

A power law relationship between quality parameters (e.g., ore element) and their 

occupied spatial positions (e.g., volume, area and perimeter) are illustrated in the 

fractal/multifractal modelling to solve the problematic issues mentioned above 

(Rafiee and Vinches, 2008; Sadeghi et al., 2015). 

 

 

 Those values which are not within the range (outliers) must be identified and 

eliminated accordingly; otherwise they lead to the intended study having unreal 



33 
 

results. All data are contributed to fractal/multifractal modelling which is help for 

better separation of different mineralised zones (Xiao et al., 2014; Zuo, 2014). 

 

Given the problems as mentioned above, using a series of newly established methods 

based on mathematical analyses seems to be inevitable. By using these methods, one is 

able to delineate the various mineralised zones in terms of grade and therefore the 

accuracy of one’s pit limit optimisation. As a result, a C-V fractal modelling technique is 

proposed as a better method in order to identify geochemical zones, rock mass 

characteristics and economical populations in the Kahang Cu-Mo Porphyry deposit. The 

deposit is identified as an important Cu-Mo and deposit located approximately 73 km NE 

of Isfahan in Central Iran. It contains more than 100 million tonnes of sulphide ore with an 

average grade of 0.5 wt.% Cu and 90 ppm Mo. This deposit occurred within the Cenozoic 

Urumieh–Dokhtar magmatic belt, one of the subdivisions of the Zagros Orogenic Belt. 

This belt extends for some 2,000 km from NW to SE Iran. Many of the Iranian large 

porphyry Cu deposit such as Sarcheshmeh, Sungun and Meiduk are situated within this 

belt. Geological, geophysical, geochemical, alteration patterns as well as drilling data 

show that there could be a large Cu porphyry deposit at Kahang.  

 

1.2 Objectives of the Research 

The most important issue of this PhD thesis is to attempt to develop an innovative method 

to separate oxidised, supergene-enriched and hypogene zones from ‘barren’ host rock in 

a Cu-Mo porphyry deposit on the basis of fractal geometry using geochemical data. As a 
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result, an approach called C-V fractal modelling has been developed to determine proxies 

from grades, densities, RQDs and Present Values (PVs) within a deposit for pit limits.  

The general objectives of this study are as follows: 

 To create a 3D geological model for lithology, alteration, zonation and 

mineralisation  

 Generate a grade block model via the C-V model 

 Rock mass characterisation using fractal/multifractal modelling 

 Determine economic principals 

 Calculate final pit limit for the Kahang deposit 

 Create an economic block model from Present Value-Volume (PV-V) fractal 

modelling 

 Calculate pushbacks resulting from the PV-V fractal model 

 

1.3 Application of Fractal/Multifractal Modelling with Reliance on 

Geochemical Population 

Euclidian geometry identifies geometrical shapes with an integer dimension say 1D, 2D, 

3D, etc. However, there are many other shapes amongst spatial objects, whose 

dimensions cannot be mathematically described by integers but by real numbers or 

fractions (Bölviken et al., 1992; Agterberg et al., 1996; Aghanabati, 2004; Ali et al., 2007). 

These spatial objects are called fractals. In an abstract form, fractals describe complexity 

in data distribution by their fractal dimensions. A wide range of complex 

structures/features and geological phenomena of interest to geologists and geochemists 

have been quantitatively recognised using fractal/multifractal modelling over the past 
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several decades, mainly how to identify geochemical populations and quantify the spatial 

distribution of geochemical data. Various geochemical processes can be described based 

on differences in fractal dimensions obtained from analysis of relevant geochemical data. 

Recognition of geochemical populations is a crucial aspect for applied geochemists to 

effectively detect geochemical populations from background (Darnley et al., 1995; Plant 

et al., 2001; Lima et al., 2003, 2005 and 2008; Albanese et al., 2007).  

 

Ore elements, especially trace elements, do not follow a normal or lognormal distribution. 

However, they follow a positively skewed distribution toward high values (Ahrens, 1954 

and 1957; Krige, 1966; Turcotte, 1986; Reimann and Filzmoser, 2000; Agterberg, 2007; 

Carranza, 2009). Recent investigations of geochemical features have shown that self-

similarity or self-affinity are significant properties of geochemical data (Bölviken et al., 

1992; Cheng et al., 1994; Zuo et al., 2009a and b; Afzal et al., 2011; Zuo and Wang, 

2015). The most effective way to distinguish geochemical anomalies from the background 

is to suggest a comprehensive technique which can be mathematically interpreted. The 

typical and most widely used method for detection of geochemical anomalies is the setting 

of threshold values which include upper and lower limits of background variations 

(Hawkes and Webb, 1962; Cheng et al., 1994; Xu and Cheng, 2001; Li et al., 2003; Lima 

et al., 2003; Afzal et al., 2010, 2011and 2012; Agterberg, 2012; Zuo et al., 2015). 

However, conventional geological methods, exploratory data analysis and multivariate 

statistics are based on the frequency distribution of geochemical values and neglect 

spatial variation (Tukey, 1977; Behrens, 1997; Yousefi et al., 2012 and 2014). In addition, 

exploration geochemical data are typically spatially dependent and therefore a couple of 
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frequency–space-based methods such as the inverse distance weighted (IDW) and 

different kriging methods have been used (Lam, 1983; Zimmerman et al., 1999). Although 

these methods consider the spatial distribution of elemental concentrations, they do not 

consider that spatial variability is rugged and singular rather than smooth and 

differentiable. The main attraction of fractal/multifractal theory is its capability to quantify 

irregular and complex phenomena or processes that exhibit similarity over a wide range 

of scales; this is regarded as self-similarity (Mandelbrot, 1983; Zuo and Wang, 2015).  

 

Fractal theory, which was developed by Mandelbrot (1983), has been widely applied in 

the geosciences sector since the 1980s and up to the present (e.g., Turcotte, 1986; 

Agterberg et al., 1993; Cheng et al., 1994; Sim et al., 1999; Goncalves et al., 2001; Shen 

and Zhao, 2002; Ali et al., 2007; Yasrebi et al., 2013a). Methods of fractal analysis also 

serve to illustrate relationships between geological, geochemical and mineralogical data 

and spatial information derived from analysis of mineral deposit occurrence data 

(Carranza, 2008; Carranza et al., 2009; Goncalves et al., 2001). A good understanding 

of geological and geochemical controls on mineralisation is essential in the recognition 

and classification of geochemical populations based on methods of fractal analysis which 

indicate relations between ore grade and their spatial distribution within a block model 

(Cheng, 1999; Sim et al., 1999; Li et al., 2003; Carranza and Sadeghi, 2010). Fractals 

are characterised by a scaling law that relates two variables: the scale factor and the 

physical properties of the object being measured. This scaling relationship is described 

by a power law function, which in turn describes the inherent physical attributes of the 

object being analysed (Takayasu, 1990; Lauwerier, 1991; Ortega et al., 2006). The 
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exponent of the power law function refers to the fractal dimension. Fractal dimensions in 

geological and geochemical processes correspond to variations in physical attributes 

such as rock type, nature of the hydrothermal fluids and alteration, structural features and 

dominant mineralogy, and so on (Sim et al., 1999; Cheng, 2007; Cheng and Agterberg, 

2009; Afzal et al., 2013a and 2014; Yasrebi et al., 2013a, b and 2014). Therefore, fractal 

dimensions of variations in geochemical data can provide useful information and 

applicable criteria to recognise and classify mineralised and ‘barren’ zones within a study 

area. Various log–log plots in fractal methods are considered to be useful tools in 

separating geological populations. Classification of geochemical data within threshold 

values can be recognised and determined to indicate breakpoints within these plots. 

These geochemical threshold values recognised via fractal analysis are usually correlated 

with geological field information. Multifractal theory is used as a theoretical framework to 

explain the power–law relationship between areas enclosing concentrations below a 

given value and the actual concentrations themselves (Halsey et al., 1986; Evertz and 

Mandelbrot, 1992). 

 

The fractal method has several limitations and accuracy issues, especially when the 

boundary effects on irregular geometrical data sets are involved (Agterberg et al., 1996; 

Goncalves, 2001). The Concentration-Area (C-A) method (Evertz and 

Mandelbrot, 1992; Cheng et al., 1994), which is the basis of the C-V fractal model, seems 

to be equally applicable in all cases, which is probably rooted in the fact that geochemical 

distributions mostly satisfy the properties of a multifractal function. There is some 

evidence that geochemical distributions are fractal in nature and behaviour, at least 
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empirically according to Bölviken et al. (1992). Some approaches seem to support the 

idea that geochemical data distributions are multifractal, although this point is far from 

proven (Cheng and Agterberg, 1996; Turcotte, 1997; Goncalves, 2001; Afzal et al., 2010, 

2013a and b). This idea may help in the development and validation of a method for 

elemental geochemical distribution analysis. 

 

1.3.1 Introduction to Common Fractal Models 

Cheng et al. (1994) proposed the Concentration-Area (C-A) fractal model, which is used 

frequently for modelling geochemical anomalies and discriminating geochemical 

anomalies from background, relates the element concentration to the area enclosed by 

concentration contours by a power law relation (Carranza, 2009; Zuo et al., 2012). He 

applied the C–A fractal model to lithogeochemical data of the Mitchell-Sulphurets 

precious metal district, British Columbia and found that various fractal patterns exist inside 

and outside the potassic, sulfidic, and silicic alteration zones. The Spectrum-Area fractal 

model (S–A), which was proposed by Cheng et al. (1999), is a version of the C–A 

(Concentration–Area) model which separates overlapping populations using more than 

one cut-off value. Li et al. (2003) introduced the Concentration–Distance (C–D) fractal 

model for discriminating geochemical anomalies from background. These models have 

been widely used to identify anomalies as well as for determining the geochemical 

baseline in environmental studies (e.g., Cheng et al., 1994; Cheng and Agterberg, 1996; 

Cheng, 1999; Gonçalves et al., 2001; Xu and Cheng, 2001; Li et al., 2003; Panahi et al., 

2004; Cheng, 2007; Albanese et al., 2007; Afzal et al., 2010; Wang et al., 2013; Asadi et 

al., 2014 Luz et al., 2014; Sun et al., 2014). Cheng (2012) suggested a Density–Area 
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Power-Law model to systematically confirm that singularity analysis is effective for the 

identification of weak geochemical anomalies. Furthermore, Wang et al. (2012) 

investigated the fractal relationship between orebody tonnage and thickness by tonnage–

thickness model and metal tonnage–grade thickness model for better understanding 

orebody spatial distribution (Zuo and Wang, 2015). 

 

1.4 Methodology 

The determination of a final pit limit in the Kahang Cu-Mo porphyry deposit is the major 

aim of this research. To achieve this, subsurface data obtained by boreholes is entered 

into the RockWorksTM software enabling one to generate a 3D geological model based 

on lithology, alteration, mineralisation and zonation. Geostatistical studies were then 

conducted in order to build the Cu and Mo block models based on the dataset with 

utilisation of SGeMS software. The next step was to test different approaches, namely 

Concentration-Volume (C-V), Density-Volume (D-V), RQD-Volume (RQD-V) and Present 

Value-Volume (PV-V) fractal models, to delineate various populations in terms of Cu and 

Mo values, densities, RQDs and valuable voxels respectively. Consequently, data for the 

main ore body of the Kahang, including ore grade, density, tonnage and rock type (ore 

and waste), was used to generate a prototype for the determination of internal pit shells, 

extraction sequences (Nested pits) and ultimate pit limit, which is a collection of optimised 

pits. All pits were calculated on the basis of the Lerch & Grossman algorithm (Hustrulid 

and Kuchta, 2006). Indeed, constructing optimised nested pits is considered an ‘art’ 

applied by design engineers to specify the ultimate optimised pit as well as to determine 

the extraction sequence of the blocks, with respect to the obtained thresholds via fractal 
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modelling log-log plots. The result of this study will be a reserve estimation and the 

modification of existing mineralised zones with respect to the different ore grades within 

the deposit. Finally, NPV Scheduler was employed in order to establish the final pit limit 

in terms of the maximum NPV and associated ‘’Nested pits’’ to produce an optimised pit 

limit. 

 

1.4.1   Introduction to NPV Scheduler 

Since the 1960s, computerised open pit optimisation methods have been used and most 

major mining companies employ some form of these methods in the design of their open 

pit operations. These computerised optimisations can also be utilised to aid in the 

transition from open pit to underground mining methods. Examples of widely used 

systems include the NPV Scheduler. The primary focus of these software systems is to 

determine an optimum size and shape of open pits to enable the generation of production 

schedules. This software encompasses a number of processes which utilise 

computerised grade block models and generate detailed economic analysis of different 

open pit mines (See chapter 5 of this thesis and Appendices F and H). This analysis, 

which includes discounted cash flows, also demonstrates productive information to assist 

in the mine planning and scheduling of open pits (NPV – Scheduler, 2001).  

 

1.4.2   Introduction to Lerch and Grossmann Algorithm with Reliance on 

Resource Modelling 

In the late 1960s, researchers were only focused on the determination of the ultimate pit 

limit (Zhao and Kim, 1992; Shishvan and Sattarvand 2015). The Lerch and Grossmann 

algorithm, which is based on three-dimensional graph theory, is the most commonly used 
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optimisation algorithm which takes into account the influence of a grade block model, 

operating costs, product prices, slope geometry, etc (Lerch and Grossmann, 1965; 

Dimitrakopoulos et al., 2007). It is also used in mining optimization software as the 

industry standard, for example in NPV Scheduler and Gemcom’s Whittle software (Whittle 

1998a, b and 1999), to find the optimal pit and pushbacks. The algorithm uses different 

revenue factors to generate a value-based mining sequence strategy to design pit shells 

(Dincer 2001; Bastante et al., 2008; Grenon and Hadjigeorgiou, 2010; Shishvan and 

Sattarvand 2015). Early pit shells are constructed using high-grade blocks and a low 

stripping ratio. The results also consider practical considerations such as haul road 

access, cut-off grades and processing, etc. To maximise the use of block modelling 

functions and optimise the pit design process, block modelling and slope stability analysis 

have to be fully integrated. This is a logical extension to assign mines rock types and 

grades to every block .This process will be further optimised by defining every block 

location especially those blocks with high value of NPV (e.g., the use of fractal geometry 

in this thesis: See chapter 6). The algorithm works as follows: 

 

First, a directed graph (Bondy and Murty, 1976) is produced with the nodes of the 

orebody, the blocks in the orebody model. These connected blocks have certain 

restrictions, for example precedence and slope limitations. The method produces a tree 

regarding Lerch & Grossman algorithm as a set of combined voxels with a dummy node 

and strong and weak arcs between the nodes (Fig. 1. 1). When the restrictions are 

satisfied, the pit has the maximum closure graph at a scaled capacity (Lerch and 

Grossman, 1965; Zhao and Kim 1992; Seymour, 1995; Hustrulid and Kuchta 2006; 
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Meagher et al., 2010). In step one, the blocks/nodes are connected to the dummy node, 

X0, with arcs from X0. Step two indicates the initial normalised tree, the positive strong 

(PS) arcs are plus arcs supporting blocks with NPVs higher than zero (strong vertices) 

and positive weak (PW) arcs indicates blocks with NPVs less than zero (weak vertices) 

which have negative significance in calculation of the total open pit mining project NPV. 

Step three indicates merging vertices X4 and X6; the arc between X0 and X6 will be 

removed out. Minus weak (MW) denotes a minus arc supporting a strong arc. Step four 

illustrates the tree when all the weak vertices above X6 are merged. Step five shows the 

final graph closure with the strong vertices associated to the dummy node. In total, The 

Lerch and Grossmann algorithm is based on two theorems (Caccetta and Giannini, 1986): 

 

1. The maximum closure of a normalised tree is the set of that tree's strong 

vertices. 

2. A normalised tree can be found such that the set of strong vertices in this tree 

constitutes a closure of the graph so the set of strong vertices is the maximum 

closure of the graph with the highest NPV. 
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Fig. 1. 1. An example of the graph closure in the Lerch and Grossman algorithm 

(Meagher et al., 2010)  

 

The optimised pit generated by the Lerch and Grossmann algorithm always has a crest 

within a studied block model so no produced pit will break through the side of the model. 

Consequently, if the region or model area is too small, an underestimated optimised pit 

will be resulted (Kim, 1978; Frangois-Bongarcon and Guidal, 1982; Koenigsber, 1982; 

Seymour, 1995; Hochbaum and Chen, 2000; Bernabe, 2001; Ramazan, 2007). On the 

other hand, if the block model is too large and the optimisation software (NPV Scheduler 

used in this thesis) cannot fit into RAM, so the optimisation software will work slowly. To 

offset this, engineers wish to bulk the block model voxels together as depicted in Fig. 1. 

2. 
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Fig. 1. 2. Bulking the block model voxels together (Mart and Markey, 2013) 

 

1.4.2.1   Introduction to Other Methods for Mine Planning 

A 3D program called GEOVIA Whittle™, introduced by Whittle (1985), was a computer-

based implementation of the Lerch and Grossmann method which used a block model, 

whose blocks have economic values representing the net cash flow that result from 

mining the block in isolation (Whittle, 1988, 1989 and1999). However, the resulting 

optimal pit did not use discounted cash flows. 

 

The Floating Cone method, which is the simplest and fastest technique to determine 

optimum ultimate pit limits to which variable slope angle can be easily applied, repeatedly 

searches for and checks the total value of block groups forming inverted cones. Total 

cones are identified for mining if their total value was positive. This procedure is iterated 

until no more positive cones are recognised. However, this method cannot guarantee the 

final pit is optimum. Other block groups (as mentioned above) also implemented a two-

and-a-half dimensional Lerch and Grossmann algorithm (Dimitrakopoulos et al., 2002; 

Osanloo et al., 2008a; Asad and Dimitrakopoulos, 2013).   
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The 4D (and subsequently Four-X) programs also use the same Lerch and Grossmann 

technique to generate a set of nested optimal pits. Each pit that is optimal is used to guide 

different mining schedules. Financial analysis of these programs which consider 

discounted cash flows allows selection and sensitivity analysis of the best pit (Dowd, 

1994; NPV – Scheduler, 2001; Osanloo et al., 2008a; Askari-Nasab et al., 2011).  

 

1.5   Specific Economic and Political Context of Mining in Iran  

The mining sector is key to sustainable development in many countries such as Iran 

(Sameni Keivani and Khalili Sourkouhi, 2014). The following text describes Iranian 

government policy, programs and aims with regard to the mining sector (revealed by 

Mr.Nematzadeh, the minister of Industries, Mines and Commerce of Iran, at the Iran 

Parliament, 2015). 

 

“Governmental and private mining sectors in Iran are one of the largest and most effective 

sectors of the country’s economy and own a vast diversity and complexity compared with 

other sectors, providing considerable and noteworthy effect on the economy improvement 

of Iran. Mining and in one single word mineral productions, is the motive engine of the 

country’s economy which has a crucial role in the economic growth, decrease of inflation, 

unemployment and improvement in competition and rivalry. 

 

The general policy of the Iranian government is to set up an economic development to 

move towards a position in which it will be able to have a noteworthy position in the world 

economy based on mining industries to generate national wealth.  
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Iran by owning 57 billion tonnes of mineral ores (proved and probable), with 69 different 

ore minerals, ranks first in the Middle East and is on a par with the top 10 mineral 

producers globally. From among 7036 licensed mines, 5060 mines with reserves 

amounting for 40 billion tonnes are active and in recent years, around 341 million tonnes 

of minerals valued at 3.7 billion US dollars (with an average of each tonne equal to 21.4 

dollars) have been extracted and nearly 3 billion US dollars of these have been exported. 

Only two percent of the total mines of the country belongs to the governmental sector, 

including 25% of total extracted minerals in the country, which is over 35% of minerals 

production in terms of economic value. General aims of the Iranian government regarding 

mines and mining industries development are as follows:  

 

1- Increase competition within the country’s mining sectors. 

2- Increase the value added share of mineral products within the country. 

3- Increase the country’s minerals exports. 

4- Increase the amount of mineral products with high technology/value added 

and consequential exports. 

5- Increase the role of the private sector mining activities.  

6- Promotion of environmental standards towards access to universal 

sustainable development goals. 

7- Effort towards joining the World Trade Organisation and utilisation of the 

capacities thereof. 
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The Iranian Government’s quantitative goals regarding mining development are: 

 

1- Reach an annual average growth of value added of 12 percent. 

2- Export high quality mineral products up to 30 percent of the total country’s 

export by the end of tenure of the presidency of Dr. Rohani. 

3- Industrial and mineral exports portion compared to total world industrial 

exports at the closure of presidency of Dr. Rohani to be up to 3 percent. 

4- The ratio of industrial and mineral exports to industrial and mineral imports 

at the end of presidency of Dr. Rohani to be equal to 100 percent.  

5- Absorption of direct foreign investment for the country’s mining projects 

(annual average of 8 billion dollars). 

 

The Iranian Government policies regarding mining development are: 

 

1- Review of strategic documents covering development of industry, mining 

and trade. 

2- Upgrading the potential of small and medium mineral industries towards 

expansion of their products as exports. 

3- To facilitate absorption and development of foreign investment. 

4- Protection of private mining sectors for renovation and amelioration. 

5- To help promote competitiveness. 

6- To develop industrial and mining facilities and help restart ceased or 

inactive mines.  
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7- To help develop an optimal consumption management of energy in the 

mining sector. 

8- Efficient support for research and development in the mining sector. 

 

Here it is worth mentioning that the data sources to conduct this PhD research were 

provided by the Kahang deposit owner (Appendix. A), the National Iranian Copper 

Industries Co (NICICO) which has numerous responsibilities including extraction and 

utilisation of copper mines, production of copper concentrates and manufacturing copper 

products such as cathodes, slabs, billets and 8 mm wire rods. 

 

1.6 Organisation of the Thesis 

Chapter one gives the background to, and the problem statement for the research 

undertaken on the importance of delineation of mineralised zones in a Cu-Mo deposit. 

The aims and objectives of the research are presented along with a brief description of 

the methodology to achieve the outlined objectives. 

 

Chapter two deals with the geology and associated mineralisation in the Kahang deposit 

providing 3D models of lithology, alteration, zonation and mineralisation.  

 

Chapter three introduces the C-V fractal model. Additionally, a correlation between results 

achieved from the C-V fractal model and those from geological models is used to optimise 

the delineation of mineralised zones. A logratio matrix has been employed to validate the 

C-V fractal model for the Cu and Mo main mineralised zones. 
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Chapter four proposes the D–V and RQD-V fractal models to delineate rock 

characteristics including density and RQD within the Kahang porphyry deposit. A 

correlation of results from the D–V fractal and lithology models was carried out to illustrate 

that the main lithological unit is associated with high values of density and also has a 

strong correlation with high values of RQD. The log-ratio matrix was employed to validate 

the D–V fractal model for density with the main rock type of the deposit. The results reveal 

that there is a multifractal pattern of rock characteristics with respect to RQD for the 

Kahang deposit.  

 

Chapter five discusses the determination of an ultimate pit limit using the results achieved 

from the proposed fractal models in the former chapters. Following this, the NPV 

Scheduler was employed in order to establish the final pit limit in terms of the maximum 

NPV and associated mining sequences. Finally, a comparative case study was also 

conducted by ignoring three isolated boreholes located in the NW part of the deposit.  

 

Chapter six introduces a fractal model to achieve a best mining scenario and strategy for 

an earlier pay-back. In addition, a new method is proposed to identify an optimal 

extraction sequences (OES). 

 

Chapter seven summarises the main conclusions drawn from the entire research project. 

The knowledge gained from each specific investigation is summarised along with the 

contributions to knowledge. The chapter concludes with the author’s recommendations 

for future work on the topic.    
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CHAPTER TWO. Geology and Associated 

Mineralisation 
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2.1    Regional Geology 

The Kahang Cu Porphyry deposit is located approximately 73 km from Isfahan, in Central 

Iran. This deposit is situated in the central part of the Cenozoic Urumieh-Dokhtar 

magmatic belt, which extends for 2000 km and is 150 km wide, from NW to SE Iran (Fig. 

2. 1; Alavi, 1994; Aghanabati, 2004; Alavi, 2004). This magmatic belt has been interpreted 

as a subduction related Andean-type magmatic arc that has been active since the late 

Jurassic within the collisional Alpine–Himalayan orogenic belt, reflecting subduction and 

collision of the Afro-Arabian plate with Eurasia (Schroder, 1944; Dewey et al. 1973; 

Dargahi et al., 2010). The rock units of this belt are composed of voluminous tholeiitic, 

calc-alkaline, and K-rich alkaline intrusive and extrusive rocks, with associated pyroclastic 

and volcanoclastic successions, formed along the active margin of the Iranian plate 

(Berberian and King, 1981; Berberian et al., 1982). The belt hosts the largest of the Iranian 

porphyry deposits, including Sarcheshmeh, Sungun, Meiduk, Dali, and Darehzar 

(Shahabpour, 1994; Atapour and Aftabi, 2007; Boomeri et al., 2009).  

 

The closure of the Neotethyan ocean and prevailing collisional tectonics during Tertiary 

times built a highly fertile metallogenic environment with massive porphyry copper 

deposits/prospects in the Urumieh–Dokhtar magmatic belt clustering in narrow arc 

segments, typically a few tens of kilometres wide (e.g., Agard et al., 2005; McInnes et al., 

2005; Shafiei et al., 2009; Dargahi et al., 2010; Richards et al., 2012; Asadi et al., 2014). 

Cenozoic tectono-magmatic activity and porphyry Cu-Mo mineralisation along the 

Urumieh-Dokhtar magmatic belt are attributed to three time-windows: (1) Eocene–

Oligocene (Ahmadian et al., 2009); (2) mid-late Oligocene (Kirkham and Dunne, 2000; 
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McInnes et al., 2005); and (3) mid-late Miocene (McInnes et al., 2005; Razique et al., 

2007; Richards et al., 2012). The Urumieh–Dokhtar belt occurred during the Cenozoic 

magmatism which started in late Cretaceous-Paleocene, peaked in Eocene and extended 

into the Miocene and Quaternary. The magmatism was accompanied by the formation of 

a wide range of ore deposits, consisting of epithermal ore deposits, skarn-type ores, 

porphyry-type Cu-Mo-Au deposits and a variety of industrial minerals (Mirnejad et al., 

2010). 

 

Most Iranian Cu porphyry deposits have been explored in the SE part of Iran especially 

in Kerman province (e.g., Sarcheshmeh and Meiduk mines) and the NW part of Iran in 

Azerbaijan province (e.g., Sungun deposit) since the 1970s. The central part of the 

Urumieh-Dokhtar belt has recently received attentions for their porphyry-style ores. Few 

porphyry Cu deposits are present in the central part of Urumieh–Dokhtar belt, typical 

examples being Aliabad, Darehzereshk, Dali and Kahang (Zarasvandi et al., 2005; Ayati 

et al., 2008).  

 

2.2    Geology of the Kahang Deposit 

The Kahang Cu-Mo porphyry deposit was initially discovered in 2003 from remote sensing 

(Landsat TM) and geophysical studies and then from drilling (Tabatabaei and Asadi 

Haroni, 2006; Afzal et al. 2012). Subsequently, stream sediment sampling, alteration 

mapping and lithogeochemical exploration were undertaken as well as geophysical 

exploration using induced polarization (IP) and resistivity (RS) which showed the 

existence of a Cu-Mo prospect with Cu and Mo average grade of 0.1 wt.% and 33 ppm, 

respectively (Afzal et al., 2010). This led into further subsurface exploration to find out if 
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there would be a deposit in this area. On the basis of alteration assemblages, the Kahang 

prospect was divided into three divisions namely; Eastern, Central and Western Kahang 

(Fig. 2. 4a). Within these, 48 boreholes were drilled in the Eastern Kahang with total depth 

of about 22,000 m. There is a Cu resource greater than 100 Mt of sulphide ore with a Cu 

mean value equal to 0.23 wt.% if the Cu threshold is 0.1 wt.% (See Chapter 3, Fig. 3. 18) 

so the Kahang is not a prospect, and can appear to be promising.  

  

The Kahang deposit lies within Eocene volcanic–pyroclastic rocks, which have been 

intruded by Oligo-Miocene porphyritic granitoid rocks, quartz monzonites, monzodiorite-

monzogranites and diorites (e.g., Alavi, 1994; Tabatabaei and Asadi Haroni, 2006: Fig. 

2. 1a and b). The Eocene rock units consist of andesite, trachyte, trachy-andesite, silicic 

breccias and tuffs. The main geological structure in the area is a NW–SE and NE–SW 

trending fault system. The extrusive rocks, including tuffs, breccias and lavas, are dacitic 

to andesitic in composition. Magmatic events in the Kahang area have been interpreted 

as followings (Afzal et al., 2010): 

 

1. Explosive eruptions of pyroclastics such as tuffs and tuff breccias. 

2. Flows of andesitic to dacitic lavas with porphyritic textures. It is probable that eruptions 

of pyroclastic rocks and lavas were repeated periodically. 

3. Emplacement of sub-volcanics and intrusive rocks with dacitic, andesitic, monzonitic 

and dioritic compositions. 
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Fig. 2. 1. a) Geological map of the Kahang study area, scale: 1: 10,000 (Alavi, 1994; Tabatabaei 

and Asadi Haroni, 2006), and b) structural map of Iran, showing the Urumieh-Dokhtar volcanic 

belt (Alavi, 1994) 

 

2.2.1   Mineralisation Characteristics of the Kahang Deposit 

The Kahang deposit is a Cu-Mo porphyry deposit. Mineralisation is mainly hosted within 

Eocene sub-volcanic rocks, especially porphyritic quartz diorites, monzodiorite-

monzogranite and dacitic rocks (Tabatabaei and Asadi Haroni, 2006; Afzal et al, 2011, 
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2012 and 2013b: Fig. 2. 2). Ore minerals are dominated by chalcopyrite, pyrite, bornite 

and lesser amounts of chalcocite, covellite, malachite, molybdenite and Fe ores (i.e., 

hematite, magnetite, goethite and jarosite: Fig. 2. 3c).  

 

 

 

Fig. 2. 2. Eocene sub-volcanic rocks in the Kahang deposit (View towards SE) 
 
 
 

 

(a) 
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(b) 

 

 

 

(c) 
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(d) 

Fig. 2. 3. a) Pyrite (Py), chalcopyrite (Ccp) and molybdenite (Mol), b) Copper secondary 

sulphides and carbonate minerals from the oxidised zone (Azadi et al., 2014), c) Fe-oxides,  and 

d)  reflected light photomicrograph showing bornite  (Brn), chalcocite (Chl) and chalcopyrite 

(Cpy) in the Kahang porphyry deposit  

 
 

Based on vein morphology, mineral paragenesis and cross-cutting relationships, seven 

groups of veins and veinlets were distinguished in the Kahang deposit (Afzal et al., 2010 

and 2012; Azadi et al., 2014) namely; (1) Early biotite veinlets followed by (2) magnetite-

chlorite ± quartz ± sericite veins, (3) quartz-magnetite ± chlorite ± chalcopyrite ± pyrite 

veins, (4) quartz-molybdenite ± chalcopyrite ± pyrite veins, (5) pinkish anhydrite-

chalcopyrite ± pyrite ± white anhydrite ± gypsum veins, (6) quartz-sericite-pyrite ± 

chalcopyrite ± chlorite veins, (7) tourmaline ± quartz ± chalcopyrite ± pyrite veins and (8) 

late poly-mineral calcite-sphalerite ± galena ± pyrite ± chalcopyrite veins (Afshooni et al., 

2010, 2011 and 2013; Azadi et al., 2014). The main mineralisation at the Kahang deposit 

is Cu-Mo porphyry that occurs within intrusive bodies and their surrounding sub-volcanic 
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rocks. The ore minerals, consisting of chalcopyrite, pyrite, malachite, magnetite, limonite, 

jarosite, goethite, bornite, sphalerite, galena, digenite, covellite, hematite, chalcocite and 

molybdenite are distributed in leached, oxidised, supergene and hypogene zones (e.g., 

Berberian and King, 1981; Alavi, 1994; Ayati et al., 2008; Afshooni et al., 2010, 2011 and  

2013; Asadi et al., 2015), as depicted in Fig. 2. 4. Gold occurs as fine inclusions within 

pyrite and chalcopyrite and as native gold (electrum) within grey quartz veins in hypogene 

zone (Fig. 2. 4L). Drilling data shows that a large-scale Cu–Mo mineralisation also occurs 

in the hypogene zone. Pyrite in the hypogene zones generally occurs as aggregates, 

composed of optically homogeneous euhedral to subhedral crystals, ranging in size from 

20 μm to 5 mm which occurs in two generations: early pyrite (Py I) that is small rounded 

blebs (~20–50 μm) included in chalcopyrite crystals (Fig. 2. 4a) and late pyrite (Py II) 

distributed widely and formed later than chalcopyrite (Fig. 2. 4b). Chalcopyrite is the most 

common sulphide mineral in the Kahang deposit, and appears as small rounded blebs 

(50 μm–1 mm) as depicted in Fig. 2. 4b. Cu values increase within chalcopyrite especially 

in the deeper parts of the deposit (See Chapter 3, Fig. 3. 27e).  
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Fig. 2. 4. Photomicrographs of ore minerals in the Kahang deposit (Afshooni et al., 

2013): a) type II pyrite (Py II) associated with chalcopyrite, b) replacement of pyrite by 

magnetite in type I pyrite (Py I), c) subhedral sphalerite, containing chalcopyrite 

inclusions enclosed by pyrite, d) magnetite grains associated with Ti-mineral, pyrite and 

chalcopyrite, e) ex-solution between chalcocite and chalcopyrite, f) hematite blades, g) 

galena grains associated with chalcopyrite, h) covellite occurs as fracture-filling in pyrite, 

i) malachite occurs as fracture-filling in micro-diorites, j) bornite together with 

chalcopyrite, k) chalcocite, digenite and pyrite occur as veins, l) Backscattered electron 

Image showing native gold (electrum) grains within late stage grey quartz 
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2.2.2   Hydrothermal Alteration 

Hydrothermal alteration in the Kahang deposit (Western, Central and Eastern parts) is 

pervasive, occurring in an area greater than 10 km2. Detailed alteration mapping shows 

four major types of hydrothermal alteration: potassic, phyllic, argillic and propylitic (Figs. 

2. 5a) based on detailed studies of the mineralogy and petrography of drill cores and 

surface samples (Harati et al., 2013). As a result, hydrothermal alteration zones in the 

Kahang deposit can be divided into four types (Afshooni et al., 2013; Azadi et al., 2014): 

1) Early potassic alteration (K metasomatism) which occurs within and proximal to 

mineralised veins and intrusions that contain Cu-Mo mineralisation, 2) Medial quartz-

sericite-pyrite (phyllic) alteration that partially overprints the early potassic alteration zone 

and contains mineralised veins, 3) Argillic alteration in the outer and peripheral parts of 

the altered and mineralised zone that overprints the previous alteration zones, 4) 

Peripheral propylitic alteration of mainly sub-volcanic rocks, distal to the zone containing 

mineralised veins and breccias. Cu-Mo-Fe sulphides are spatially and temporally 

associated with the potassic and phyllic assemblages which include chalcopyrite, 

molybdenite and pyrite (Afshooni et al., 2010, 2011 and 2013; Harati et al., 2013). The 

alteration zones in this deposit follow the conceptual model of the alteration zones which 

was proposed by Lowell and Gilbert (1970: Fig. 2. 5b). 
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(a) 

 

(b)  

Fig. 2. 5. a) Alteration map of the Kahang deposit (Western, Central and Eastern parts; Harati et 

al., 2013) and b) Conceptual model of Lowell and Gilbert (1970) 
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The potassic alteration zone is located in the central part of the deposit with neo-formed 

biotite and KF veinlets (Fig. 2. 6a). This alteration and associated hypogene 

mineralisation mainly occurred within the deepest and central parts of the zone containing 

mineralised veins and breccias, within quartz diorite and quartz monzonite (Harati et al., 

2013; Azadi et al., 2014). The common mineral assemblage within the potassic zone 

contains secondary biotite (S-Bt: Fig. 2. 6b), K-feldspar (Kf), quartz, sericite, pyrite, 

chalcopyrite, bornite, magnetite and lesser amounts of anhydrite, chlorite, zircon, rutile 

and hematite. Potassic alteration in this area is characterised by K-feldspar and irregularly 

shaped crystals of Mg-rich biotite (secondary biotite) within volcano-plutonic rocks (VPR). 

Petrographic observations and microprobe analyses point to the presence of two 

compositionally distinguishable types of biotite within this alteration zone: 1) primary 

biotite, which is Fe-enriched, brown in colour, and generally euhedral and 2) hydrothermal 

biotite (Fig. 2. 6c), which is mainly pale-brown to greenish-brown in colour and very 

ragged (Shahabpour, 1982). The hydrothermal biotite occurs interstitial to feldspar and 

quartz and locally replaces amphibole and primary biotite phenocrysts (Khayrollahi, 

2003). Replacement biotite was formed commonly by the alteration of amphiboles (Fig. 

2. 6d).  
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Fig. 2. 6. Photomicrographs of the potassic alteration zone of the Kahang deposit: a) neo-

formed biotite (Bt) and KF veinlets, b) secondary biotite (S-Bt) and quartz (Qtz), c) secondary 

biotite–chlorite assemblage after igneous amphibole associated with the potassic alteration 

(Afshooni et al., 2013), and d) fine-grained biotite as pseudomorphs of amphibole phenocryst, 

and coarse-grained biotite cut by a quartz veinlet (Afshooni et al., 2013) 
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The phyllic alteration zone, developed in the eastern part of the deposit, contains high 

amounts of quartz, sericite and albite within an argillic matrix. The phyllic alteration is 

within acidic to intermediate sub-volcanic domes (Harati et al., 2013; Asadi et al., 2014). 

The pervasive feldspar-destructive phyllic alteration is characterised by sericite, quartz, 

pyrite, as main minerals and chlorite as an accessory phase. High abundances of quartz 

in this zone are present within several generations of quartz stockwork veins, veinlets and 

disseminations. Sericite also occurs as very fine grained to fine grained yellowish grains 

within groundmass, veins and veinlets (Fig. 2. 7a). Chalcopyrite, zircon, rutile and some 

clay minerals may be present. In sericitized rocks, K-feldspar is usually transformed into 

sericite or fine-grained muscovite (Fig. 2. 7b) while biotite and amphibole are converted 

to chlorite (Fig. 2. 7c). Phyllic alteration grades gradually into argillic alteration as 

indicated by increasing amounts of clay minerals. Mineralogical changes of typical phyllic 

alteration occur in granite–granodiorite in the study area. 
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Fig. 2. 7. Photomicrographs of phyllic alteration zone in the Kahang porphyry deposit: a) 

presence of sericite (Ser) and quartz (Qtz), b) plagioclase (Plg) phenocrysts are pervasively 

replaced by sericite and surrounded by quartz grains in the phyllic alteration zone (Afshooni et 

al., 2013), and c) biotite (Biot) altered to chlorite (Chl) in the phyllic alteration zone (Afshooni et 

al., 2013) 
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The argillic alteration zone contains intermediate to high levels of alunite (especially in 

the western and central parts of the deposit) indicative of silicified epithermal alteration 

within the uppermost part of the deposit, predominantly in sub-volcanic rocks and 

porphyry and dacite–rhyodacite stocks. This alteration zone is associated with the 

formation of the clay minerals by extreme base leaching of alumino-silicate minerals (Fig. 

2. 8a and b). This zone is represented by kaolinite, illite, and montmorillonite that replaced 

plagioclase and mafic minerals in andesites and tuffs. Clay occurs as fine grained white 

to brown coloured patches with increasing amounts of iron oxides within surface outcrops 

and the outer parts of altered rocks. Jarosite is the second major alteration mineral in this 

zone. In some places jarosite occupies a huge vol.% (≥ 50%) of the rock probably 

indicating that it has undergone advanced argillic alteration (e.g., Azadi et al. 2014; Fig. 

2. 8c).  
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Fig. 2. 8. Photomicrographs of argillic alteration zone in the Kahang porphyry deposit: a) argillic 

alteration with clay minerals, altered plagioclase (Plag) and opaque minerals (Op), b) K-feldspar 

(Kf) phenocrysts partially replaced by clay minerals (fine grey material) in argillic alteration zone 

(Afshooni et al., 2013), and c) Advanced argillic alteration containing jarosite (Jar) overprinted 

on quartz-sericite (phyllic) alteration (Azadi et al. 2014) 
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The propylitic alteration zone marks the outer limit of the hydrothermal system and is 

dominated by chlorite, epidote and albite (Fig. 2. 9). This alteration zone is more 

developed in margins and upper parts of the deposit. The propylitic alteration is 

characterized by chlorite, epidote, albite, calcite, sericite, quartz, and clay mineral 

assemblages that are locally replaced by biotite, plagioclase, hornblende and 

groundmass. 

 

 

Fig. 2. 9. Photomicrographs of propylitic alteration zone in the Kahang porphyry deposit: 

a) plagioclase phenocrysts replaced by an aggregate of chlorite (Chl), epidote (Epi) and 

calcite (Cal) in the propylitic alteration zone (Afshooni et al., 2013), and b) propylitic 

alteration with pervasive epidote and chlorite 

 

2.3    Dataset Particulars 

From the outset, the 3D geological models for the Kahang deposit were created using 

RockWorks™ v. 15 software with data from 48 boreholes. The data, manipulated in an 

Excel database, included lithology, alteration type, and ore grades, were modelled using 

the “Lithoblending” algorithm of the mentioned software. This subsurface data included 

collar coordinates of drill cores, azimuth and dip (orientation), lithology, alteration, 

mineralogy and zonation. The project dimensions were 600×660×780 m in the x, y and z 
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orientations and each voxel had a dimension of 4 m × 4 m × 10 m, respectively. 

Topographical features of the deposit as well as other related data mentioned above were 

formed into a 3D geological model (Fig. 2. 10).  

 

Fig. 2. 10. The locations of drill cores with lithological units within the Kahang deposit and its 3D 

surface topography 

 

2.4   Assay Quality Assurance and Quality Control 

Sampling is the fundamental part in a geochemical investigation for different stages of 

mineral exploration and environmental purposes. The optimum sampling strategy, to 

meet the company’s objectives, should be based on geochemical methods followed by 

the field observations, variety of sampling, sample preparation and analytical approaches. 
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The estimate of reproducibility (precision) allows us to quantify variation of sampling and 

laboratory analysis which is an integral part of the geochemical data interpretation. As a 

result, any mistake in sampling and sample preparation may influence the results of the 

survey (Thompson and Howarth, 1976; Fletcher, 1981; Demetriades, 2014). 

  

From 48 drill holes in the Kahang deposit, 7146 lithogeochemical samples have been 

collected at 2 m intervals. These samples were analysed using ICP-MS for 48 elements 

by ALS Chemex (ALS Canada Ltd) and Zarazma Mineral Studies Company certified by 

Geostats Pty Ltd (Australia: Appendix. A). Detection limits for Cu and Mo are 0.2 ppm 

and 0.05 ppm, respectively. Moreover, 399 (Appendix. B) randomised samples for Cu 

determination were selected and analysed for quality assurance and quality control 

purposes, assessed using Thompson-Howarth error analysis (Thompson and Howarth, 

1976 and 1978). The following procedure is suggested for estimation of precision from a 

minimum of 50 pairs of duplicate samples (Thompson and Howarth, 1976): 

 

(1) From the duplicate analyses, obtain a list of the means and absolute difference. 

(2) Arrange a list (in Excel software) in increasing order of concentration means. 

(3) From the first 11 results obtain the mean concentration and absolute difference of the 

two results (controlling samples) from that group (each group contains 11 

duplicated/reanalysed samples). 

(4) Repeat step 3 for each successive group of 11 results, ignoring any remainder less 

than 11. 

http://www.sciencedirect.com/science/article/pii/B9780080959757014017
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(5) The mean of each replicate pair is plotted against the absolute difference between the 

two analyses. 

 

The highest value up the % scale on the right axis gives the precision. A precision around 

5% is normal. If the precision is around 1%, the Y axis has not been properly calculated 

with respect to the procedure mentioned above. The precision greater than 5% may have 

cause for concern and reconsideration. However, the precision for Cu is around 2% in the 

Kahang deposit with respect to 399 duplicated sample for Cu (Fig.2. 11; Appendix. B). 

 

 

Fig. 2. 11. Estimation of precision of the Cu analyses using diagram of Thompson and 

Howarth (1978). The mean of the replicate pairs is plotted along the X-axis, the absolute 

difference of the two results along the Y-axis  
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2.4.1   Comparison of Geochemical Data Variances via F-Distribution 

F-distribution test is used to identify variances equality of duplicated samples (e.g., 

geochemical data), which was introduce by the famous statistician, Sir Ronald Fisher 

(1890–1962). This is the theoretical distribution of values which are expected by randomly 

sampling from a normal population and calculating, for all possible pairs of sample 

variances, the ratios as follow (Deutsch and Journel, 1998; Davis, 2002; Emery, 2012): 

 

𝐹 =
𝑆1

2

𝑆2
2            S1 ≥ S2  

Equation 2-1 

 

Where F, S1 and S2 represent F-distribution or continuous probability distribution and 

variances for pair of samples (S1 = 0.222 and S2 = 0.219). The variances of double 

samples vary if the number of observations used in their calculation is small. Therefore, 

the shape of the F-Distribution is expected to change with changes in terms of samples 

amounts. 

 

The F-Distribution has two degrees of freedom equal to n1-1 and n2-1 in which n1 and n2 

represent the number of observations equal to 398. Fisher showed that significance level, 

1-α (α: probability value) is calculated in the cases of one-tailed and two-tailed 

distributions depending on the defining alternative hypothesis. The hypotheses are as 

follows (Fisher and Tippett, 1928; Emery, 2012): 
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Null hypothesis: 𝐻0 : 𝜎1
2 = 𝜎2

2 

Equation 2-2 

Alternative hypothesis: 𝐻1: 𝜎1
2 ≠ 𝜎2

2 

Equation 2-3 

 

Where σ1 and σ2 denote variances of populations. Based on the F-test, F(398,398) ≈ 

1.015  which is less than 1.2175 (obtained from Appendix. C)  With respect to the 

confidence level of 97.5% (α = 0.025). As a result, the Null hypothesis is acceptable 

representing that two variances obtained from the paired samples are almost equal to 

each other.   

 

2.4.2   Comparison of Geochemical Data Means via Paired T-Test 

A paired T-test is utilised to compare between means of two populations. The paired 

sample T-tests typically include a sample of matched pairs of similar units (e.g., Cu wt.% 

in this scenario), or one group of units that has been tested twice (e.g., Davis, 2002; 

Emery, 2012; see Appendix. B). 

 

The correct rejection of the null hypothesis (no difference between mean values) can 

become much more likely. Because half of the sample now depends on the other half, 

the paired version of Student's T-test has only "n/2–1" degrees of freedom (n is the total 

number of observations). Pairs are individual test units and the sample has to be doubled 

to achieve the same number of degrees of freedom. 
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To achieve the null hypothesis which the true mean difference is zero, the procedure is 

as follows: 

 

Calculate the difference between the two observations on each pair as follow:  

 

di = yi − xi 

Equation 2-4 

 

2. Calculate the mean difference of the pair samples in terms of their grades (𝑑̅). The 

grades means for the paired samples are 0.194% and 0.196% so 𝑑̅ is 0.002%.  

3. Calculate the differences of standard deviation (Sd = 𝑆𝑑1
2 - 𝑆𝑑2

2) for the pair of samples. 

To do this, the standard deviation of each sample (sd1 and sd2) was calculated and they 

are equal to 0.468 and 0.472, respectively. Subsequently, standard error of the mean 

difference was calculated (Equation 2. 5) which is 0.47. 

 

SE(𝑑̅) =  
𝑆𝑑

√𝑛̅
 

Equation 2-5 

 

Where 𝑛̅ is equal to 2 because there is a pair of samples. 

 

4. Calculate the T-test statistic under the null hypothesis, this statistic follows a T-

distribution with n − 1 degrees of freedom. 
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T = 
𝑑̅

SE(𝑑̅)√
2

𝑛̅

 

Equation 2-6 

 

Where 𝑛̅ is the number of paired samples which is 399 (See Appendix. B).   

 

5. Use table of the T-distribution (Appendix. D) to compare value for T to the Tn−1 

distribution. This will give a T critical (p-value), defined as the smallest level of significance 

at which the null hypothesis would be rejected for a specific test, for the paired T-test 

(Davis, 2002). The calculated T from paired samples is -0.06 according to the Equation 

2. 6 and the T critical for “two-tailed test” resulted from Appendix. D with respect to 

confidence level (probability value for α = 0.025) of 97.5% is equal to ∓1.9629 which 

indicates that the Null hypothesis is again acceptable. Therefore, the mean values of the 

paired samples are equal.  

 

Consequently, results derived from T- and Fisher tests show that there is no significant 

differences between results obtained via raw and controlling samples giving an analytical 

accuracy in this deposit.  

 

2.5    3D Geological Modelling of the Deposit 

2.5.1   Lithological Model 

Major rock types in the eastern part of the deposit are sub-volcanic units such as andesite, 

andesite–diorite, dacite, diorite, granodiorite, quartz andesite, quartz andesite–diorite, 



76 
 

porphyric quartz diorite and tuff (See list of abbreviations). Dacitic rocks host ores in the 

SE part of the study area.   

 

The most heavily mineralised rocks are composed of porphyritic quartz diorite (Fig. 2. 12), 

accompanied by granodiorite and dacitic rocks. The quartz-diorites are porphyritic 

containing phenocrysts of plagioclase, biotite and rounded quartz.  

 

The 3D lithological models in Figs. 2. 12a; 2. 13a; 2. 14a and c were generated using the 

“Lithoblending” algorithm of RockWorks™ v. 15 software using data from 48 boreholes. 

RockWorksTM uses a specific lithology modelling algorithm to do this extrapolation. As a 

result, “lithoblending” is a solid modelling method that is utilised for generating geological 

solid models (lithology, alteration, mineralisation and zonation) by the RockWorksTM 

software which assigns the solid model by looking outward horizontally and vertically from 

each borehole. The “lithoblending” first assigns the voxels immediately surrounding each 

borehole according to the closest geological units (e.g., lithology). Then, it moves out by 

a voxel to other neighbouring voxels located in one lithological unit or mineralised zone 

and this action will continue in this manner until the program encounters a voxel that is 

already assigned (Sweetkind and Drake, 2007; RockWorksTM 15, 2010; Amit et al., 2014; 

Eslamian, 2014). Following this, the RockWorks™ v. 15 software looks at the observed 

lithology intervals (2 m samples’ interval in the Kahang deposit), which are viewed in logs 

and log sections already, and extrapolate the lithology throughout the project, outward 

from the boreholes. This modelling process basically fills in the blanks between the logs. 
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The Borehole Manager Fence tools of RockWorksTM are available within the geological 

model (e.g., lithology) which is utilised to display one or more vertical slices from the 

inside of a lithological solid model. Subsequently, a lithological fence diagram was built 

up using RockWorksTM software based on the constructed lithological model (Fig. 2. 12b). 

This fence diagram contains two sections, showing NW-SE and SW-NE trends, which 

contain high volume of PQD within the deposit. Furthermore, the andesitic rocks are 

marginal in this area (Fig. 2. 12b). 

 

 

  

(a) 
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(b) 

Fig. 2. 12. a) 3D lithology model of the Kahang eastern part (Yasrebi et al., 2012), and 

b) lithological fence diagram (See abbreviation list for more details) 

 

2.5.2   3D Alteration Model 

Phyllic is the most spatially extensive alteration style in the eastern part of the Kahang 

deposit, as illustrated in Fig. 2. 13. Potassic alteration is situated at depth and it is deeper 

towards the eastern part of the deposit, although it does exist near surface in the western 

part. Argillic and propylitic alterations are low in terms of their volume and occur near 

surface as illustrated in Fig. 2. 13a. In addition, quartz-sericite and sericite alteration 

zones are scattered throughout the deposit. 

 

An alteration fence diagram was created based on alteration model, as shown in Fig. 2. 

13b. The fence diagram includes two NW-SE and SW-NE sections which reveal that 
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phyllic alteration is within the uppermost part of the deposit. Potassic alteration is limited 

and scattered throughout the deposit at depth. Moreover, argillic alteration is dominant 

along the SE margin of the area.  

 

 

 

 
  

 

(a) 
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(b) 

Fig. 2. 13. a) Alteration model of the Kahang eastern part (Yasrebi et al., 2012), and b) 

alteration fence diagram (See abbreviation list for more details)  

 

2.5.3   Ore-type Zonation Model 

The main criteria for determining of mineralised zones is their index ore minerals. Index 

ores consist of chalcopyrite and pyrite for hypogene, chalcocite, bornite and covellite for 

supergene enrichment and malachite, azurite, tenorite and cuprite for oxidation zone 

(Robb, 2005; Berger et al., 2008; Mihalasky et al., 2013). Studies of the pattern of zonation 

in the eastern part of the Kahang deposit show that the most significant mineralisation (in 

terms of ore zone size) is hypogene containing a high percentage of chalcopyrite 

accompanied by pyrite. This can be easily seen in the 3D models in Fig. 2. 14c and d. 

Molybdenite is present as vein and veinlet mineralisation with pyrite and chalcopyrite in 

the hypogene zone (Fig. 2. 14f). The fence diagrams for mineralisation and zonation 
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models show the existence of high amounts of chalcopyrite and pyrite within the 

hypogene zone (Figs. 14b and d).   

 

 

 

(a) 

 
                                                                          

(b) 
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(c) 

 

(d) 
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(e) 

 

 

(f) 

Fig. 2. 14. a) 3D ore-type zonation model, b) fence diagram of ore-type zonation model, c) 3D 

dominant ore minerals, d); fence diagram of dominant ore minerals, e) chalcopyrite in stockwork 

copper mineralisation from hypogene zone, and f) pyrite (Py) and molybdenite (Mol) 

mineralisation in hypogene zone (See abbreviation list for more details)    
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CHAPTER THREE. Concentration-Volume (C-V) 

Fractal Modelling for Separation of Mineralised 

Zones 
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3.1    Introduction 

Identification of supergene enrichment, hypogene, oxidized, leached zones from ‘barren’ 

host rocks (weakly mineralised zones) is one of the major purposes of ore deposit 

modelling (Cheng et al., 1994; Li et al., 2003; Gałuszka, 2007; Makkonen et al., 2008; 

Zeng et al., 2009; Afzal et al., 2012). Conventional geological methods for zone 

recognition in porphyry deposits are generally based on mineralogical, petrographical and 

alteration criteria (Schwartz, 1947; Beane, 1982; Sillitoe, 1997; Berger et al., 2008). A 

conceptual model for lateral and vertical variations in alteration style was initially 

suggested by Lowell (1968) and later by Lowell and Guilbert (1970), based on deposits 

in the North American Cordillera Orogenic Belt. These models have been further 

developed by Cox and Singer (1986) and Melfos et al. (2002). In addition, fluid inclusion 

(e.g., Roedder, 1971; Nash, 1976; Ulrich et al., 2001; Asghari and Hezarkhani, 2008) and 

S isotope studies (Wilson et al., 2007) have been utilised for determination of different 

zones within porphyry Cu deposits.  The mentioned models above do not consider the 

distribution of elemental concentrations within ore deposits and do not rely on resource 

modelling (See chapter 1, sections 1.1 and 1.3 for more information). It is a fact that ore 

grades vary with changes in geological properties such as mineralogy and alteration 

zones in porphyry Cu deposits (Zarasvandi et al., 2005; Berger et al., 2008; Pirajno, 2009; 

Mihalasky et al., 2013; Xiao et al., 2014). Different geological clarifications would be 

presented for defining boundaries of different zones in porphyry Cu deposits which may 

also lead to different results if the ore element grade distribution is not taken into 

consideration (Afzal et al., 2013c; Wang et al., 2013; Soltani et al., 2014; Sun and Liu, 

2014; Yang et al., 2015). 
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3.2    Geometry of Natural Processes 

The famous Greek mathematician Pythagoras of Samos, around 2500 years ago, 

suggested that natural processes and behaviours are in accordance with mathematical 

principles (Zhmud, 1989; Neimark, 2003; Hejazi, 2005; Neto, 2006; Rainer and Ruff, 

2013). This hypothesis was not accepted by most scientists until the twentieth century. 

Nowadays, models and theories based on mathematics are widely used by geoscientists 

to better interpret natural processes.  

 

Lobachevsky and Bolyai (around 1830) established non-Euclidian geometry in the 19th 

century which showed that nature is not just in compliance with Euclidian geometry. 

Benoît Mandelbrot and Gaston Julia (1959) invented a new geometry called “Fractal”. 

However, in the 1960s, Mandelbrot started writing about self-similarity in papers such as 

“How Long the Coast of Britain Is”. Mandelbrot reached the point where measuring of any 

length with a large scale (e.g., continental and regional) is more time consuming when 

measured by a small scale (e.g., local scale mapping). However, how long this 

measurement takes is relevant to the various feature changes of the coastline which does 

not follow the regular dimensions. On the other hand, fractals are not limited to Euclidian 

geometric patterns, but can also describe processes such as structure and texture of 

minerals and rocks in thin/polished sections (Mandelbrot, 1983; Das and Edgar, 2005; 

Afzal et al., 2013c). In addition, this theory presented a geometry in which the features do 

not follow up dimensions with integer numbers and are not discrete, but they meet 

decimal, irregular and continuous numbers. The general agreement is that theoretical 

fractals are infinitely self-similar, iterated and detailed mathematical features containing 
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fractal dimensions, of which many examples have been formulated and examined 

precisely (Mandelbrot, 1983; Falconer, 1991; Falconer and Hu 2001). The self-similarity 

of a feature is its shape on a much smaller scale, as depicted in Fig. 3. 1. Fractal patterns 

with different degrees of self-similarity have been rendered or studied in images, sounds 

and structures in nature (Turcotte, 1986; Cheng et al., 1994; Cheng, 1999; Zuo et al., 

2009a; Deng et al., 2010; Wang et al., 2010a and b; Afzal et al., 2011and 2014; Yasrebi 

et al., 2013a, b and 2014).  

 

 

Fig. 3. 1. Self-similarity in a triangle 

 

The word “fractal” was coined by Mandelbrot (1976) from the Latin word “fractus” or 

“fractum”, meaning broken, which he has applied to objects that were too irregular to be 

defined by ordinary Euclidean geometry (Davis, 2002). Mandelbrot (1983) wrote a famous 

book entitled “Fractal Geometry of Nature” and introduced “fractal” as a new branch of 

non-Euclidian geometry.  
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The fractal geometry of each shape and its complications are shown in the form of real 

numbers, as in Euclidean geometry concepts of measured angle, length, area and 

volume. There are fractal dimensions which are not integers and can be real and decimal 

such as 1.4, 2.3 and 3.5 (Fig. 3. 2).  

 

 

Fig. 3. 2. Changes in dimensions of a fractal shape of Koch Curve (Zhu et al., 2003) 

 

Many studies have indicated that hydrothermal ore deposits such as porphyry Cu, 

orogenic gold and epithermal polymetallic deposits present non-Euclidean variations in 

ore element values in rocks, alterations and related surface materials such as water, soils, 

stream sediments, humus and vegetation (Cheng, 2007; Cheng and Agterberg, 2009; 

Afzal et al., 2011 and 2013a, c; Heidari et al., 2013; Yasrebi et al., 2013a; Soltani et al., 

2014). As a result, variation of fractal dimensions in geochemical data can furnish 

complementary information and applicable criteria to delineate mineralised and ‘barren’ 

zones from host rocks within a studied area. Different log–log plots in fractal/multifractal 

models are proper tools for separation of geological populations based on geochemical 
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data since threshold values (breakpoints) can be determined in those log-log plots (Cheng 

et al., 1994; Agterberg et al., 1996). These geochemical threshold values are identified 

via fractal analysis which is usually correlated using geological field observations (e.g., 

mineralisation, alteration, lithological units and ore seams). In other words, fractal analysis 

is able to indicate differences within mineralisation, alteration, lithology and zonation of 

ore deposits especially in hydrothermal occurrences such as porphyry Cu deposits 

(Goncalves et al., 2001; Cheng, 2007; Carranza, 2008; Carranza et al., 2009; Cheng and 

Agterberg, 2009; Afzal et al., 2011 and 2012). However, proper knowledge of the 

geological and geochemical aspects of a deposit is important in order to identify 

characteristics of geochemical populations on the basis of fractal analysis (Cheng, 1999; 

Sim et al., 1999; Li et al., 2003; Carranza, 2009; Carranza and Sadeghi, 2010). 

 

The aim of this chapter is to use a Concentration-Volume (C-V) fractal model to delineate 

Cu and Mo mineralised zones in the Kahang porphyry deposit of Central Iran in order to 

generate an optimised block model for determination of an ultimate pit limit and a best 

mining strategy. Moreover, to correlate and validate the results, the outcomes of the 

fractal models will be compared with geological models using a logratio matrix proposed 

by Carranza (2011). 

 

3.3    Statistical Characteristics 

In the studied deposit, 7146 core samples were collected from 48 boreholes at 2 m 

intervals, and analysed by inductively coupled plasma mass spectrometry (ICP-MS) for 

Cu and Mo (See section 2.3 and Appendix. A). The Cu and Mo distribution functions are 
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not normal, with Cu and Mo averages of 0.166 wt.% and 28 ppm, respectively (Fig. 3. 3). 

The elemental distributions show an L shape with most of the volume of the deposit 

containing low grades for Cu and Mo. Most values of Cu and Mo are lower than 1 wt.% 

and 200 ppm, respectively. Variation between maximum and minimum of these data 

shows a wide range among elemental concentrations (Table. 3. 1). Based on the 

abnormal elemental distributions, Cu and Mo medians are assumed to be equal to 

threshold values for separation of ‘barren’ host rocks and mineralisation which are 0.08 

wt.% for Cu and 9.9 ppm for Mo (Davis, 2002). In this deposit, 33 and 14979 samples 

were determined from 11 and 42 boreholes respectively out of a total of 48 boreholes 

carried out in the deposit for density and RQD analysis, respectively (Tables. 3. 2 and 3. 

3). Figures for the original data sets used: Cu and Mo grades, RQD and density values 

have been generated using MATLAB software, as depicted in Fig. 3. 4. Since the Kahang 

deposit is at a pre-feasibility stage, and the main target is Cu, only 399 randomised 

samples for Cu (section 2.4 and Appendix. B) were analysed. The error for Cu is 4.04%, 

calculated from the following equation (Govett, 1983): 

 

e = 
2

𝑛
∑

|𝑋𝑖−𝑌𝑖|

𝑋𝑖+𝑌𝑖

𝑛
𝑖=1  

Equation 3-1 

 

Where e and n are error value, amount of re-analysed samples (399 duplicated sample 

for Cu). Xi and Yi denote measured values for duplicated samples (See Appendix. B, 

second and fourth column for Cu wt.% in Table. B. 1 for Xi and Yi).    
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(a) 

 

 
(b) 

Fig. 3. 3. Histograms for data from the Kahang deposit: a) Cu wt.%, and b) Mo ppm 

 

Table. 3. 1. Statistical characteristics for Cu and Mo 

Elements 

Grades 

Minimum 

Value 

Maximum 

Value 
Range Mean 

Standard 

Deviation 
Median Variance Skewness Kurtosis 

Cu (wt.%) 0.0003 4.92 4.91 0.16 0.271 0.087 0.073 6.6 74.5 

Mo (ppm) 0.5 1,479 1,478.5 28.27 76.178 9.9 5,803.132 8.4 96.1 
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Table. 3. 2. Density analysis from 11 boreholes in the Kahang deposit (See abbreviation list for 

rock type)   

BHID 
Depth 

(m) 

Rock 

Type 

Density 

(t/m3) 
BHID 

Depth 

(m) 
Rock Type 

Density 

(t/m3) 

KAG_27 151.7 PQD 2.67 KAG_50 148.6 PQD 2.68 

KAG_27 459.55 PQD 2.8 KAG_50 266.1 QAN-D 2.67 

KAG_27 580.3 ANS 2.7 KAG_50 332.95 DAC 2.74 

KAG_28 65.7 PQD 2.67 KAG_51 78.6 DAC 2.63 

KAG_28 232.1 PQD 2.66 KAG_51 174.2 ANS-D 2.59 

KAG_30 141.5 PQD 2.7 KAG_51 547.3 PQD 2.81 

KAG_30 240.7 PQD 2.72 KAG_52 235.85 PQD 2.72 

KAG_33 51.2 DAC 2.7 KAG_52 376.45 PQD 2.69 

KAG_33 128.15 DAC 2.63 KAG_52 462.55 PQD 2.69 

KAG_33 223.6 DAC 2.71 KAG_52 530 PQD 2.73 

KAG_33 348.8 DAC 2.64 KAG_54 644.5 DAC 2.7 

KAG_36 72.9 PQD 2.34 KAG_55 73.15 QAN 2.62 

KAG_36 327.9 DAC 2.69 KAG_55 108.4 QAN 2.69 

KAG_36 421.15 ANS 2.68 KAG_55 267.55 QAN 2.77 

KAG_49 359.75 ANS 2.71 KAG_55 470.85 PQD 2.62 

KAG_49 545.25 PQD 2.76 KAG_55 361.75 ANS 2.71 

 KAG-55 634.55 PQD 2.7 
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(a) 

 

 

(b) 
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(c)  

 

(d) 

Fig. 3. 4. 3D maps for original datasets: a) Cu wt.%, b) Mo ppm, c) density t/m3, and d) RQD % 
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3.4    Block Modelling 

Choosing a suitable voxel size for evaluation of a reserve/resource is crucial for 

minimising errors (Asghari and Madani Esfahani, 2013; Shahbeik et al., 2014). This 

problem has been assessed for estimated block models using different geostatistical 

methods such as ordinary kriging (OK) and inverse distance weighted (IDW). Results 

obtained by the estimation methods relate to the determination of voxel size in block 

modelling (David, 1970; Cressie, 1993; Soltani Mohammadi et al., 2012). 

 

Utilising a larger voxel size will increase the averaging effect in the estimated block model 

in terms of concentrations, geophysical data, rock mechanical data and other attributes. 

Additionally, a smaller voxel size will show more details, but potentially more error in an 

anisotropic environment (Journel and Huijbregts, 1978). On the other hand, reducing the 

voxel size results in an increase in estimated errors (variance and standard deviation) for 

the final block model. Moreover, increasing the voxel size in the block model changes the 

higher or lower grades of mineralised zones by smoothing of these points with high or low 

values within a large voxel.  

 

Identification of an optimised voxel size is one of the most important aspects of building 

an estimated 3D block model. Therefore, it is necessary to select an optimal voxel size 

with respect to the deposit geometry and drilling pattern because most of the 

geostatistical software, e.g. RockWorksTM which was employed in this study, estimates 

an ultimate block model based on the closest points considering particular parameters 

such as ore element concentrations (Verly, 1984; Journel, 1993).  
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Statistical parameters such as mean and median can be used for recognition of optimum 

voxel dimensions in various types of ore deposits (David, 1970; Journel and Huijbregts, 

1978). 

 

David (1970) proposed an applicable method for an operation based on geometrical 

particulars of the different types of ore deposits and grid drilling. Based on the method, 

voxel dimensions are calculated as follows: 

 

a) Length and width of each voxel is equal to between half and quarter of the distance 

between the drill cores according to along the least variability deposit. 

 

b) Height of each voxel is delineated due to the type of the deposit. In ‘massive’ 

deposits such as magmatic deposits (e.g., porphyry deposits), the parameter is equal to 

the height of excavating benches in the open pit mines (Hustrulid and Kuchta, 2006).  

 

For recognition of the optimum voxel dimensions in the Kahang Cu porphyry deposit, 

statistical characteristics consisting of mean, median and median absolute deviation 

(MAD) were utilised. In addition, standard deviation (SD) was used for further comparison 

and validation through the obtained results in the different scenarios of voxel size. If SDs 

include very low changes then voxel size selection is carried out based on the Cu 

estimated mean. The voxel sizes with the lowest value of Cu mean should be selected 

because this is a worse scenario for mine planning and exploitation due to conservative 
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mine strategy and risk analysis. Moreover, the median and MAD are used for 

determination of voxel sizes and development of conventional method, as proposed by 

David (1970). 

 

The 2D map which indicated the location of 48 boreholes drilled in the Kahang deposit 

was constructed by RockWorks™ v. 15 software (Fig. 3. 5a). From this, a grid model of 

the boreholes on the surface was created to illustrate drill core locations including the 

location information, symbol style and borehole names for the studied area. Since the 

grid drilling pattern within this deposit is not homogeneous and systematic, 14 pairs of 

closest boreholes were selected for an optimum voxel size investigation because this 

action can improve the interpolation of voxel values (Cu grades in this scenario) that lie 

between data point clusters (Fig. 3. 6). The particulars of these pairs are revealed in the 

Table. 3. 4. The distance range of the selected boreholes varies between 5 to 27 m. For 

identification of an optimum voxel size in the directions of X and Y, the vector analysis 

was employed. The ranges of distances in the X and Y directions are 0.38-18.97 m and 

3.47-25.97 m, respectively (Table. 3. 4). Based on the David (1970) method (as described 

in the last page), the voxel size in the Z direction was determined as 10 m on the basis of 

the ore deposit geometry and particularly height of the working bench. 
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(a) 
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(b) 

 

 

(c)  

Fig. 3. 5. a) 2D, b) 3D, and c) Google Earth maps of the grid drilling in the Kahang deposit 
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In the first step, the mean of distances between selected borehole pairs were calculated, 

as depicted in Table. 3. 5. In the simple method, the range of voxel sizes in the X and Y 

directions was considered between half and quarter of the mean value which is equal to 

4.67-9.34 m. Moreover, the ranges of the voxel size according to median and MAD values 

are 5-10 m and 2.5-5 m, respectively. 

 

 

Fig. 3. 6. Boreholes location (ignoring the three isolated boreholes in the NW) map in the 

Kahang deposit with selected closest borehole pairs 
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In the second step, the voxel size was investigated via vector analysis between boreholes 

based on the closest surface location on the 2D map. The mean values in the directions 

of X and Y are 12.91 m and 11.76 m, respectively, meaning that the voxel size varies 

between 3.23 m and 6.46 m in X and between 2.94 m and 5.88 m in Y. Based on the 

median values, the voxel size value ranges are 3.8-7.6 m and 2.32-4.65 m in terms of X 

and Y. The MAD values for X and Y are less than 3 m indicating that the voxel size is less 

than 1 m, resulting in an increase in the error for the construction of a final block model 

(Goovaerts, 1997). For a massive ore body, and homogenous distribution of element 

concentrations in porphyry deposits, X and Y directions have equal values in terms of 

voxel size (Davis, 2002). As a result, five different voxel size scenarios of 5 m x 5 m x 5 

m, 4 m × 4 m × 10 m, 5 m × 5 m × 10 m, 10 m x 10 m x 10 m and 15 m x 15 m x 15 m 

have been allocated to build the Kahang deposit pre-Cu block model. In order to find an 

accurate voxel size, declustering should be conducted previously because it is believed 

that the proper voxel size with respect to the different voxel alternatives is the one with 

the minimum standard deviation. In addition, Cu mean of a pre-Cu block model with an 

accurate voxels size should be close to Cu mean value obtained from the declustered 

data (e.g., Fig. 3. 7; Table. 3. 6; Deutsch and Journel, 1998; Richmond, 2002; Emery and 

Ortiz, 2005 and 2011; Olea, 2007; Sadeghi et al., 2015). 

 

3.4.1   Cell Declustering 

Data are often spatially clustered which makes it difficult to determine whether they are 

representative of the entire area of interest (Fig. 3. 7). To obtain a representative 

distribution, one approach is to assign declustering weights whereby values in cells with 
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more data receive less weight than those in sparsely sampled areas. The grid drilling in 

the area is non-uniform and the data need to be declustered. This operation was carried 

out using the Declus program which incorporates the GSLIB library (Deutsch and Journel, 

1998). The Cu mean and standard deviation of the declustered data are 0.145 wt.% and 

0.22077. Subsequently, the Cu block models were generated by IDW utilising 

RockWorksTM software. For determination of optimum voxel dimensions based on the 

statistical parameters depicted in Table. 3. 5, standard deviation (SD) and an average Cu 

value have been calculated. 

 

 

Fig. 3. 7. Cu histogram based on declustered data 
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Table. 3. 4. The particulars of the selected borehole pairs in the Kahang deposit 

Borehole ID Distance 

(m) 

Distance (m) 

From To X Y 

KAG50 KAG6 11 4.4 10 

KAG6 KAG47 23 17.14 15.33 

KAG15 KH-DDH17 5 0.38 4.98 

KAG33 KH-DDH13 20 18.69 7.1 

KAG42 KH-DDH9 14 12.88 5.47 

KH-DDH14 KH-DDH15 21 16.32 13.21 

KAG41 KH-DDH15 15 14.59 3.47 

KAG59 KAG27 15 12.28 8.6 

KAG54 KH-DDH16 16 15.58 3.59 

KAG52 KAG18 28 17.77 21.63 

KH-DDH11 KAG19 20 18.97 6.31 

KAG51 KH-DDH02 22 7.41 20.71 

KAG33 KH-DDH9 25 17.04 18.28 

KAG48 KAG28 27 7.39 25.96 

 

Table. 3. 5. Variation of voxel size based on mean, median and MAD 

Statistical Parameters Total Distances (m) Distances in X (m) Distances in Y (m) 

Mean 4.67-9.34 3.23-6.46 2.94-5.88 

Median 5-10 3.8-7.6 2.94-5.88 

MAD 2.5-5 < 1 < 1 
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Topographical features of the deposit were formed into a block model. The block model 

for Cu was produced by applying an upper and lower filter using RockWorksTM software, 

based on the surface data (Fig. 3. 8) and borehole data collar heights, given by NICICO. 

Those voxels located above the upper and below the lower topographical surfaces and 

bed rock are considered as the waste voxels and are not included in the deposit block 

model as the voxels are of negative significance (Todorov et al., 2002; Popov et al., 2003; 

Hustrulid and Kochta, 2006; Yasrebi et al., 2011). The use of IDW to construct the block 

model was employed in this research. The amounts of voxels with positive values (Non-

Zero) are shown in Table. 3. 6. The more Non-Zero voxels consequently correspond to 

the voxel dimension of 5 m × 5 m × 5 m. The standard deviation value for the voxel size 

of 4 m x 4 m x 10 m is lower than other voxel alternatives (Table. 3. 6). Moreover, the 

averages for estimated Cu values were compared and the lowest value occurs in the 4 m 

× 4 m × 10 m block model which is conservatively suited for identification of Net Present 

Value (NPV) and subsequently mine planning (Hustrulid and Kochta, 2006). The Cu mean 

for 4 m × 4 m × 10 m block model (0.15823 wt.%) is relatively close to the Cu average 

obtained from the declustered data (0.145 wt.%) in comparison with the other voxel 

scenarios. (Fig. 3. 7 and Table. 3. 6).  

 

 

 

 

 

 



106 
 

Table. 3. 6. Voxel numbers and Standard deviations and averages of Cu for different block 

models 

Block Model 
Dimensions 

(m3) 

Total Voxel 
No. 

Non-Zero Voxel 
No. 

Standard 
Deviation (%) 

Cu Average 
(wt.%) 

4 × 4 × 10 1,113,742 263,414 0.20134 0.15823 

5 × 5 × 10 

 

718,505 

 

 

169,091 

 

0.20136 0.15833 

5 × 5 × 5 2,526,601 345,578 0.20352 0.15895 

10 × 10 × 10 322,873 42,284 0.20138 0.15828 

15 × 15 × 15 97,785 12,486 0.21641 0.16266 

 

 

Fig. 3. 8. 2D topographical surface of the Kahang deposit 
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Borehole collar heights were compared with topographic surface heights to check that 

they are comparable, as depicted in Fig. 3. 9. The coordinates of collar boreholes 

correlate with used topographical points to provide a topographic surface for resource 

modelling and further optimisation studies. For the optimised pit scheduling software, a 

topography model is a three-dimensional surface model (See chapter 5, section 5.4) 

which is analogous to wireframe surfaces in most mining software systems (NPV – 

Scheduler, 2001).  
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Fig. 3. 9. Correlation between borehole data collar heights and topographical surface  
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3.5    Geostatistical Modelling 

Geostatistical estimation methods are used commonly for interpolation and estimation of 

different regional variables in 1D, 2D or 3D environments. Employment of an accurate 

estimation method with respect to geometry and geological properties of different ore 

deposits and also drilling patterns is a problematic issue in resource/reserve estimation 

(David, 1970; Yasrebi et al., 2009; Shahbeik et al., 2014). Determination of estimation 

methods is essential for decreasing the error estimation and increasing the accuracy of 

resource and reserve evaluation (Dimitrakopoulos et al., 2007; Parhizkar et al., 2011). 

Selection of an estimation method is essential for fractal/multifractal modelling, especially 

in the C-V model. On the other hand, accuracy of the estimation methods and their errors 

of interpolation affect the C-V fractal/multifractal modelling (Agterberg et al., 1993; Cheng 

and Agterberg, 1996; Lima et al., 2003; Agterberg, 2012; Afzal et al., 2013a; Heidari et 

al., 2013).  

 

Linear and non-linear Kriging methods, Inverse Distance Weighted (IDW), have been 

used to interpolate polynomials and splines, to overcome the mentioned problem (Franke, 

1982; Zimmerman et al., 1999; Juan et al., 2011). Among these methods, kriging and 

IDW are usually utilised in most cases in mineral exploration and mining engineering. 

Using real data rather than synthetic data has several advantages; for example, it 

precludes one method from having an unfair advantage merely because the data used 

for the comparison is generated under the same model on which the method is based. 

On the other hand, only with synthetic data can the effect of certain data characteristics 

on interpolation accuracy be systematically evaluated (Englund et al., 1992; Weber and 
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Englund, 1992 and 1994; Zimmerman et al., 1999). Evaluation of ore element distribution 

is an important parameter for mine planning and design (Hustrulid and Kochta, 2006).  

 

3.5.1   Inverse Distance Weighted Anisotropic Method (IDWAM) 

Inverse Distance (ID) is one of the more common gridding and estimation methods. With 

this method, the value assigned to a voxel is a weighted average of either all of the data 

points or a number of directionally distributed neighbours. The value of each of the data 

points is weighted according to the inverse of its distance from the voxel (Zimmerman et 

al., 1999; Homayoon et al., 2010; Shahbeik et al., 2014). 

 

Inverse Distance Weighted Anisotropic (IDWAM) is a method for interpolation of scattered 

points that estimates voxel values (e.g., ore grade) by averaging the values of sample 

data points in the neighbourhood of each processing voxel. IDWA has a crucial 

assumption that the interpolating surface is mostly influenced by the nearby points and 

less by the more distant points. The interpolating surface is a weighted average of the 

scatter points and the weight assigned to each scatter point diminishes as the distance 

from the interpolated point to the scattered point increases. The main advantage of the 

IDW method is to produce a smooth and continuous grid and does not exaggerate 

extrapolations beyond the given data points (Franke, 1982; Goovaerts, 1997).  

Therefore, the IDWAM is recommended for geochemical mapping where the data 

boundaries (geochemical populations) are critical for threshold-based target separation 

(e.g., in C-V fractal models). The range of element concentrations will be smaller than the 

raw data range meaning that highest grade values will be less than the maximum of raw 
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data, and the lowest grade values will be greater than the minimum data point (Tahmasebi 

and Hezarkhani, 2010). A general form of finding an interpolated value  at a given point 

 based on samples  for   using IDW is an interpolating function: 

 

 

                           Equation 3-2                                                        

 

where 

 

                                                                                         

Equation 3-3 

 

x denotes an interpolated (arbitrary) point, xi is an interpolating (known) point,  is a given 

distance (metric operator) from the known point xi to the unknown point x, N is the total 

number of known points used in interpolation and  is a positive real number, called the 

power parameter (e.g., an exponent of “2” = Inverse Distance Squared, “3” = Inverse 

Distance Cubed; Shepard, 1968). The greater the value of the exponent, the less 

influence distant control points will have on the assignment of the voxel value. 

http://en.wikipedia.org/wiki/Metric_(mathematics)
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The disadvantages of conventional IDW methods are choice of weighting function which 

may introduce ambiguity; especially where a fixed search radius requires a 

neighbourhood distance and a minimum or maximum number of points. 

 

In the IDWAM, all points will be used which increases error in the form of under and over 

estimation so the samples located in a supergene enrichment zone (in a porphyry deposit) 

can be influenced by the leached zone which correspondingly reduces the voxels grade 

values within ore minerals consisting of say chalcocite, covellite and bornite (Pirajno, 

2009). To overcome this problematic issue, variography, in combination with IDWAM, is 

employed for better estimations. 

 

Directional and non-directional searching in this method can improve the interpolation of 

voxel values that lie between data point clusters and be useful for modelling drill-hole 

based data in the stratiform and massive ore deposits (Zimmerman et al., 1999). In this 

thesis, a combination of IDWAM and variography has been used in order to generate a 

block model in terms of Cu and Mo values based on the following criteria: 

 

1- The grid drilling pattern is irregular and non-systematic, with an especially high drilling 

density in the NE part of the deposit, and low density in the NW part (e.g., three isolated 

boreholes: Fig. 3. 5a, b and c). Moreover, the grid drilling pattern has an anisotropic 

geometrical shape. 
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2- There are too many scattered drill holes in the marginal parts of the deposit which leads 

to a lack of data.  

 

3- Simple Kriging (SK), as a common estimation method, is based on a moving average 

of the variable of interest, appropriate for various dispersed forms of data e.g. sparse 

sampling points. As a result, this estimator requires adequate drill holes and data analysis 

which are not met in the Kahang deposit. However, in this thesis a combination of IDWAM 

and variography (horizontal and vertical) has been carried out for the development of 

IDW.   

 

4- According to field observations, the mineralisation and alteration zones, particularly 

hypogene and phyllic, continue through to the marginal parts of the deposit (especially in 

the SE area with high Cu and Mo values) which were not covered by the 48 boreholes 

conducted in the studied area. The IDWAM is therefore appropriate due to the lack of 

subsurface information.  

 

5- Trends of Cu values in X, Y and Z show that there is no association between ore grade 

and X-Y location or depth within the deposit (Fig. 3. 10), indicating again that “Universal 

Kriging” is not appropriate for this deposit.              
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(a) 

 

 

(b) 
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(c) 

Fig. 3. 10. Scatterplots for correlation between Cu (wt.%) and coordinates: a) Cu values 

trend in X, b) Cu values trend in Y, and c) Cu values trend in Z  

 

3.5.2   Application of IDWAM  

The experimental variograms in Fig. 3. 11 in horizontal (Azimuth: 0 and Dip: 0) and vertical 

(Azimuth: 0 and Dip: -90) directions were generated using MATLAB software with respect 

to log transformations of Cu and Mo grades. The horizontal and vertical ranges for Cu are 

56 m and 270 m, respectively. Moreover, the Mo horizontal and vertical ranges are equal 

to 40 m and 80 m, respectively. The spherical model was fitted to the experimental 

variograms.  Accordingly, the theoretical variograms for Cu and Mo grade values are as: 
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𝛾𝐶𝑢(ℎ) = 0.41 + 0.36 𝑠𝑝ℎ (10, 10, 25) + 0.85 𝑠𝑝ℎ (56, 56, 270) 

Equation 3-4 

 

𝛾𝑀𝑜(ℎ) = 1.125 + 0.56 𝑠𝑝ℎ (10, 10,10) + 0.36 𝑠𝑝ℎ (40,40, 20) + 0.044 𝑠𝑝ℎ (∞, ∞, 80) 

Equation 3-5 

 

 

 

(a) 
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(b) 

Fig 3. 11. Experimental and theoretical variograms: a) Cu, and b) Mo  

 

In addition, ‘Variogram Maps’ have been created using Varmap software from the GSlib 

Library (Deutsch and Journel, 1998) in order to find out if there are any anisotropic 

characteristics within the deposit. Variograms are traditionally constructed as 1D curves: 

ɣ (h) as a function of the distance h along a particular direction. It is often useful to have 

a global view of the variogram values in all directions (X-Y, Y-Z and X-Z in this thesis). To 

do this, transformed Cu and Mo grades were calculated using a logarithmic function 

before variography was carried out in the cases of: one set for the X-Y orientation (with 

lag spacing of 15 m) to evaluate the range in plan view, and one set either X-Z and Y-Z 

with lag spacing of 8 m to evaluate the range in vertical sections. There is an isotropic 

behaviour in horizontal direction for Cu and Mo. Furthermore, there is a weakly 
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anisotropic behaviour in the studied area based on the X-Z and Y-Z (vertical) variogram 

maps, as shown in Fig 3. 12. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 

Fig. 3. 12. Variogram maps for a) Cu in plan 1730 m, b) Mo in plan 1730 m, c) Cu in E-W 

section with Northing = 3644585, d) Mo in E-W section with Northing = 3644585, e) Cu in N-S 

section with Easting = 638325, and f) Mo in N-S section with Easting = 638325 
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 The Kahang deposit was modelled with 489,927 voxels with each voxel having a 

dimension of 4 m × 4 m × 10 m in the X, Y and Z directions. The project dimensions are 

600, 660 and 780 m (Fig. 3. 13).  3D block models for Cu and Mo were evaluated by 

IDWAW using the RockWorksTM software package, as depicted Fig. 3. 15. The ranges of 

Cu and Mo from the variograms in Fig. 3. 11 were imported into the vertical and horizontal 

distance cut-offs in the “Solid Modelling Options”.  

 

In order to achieve this using the RockWorksTM software, the following tasks, in their 

relative order, were carried out (Fig. 3. 14): 

 

The Weighting Exponent value was determined as being equal to 2 in order to prompt to 

enter a real number value for the Inverse-Distance exponent. Number of neighbouring 

points were defined between 3 and 15 data points that were to be used when computing 

the voxel value. The horizontal and vertical ranges (known as ‘Cut-offs Distances’ in the 

RockWorksTM software) were recognised based on the combined variograms with lags’ 

spacing of 15 m and 8 m for horizontal and vertical directions (Fig. 3. 11).  
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Fig. 3. 13. Project dimensions of the studied area 

 

 

Fig. 3. 14. Steps of IDWAM run in RockWorksTM 15 
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The sections within 0.4 wt.% Cu and 200 ppm Mo were separated and showed that these 

parts were located in the central, NE and NW parts of the area (Fig. 3. 16). Additionally, 

Cu values higher than 0.4 wt.% exist in the SE part of the area and continue towards 

Kahang village.  

 

Histogram and statistical characteristics of the Cu estimation indicate a standard deviation 

of 0.15 which is lower than the IDW (See Table. 3. 6), as shown in Fig. 3. 17 and Table. 

3. 7. As a result, it shows that the variography decreases the values of error estimation in 

the IDW indicator. Histogram and statistical particulars of the Mo estimated model (Fig. 

3. 17) illustrate a lower standard deviation in comparison with raw data which are 0.56 

and 0.76 respectively. Moreover, the mean of the Cu and Mo in the estimated models are 

0.14 wt.% and 27.49 ppm respectively (Table. 3. 7). If the Cu threshold is equal to 0.1 

wt.% then the resource is greater than 100 Mt with a Cu mean value equal to 0.23 wt.%, 

as depicted in Grade-Tonnage (G-T) diagram (Fig. 3. 18). The G-T diagram shows that 

the deposit has a good potential as a porphyry type because the mean Cu in the different 

thresholds are comparable with other Iranian porphyry deposits such as Masjed Daghi, 

Darreh Zar and Sar Kuh with 340 Mt and 0.27 wt.% Cu, 475 Mt and 0.36 wt.% Cu and 

110 Mt and 0.26 wt.% Cu, respectively (e.g., Shahabpour, 1994; Afzal et al., 2011; 

Aghazadeh et al., 2015). Several plans were generated for Cu and Mo, as depicted in 

Fig. 3. 19. The plans reveal that the main mineralisation occurs in the SE, NE and central 

parts of the deposit, especially in the NW section of the studied area (area around the 

three isolated boreholes: Fig. 3. 20). Cu values higher than 0.25 wt.% (Fig. 3.  20c) in the 

isolated bore holes (NW part) are more common at depth, and it may therefore be wise 
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to drill more bore holes in this area. Moreover, Cu samples with values higher than 0.15 

wt.% are mostly accumulated in the central part of the deposit (Fig. 3. 20b). Cu values 

greater than 0.07 wt.% are scattered in majority parts of the deposit (Fig. 3. 20a).  

 

Table. 3. 7. Statistical characteristics for Cu and Mo estimated models 

Element 
Minimum 

Value 

Maximum 

Value 
Range Mean 

Standard 

Deviation 
Median Variance Skewness Kurtosis 

Cu 

(wt.%) 
0.0003 4.00773 4 0.14 0.151 0.091 0.023 4.38 39.60 

Mo 

(ppm) 
0.65 790.82 784.75 27.49 56.44 12.56 3,185.515 6.82 59.91 

 

 

     
                                           (a)                                                                          (b) 

Fig. 3. 15. Block models in the Kahang deposit: a) Cu, and b) Mo 



125 
 

 

                     (a)                                                                          (b) 

Fig. 3. 16. Distribution models in the Kahang deposit: a) Cu ≥ 0.4 wt.%, and b) Mo ≥ 200 ppm 

 

 

Fig. 3. 17. Histograms of estimated element concentrations: a) Cu, and b) Mo  
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Fig. 3. 18. a) Cu (%) Grade-Tonnage, and b) Cu (%) average-cut-off diagrams for Kahang 

deposit    
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Fig. 3. 19. Cu and Mo plans in the Kahang deposit 

 

 

(a) 
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(b) 

 

(c) 

Fig. 3. 20. Samples (black discs) within Cu values higher than: a) 0.07 wt.%, b) 0.15 wt.% and 

c) 0.25 wt.% from boreholes carried out in the deposit 
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3.6    Validation Processes 

For validation of the estimation, two methods were used: optical correlation and jackknife. 

Optical correlation is a visual verification which tries to visually show correlation coefficient 

between raw (original) and estimated data in cross-sections (Fig. 3. 21). It shows a 

positive relationship between Cu values from the boreholes (raw or original data) and the 

generated block model (estimated data) in the different cross-sections (Fig. 3. 21). For 

optical correlation, randomised groups of boreholes which are close to each other (e.g., 

Fig. 3. 21b: Kag_59, Kag_17, Kag_09 and Kag_11) were selected and, for each individual 

borehole, a histogram of original data was constructed. The areas between selected 

boreholes in the cross-sections indicate estimated Cu values. There is a general belief 

that when the Cu values of the original data which are shown in the form of histogram for 

each borehole (Fig. 3. 21) are high, the estimated Cu values within those two boreholes 

should be high (RockWorksTM 15, 2010; Emery, 2012). For example, the Cu values of the 

original data from deeper parts of boreholes Kag_17 and Kag_09 reveal high values of 

element concentration therefor, the estimated Cu values between those original data 

should consider high value of the element concentrations, as depicted in Fig. 3. 21b. 

However, this method is not that sufficient because most of the boreholes were obliquely 

drilled.  

 

There are so many interdependent subjective decisions in a geostatistical study that it is 

good practice to validate the results obtained by the estimation method (IDWAM in this 

thesis) prior to any production run. The generated block model is validated by re-

estimating known values under implementation conditions, including the variogram 
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model, estimation method and search strategy, as close as possible to those of the 

forthcoming production run (Deutsch and Journel, 1998). These re-estimation techniques 

are discussed in most practical statistics and geostatistics books (Tukey, 1977; Efron, 

1982; Davis, 1987; Isaaks and Srivastava, 1989; Goovaerts, 1997). The term jackknife 

applies to resampling without replacement, i.e., when alternative sets of data values are 

re-estimated from other non-overlapping data sets (Efron, 1982). The jackknife analysis 

in the Kahang deposit indicates that the correlation between original data and Cu 

estimated is 70%, as depicted in Fig. 3. 22. In this figure, the diagonal of the square plot 

(black line) and the linear regression (red line) was derived and calculated using MATLAB 

program. 

 

 
(a) 
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(b) 

Fig. 3. 21. Optical correlation (visual verification) between Cu values of borehole and block 
model 
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Fig. 3. 22. Correlation chart between original and estimated data using jackknife resampling 

 

3.7    Delineation of Mineralised Zones Using C-V Modelling 

3.7.1   C-V Fractal Model 

According to a study by Everets and Mandelbrot (1992), the relationship between the 

measured parameters (e.g., ore grade, density and RQD) and numbers of 2D or 3D 

dimensional cells can be easily determined. Partition function is addressed as follows: 
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   Equation 3-6 
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Where q,  and  are the partition function, 2D or 3D blocks dimensions and a parameter 

which is in investigation (e.g., ore concentration), respectively. If the investigated 

parameter has the multifractal nature/behaviour in itself, the following relationship is 

established: 

 

)()( q

q

   

Equation 3-7 

 

In this case, the partition function is equal to the exponential relationship between the 

value of  which is q at any given moment. 

 

Cheng et al. (1994) proposed the fractal Concentration–Area (C–A) model for separating 

geochemical anomalies from background values in order to characterise the distribution 

of major, minor and trace element concentrations in relation to the Mitchell-Sulphurets 

porphyry system in British Columbia (Canada). This model has the general form: 

 

A(ρ≤υ) ∞ ρ−a1; A(ρ≥υ) ∞ ρ–a2                

Equation 3-8 

 

where A(ρ≤υ) and A(ρ≥υ) denote areas (A) with concentration values ρ that are, 

respectively, smaller and greater than contour value ρ defining that areas υ represents 

the threshold), which define those areas and a1 and a2 are characteristic exponents for 

both criteria. In log–log plots of concentration contours versus areas, certain 
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concentration contours representing breakpoints in the plots are considered threshold 

values separating geochemical populations in the data. Zou et al. (2009) applied the 

fractal C–A model to characterise the vertical distribution of element concentrations in the 

Qulong copper deposit, Tibet, western China. Fractal models have been used to identify 

the vertical distribution properties of Cu concentration values in mineralised and non-

mineralised zones. Cheng (2007) described hydrothermal processes (for undiscovered 

mineral deposits in Gejiu, Yunnan Province, China) in the Earth crust associated with ore 

deposits, such as porphyry ore deposits, which are characterized by high metal 

concentrations having fractal or multifractal properties. 

 

Cheng et al. (1994) and Zou et al. (2009) have suggested that the fractal C–A model is 

applicable in volume or can be extended to volumetric extensions because element 

distributions in horizontal or vertical directions are in accordance with fractal models. 

Concentration-Area is for recognition of anomalies clearly in the areas, namely a two-

dimensional environment. As a result, the equations of C-A fractal model can be 

established in the forms of: 

 

D
hA 
   )(

 

Equation 3-9 

D
vA 
   )(

 

Equation 3-10 
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Ah and Av indicate two areas containing grades within horizontal (Plans) and vertical (cross 

sections) directions, respectively. This reveals that the elemental distribution can also 

exist in 3D dimension. Different forms of the C–A model expressed in Equations 3-9 and 

3-10 can be rewritten as: 

 

Ah(ρ≤υ) ∞ ρ−a1; Ah(ρ≥υ) ∞ ρ–a2 

Equation 3-11 

Av(ρ≤υ) ∞ρ−a1; Av(ρ≥υ) ∞ ρ–a2 

Equation 3-12 

 

where Ah(ρ≤υ), Ah(ρ≥υ), Av(ρ≤υ) and Av(ρ≥υ) denote two areas with concentration values 

smaller and values greater than the contour value ρ defining that area respectively for all 

variables are the same as those in Equation 3-6, but the subscripts h and v denote areas 

described in horizontal and vertical section directions, respectively. 

 

In Equation 3-7, (q) is an auxiliary function. With respect to the Equation 3-7, the 

multifractal range of the  and the power value of α (q) can be calculated using the 

following relationships: 

 

𝛼(𝑞) =  
𝜕𝜏

𝜕𝑞
; 𝑓(𝛼) =  𝛼(𝑞) −  𝜏(𝑞)     

       Equation 3-13 
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The multifractal range of 𝑓(𝛼) is a continuous function between two values αMin and αMax. 

If (q) is a linear function with fixed values of  á = áMax or á = áMin, 𝑓(𝛼) will be constant 

which means that multifractal property changes to mono-fractal. In both cases, the 

relationship between concentration and volume has to be discussed in various forms. In 

the format of mono-fractal in which 𝑓(𝛼) and α are fixed, for better understanding of the 

relationship between concentration and its occupying volume (the volume containing 

specific grade) in the way that a database considering various grade is generated in 

accordance with a determined voxel size (ε), the following relationships are used where 

𝑉(𝜀) represents containing volume of 𝜌(𝜀). 

 

𝑉(𝜀) ∝ 𝜀−𝑓(𝛼)+2     

               Equation 3-14 

𝜌(𝜀) ∝ 𝜀𝛼−2  

       Equation 3-15                  

 

With the removal of ε from the two Equations 3-14 and 3-15, the relationship of 

concentration and volume in mono-fractal (bi-fractal) behaviour is defined as follows: 

 

𝑉(𝜌) ∝ 𝜌[2−𝑓(𝛼)]/(𝛼−2)]  

Equation 3-16                               

 

In the above equation, values of  𝑓(𝛼) and α vary between zero and two. If a multifractal 

model followed by a continuous range for 𝑓(𝛼) values exist then, two scenarios will occur. 
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In the first case, the α value is allocated to áMin (lowest value) and in the second case α 

maximum value is equal to áMax. As a result, to obtain the relationship between 

concentration and volume an integral equation is used as follows: 

 

𝑉(𝛼 < 𝛼𝑚𝑖𝑛
+ ) = 𝑉(𝜌) = ∫ 𝐶𝜀−𝑓(𝛼)+2𝑑𝛼

𝛼𝑚𝑖𝑛

𝛼𝑚𝑖𝑛
  

 Equation 3-17                               

           

 

Where C, ρ and 𝑉(𝜌) denote constant value, ore grade and occupied volume. Finally, the 

relationship between concentration and volume in the multifractal mode can be addressed 

as: 

 

𝑉(𝜌) ≈ 𝑉(𝑇) − 𝐶𝜀−𝑓(𝛼)+2𝑑𝛼   

Equation 3-18                                      

 

In a 3D block model, the above equation can be expressed as:  

 

DV 

   )(  

Equation 3-19                                             

 

Where 𝑉(𝜌) is a volume which contains ore grades equal and higher than ρ and D is a 

fractal dimension.  
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Consequently, the relationships defined in Equations 3-11 and 3-12 suggest that element 

distributions in a volume also follow a fractal model. The proposed fractal C–V model can 

be expressed, therefore, in the following general form: 

 

V)ρ≤υ(∞ ρ−a1; V)ρ≥υ( ∞ ρ–a2   

Equation 3-20       

 

Where, V(ρ≤υ) and V(ρ≥υ) denote volumes (V) with concentration values (ρ) that are, 

respectively, smaller and values greater than contour values (υ),which defines those 

volumes and a1 and a2 are characteristic exponents. Based on this kind of 

characterization, it is the assumed hypothesis that different zones in porphyry Cu deposits 

have fractal properties, which can be described by power–law relationships between ore 

element concentrations and volumetric extensions (Afzal et al., 2011 and 2012; Wang et 

al., 2013; Coghill et al., 2014; Sun and Liu, 2014; Awadelseid et al., 2015). In log–log plots 

of concentration contours versus volumes, certain concentration contours, representing 

breakpoints in the plots, are considered threshold values separating geochemical 

populations within the data. To calculate V(ρ≤υ) and V(ρ≥υ) enclosed by a concentration 

contour in a 3D model, in this study, the original borehole data of ore element 

concentrations were interpolated by using the geostatistical and inverse distance 

weighted (IDW) method. The interpolated 3D block model was used for the purpose of 

this study. Volumes V(ρ≤υ) and V(ρ≥υ) are equal to the unit volume of a voxel (or volume 

cell) multiplied by the number of voxels with concentration values (ρ) that are, 

respectively, smaller and greater than a certain concentration value (υ). Log–log plots of 
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the concentration contours versus the corresponding volumes [V(ρ≤υ) and V(ρ≥υ)] follow 

a power–law relationship. 

 

Breaks between straight-line segments in those log–log plots represent threshold values 

separating populations of geochemical concentration values. In typical porphyry Cu 

deposits, which are mostly high tonnage – low grade, zones of high Cu concentrations 

comprise relatively few voxels in a 3D block model, whereas zones of low Cu 

concentrations comprise numerous voxels. Therefore threshold values in this are 

recognised by applying the proposed fractal C–V model that likely represents boundaries 

between different ore zones and ‘barren’ wall rocks. 

 

3.7.2   Application of C-V Fractal Modelling 

The C-V fractal model for Cu has been created according to the Cu 3D block model. 

Threshold values were identified from the log–log plot in Fig. 3. 23, which demonstrates 

a power–law relationship between Cu concentrations and volumes occupied. It reveals 

that there are five populations according to the log-log plot corresponding to 0.075 wt.%, 

0.42 wt.%, 1.86 wt.% and 3.2 wt.% Cu in the deposit (Fig. 3. 23 and Table. 3. 8).  

 

Depicted arrows in the log–log plot indicate threshold values (e.g., breakpoints: Fig. 3. 

23). These separate various straight line segments in the log–log plots. There is a sudden 

change in the rate of decrease of the volume enclosed by high values of Cu. The first 

threshold of 0.075 wt.% represents the beginning of the Cu mineralisation in this scenario. 

As a result of this, the range of Cu concentrations less than 0.075 wt.% is deemed as 
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‘barren’ host rock including weakly mineralised zone within the deposit which may be 

assumed as waste from an exploitation point of view (e.g., propylitic alteration zone in 

Sungun porphyry copper deposit, NW Iran: Lowell and Guilbert 1970: Sim et al., 1999; 

Berger et al., 2008; Asghari et al., 2009; Wang et al. 2013; Soltani et al., 2014; Zuo and 

Wang, 2015). In addition, the first threshold value obtained by the C-V fractal modelling 

(Cu = 0.075 wt.%) can be defined as a Cut-off Grade (COG) of the deposit for the 

preliminary optimisation study but, the selection of an optimised COG is a dynamic 

process (See table 5. 3 of the chapter five for calculation of an economic COG), 

dependant on ore grade distribution, deposit geometrical shape and especially 

economical parameters (e.g., Krautkraemer, 1988; Ataei and Osanloo, 2003; Gu et al., 

2010). However, what is classed as ‘barren’ today may be economic in the future 

particularly when there is an increase in the metal world commodity price (Caccetta and 

Giannini, 1988; Dagdelen and Mohammed, 1997; Cairns and Shinkuma, 2003; He et al., 

2009). The second threshold value of Cu is 0.42 wt.% where the main Cu mineralisation 

starts. The range of Cu concentrations higher than 1.86 wt.% illustrates an enriched zone 

for Cu. For these Cu concentrations the slope of the straight line fit is near to 90°. 

 

Based on the 3D model of Mo distribution, volumes corresponding to different Mo grades 

were used to generate a C-V fractal model. Threshold values of Mo were identified in the 

C-V log-log plot which revealed five geochemical populations and four threshold values 

equal to 13, 100, 316 and 645 ppm Mo in the deposit (Fig. 3. 23 and Table. 3. 8). Enriched 

mineralised zones are deemed to have higher than 645 ppm because with these Mo 

concentrations the slope of the straight line fit is close to 90°. 
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The main Mo mineralisation starts from the second threshold which is 100 ppm in this 

kind of scenario. It is important to bear in mind that the Mo concentrations which are 

greater than 13 ppm represent the start of Mo mineralisation. Cu and Mo log-log plots 

have a multifractal nature for the elemental mineralisation in the deposit. 

 

Table. 3. 8. Cu and Mo thresholds defined by the C-V model in the Kahang deposit 

 

 

 

 

 

 

 

 

 

 

 

 

Geochemical 
population 

Cu (wt.%) threshold 
value 

Mo (ppm) 
threshold value 

Range Cu 
(wt.%) 

Range Mo (ppm) 

First (Barren host 
rock) 

- - <0.075 <13 

Second (Main 
mineralisation 

starting) 
0.075 13 0.075-0.42 13-100 

Third 0.42 100 0.42-1.86 100-316 

Fourth 
1.86 (Enriched zone 

for Cu) 
316 1.86-3.24 316-645 

Fifth 3.24  
645(Enriched 
zone for Mo) 

>3.24 >645 
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Fig. 3. 23. C-V log-log plots: a) Cu, and b) Mo  

 

3.8    Comparison and Correlation between Results of C-V Fractal and 

Geological Modelling 

To separate major mineralised zones including the supergene enrichment and hypogene 

zones, a correlation between the geological model (as mentioned in section 3.7.2) with 

Cu and Mo concentration distribution models has been constructed. In addition, results 
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from the C-V model were included in the combined model, where in consequence the 

supergene enrichment zone exists in small sections close to the surface and its Cu 

concentration value does not exceed that of 1.4 wt.% (Fig. 3. 24).  



148 
 

 
Fig. 3. 24. Geological zones (Cu distribution) including supergene enrichment (a) and hypogene 

(c) with modified zonation models via C-V showing regions of supergene enrichment (b), 

hypogene (d), main hypogene (e) and enriched hypogene (f) 
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Histograms of estimated Cu values for supergene enrichment and hypogene mineralised 

zones show that there are two populations within the supergene zone, one of which 

includes Cu values less than 0.2 wt.% and introduces weakly supergene mineralised zone 

(Sillito, 1997; Pirajno, 2009; Fig. 3. 25a). Moreover, most parts of the hypogene zone 

contain Cu values near to zero, as depicted in Fig. 3. 25b. It reveals that a correlation and 

validation between results obtained by geological and C-V fractal modelling is essential 

in order to achieve an accurate block model for a future optimisation study.  

 

The supergene enrichment zone with Cu > 0.42 wt.% concentrations is located in a small 

area within both the central and the eastern surface parts of the deposit, as depicted in 

Fig. 3. 24. As can be seen, the supergene enrichment zone derived via the C-V model 

has a volume smaller than its geological equivalent model. 

 

The correlation between the geological hypogene zone and the C-V model indicate that 

marginal parts of the geological model have Cu concentrations ≤ 0.075 wt.% and are 

consequently considered as weakly hypogene mineralised zone. However, the main 

hypogene zone with Cu ≥ 0.42 wt.% is located in the central, eastern and NW sections of 

the deposit especially at depth, but in the NE part of the deposit it is close to outcropping. 

The enriched hypogene zone with Cu ≥ 1.8 wt.% is situated in small sections of the 

central, NW, NE and SE parts of the deposit, as illustrated in Fig. 3. 24. 

 

The Mo distribution model is correlated with the supergene enrichment and the hypogene 

zones, as shown in Fig. 3. 26. The maximum concentration of Mo in the supergene 
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enrichment zone is 104 ppm and high values of Mo are situated in the hypogene zone. 

The main Mo mineralisation with Mo ≥ 100 ppm in the hypogene zone correlates with the 

main hypogene zone (Cu ≥ 0.42 wt.%). The enriched Mo zone with Mo ≥ 645 ppm is 

located in the central part of the deposit and associated with the enriched hypogene zone 

(Cu ≥ 1.8 wt.%), as shown in Fig. 3. 26. These results indicate that the enriched 

mineralised zone is located within the hypogene zone especially in the central, NW and 

NE sections of the deposit. 

 

In order to validate the results from the C-V model, a comparison between the 

mineralogical model (for chalcocite and chalcopyrite distributions: Fig. 3. 27a and b) and 

the main mineralised zones with Cu ≥ 0.42 wt.% (Table. 3. 8 and Fig. 3. 23a) was 

conducted. To do this, the chalcocite and chalcopyrite mineralogical units were 

distinguished using a mathematical filter facility within the RockWorksTM software which 

is called “Boolean data type”. As a result, the studied mineralogical units in the 3D model 

(See chapter 2, Fig. 2. 14c for the 3D dominant ore minerals) were allocated with binary 

codes (zero or one). Consequently, zones with the code number of zero are removed and 

the zones with the code number of one will remain in the 3D models (Fig. 3. 27a and b). 

Subsequently, another mathematical facility within the software called “Multiple of Model 

& Model” was used, which is a tool to manipulate the voxels in a solid model by the 

corresponding voxels in another equally-dimensioned solid model file between 3D 

mineralogical model and corresponding mineralised zones (e.g., RockWorksTM 15, 2010; 

Fig. 3. 27c, d and e). After doing that, it has been shown that chalcocite is associated with 

the supergene enrichment zone (Fig. 3. 27a and c) and chalcopyrite is also located within 
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the main hypogene zone with Cu ≥ 0.42 wt.% (Fig. 3. 27b and d). In addition, the 

chalcopyrite from the mineralogical model containing Cu ≥ 0.42 wt.% has a proper 

correlation with the main hypogene zone, as depicted in Fig. 3. 27e. 
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Fig. 3. 25. Histograms of estimated Cu values within the: a) supergene enrichment, and b) 

hypogene zones 
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Fig. 3. 26. Mo distribution in supergene enrichment zone (a), hypogene zone based on Mo C-V 

model (b), hypogene with Mo > 100 ppm (c), hypogene with Mo > 316 ppm (d) and Mo enriched 

zone (e) 
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Fig. 3. 27. Correlation between chalcocite (a), chalcopyrite (b) and chalcopyrite ≥ 0.42 wt.% Cu 

(e) zones with supergene enrichment zone (c) and main hypogene zone (d) based on C-V 

model 
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3.8.1   Application of Logratio Matrix 

Carranza (2011) has proposed a logratio matrix for further calculation of spatial 

correlations between two binary models. Using the mineralisation model, an intersection 

operation between a fractal mineralised zone model and different zones in the geological 

ore model was performed so as to obtain the numbers of voxels corresponding to each 

of the four classes of overlap zones as shown in Table. 3. 9 (the obtained values are the 

overlap number of voxels between two binary geological and fractal models). Using the 

obtained numbers of voxels, Type I error (T1E), Type II error (T2E), and overall accuracy 

(denoted as OA) relate to the ability of the analysis to define ‘barren’ host rocks 

(background) and mineralised zones delineated using the C-V fractal model with respect 

to the geological models. Type I error (denoted as T1E) relates to the ability of the analysis 

to define ‘barren’ host rocks whereas Type II error (denoted as T2E) relates to the ability 

of the analysis to define mineralised zones. The lower the error (i.e. the higher value for 

OA) the better the ability of the analysis to define ‘barren’ host rocks and mineralised 

zones. The values for OA of the C-V fractal and geological models (alteration and 

hypogene models) were compared with one another as follows: 
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Table. 3. 9. Matrix for comparing performance of fractal modelling results with geological model. 

A, B, C, and D represents the number of voxels overlapping between classes in the binary 

geological model and the binary results from fractal models (Carranza, 2011) 

 

 

Comparison between the hypogene zone obtained from the geological model and the 

main Cu and Mo mineralised zones from the C-V fractal model demonstrates that the 

hypogene zone has a better correlation with the main Cu mineralised zone (Cu > 0.42 

wt.%) because the number of overlapping voxels (A) in the main Cu mineralised zone 

obtained using the C-V model (20,839 voxels) is higher than in the main Mo mineralised 

zone (16,990 voxels), as depicted in Table. 3. 10. The overall accuracy of the main Cu 

and Mo mineralised zone derived via the C-V fractal model with respect to the hypogene 

zone of the geological model is equal to 0.154 and 0.146, respectively. 

 

Alterations play a fundamental role in zone identification and also in presenting geological 

models, as described by Lowell & Guilbert (1970). Correlation (from OA results) between 

the main Cu mineralised zone obtained from C-V model and potassic alteration is higher 

than the phyllic alteration because the OA for potassic and phyllic alterations have been 

determined as 0.765 and 0.509 respectively (Table. 3. 11). As a result, the higher values 
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for overall accuracy in Tables 3. 10 and 3. 11 represent the higher overlap between 

geological zones with mineralised zones identified by the C-V fractal model. 

 

 

Table. 3. 10. Overall accuracy (OA) with respect to hypogene zone as delineated in the 

geological model and Cu and Mo main mineralised zones obtained through C-V fractal model 

(Values are the number of voxels)  

 

Hypogene zone of Geological model 

Inside zone Outside zone 

C-V fractal model of Cu 

main mineralised zone 

Inside zone A 20839 B 3348 

Outside zone C 411164 D 54576 

 OA 0.154 

 

Hypogene zone of Geological model 

Inside zone Outside zone 

C-V fractal model of Mo 

main mineralised zone 

Inside zone A 16990 B 1795 

Outside zone C 414954 D 54674 

 OA 0.146 
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Table. 3. 11. Overall accuracy (OA) with respect to potassic and phyllic alteration zones and 

Cu main mineralised zones obtained through C-V fractal model (Values are the number of 

voxels) 

 

Potassic alteration zone of Geological model 

Inside zone Outside zone 

C-V fractal model of Cu 

main mineralised zone 

Inside zone A 2874 B 21313 

Outside zone C 93484 D 372256 

 OA 0.765 

 

Phyllic alteration zone of Geological model 

Inside zone Outside zone 

C-V fractal model of Cu 

main mineralised zone 

Inside zone A 10345 B 13842 

Outside zone C 226246 D 239494 

 OA 0.509 

 

 

Validation between the main Mo mineralised zone (Mo > 100 ppm) based on the C-V 

fractal model and alteration zones from the geological model indicates that there is a 

difference between the two alteration zones. Overall accuracy for the potassic and phyllic 

zones has been determined as 0.770 and 0.524 respectively (Table. 3. 12). According to 

these results, the main elemental mineralised zones have better correlation with the 

potassic alteration zone. 
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Table. 3. 12. Overall accuracy (OA) with respect to potassic and phyllic alteration zones and 

Mo main mineralised zones obtained through C-V fractal model (Values are the number of 

voxels) 

 

Potassic alteration zone of Geological model 

Inside zone Outside zone 

C-V fractal model of Mo 

main mineralised zone 

Inside zone A 1699 B 17086 

Outside zone C 95053 D 374575 

 OA 0.770 

 

Phyllic alteration zone of Geological model 

Inside zone Outside zone 

C-V fractal model of Mo 

main mineralised zone 

Inside zone A 11531 B 7254 

Outside zone C 224919 D 244709 

 OA 0.524 

 

 

3.9    Results 

Results from this study show that the C–V fractal model can be used to recognise different 

mineralisation zones in porphyry Cu deposits. Different geochemical populations can be 

interpreted via the C–V fractal model. The C–V fractal model uses relationships between 

the ore element concentration and the enclosing volumes, for example the concentration 

of Cu associated with different zones, and satisfies power–law relationships. The 

proposed fractal model could be applied for delineating enrichment zones from the 

‘barren’ host rock, or from the background value using the concentration values of the 

zones in combination with characteristic features of their geometrical shapes. The 
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proposed model is applicable to ore elements in the Cu and Mo porphyry deposits for 

which the spatial patterns of concentration values satisfy a multifractal model. 

 

Results from this study reveal that the hypogene zone is a major mineralised zone within 

the Kahang Cu-Mo porphyry deposit. Based on the C-V fractal model, the threshold value 

of 0.075 wt.% Cu may be equal to the deposit COG however, further investigation in this 

regard has to be conducted considering economic aspects of the optimisation study (See 

chapter 5). The threshold values for the main Cu and Mo mineralisation are 0.42 wt.% 

and 100 ppm, respectively. Enriched Cu-Mo mineralised zones with Cu ≥ 1.8 wt.% and 

Mo ≥ 645 ppm are located in the central, NW and NE parts within the hypogene zone. 

The supergene enrichment zone exists in small parts within the deposit, especially in the 

central and eastern zones.  

 

The supergene enrichment and hypogene zones delineated by the C–V model correlate 

well with the alterations and mineralogical data shown in the 3D models. The C–V log–

log plots from the Kahang deposit show that there is a multifractal model for Cu and Mo. 

From a comparison of the C–V and geological models the supergene enrichment zone 

shows a spatial correlation with the chalcocite-rich zone within the Kahang deposit. The 

main hypogene zone of Cu ≥ 0.42 wt.% has an association with the chalcopyrite 

distribution model. According to the correlation between results driven by fractal modelling 

and geological models using the logratio matrix, the Cu and Mo main mineralised zones 

generated in the C-V fractal model have a strong correlation with the potassic alteration 

zone with respect to the OA. 
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CHAPTER FOUR. Rock Mass Characterisation 

Utilising Fractal Modelling based on Density and 

RQD Data 
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4.1    Introduction 

Assessment of rock density and RQD are crucial aspects of mineral exploration, resource 

modelling and mine planning with huge cost implications for the design and the mining of 

each block (ore or waste tonnage). These are calculated using the dimension and density 

of each block. The results are assessed to identify a final pit slope angle and consequent 

pit stripping ratio (Lerch and Grossmann, 1965; Little, 2006; Grenon and Hadjigeorgiou, 

2010). The tonnage of these blocks located in each extractive zone is determined on the 

basis of the density zones (e.g., ore and waste; Hamdi and Mouza, 2005; Hustrulid and 

Kuchta, 2006; Rafiee and Vinches, 2008; Yasrebi et al., 2011). Host rocks of porphyry 

deposits consist of sub-volcanic bodies such as porphyritic quartz diorite, granite, 

monzonite and quartz monzonite which are lithological units with high hardness (Hitzman 

et al., 1992; Laznicka, 2005). Parameters such as density, hardness, porosity and fracture 

frequency (number of fractures counted each meter) give additional indications of rock 

mass characteristics within porphyry deposits (Dershowitz and Einstein, 1988; Meyer and 

Einstein, 2002; Kalenchuk et al., 2006). 

 

Numerical models in geosciences have been created and consequently utilised to better 

interpret the variability of geological parameters such as lithology, ore-type, alteration and 

mineralogy or for a better understanding of the different attributes such as density, rock 

mass characterisation and RQD (Jinga and Hudson, 2002; Rafiee and Vinches, 2008; 

Yasrebi et al., 2013b, 2014). However, the classical statistical methods for delineation of 

populations from a background level would be for example, a histogram analysis, box 

plot, summation of mean and standard deviation coefficients and median. These are not 



163 
 

considered overly accurate due to the fact that these statistical methods consider only the 

frequency distribution of information while not paying attention to the spatial variability 

(Boadu and Long, 1994; Ehlen, 2000). In other words, the classical statistical plots (i.e., 

histograms) are based on the data abundance distribution and cannot quantify the spatial 

positions of parameters such as RQD and density (Baecher et al., 1977; Rouleau and 

Gale, 1985; Villaescusa and Brown, 1990; Lu 1997; Rafiee and Vinches, 2008; Madani 

Esfahani and Asghari, 2013). As a result, numerical modelling of rock characteristics is a 

difficult task and requires 3D modelling for better interpretation of the problems found in 

a mining operation such as rock discontinuities, planar failure, circular failure, wedge 

failure and toppling failure (Zhang and Einstein, 2000; Lina and Kub, 2006; Yasrebi et al., 

2013b, 2014).  

 

The earliest model regarding the quantitative description of in-situ block size distribution 

(IBSD) was the Rock Quality Designation (RQD; See chapter 1, section 1.1 for the RQD 

definition), which was proposed by Deere (1964). Priest and Hudson (1976) applied the 

RQD method to scanline survey data with respect to an analytical relation between RQD 

and the discontinuity frequency resulted from a scanline survey. A borehole or a scanline 

are by their nature one dimensional. As a result, RQD values calculated using bore hole 

data or a scanline survey are influenced by the orientation in which the measurements 

are taken (horizontal or vertical) so the method does not consider calculation for the other 

direction (Lu, 1999; Carvalho et al., 2007; Slob, 2010). In order to overcome the 

dependence of RQD on orientation, Kazi and Sen (1985) proposed the use of the 

Volumetric Rock Quality Designation (V. RQD) which is a three-dimensional parameter. 
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This encloses the proportion of the volume of intact matrix rock blocks, equal to or higher 

than 0.001 m3 in size, which can be associated with the average volume of a matrix block 

and the number of matrix blocks per m3. To do this, the V.RQD is calculated by summation 

of the volumes of intact blocks divided by the total rock mass volume which is expressed 

as a percentage. However, the proposed model is limited to the estimation of the average 

block volume rather than the IBSD (Deere and Deere, 1989; Şen and Eissa, 1992; Lu, 

1999). Palmstrom (1985) proposed different empirical equations to link Volumetric 

Discontinuity Count for RQD (known as Jv RQD) data and linear fracture frequency. He 

suggested that there is a correlation between the in-situ block size and Jv is represented 

in a figure incorporating various measurements of the block size or degree of jointing 

(e.g., density of joints, RQD, block volume and joint spacing). However, this model can 

only estimate a rough upper and lower range of block sizes and therefore has restricted 

practical applications (Şen and Eissa, 1991; Milne, 2007). Şen and Eissa (1992) derived 

values for Jv for RQD and block volumes of different shapes such as bars, plates and or 

prisms quantity. The proposed model provides a simple tool for rock engineers without 

the need for recourse to theoretical calculations. However, the block volume in this model 

is given in terms of average block size so it cannot describe the block size distribution 

(Lu, 1999; Palmstrom, 2005). 

 

Techniques for selecting a theoretical function to describe rock mass characteristics 

based on RQD data are unsatisfactory, as mentioned above. As a result, an approach to 

introduce an analytical model to help achieve a proper fitted curve for interpreting the 

distributions of measured RQD combining with density data is needed (e.g., Tables. 4. 5 
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and 4. 6; Figs. 4. 8; 4. 10 to 4. 12). An accurate description of density and RQD distribution 

within a deposit plays a significant role in any optimisation study (See chapter 5, section 

5.5 and 5.7). In recent years, models based on fractal geometry as a nonlinear 

mathematical method, proposed by Mandelbrot (1983), have been widely used in different 

branches of earth sciences since various geological processes and even mining-based 

issues like rock mass characterisation can be categorised by changes in fractal 

dimensions resulting from analysis of the relevant data and desirable attributes (density 

and RQD in this scenario). Therefore, fractal analysis has the abilities to identify the 

differences within ore deposits especially in hydrothermal occurrences such as porphyry 

Cu deposits (Agterberg et al., 1993; Cheng et al., 1994; Li et al., 2003; Cheng, Q., 2007; 

Harati et al., 2013). In other words, differences of fractal dimensions in density and RQD 

data can certify applicable criteria to identify rock mass characteristics.  

 

Consequently, the aim of this chapter is to use the Density–Volume (D–V) and RQD-

Volume (RQD-V) fractal models, which demonstrate that there is a power–law 

relationship between desirable attributes (e.g., density and RQD values within the 

deposit) and their cumulative volumes occupying spatial positions, to delineate density 

and RQD populations associated with the major rock types (e.g., porphyritic quartz diorite: 

PQD, andesite: ANS and dacite: DAC: Figs. 4. 8; 4. 11) which occupy 93% of whole 

deposit volume (Yasrebi et al., 2013b). The results derived via the RQD-V fractal model 

are validated using the Deere and Miller rock classification (1966; Table. 4. 1) to test 

whether the RQD-V fractal model defines the best result with respect to the volume of 

voxels (blocks) located within the mentioned lithological units in order to predict an 
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optimised experimental final pit slope. Moreover, for validation purposes and better 

understanding of rock characteristics in the studied deposit, the Log-ratio matrix proposed 

by Carranza (2011) has been employed.  

 

Table. 4. 1. Classification of Rock Quality Designation, Deere and Miller rock classification 

(1966) 

 

 

4.2    Statistical Characteristics 

RQD and density histograms provide a means for quickly evaluating the range of density 

and RQD values for a selected data set (See chapter 3, section 3.3, figures for the original 

data sets used for RQD and density values) without creating a 3D solid model in order to 

illustrate the highest, lowest, sum, or average data values. These histograms are used to 

read a single column of data (RQD or density) from a data set to determine the frequency 

or percentage of the total number of measurements for that variable/attribute that falls 

within each user-defined grouping. Location of boreholes which have been analysed for 

density and RQD values is shown in Fig. 4. 1. In this deposit, 33 and 14979 density and 

RQD samples have been measured from 11 and 42 boreholes, respectively, out of a total 

of 48 boreholes carried out in the deposit (Fig. 4. 1; See chapter 3, Tables. 3. 2 and 3. 3; 

Fig. 3. 4c and d). The density and RQD distribution functions are shown in Fig. 4. 2 and 
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4. 3, and are not normally distributed, with averages of 2.68 t/m3 and 48%, for density and 

RQD, respectively. 

 

Fig. 4. 1. Location of boreholes sampled for density and RQD 

 



168 
 

  

Fig. 4. 2. Density histogram based on raw data for the Kahang porphyry deposit  

 

 

Fig. 4. 3. RQD histogram based on raw data for the Kahang porphyry deposit  
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The multi-modal distribution for density (Fig. 4. 2) indicates that the deposit has high 

values in terms of density especially in the major rock type of PQD occupying most parts 

of the deposit. As a result, most density values are higher than the mean point which 

increases the tonnage of each individual voxel and correspondingly produces a rise in the 

total rock tonnage. There is the bimodal distribution for RQD (Fig. 4. 3). As a result, there 

are two main populations with values of <25% and >90% for RQD which illustrates that 

there are two classifications of rock qualities (poor and excellent) with respect to the 

Deere and Miller RQD classification (1966). In addition, with respect to the RQD 

histogram, the greatest frequency of the RQD data corresponds to the excellent rocks 

within the deposit which will result in the highest stability of the final pit slope. The tonnage 

of extractive blocks in the deposit is calculated on the basis of rock density (ore and 

waste) which is used for pit optimisation study.  

 

4.3    Methodology 

Initially, a database was generated based on drill core data consisting of lithological units, 

density and RQD values. Secondly, the database was entered into the RockWorksTM 15 

software package to build 3D density and RQD block models (Fig. 4. 5 and 4. 6) utilising 

IDWAM due to the lack of adequate density and RQD data and having a non-uniform 

drilling grid. For RQD, an experimental variogram in horizontal (with lag spacing of 15 m) 

and vertical (with lag spacing of 8 m) orientations was produced via MATLAB software 

with respect to log transformation of RQD values (raw data), as shown in Fig. 4. 4. From 

this, the horizontal (Azimuth: 0 and Dip: 0) and vertical (Azimuth: 0 and Dip: -90) ranges 

for RQD are 120 m and 270 m, respectively.  However, no proper variogram can be fitted 
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for density because of so few data (just 33 samples: See chapter 3, Table. 3. 2 and Fig. 

3. 4c). The next step was to propose the Density–Volume (D–V) and RQD-Volume fractal 

models to generate the separation of different populations in terms of density and RQD. 

Subsequently, a mathematical facility within software called “Multiple of Model & Model” 

was used to manipulate the voxels in a solid model using the corresponding voxels in 

another equal-dimension solid model. From this, a correlation between the density and 

RQD 3D block models interpreted via D–V, RQD-V and the porphyric quartz diorite 

lithological unit was conducted (e.g., RockWorksTM 15, 2010; Fig. 4. 12). The theoretical 

variogram for RQD is as follow: 

 

𝛾𝑅𝑄𝐷 (ℎ) = 135.71 + 190 𝑠𝑝ℎ (20, 20, 20) + 499.88 𝑠𝑝ℎ (120, 120, 270)  

Equation 4-1 

 

Fig. 4. 4. Experimental and theoretical variogram for RQD  
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Fig. 4. 5. Density block model determined using estimated data 

 

 

 

Fig. 4. 6. RQD block model in Kahang porphyry deposit determined using estimated data  
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4.3.1   D-V Fractal Model  

Fractal and multifractal modelling was generated with respect to a partition function and 

a power-law relationship between parameters such as density and RQD (Evertz and 

Mandelbrot, 1992; Li et al., 2003; Carranza, 2008). The D-V fractal model was 

constructed based on a Concentration-Volume (C-A) fractal model, shown in Equation 4-

2: 

 

V(ρ≤υ)  ρ -a1 ; V(ρ≥υ)  ρ –a2 

Equation 4-2 

 

Where V(ρ≤υ) and V(ρ≥υ) denote two volumes with density values less than, or equal to, 

and greater than, or equal to, the contour value ρ; υ which represents the threshold value 

of a population (or volume); and a1 and a2 which are characteristic exponents. Threshold 

values in this model indicate boundaries between different density populations within ore 

deposits. To calculate V(ρ≤υ) and V(ρ≥υ), which are the volumes enclosed by a contour 

level ρ in a 3D model, the drill core data of density values was interpolated by using a 

geo-statistical estimation. The density 3D model was evaluated by IDW, which can 

improve the interpolation of voxel values that lie between data point clusters and can be 

useful for modelling drill hole based data in different types of deposits (Lima et al., 2013). 

D–V fractal model reveals that there are two populations according to the log–log plot, 

one above and one below 2.7t/m3 within the deposit (Fig. 4. 7), indicating that the rocks 

with correspondingly high density commence from this break point. Most parts of the 
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deposit have density values higher than 2.7t/m3, especially in the central part of the 

deposit (Fig. 4. 5). 

 

 

Fig. 4. 7. D–V log–log plot in the Kahang deposit 

 

Results of the D–V model are correlated to the major lithological units of the deposit 

consisting of porphyritic quartz diorite (PQD), dacite and andesite. High density rocks 

(≥2.7 t/m3) defined by means of the D–V modelling are clearly correlated with porphyritic 

quartz diorite defined by the 3D modelling of lithological drill core data (compare Fig. 4. 5 

with Fig. 4. 8a). However, the high density rocks are also associated with andesite in the 

marginal parts of the deposits, as illustrated in Fig. 4. 8b. The high density is not present 

in the majority of dacitic rocks, as depicted in Fig. 4. 8c.  
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Fig. 4. 8.  Voxels with density ≥2.7 t/m3 within lithological units: a) porphyritic quartz diorite, b) 

andesite, and c) dacite 

 

Carranza (2011) has provided a method for determining the overlap correlations between 

two binary models (See Chapter 3, section 3.8.1). An intersection operation between the 

results from the fractal model and major lithological units was performed to obtain the 

number of voxels corresponding to each of the four classes of overlap zones. Using the 

number of voxels, Type I error (T1E), Type II error (T2E) and overall accuracy (OA) of the 

fractal model were calculated with respect to the lithological model. Correlation between 

the high density rocks obtained via the D–V fractal model and the major lithological units 

show that the porphyritic quartz diorites have higher OA compared with andesitic and 

dacitic rocks (OAPQD=0.65, as shown in Table. 4. 2). Moreover, overall accuracies of the 
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high density zones with andesite and dacite are 0.35 and 0.32, respectively, as depicted 

in Tables 4. 3 and 4. 4. 

 

 

Table. 4. 2. Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) 

with respect to PQD rocks resulted from geological model and high density rocks obtained 

through D–V fractal modelling of density data (the obtained values are the overlap number 

of voxels between two binary geological and fractal models) 

 

 

 

Table. 4. 3. Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) with 

respect to andesite rocks resulted from geological model and high density rocks obtained 

through D–V fractal modelling of density data (the obtained values are the overlap number of 

voxels between two binary geological and fractal models) 
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Table. 4. 4. Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) with 

respect to dacite rocks resulted from geological model and high density rocks obtained through 

D–V fractal modelling of density data (the obtained values are the overlap number of voxels 

between two binary geological and fractal models) 

 

 

4.3.2   RQD-Volume (RQD-V) Fractal Model 

The RQD–V fractal model which is developed based on Concentration-Volume (C-V) 

fractal (Yasrebi et al., 2013b) for separation of rock populations based on RQD as an 

important parameter for the rock mass characterisation, can be shown in Equation 4-3: 

 

V(ρ ≤ υ) ρ–a1; V(ρ ≥ υ) ρ –a2 

Equation 4-3 

    

Where V(ρ ≤ υ) and V(ρ ≥ υ) denote two volumes with RQD values less than or equal to 

and greater than or equal to the contour value ρ; υ which represents the threshold value 

of a volume; a1 and a2 which are characteristic exponents. Threshold values in this model 

represent boundaries between different rock mass populations of mineral deposits. To 

calculate V(ρ ≤ υ) and V(ρ ≥ υ), which are the volumes enclosed by a contour level ρ in a 

3D model, the borehole data of RQD values were interpolated by using the IDW 

estimation. According to the RQD 3D block model, volumes corresponding to various 
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RQD values were calculated to derive a RQD-V fractal model. Threshold values of RQD 

were recognised in the RQD-V log–log plot (Fig. 4. 9) which reveals a power-law 

relationship between RQD values and volumes occupied. Depicted arrows in the log–log 

plot illustrate threshold values at three breakpoints corresponding to 3.55%, 25.12% and 

89.12% for RQD. Based on the log–log plot, the excellent RQD populations are 

considered to have > 89.12%. The range of RQD values between 89.12% and 25.12% 

indicate a combination of good, fair and poor rock mass quality of which definition is in 

accordance with the Deere and Miller rock classification (Table. 4. 1 and 4. 5). However, 

very poor rock characterisation is for RQD < 25.12% containing of threshold value equal 

to 3.55% so therefore, there are two very poor RQD populations in this deposit 

considering RQD-V fractal modelling. 

 

 

 

Fig. 4. 9. RQD-V log–log plot in the Kahang deposit 
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Table. 4. 5. RQD populations (zones) based on three thresholds defined from RQD-V fractal 

model 

 

 

Based on the RQD-V fractal model, the majority of the deposit consists of very poor zones 

which include 303,113 voxels (Fig. 4. 10 and Table. 4. 5). However, poor, fair and good 

zones are present along NE-NW trend. Excellent zones in terms of RQD occur in the 

central and NW parts of the deposit. As a result, for an RQD > 89.12%, the slope of the 

straight line fit is near to 90° based on the RQD-V log–log plot (Fig. 4. 9). 

Deere and Miller RQD 

Classification 

RQD Range Obtained by RQD-N 

Log-log Plot 

The Amount of Voxels in Each RQD 

Range within the Whole Model 

 

Very Poor 

Very poor 

Poor, Fair & Good 

Excellent 

<3.55 

3.55 – 25.12 

25.12 – 89.12 

>89.12 

111,697 

191,416 

180,524 

30,254 
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Fig. 4. 10. RQD populations within the Kahang deposit based on thresholds defined from the 

RQD-V fractal model: a) very poor zones, b) very poor zones, c) poor, fair and good zones, and 

d) excellent zones 
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Results from the RQD-V model were correlated to the major lithological units (e.g., 

porphyritic quartz diorite, andesite and dacite: Fig. 4. 11a, c and e) which were 

constructed using RockWorks™ v. 15 software and drill core data. Rocks with excellent 

RQD, defined using the RQD-V model, show a good spatial correlation with porphyritic 

quartz diorites, defined by the 3D modelling, in comparison with the andesite and dacite 

lithological units (Table. 4. 6), particularly in the central and NW parts of the deposit (Fig. 

4. 11b). Therefore, it can be concluded that the porphyritic quartz diorite unit hosts 

excellent RQD values. 

 

Table. 4. 6. Amount of the excellent RQD populations (voxels) defined from the RQD-V fractal 

model (RQD ≥ 89.12t/m3) in each major lithological unit within the Kahang deposit 

 

 

 

 

 

 

Lithological Units 

The Amount of Voxels in Each 

Lithological Unit within the Whole 

Model 

The Amount of Voxels in Each Major 

Lithological Unit Associated with 

RQD≥89.12t/m3 (Excellent RQD)  

Porphyritic Quartz Diorite 

Andesite 

Dacite 

 

394,122 

142,802 

122,384 

 

 

15,085 

3,742 

3,687 
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Fig. 4. 11. a) 3D lithology model for porphyritic quartz diorite , b) porphyritic quartz diorite unit 

based on the RQD-V model for RQD > 89.12%, c) 3D lithology model for andesite , d) andesite 

unit associated with RQD > 89.12%, e) 3D lithology model for dacite , and f) dacite unit 

associated with RQD > 89.12% 

 

4.4    Comparison between D–V and RQD Models 

The RQD parameter is an extremely useful indicator of rock mass quality, especially if 

used alongside density interpretation (Harrison, 1999; Zhang et al., 2012). This can lead 

to better understanding of rock quality in the study area because density variation within 

a rock mass has a direct relationship with changes in geomechanical properties such as 

porosity and permeability (Singh and Baliga, 1994). Demonstration and analysis of the 

correlation between RQD and density can be used in optimisation studies for the 

determination of the ultimate pit limit and mine planning. As can be seen in the RQD 

histogram (Fig. 4. 3) for all of the lithological units, the RQD average is around 48% 
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representing a “moderate” quality for the studied rock mass. However, use of the average 

RQD can be misleading for design purposes. The increased RQD in the porphyritic quartz 

diorite is accompanied by a corresponding increase in the density of the same rock type. 

As a result, there is a positive correlation between RQD > 70% with density > 2.7t/m3, as 

depicted in Fig. 4. 12. Since RQD is a quality indicator for the rock mass and is associated 

with factors such as strength, modulus of elasticity, coefficient of permeability and 

different rock types, it can also be an indicator of potential slope stability. This suggests 

that the porphyritic quartz diorite, which is the main host rock in this deposit, with a RQD 

> 70% and a density > 2.7t/m3, would be associated with competent areas for potential 

bench and slope stability which will ultimately influence the future pit slope design and 

ultimate pit limit. 

 

Fig. 4. 12. Correlation between RQD > 70% with density > 2.7t/m3 block model within the 

porphyritic quartz diorite 
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4.5    Results 

From the D–V log–log plot for the Kahang deposit, there is a mono-fractal model with a 

break point in density at 2.7 t/m3. Correlation between the results of D–V and RQD models 

reveals that the rock units with a higher density (>2.7t/m3) are associated with RQD values 

> 70%. The final pit slope geometry and ultimate pit limit will depend on the economic 

evaluation of the orebody. However, an awareness of the spatial variability of parameters 

such as RQD, density can be used to assess geotechnical characteristics of the rock 

mass1. This can then be used to evaluate potential slope stability and be incorporated 

into a geotechnical risk model for the final pit geometry. Regions of high RQD may be 

targeted as offering greater potential for increased slope angles or locations for siting of 

critical haul roads. Regions of lower RQD should, where possible, be avoided for final pit 

limits as they will require lower slope angles. As a result, it seems rather obvious that 

there are likely to be multiple populations, presumably related to geology, e.g. lithology. 

Certainly from a slope stability point of view it would be expected that anyone examining 

this data would consider at least multiple domains for slope stability assessments, hence 

two final pit slopes would be selected in determining an ultimate pit limit. Further 

geotechnical characterisation will, however, be necessary to establish any potential 

influence of the 3D fracture network and presence of any major discontinuity- controlled 

instability.  

 

The threshold RQD value for excellent rocks is 89.12% based on the fractal model as 

situated in the central and NW parts of the deposit. Models of good and fair rocks in the 

                                                             
1 See Appendix. E for Density and RQD plans in different levels 
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central, eastern and NW parts of the deposit contain 25.12%–89.12% RQD values 

according to the RQD-V model. According to the correlation between results derived by 

fractal modelling and the major lithological unit of PQD in the Kahang deposit, rocks with 

excellent RQD defined by the means of RQD-V model have a sensible correlation with 

porphyritic quartz diorites resulted from the 3D geological model. 
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CHAPTER FIVE. Mining Optimisation 
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5.1    Introduction 

Pit limit optimisations form an integral part of open pit mine planning and combined with 

the other mine planning tools such as pit design and cut-off grade (COG) determination 

are used in open pit mine planning to define the final pit limit and open pit mining 

sequences (Johnson, 1968; Hustrulid and Kuchta, 2006). Various definitions and 

recognised techniques for the analysis of pit limit optimisation results have been 

introduced, developed and consequently improved by the mining industry. Following this, 

Armstrong (1990) said the Ultimate Pit Limit (UPL) is the maximum boundary of all 

materials certifying the criteria of:  

 

1. A block of the material will not be mined unless it can cover all costs for its 

subsequent mining (ore and waste), processing (ore) and marketing (ore). 

2. Any block meeting the first criterion will be included in the pit. 

 

Whittle (1988) suggested that an ultimate pit meets the highest possible undiscounted 

cash flow without considering of scheduling target including pushbacks and consequent  

mine planning. Hustrulid (1995) proposed that the pit remaining at the end of mining (mine 

life) is called the final or ultimate pit. However, the destination of the material with different 

money values defined as cut-off grade must be identified meeting economic criteria. In 

total, an ultimate pit is the pit producing the highest value of NPV compared with the other 

potential pits. One of the best ways to recognise a final pit limit was suggested by Lerch 

and Grossman whose 3D graph theory is a practical computer-supported alternative 

(Dynamic programming) to the conventional manual approach for open pit design through 

a block model. They introduced a block model of a mine by a weighted directed graph 
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where each vertex represents the blocks and each arc represents the blocks 

interdependency from an excavation perspective. The direction of the arcs from a vertex 

to the other vertex reveals the excavation priority of the second block to the first block 

and so on by the weights (e.g. NPV of each block) which comes from the blocks’ economic 

values (Caccetta and Giannini, 1988; Akbari et al., 2008; Yasrebi et al., 2011). They 

proposed that the aim of an ultimate pit limit is to find the maximum weight of the above-

stated weighted directed graph. In other words, the most famous optimisation algorithm 

is the Lerch and Grossman algorithm which considers the influences of operating costs, 

product prices, slope geometry, etc. The Lerch and Grossman algorithm is utilised with 

varying revenue factors to develop a value mining-based sequence strategy which 

introduces pit shells from revenue factors. The actual design has to also address 

functional considerations such as haul road access, cut-off grades and processing, etc. 

 

The determination of the final pit limit is one of the most significant aspects which must 

be frequently reviewed and correspondingly corrected in the early stages and throughout 

a mine life on the basis of deposit information and changes in economic parameters due 

to uncertainty of the relative metal’s world commodity price and related mining costs 

(Dimitrakopoulos et al., 2002; Akbari et al., 2008; Yasrebi et al., 2011; Asad and 

Dimitrakopoulos, 2013). As a result, ultimate pit recognition in each period of time is a 

function of financial affairs, which is well defined by Break-Even Stripping Ratio (BESR). 

The calculation of economic elements of a deposit therefore has to be performed 

according to the final exploration information and economical regime of the country in 

which the project is being carried out (Johnson, 1968). In other words, identification of a 
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final pit limit can be examined at almost every stage of a project, from exploration program 

definitions to the preparation of feasibility studies, modifications of development options 

for an open pit mine and pit development sequence.  

 

The determination of a final pit limit in an open pit mine in various implementation forms 

is one of the most fundamentally important aspects of mine design which can produce 

feasible optimum pit development geometries considering the geology, grade, slope and 

economic information. Nowadays, in optimisation of open pit mines, determination of the 

ultimate pit limit is just one of the many steps which are used in optimisation studies and 

following this, engineers continue to utilise software packages which can achieve yearly 

optimised mine plans or even selective mining designs. The goal of this chapter is to 

determine the ultimate pit limit of the Kahang deposit by employing 3D block models (for 

Cu and Mo) via the C-V fractal model and rock mass characterisation through D-V and 

RQD-V fractal models by which the achieved results can be comprehensively adjusted 

for all kinds of open pit mines in a way that can be used by mine planners. 

 

One way to maximise the use of block modelling functions in order to optimise the pit 

design process is to fully integrate block modelling and slope stability analysis. This is 

because it is believed that optimised slope stability results in a lower amount of waste 

material removed which reduces mining cost and correspondingly raises the NPV of the 

whole project (Lerch and Grossmann, 1965; Koenigsberg, 1982; Hustrulid and Kuchta, 

2006; Yasrebi et al., 2011 and 2014; Marcotte and Caron, 2013). In addition, there is a 

logical action where one identifies different rock types (ore or waste) in terms of the 
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grades of each block. This process can be further enhanced by defining at every block 

location an identified COG. 

 

Before performing any of the computerised optimisation processes, a range of basic 

information was required for the study (Fig. 5. 1). Technical data and economic 

information are crucial within the optimisation process. These factors greatly influence pit 

design. A sensitivity analysis was carried out on the basis of technical and economic 

parametric changes for the mining strategy (See chapter 6). The Lerch and Grossman 

algorithm considers the influences of operating costs, product prices, slope geometry, 

etc.  

 

(a) 
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(b) 

Fig. 5. 1. a) Design procedure in an open pit mine with regard to ultimate pit limit determination 

(Akbari et al., 2008) and b) steps in mining design and planning by circular and interdependent 

analysis (Osanloo et al., 2008b) 

 

5.2    Methodology 

Initially, the dataset obtained from a block model, via the C-V fractal model, was exported 

in the form of a table or Open Database Connectivity (ODBC) format which is compatible 

with optimisation software packages. Before this, careful validation of all data analysed 

from boreholes was conducted, which is an important preliminary action before 

generating a block model. The RockWorksTM 15 enables us to generate a 3D geological 

and deposit block model which includes ore grade, rock density and rock type. The result 

of this was a deposit reserve estimation and the likely modification of existing geological 

maps matching the general observation of the region in question, and new cross sections. 

Following this,  NPV Scheduler was used in order to establish the final pit limit in terms of 

the maximum Net Present Value (NPV) and associated ‘’Pushbacks’’ to produce a best 

case mining scenario (Hustrulid and Kuchta, 2006; Elkington and Durham,  2011; Yasrebi 
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et al., 2011; Armstrong and Galli, 2012). To do this, all the required data such as grade, 

density and rock type (1 for ore and 0 for waste) and other similar data were entered as 

numerical values into each of the deposit’s block models. Resulting 3D models were 

exported mathematically as 3D matrices into the optimisation programs in the following 

manner:  

 

1- Coordinates for the centre of sub cells in each plan were entered into an EXCEL 

spreadsheet;  

2- The layout of grade-based coordinates was adjusted using ACAD; 

3- Coordinates and grades for each block (in all plans) were input into an EXCEL 

spreadsheet;  

4- Contours were drawn for minerals and specified zones in each plan; 

5- Created blocks and the grade database were harmonised; 

6- Overlaps existing in the blocks were removed; 

7- Grades were allocated for each block and the geological 3D models were 

controlled with high accuracy. 

 

5.3    Deposit Block Model via the C-V Fractal Model for Optimisation 

Study 

Data from the C-V fractal model for the deposit (Fig. 5. 2) was entered into the 

optimisation algorithms. As discussed in chapters 1 and 3 (See chapter 1 section 1.3, 

chapter 3 section 3.7.2, Table. 3. 8 and Fig. 3. 23a), the C-V fractal model has provided 

a mathematic tool to delineate geochemical populations from ‘barren’ host rock, including 
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weakly mineralised zones, thus providing a cut-off grade. The mineralised zones with Cu 

less than 0.075 wt.%, apparent from the C-V log-log plot (Table. 3. 8 and Fig. 3. 23a), are 

assumed to be waste materials which decrease NPV by increasing stripping ratio 

(Hustrulid and Kuchta, 2006; Grenon and Hadjigeorgiou, 2010). From this, a Cu deposit 

block model was generated, at Cu ≥ 0.075, resulting in lower stripping, as shown in Fig. 

5. 2. As can be seen, the weakly mineralised zones with less than 0.075 wt.% Cu occur 

within the marginal parts of the deposit (e.g., propylitic and argillic alteration zones; Lowell 

and Guilbert,1970: See also chapter 2, Fig. 2. 5).  

 

 
Fig. 5. 2. a) Estimated Cu block model and b) estimated Cu block model excluding Cu ≤ 0.075 

wt.%, generated using the C-V fractal model 

 

5.4    Mine Topographical Features of Land Surface 

Topographical features of the deposit land surface (Fig. 5. 3), as well as other related 

data, are presented in a 3D block model entered in the optimisation software, prepared 
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using the most recent topographical maps. It is clear that blocks located between 

topographical surfaces and deposit surfaces are considered as waste blocks and are 

entered in the economic model as blocks of negative significance. 

 

 

Fig. 5. 3. Land topographical surface of the deposit for optimisation study 

 

5.5    Pit Geometrical Characteristics 

The geometrical parameters used in the pit design will now be discussed. Some of these 

parameters are approximate. If they are changed then new optimisation studies have to 

be carried out. However, generally, the variance of the results obtained from changing 

these parameters are so insignificant that many of these parameters could be used 

reliably with current approximations. Final slope angles of the mine are considered to be 
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the most influential geometrical parameters in an optimisation study (Singh and Baliga, 

1994; Wyllie and Mah, 2004; Hustrulid and Kuchta, 2006; Grenon and Hadjigeorgiou, 

2010). Optimisation software algorithms have been designed in such a way that the 

blocks of different levels are extracted given this gradient (final pit slope). In NPV 

Scheduler, a slope region is a physical volume to which a particular group of overall slope 

angles and corresponding azimuths are defined (Fig. 5. 4).  

 

As a general rule, slope stability studies for establishing an accurate final pit slope should 

be accomplished prior to optimisation studies. But to do such studies, some data is 

needed which are often obtained after completion of drilling operations and geotechnical 

studies (Little, 2006; Grenon and Hadjigeorgiou, 2010; Yasrebi et al., 2014). Therefore, 

calculation of a final slope for a mine is the most essential matter which should be studied 

carefully at the initial stages of design (See chapter 4). Unfortunately, due to the lack of 

systematic drilling and sub-surface data in the Kahang deposit, the possibility of studying 

slope stability is precluded. So, error percentage of any study performed using these 

kinds of observations in this regard will be very high and accordingly the accuracy of the 

determination of stable slopes could not be guaranteed. To determine the gradient, 

Density-Volume and RQD-Volume fractal models have been created. As a result, the 

mine’s general gradient of 35° and 45° have been applied for performing optimisation 

calculations (Fig. 5. 4). However, the extracted benches are characterised according to 

the general features of the mine under consideration and more importantly on the basis 

of extraction capacity and the machines and equipment to be allocated during mining. In 

consideration of the current imposed constraints on the application of heavy machines as 
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well as harmonisation of the plan and executed plans, the heights of the benches have 

been constrained to 10 m.  

 

 

Fig. 5. 4. Stable pit slopes in the Kahang deposit, input into NPV Scheduler (See also chapter 4) 

 

The results obtained from the optimisation software naturally have a ‘blocky’ nature so it 

is necessary to use the characteristics of the benches and the roads in detail for 

optimisation within the supplied ultimate pit surface. Given that, the phases and then 

pushbacks need to be designed at different working slope angles to the final overall slope 

angles. It makes more sense to use the working angles for internal phase and subsequent 

pushback development (NPV – Scheduler. 2001). Given the previous experiences of 

neighbouring deposits (e.g., Sharif Abad Cu porphyry deposit located in Isfahan province, 

central Iran; Dareh-Zereshk and Ali Abad Cu porphyry deposits in Yazd province and Dalli 

Cu porphyry deposit located in Markazi province), these characteristics have been 

determined as follows:  
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 Face angle of the extracted benches: 70°  

 Width of interconnecting roads: 10m 

 Gradient of interconnecting roads: 8% (Max) 

 

The estimate of cut-off grade is not consistent with the corresponding values for other 

deposits in the region because it is dependent on ore grade distribution, deposit 

geometrical shape and especially economical parameters which are different from one 

deposit to another (Lerch and Grossmann, 1965; Lane, 1988; Osanloo and Ataei, 2003; 

Hustrulid and Kuchta, 2006; See Chapter 3, section 3.7.2 and Appendix. A).   

 

5.6    Mine’s Annual Production 

The mine’s annual production capacity is one of the factors determined using economic 

parameters and project profitability studies. Similarly, determination of production 

capacity in this research should be subject to various detailed and basic studies. 

Fortunately, optimisation software has useful capabilities that make it possible for 

designers to conduct such studies extensively. Since the annual production will be limited; 

i.e. around 1,000,000 tonnes (as the nominal capacity of the plant); this amount has been 

exactly included in the calculations. 

 

5.7    Ore Density 

The cost of mining each block has been calculated using the dimension and specific 

density of that block. It is clear that the tonnage of blocks located in each zone is 

determined on the basis of each zones’ ore density. The average density of three major 



199 
 

lithological units of porphyritic quartz diorite (PQD), andesite (ANS) and dacite (DAC) 

within the Kahang deposit is shown in Table. 5. 1. 

 

Table. 5. 1. Ore density average of the mineralisation zones within the deposit 

Lithological Unit 
Density Average 

(t/m3) 

Porphyritic Quartz Diorite  2.67 

Andesite  2.69 

Dacite 2.68 

 

 

The density 3D model for the studied deposit, including all densities within the lithological 

units (three of which are illustrated in Fig. 5. 5), were generated using IDWAM. The aim 

was to generate the finalised block model (database) for the optimisation study (Yasrebi 

et al., 2014). 

 



200 
 

 

(a) 

 

(b) 
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(c) 

Fig. 5. 5. Density distribution for block models in the Kahang deposit for a) PQD, b) ANS, and c) 

DAC lithological units (See abbreviation table for lithological units) 

 

5.8    Kahang’s Exploitation Percentage 

 To determine the amount of exploitable Cu and Mo in each tonne of ore, and so calculate 

the value of each block, some factors such as processing efficiency within the different 

ore minerals must be calculated and applied in this study. By referring to the results of 

mineral processing tests, obtained by the laboratory, and the data sources (See 

Appendix. A) provided by the deposit owner, NICICO, the percentage of mining recovery, 

mining dilution and recovery fraction for concentrated Cu and Mo have been specified as 

follows:  

 Mining recovery: 95%  

 Mining dilution: 3% 

 Recovery fraction for Cu and Mo: 80%  
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5.9    Economic Principles 

5.9.1   Prices and Expenses 

The results obtained from optimisation studies are significantly affected by the price of 

the product (Fig. 5. 6) and operational costs of production. These parameters must 

therefore be determined more precisely. However, due to the importance of economic 

principles, and the large influence they have on the results, the above-mentioned 

parameters are discussed in detail in the subsequent sections.  

 

Determination of operational costs including ore and waste exploitation costs and milling 

costs for the Kahang deposit is a demanding task. However, after consideration of studies 

conducted previously and simulation of cost figures incorporated in the records of Iranian 

(as well as western authorities; See chapter 1, section 1.5 for political context of mining 

in Iran), these values were determined by the deputy of the Economic and Financial 

Department of NICICO (See Appendix. A for data sources) and then included in the NPV 

Scheduler software (Table. 5. 2).  
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(a) 

 

(b) 

Fig. 5. 6. Metal commodity prices during the optimisation study: a) copper, and b) molybdenum 

(London Metal Exchange, 2015a and b)  
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Table. 5. 2. Prices and mining costs for the Kahang optimisation study 

 
 

Price 

 

Unit 

Mining 

Cost  
Unit  

Mining 

CAF 

Milling 

Cost 

 

 

Unit 

Additional 

Milling 

Cost 

(refinery) 

& Selling 

 

 

Unit 

Cu 7000 $/tonne 4 $/m3 1.3 4 $/tonne 200 $/tonne 

Mo 0.023 $/g 4 $/m3 1.3 4 $/tonne 0.0002 $/g 

Waste - - 4 $/m3 1 - - - - 

Comments 

*Rock type mining CAF (Cost Adjustment Factor)  = Mining cost for rock type/ Reference 

waste mining cost 

**The metal commodity price was considered on the date when the optimisation study was 

conducted  

 

 

5.9.2   Annual Discount Rate 

During strategic optimisation calculations, valuation of the blocks will be carried out on 

the basis of exploitation time. Indeed, this task was undertaken by consideration of an 

annual discount rate and updating the value of the blocks intended to be exploited in the 

coming years. By comparing the optimisation studies of different mining projects in Iran, 

it can be concluded that this annual rate varies slightly from project to project as this was 

defined by the Central Bank of Iran (CBI) from 10% to 18% for short-term and long-term 

projects, respectively (Fig. 5. 7a; Appendix. A. However, discount rate can be higher or 

less than the above-mentioned one for foreign investors in regard to their countries’ 

economic principles (e.g., in the United Kingdom, rates were cut to 0.5% by the Monetary 

Policy Committee; Fig. 5. 7b). Iran has been a World Trade Organisation (WTO) observer 



205 
 

member since 2005 and policy of the Iranian government is to facilitate absorption and 

development of foreign investment for the country’s mining projects as well as oil and gas 

development projects by providing a secure investment climate and creating free trade 

zones (See chapter 1, section 1.5). In addition, because of low labour and energy costs 

in Iran, mining projects and related minerals production, which consume huge volume of 

energy, are profitable for foreign fund managers and companies (e.g., British-based 

mining corporations, multinational-based mining companies and banks).    

 

 

 

(a) 

 



206 
 

 

(b) 

Fig. 5. 7. Annual discount rates for choice of parameters and model outputs for domestic and 

foreign decision makers, a) Iran b) United Kingdom (Trading Economics, 2015) 

 

Given that the Kahang deposit is considered as a short-term project, a discount rate of 

14% has been conservatively applied in optimisation calculations because the project 

belongs to an Iranian based-corporation (NICICO). The project owner, as well as other 

individual and governmental mining sectors in Iran, are seeking foreign investors, as 

revealed by the Minister of Industries, Mines and Commerce of Iran (See section 1.5). 

However, an extension of exploratory boreholes for the Kahang deposit is required, which 

is likely to increase the reserve due to better geological constraints. The discount rate of 

the project will be higher than 14% if the project expansion goes ahead which 

correspondingly will increase the mine life so that Kahang becomes a long-term project. 

The supplied discount rate is intended to determine the discounted cash flow (DCF). The 

sequence used for allocation of blocks with respect to time is determined so as to 

demonstrate the highest total DCF. 
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5.9.3   Cut-off Grade 

Specifying the cut-off grade strategy is a matter which should be discussed before 

studying the results of optimisation. Cut-off grade is usually calculated taking 

consideration of the cost of mining, cost of processing as well as the price of the 

commodity (Cairns and Shinkuma, 2003; Osanloo and Ataei, 2003; He et al., 2009; Wang 

et al., 2010b). However, prior to performing such studies, it is necessary that a cut-off 

grade needs to be considered for separating the blocks containing ore and waste. In 

optimisation software, a grade is calculated similarly which is called the marginal limit 

grade. The COG for the optimisation study is calculated in order to identify the best course 

of action, either to mine or to leave, to mill or to dump. A COG of 0.07 wt.% Cu was 

calculated based on Equation 5-1 as follows: 

 

NPV = (I1+I2)-(MC+PC1+PC2)       Equation 5-1                                                                                                                  

I1 = (G1×D×V×PCu×MR×PR)/100       Equation 5-2                                                                                                                  

I2 = G2×D×V×PMo×MR×PR        Equation 5-3                                                                                                                                                                                                      

MC = D×V×MCPU         Equation 5-4                                                                                                                  

PC1 = (D×V×PCPU×G1×MR×PR)/100      Equation 5-5                                                                                                                  

PC2 = (D×V×MR×PR×PCPU×G2)/1000000  Equation 5-6                                                                                                                  

 

Where NPV, I1, I2, MC, MR, PC1 and PC2 are Net Present Value of each voxel, incomes of 

Cu and Mo, mining cost for a voxel, mining recovery and processing costs for Cu and Mo, 

respectively. Furthermore, PCu, PMo and PR are the metal commodity price for Cu and Mo 

and fraction recovery. In addition, D, V, MCPU, PCPU, G1 and G2 denote voxel density, 

voxel volume, mining cost per volume unit, processing cost per tonnage unit, Cu and Mo 
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concentration values, respectively. Economic cut-of grade was calculated using Equation 

5-1, illustrated in Table. 5. 3. This indicates that the economic COG for Cu as the main 

target is equal to 0.07 wt.% which has almost equal to the first threshold obtained by the 

C-V fractal modelling (See Chapter 3, section 3.7.2).  

 

Table. 5. 3.  COG specification for optimisation study  

Cu 

(wt.%) 
Mo (ppm) 

Density 

(t/m3) 

Volume 

(m3) 
Mining Cost ($/m3) 

Processing Cost 

($/Tonne) 
Cu Price ($/Tonne) 

0.07 17.309 2.25 160 4 200 7000 

Mo 

Price 

($/g) 

Mining 

Recovery 

Processing 

Recovery 

Income  

Cu 

($/Tonne) 

Income  

Mo ($/g) 

Voxel Mining 

Cost ($/m3) 

Processing 

Cost Cu 

($/Tonne) 

Processing 

Cost Mo ($/g) 

Voxel 

NPV ($) 

0.023 0.97 0.8 1368.864 111.215 1440 39.110 0.967 0 

 

 

5.10    Determination of the Kahang Deposit Ultimate Pit Limit 

5.10.1   Ultimate Pit Limit 

Specifying the ultimate pit limit is the first step in optimisation studies. This limit is typically 

specified by application of the Lerch & Grossman algorithm in the mine’s economic model. 

Through this method, a pit with maximum cash flow is determined. If the magnitude of the 

pit is greater than this limit, it means that profitability will be low. Tables 5. 4 and 5. 5 

depict the imported model data (the database obtained by the means of the C-V fractal 

model extended by topography) and economic model of the Kahang deposit (Yasrebi et 

al., 2011; Marcotte and Caron, 2013). 
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Table. 5. 4. Initial imported data into the optimisation software based on Fig. 3. 13 and Table. 5. 

2 

 

 

Table. 5. 5. Economic specification of the Kahang deposit driven by NPV Scheduler 
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The individual economic parameters of all sequences, before a finalised optimisation 

(1580 m<Elevation<2360 m), and some supporting 2D economic models in different 

section levels are given in Appendix. F.  

 

As a general rule, nested pits which have the greatest cash flow are considered as the 

mine’s ultimate pit limit. Tables 5. 6 and 5. 7 represent the specifications of the final pit 

and ultimate pit limit reserve report. As a result, the pit located at the elevation equal to 

2225 m (Fig. 5. 8) is determined as the Kahang final pit limit in which the NPV value, ore 

and waste amount, strip ratio and mine lifetime are $3,032,862, 3,648,294 tonnes, 

13,970,954 tonnes, 3.8, 3.65 years, respectively (See Appendix. G). 

 

 

Fig. 5. 8. Kahang pit limit 3D view without consideration of ramps and safety berms  
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Table. 5. 6. Ultimate pit statistics determined by NPV Scheduler 

 

 

Table. 5. 7. Pit limit reserve in the Kahang deposit 

 

 

5.10.2   Internal Pit Shells (Phases) 

The application of optimisation software will not be limited to determination of a pit’s 

optimised limit, but after completion of this phase, a general scenario for exploitation of 

this pit and so-called exploitation sequences (Nested pits) will be discussed and optimised 

in the form of some smaller pits (Koenigsberg, 1982; Bond, 1995; Yamatomi et al., 1995; 
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Darwen, 2001; NPV – Scheduler, 2001; Goodwin et al., 2008; Marcotte and Caron, 2013). 

Occasionally, a mine is exploited at one stage and the ultimate pit is not divided into 

smaller pits. Indeed, this condition is considered as the worst mining scenario. To improve 

the economic and technical outcome, the ultimate pit will be designed in the form of mining 

sequences as nested pits. By increasing the number of mining phases, the best mining 

scenario will be achieved due to increase the number of working benches increasing 

production capacity. In a different definition, after generation of the ultimate pit, internal 

phases (pit shells) will be produced (Table. 5. 8 and Fig. 5. 9), each of which may be 

considered as an optimal pit corresponding to the 'worst-case’ economic scenario 

compared with that derived using case-base parameters (economic principles).  

 

The phase conducted for a supplied final pit is utilised as the basis for generation of a 

nested pit, which is a block by block extraction sequence, and consequent optimal 

extraction sequence (OES). However, each phase has been constructed to present the 

highest undiscounted cash flow based on economic principles. Accordingly, specifying 

the optimised number which ensures the project’s profitability and does not impose 

restrictions executively is generally considered to be the most important fundamental of 

designing open pit mines (Akbari et al., 2008; Yasrebi et al., 2011). 
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Table. 5. 8. Pit optimisation phases of the Kahang deposit 

 

 

 

Fig. 5. 9. Pit optimisation within the internal pit shells, stages of 80%, 90% and 100%, driven by 
NPV Scheduler based on Table. 5. 8 (Cumulative profit, Incremental revenue, Incremental 

total ore and Cumulative total ore) 
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5.10.3   Nested Pits 

Nested pits are a collection of optimised pits which are calculated on the basis of the 

Lerch & Grossman algorithm (Hustrulid and Kuchta, 2006). Indeed, constructing 

optimised nested pits is considered as an ‘art’ applied by design engineers to perform 

analyses such as specifying the ultimate optimised pit as well as determining the 

extraction sequence of the blocks.  

 

The total number of extraction sequences existing in the Kahang deposit reaches 100. In 

other words, a maximum revenue factor of more than 100%, which is recommended in 

NPV Scheduler software, can be determined, in which case the largest ultimate pit 

produced is a pit ‘past the peak’, in terms of the base economic parameters (NPV – 

Scheduler, 2001; See Table. H. 1 for both incremental and cumulative NPVs). Tonnage 

of exploitable mineral, waste, waste ratio, cash flow and current value of the pits have 

been calculated individually as depicted in Appendix. H. With this useful data, one is able 

to perform the required analysis, detect a pit’s optimised limit and design an exploitation 

schedule and timetable. In other words, the importance of nested pits is not always 

evident in the long-term open pit planning procedure. Usually a mining sequence is 

derived from a simple selection of pit shells based on optimum pit limits. The performance 

of the obtained mining sequence to the production constraints is generally not questioned 

prior to the detailed production stages of a project. 

 

5.10.4   Identification of an Optimal Extraction Sequence (OES)  

Identification of an optimal extraction sequence (OES) is significant for the selection of 

alternative optimal pits in order to generate the best mining sequences (Dincer, 2001; 
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Godoy and Dimitrakopoulos, 2004; Hustrulid and Kuchta, 2006; Osanloo et al., 2008a; 

Elkington and Durham, 2011). For all of the blocks inside the ultimate pit, an OES is also 

constructed. This aims to achieve the highest DCF based on the given discount rate and 

ore processing rate. The phase structure created for a supplied final pit is utilised as the 

basis for constructing the OES (a block by block extraction sequence). It may be that 

some blocks towards the end of the ultimate pit may not be added to the DCF, in which 

case a smaller pit than the ultimate pit could produce the highest DCF. In other words, 

the ultimate pit limit may have smaller magnitude than the recognised final pit when it 

indicates that the addition of higher sequences does not increase the pit NPV (See 

Appendix. H, rows 92 to 100 for cumulative NPV). By referring to Appendix. H, sequence 

No. 92 (specified as the Kahang ultimate pit limit due to the fact that the NPV cumulative 

trend becomes steady), the mining operation can be terminated at this point (Fig. 5. 10). 

The exploitable reserve existing (ore) at this point (from sequence 1 to 92) amounts to 

3,291,944 tonnes with the total NPV of $2,884,968 and a strip ratio of 3.919. Furthermore, 

the cumulative profit value at the mentioned extraction sequence is equal to £7,853,825.  

 

It is good to bear in mind that the data obtained from this pit should not be considered as 

a basis for the design during optimisation studies because mining orientation has not 

been yet recognised. However, after selecting and designing the extraction phases 

(pushbacks), an optimised pit will be derived. 
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Fig. 5. 10. Comparison between incremental and cumulative NPV values for the Kahang 

deposit, driven by NPV Scheduler based on Table. H. 1 (the black arrow indicates sequence 

No. 92 which specifies the Kahang ultimate pit limit)  

 

5.11    Comparative Case Study 

The boreholes drilled in the Kahang deposit are not evenly distributed (anisotropic grid 

drilling), with a particularly large gap between the main cluster and the three drill holes 

(KAG-43, KAG-38 and KAG-30) located in the NW of the study area, as depicted in the 

Fig. 5. 11.  The gap is due to the existence of a private garden that the National Iranian 

Copper Industries Co (NICICO), as the project holder, is not allowed to enter and conduct 

any drilling, even underneath. However, the aim of the comparative case study is to ignore 

the three isolated boreholes and to compare the relative changes in terms of reserve 
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estimation, Concentration-Volume (C-V) fractal log-log plot and finally the consequential 

variance to the NPV, with this mentioned scenario. 

 

 

Fig. 5. 11. Disposition of boreholes in the Kahang deposit 

 

As a result, the Kahang deposit was modelled with 263,410 voxels corresponding to 

112,950,208 tonnes of sulphide ore (Fig. 5. 12) with an average grade of 0.166 wt.% 

based on a Cu distribution function which is not normal (Fig. 5. 13).  



218 
 

 

Fig. 5. 12. 3D Cu block model excluding the three isolated boreholes 
 

 

Fig. 5. 13. Cu histogram from original data in the Kahang deposit excluding the isolated 

boreholes 



219 
 

The C-V log-log plot for the new Cu block model indicates that there are four Cu 

populations corresponding to 0.071 wt.%, 0.4 wt.% and 1.86 wt.% (Fig. 5. 14 and Table. 

5. 9). Cu concentrations higher than 1.86 wt.% are from an enriched zone.   

 

 

Fig. 5. 14. C-V log-log plot for Cu concentrations, excluding the three isolated boreholes 

 

Table. 5. 9. Cu thresholds defined by the C-V model in the Kahang deposit, ignoring the three 

isolated boreholes 

 

 

Geochemical population Cu (wt.%) threshold value Range Cu (wt.%) 

First (Barren host rock) - <0.071 

Second (Main mineralisation 
starting) 

0.071 0.071-0.40 

Third 0.40 0.40-1.86 

Fourth 1.86 (Enriched zone for Cu) >1.86 
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 The Cu average values with and without the three boreholes are 0.164 wt.% and 0.166 

wt.% respectively, and the Cu histograms are similar in the both scenarios. Moreover, the 

Cu estimated histogram in the new scenario (Fig. 5. 15) is similar to the Cu estimated 

from all of the bore holes (See chapter 3). The comparison between two block models is 

depicted in Table. 5. 10.  

 

 

 

Fig. 5. 15. Estimated Cu histogram, ignoring the 3 boreholes located in the NW part of the 
deposit 
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Table. 5. 10. Comparison between results obtained from the two Cu block models 

 

 

5.12    Determination of an Ultimate Pit Limit when Ignoring the Three 

Isolated Boreholes 

The pit located with an elevation equal to 2210 m (Table. 5. 11) is determined as the new 

Kahang final pit limit in which the NPV value corresponds to $3,731,732. Furthermore, 

the ore and waste, strip ratio and mining lifetime report values of 1,475,582 tonnes, 

4,713,207 tonnes, 3.19 and 1.48 years, respectively (Table. 5. 12). 

Table. 5. 11. Pit limit reserve of the comparative case study 

 

Cu Block Model Ore Tonnage 

 
Average Grade 

(wt.%), Raw 
Data  

 
 

Average 
Grade (wt.%), 

Estimated 

 
 

Total Voxel 
Amount 

 
 

Cu Range for 
Enriched zone 

(wt.%) 

48 Boreholes 210,080,697 0.164 
 

0.14 
 

489,927 
 

1.86-3.24 

45 Boreholes by 
Ignoring the Three 
Isolated Boreholes 
Located in the NW    

112,950,208 0.166 

 
0.152 

 
263,410 

 
>1.86 
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Table. 5. 12. Ultimate pit characteristic for the comparative case study  

Cumulative Data 

Profit Revenue 
Processing 

Cost 
Mining 
Cost 

NPV Total Rock Total Ore Total Waste 
Strip 
Ratio 

$ $ $ $ $ Tonnes Tonnes Tonnes  

4,301,274 21,355,959 6,494,525 10,560,160 3,731,732 6,188,790 1,475,582 4,713,207 3.194 

 

 

The total number of nested pits existing in this scenario reaches 100 extraction 

sequences and five pit shells (Table. 5. 13). The sequence No. 90 is determined as the 

OES with NPV equal to $3,590,462. In addition, the total ore and waste and 

corresponding strip ratio at this point reports as 1,349,158 tonnes, 4,228,982 tonnes and 

3.13, respectively (Fig. 5. 16). 
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Fig. 5. 16. Cumulative NPV and profit values for the comparative case study driven by NPV 

Scheduler (the black arrow indicates sequence No. 90 which specifies the Kahang ultimate pit 

limit) 

 

Table. 5. 13. Pit optimisation phases for the comparative case study 
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5.13   Results 

One of the most crucial parameters in mining is the cut-off grade (COG) which defines 

the grade for discriminating between ore and waste in an orebody over a mine life. The 

results of this study show that the economic COG of the Kahang for Cu is 0.07 wt.% which 

is almost equal to the commencement of Cu mineralisation resulted by the C-V fractal 

model (See chapter 3, section 3.7.2). 

 

Determination and analysis of the complete dataset, and the run without the three remote 

drill holes, indicates that this deposit shows a positive NPV meaning that it is financially 

feasible to produce Cu (as the main target) and Mo (by-product) for decision makers. The 

pits located at elevations equal to 2225 m and 2210 m were determined as the Kahang 

final pit limit for the complete dataset and dataset without the remote drill holes, 

respectively (Tables. 5. 7 and 5. 11). The differences between the two scenarios 

mentioned above in terms of the ultimate pit characteristics are shown in Table. 5. 14. 

 

Table. 5. 14. Differences between ultimate pit limits characteristics of the complete dataset and 

without the three remote drill holes 

 

 NPV ($) 
Ore 

(Tonne) 

 
Waste  

(Tonne) 
 

Strip Ratio 

 
Mine Lifetime 

(Year) 
 

Complete Dataset 3,032,862 3,648,294 
 

13,970,954 
 

 
3.8 

 
3.65 

Dataset  without 
the Three Remote 

Drill Holes 
3,731,732 1,475,582 4,713,207 3.19 1.48 
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The NPV value of the pit without the three isolated drill holes is higher than the pit 

generated with the complete dataset, although the productivity of the first scenario is 

higher than the pit without three remote drill holes.  

 

From a comparison of the two ultimate pit limit scenarios the sequence No. 92 was 

determined as the Kahang optimal extraction sequence (OES) with respect to the 

complete dataset. However, for the run without the three remote drill holes, sequence No. 

90 was identified as the OES (Table. 5. 15).  

 

Table. 5. 15. Differences between optimal extraction sequences characteristics of the complete 

dataset (sequence No. 92) and without the three remote drill holes (sequence No. 90) 

 

 

From the optimisation models run for the two scenarios, the cumulative profit value for 

the Kahang deposit is lower when ignoring the three remote drill holes which may be due 

to lower productivity (e.g., ore tonnage). From this, completion of more comprehensive 

and systematic drilling in the deposit, especially to overcome the gap between boreholes 

shown in Fig. 5. 11, seems sensible as it will likely increase the reserve due to better 

geological constraints.     

 

 NPV ($) 
Ore 

(Tonne) 

 
Waste  

(Tonne) 
 

Strip Ratio 

 
Cumulative 
Profit Value 

($) 

Complete Dataset 2,884,968 3,291,944 12,901,028 3.91 7,853,825 

Dataset  without 
the Three remote 

Drill Holes 
3,590,462 1,349,158 4,228,982 3.13 4,128,521 
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CHAPTER SIX. Present Value-Volume (PV-V) 

Fractal Modelling for Mining Strategy Selection 
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6.1    Introduction 

The definition of optimal pit limits and profit is a fundamental part of prefeasibility and 

feasibility studies in open pit mines (Koenigsberg, 1982; Dowd and Onur, 1993; Whittle, 

1998b; Bernabe, 2001; Dincer, 2001; Dimitrakopoulos et al., 2007; Osanloo et al., 2008a; 

Armstrong and Galli, 2012). The pit limit defines the ore and waste tonnages and the ore 

values. The OES of the optimal pit represents a maximised Net Present Value (NPV). 

The classical problem of pit optimisation is solvable using well-known and efficient 

algorithms like the Lerch and Grossmann (1965) in order to reach the highest value of 

DCF (Picard, 1976; Bond, 1995; Seymour, 1995; Hustrulid and Kuchta, 2006; Yasrebi et 

al., 2011; Mart and Markey, 2013). In practice, pit optimisation is performed on voxels 

whose true grades are unknown and can only be estimated or simulated using the 

available information. However, future metals’ commodity prices are uncertain (Dowd, 

1994; Marcotte and Caron, 2013). One of the key pieces of information required is an 

optimal determination of the COG which depends on all of the salient technological 

features of mining, such as the capacity of extraction and of milling, the geometry and 

geology of the orebody and the optimal grade of ore to send for processing (Dagdelen 

and Mohammed, 1997; Cairns and Shinkuma, 2003). Following this, Krautkraemer (1988) 

found that the COG changing rate depends on the difference between the price and the 

rate of interest. As a result, an increase in the metal’s commodity price reduces the COG 

(Cairns and Shinkuma, 2003). Alternatively, when the metal price drops producers 

attempt to mine ores with higher grades. Consequently, it is often necessary to design a 

mining scenario (excavation orientation) to optimise pay-back in order to overcome the 

problems of unpredictability of commodity price and variable mining expenses because 
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of maturity time, geological factors, engineering parameters, economic conditions and 

political issues which can all influence the economic regime (Costa Lima and Suslick, 

2006; King, 2011).  

 

The project value is a linear function with respect to commodity price (e.g., Costa Lima 

and Suslick, 2006; Asad and Dimitrakopoulos, 2013; Fig. 6. 1). However, in real cases, 

project value is a nonlinear function due to the effects of grade distributions, fixed and 

variable costs due to the spatial location of mineable voxels (Dimitrakopoulos et al., 2002; 

Costa Lima and Suslick, 2006; Elkington and Durham, 2011; Marcotte and Caron, 2013). 

 

Open pit mine design and long-term sequencing is an intricate and critically important part 

of mining ventures. It provides the technical plan to be followed from mine development 

to mine closure which has a profound effect on the economic value of the mine. Therefore, 

the aim of this chapter is to propose a Present Value-Volume (PV-V) fractal model to 

identify an accurate excavation orientation with respect to the economic principals of all 

voxels within the Cu-Mo block model. This is obtained using the C-V fractal model and 

voxels located within the determined ultimate pit limit which will take into account best 

mining strategy.  
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Fig. 6. 1. Linear relationship between the NPV and metal prices 

 

6.2    Methodology 

Based on the Cu-Mo block model of the Kahang deposit obtained by means of the C-V 

fractal model (See chapter 3), a dataset was created for economic modelling including 

the voxel’s coordination, density (See chapter 4), Cu and Mo values and metal prices, 

rock type, mining and processing costs, recoveries and revenue (economic principals) 

with respect to the each voxel. The PV values were calculated for each voxel. 

Subsequently, a PV-V fractal model was generated for classification of the voxels’ values 

in terms of profitability regarding positive values, as depicted in Fig. 6. 2. The proposed 

PV–V fractal model can be expressed as follow: 

 

V(ρPV≤υ) ∞ ρNPV
−a1;    V(ρPV≥υ) ∞ ρPV

–a2   

Equation 6-1 
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Where V(ρPV≤υ)  and V(ρPV≥υ) denote volumes (V) with PV values (ρPV) that are, 

respectively, smaller and greater than PV threshold values υ. a1 and a2 are characteristic 

exponents as fractal dimensions.  

 

 

 

Fig. 6. 2. Present Value (PV) block model for the Kahang Cu-Mo porphyry deposit (the grey 

platform distinguishes the boundary between open pit and underground mining surfaces based 

on chapter 5, section 5.10.1 and Table. 5. 7)  

 

Secondly, the excavation orientation (pushbacks) were defined based on the results 

obtained from the fractal modelling. In addition, a NPV-Cumulative Total Ore (NPV-CTO) 

fractal model, in line with mining sequences (Nested pits: See Appendix. H), was 

proposed in order to validate an optimal extraction sequences (OES). The fractal model 

is expressed in the following form: 
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CTO(ρNPV≤υ) ∞ ρNPV
−a1;    CTO(ρNPV≥υ) ∞ ρNPV

–a2  

  Equation 6-2 

 

Where CTO(ρNPV≤υ)  and CTO(ρNPV≥υ) reveal cumulative total ore (CTO) with NPV values 

(ρNPV) that are, respectively, smaller and greater than NPV threshold values. υ defines 

those CTO and a1 and a2 are characteristic exponents as fractal dimensions. For 

calculation of CTO(ρNPV≤υ) and CTO(ρNPV≥υ),  mining sequences with their corresponding 

NPV values were used. 

 

6.3    Statistical Characteristics 

According to the PV calculation for each voxel of the Kahang block model, 86,650 voxels 

consisting of the positive PV values were used. The PV histogram generated based on 

its positive values (Fig. 6. 3) shows a PV mean equal to $2,933. Furthermore, a PV 

median was found to be $1,668 which reveals that the majority of voxels with positive 

PVs have values lower than the mean. Moreover, most of the voxels contain PV values 

lower than $10,000 and also a few voxels (1,253 voxels) have a PV value higher than 

$20,000. Finally, a histogram of cumulative NPV was generated based on the mining 

sequences derived via the optimisation operation considering the positive NPV values, 

as depicted in Fig. 6. 3. Twelve out of 100 nested pits have positive cumulative NPV 

values (See Appendix. H). There is a multimodal distribution for this variable. The main 

population has high values of cumulative NPVs which are greater than its mean 

($2,370,497). 
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(a) 

 

(b) 

Fig. 6. 3. a) Profit value histogram based on PV block model, and b) NPV histogram based on 

the mining sequences for the Kahang deposit 
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6.4   Application of PV-V Model 

According to the 3D PV block model, a PV-V fractal model has been created which, from 

log-log plot, shows that there are four populations corresponding to $501, $1,995, 

$19,054 and $31,623 (Fig. 6. 4). This indicates that there is a multifractal nature in terms 

of the PV values within the deposit. The voxels with high and extreme values of PV 

commence from $19,054 and $31,623, respectively, which exist in the NE and central 

parts of the area (Fig. 6. 5). The majority of voxels have PV values between $1,995 and 

$19,054 in the deposit (third population in the log-log plot) entitled moderate population 

of PV, as depicted in Fig. 6. 5. The number of voxels is around 112,000 and 134,000 in 

the weak and moderate populations based on the PV-V model, as depicted in Table. 6. 

1. Low amounts of voxels (<2600) contain the high and extreme populations with high 

values of PV. Most of the voxels with high and extreme PV values exist at depth, in the 

NW and especially in the central parts, as depicted in Fig. 6. 5.  

 

 

 

Fig. 6. 4. PV log-log plot
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(a) 

 

(b) 
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(c) 

Fig. 6. 5. PV distribution within the deposit based on the PV-V fractal modelling consisting of a) 

moderate population, b) high PVs, and c) extreme population  

 

 

Table. 6. 1. PV thresholds defined by PV-V model in the Kahang deposit 

PV Population PV ($) Range Number of Voxels 

Very weak         <501 57305 

Weak 501-1995 111994 

Moderate 1995-19054 133757 

High 19054-31623 1925 

Extreme ≥31623 604 

 

 

Based on the ultimate pit limit (See chapter 5), most of the voxels with high and extreme 

PV values are situated in the deeper parts of the mine, as depicted in Fig. 6. 6. The 

majority of these voxels are close to the open pit limit, especially in the central part, which 
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means that an ultimate pit limit can be moved deeper if detailed grid drilling can be carried 

out. The PV plans in the different excavation levels were derived via a PV block model 

and classified on the basis of PV-V fractal modelling to propose an accurate mining 

orientation in order to achieve an earlier pay-back period (Fig. 6. 7). As a result, the PV 

values increase from the north of the deposit to the south which is defined as the 

excavation orientation.  

 

 

 

Fig. 6. 6.  Voxels with high and extreme PV values within the deposit (the grey platform 

distinguishes the boundary between open pit and underground mining surfaces based on 

chapter 5, section 5.10.1 and Table. 5. 7) 
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(a) 
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(g) 
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(h) 

Fig. 6. 7. PV plan views based on the PV-V fractal model in elevations of: a) 2230 m, b) 2240 m, 

c) 2250 m, d) 2260 m, e) 2270 m, f) 2280 m, g) 2290 m, and h) 2300 m  
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6.5    Application of NPV-CTO Model 

The criteria used to determine an OES is subjective in the sense that the chosen 

sequence is the one that has the NPV nearest to the highest NPV calculated via NPV 

Scheduler. The proposed NPV-CTO fractal model is a reward of developing a new 

method to reduce the number of required mining sequences and practical time to obtain 

an optimal solution to determine an OES, especially in an absence of computer-based 

optimisation software (i.e., NPV Scheduler). In addition, this model reduces the number 

of analyses and data transfer processes that are often necessary in standard computer-

based practice for open pit optimisation. This is necessary to overcome probable mining 

risks due to uncertainty resulting from e.g. any sudden economic changes or a decrease 

in the commodity metal price especially if this happens at the end of mine life (Godoy and 

Dimitrakopoulos, 2004; Montiel and Dimitrakopoulos, 2013). However, the best selection 

of mining sequence is determined when the NPV cumulative trend becomes steady (See 

chapter 5, Fig. 5. 10). This selection for identification of an OES is controlled manually, 

typically from a nested pit shell methodology based on the experience of the engineer, 

and consequently an optimum solution for this problematic issue cannot be developed 

and it may lead to suboptimal results (Lerch and Grossmann, 1965; Bond, 1995; Hustrulid 

and Kuchta, 2006; Elkington and Durham, 2011; Mart and Markey, 2013). As a result, a 

mathematical method to provide an analytical practice, which intends to prevent manual 

identification of an OES, seems to be inevitable.  

 

In the author’s view, a proposed model should be rigorously tested against those already 

available, and the possible errors discussed. Therefore, results of the proposed fractal 
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model were compared with the results of the OES, generated from NPV Scheduler (See 

chapter 5 and Appendix. H). The NPV-CTO log-log plot indicates a mono-fractal nature 

meaning that there is only one threshold value which corresponds to $2,754,229 and 

3,288,516 tonnes of minable ore (Fig. 6. 8). The result of an obtained OES (from Chapter 

5), which is the point that mining will be suspended due to a steady trend in the cumulative 

NPV, is close to the result achieved through the NPV-CTO model. Possible errors for this 

are shown in Table. 6. 2.  

 

Table. 6. 2. Comparison between OESs regarding cumulative NPV and ore, calculated from 

NPV Scheduler and NPV-CTO fractal model   

Identification of an Optimal Extraction Sequence (OES) 

Extraction Sequence Chart via 

NPV Scheduler  

Extraction Sequence Chart via 

NPV-CTO model 

Errors 

NPV ($) Ore (Tonne) NPV ($) Ore (Tonne) NPV (%) Ore (%) 

2,884,968 3,291,944 2,754,229 3,288,516 4 0.1 
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Fig. 6. 8. The NPV-CTO log-log plot in the Kahang deposit 

 

 

6.6    Results 

From the PV-V log–log plot from Kahang, there is a multifractal PV distribution within the 

deposit. In addition, there are five threshold values meaning four PV populations for the 

deposit. The threshold value of $1995 is the commencement of the moderate population 

which occurs in the majority of voxels within the deposit. The high PV values are present 

in the NE and central parts of the deposit. The extreme values are situated at the depth 

and NW parts, around the three remote drill holes. The 2D and 3D maps for PV 

distribution show that the profitability increases from the north to south of the deposit 

proposing an open pit excavation orientation to achieve an earlier pay-back.   
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The NPV-Cumulative Total Ore (NPV-CTO) fractal model was proposed in order to find 

an OES. The NPV-CTO log–log plot from the Kahang deposit shows that there is a mono-

fractal model which has a threshold value for cumulative NPV and enclosing ore equal to 

$2,754,229 and 3,288,516 tonnes, respectively. This indicates that the mining operation 

can be terminated when reaching this point to reduce the number of required mining 

sequences. This overcomes probable mining risks due to uncertainty of the relative 

metal’s world commodity price and sudden mining costs. 

 

The comparison between the results for OES calculated from NPV Scheduler and NPV-

CTO fractal model shows that the errors for NPV and minable ore are 4% and 0.1%, 

respectively. This may suggest that the developed model is reliable and can be used 

beyond the Kahang deposit in determination of an OES for open pit mines.          
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CHAPTER SEVEN. Conclusions and 

Recommendation for Future Work 
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Conventional methods including calculation of mean and standard derivation (SD), 

probability graphs, explorational data analysis (EDA) and multivariate data analysis have 

been widely used in geochemical exploration. However, these methods do not consider 

spatial variations in geochemical patterns. In the past decades, a number of complex 

structures and phenomena have been quantitatively characterised by fractal/multifractal 

modelling (the most commonly used fractal models have been introduced in this thesis). 

The utility of fractal/multifractal models for geochemical data is to delineate geochemical 

populations and quantify the spatial distribution of geochemical data. A variety of 

fractal/multifractal models for this purpose have been introduced and used in different 

kinds of deposits (e.g., Qulong copper deposit, Tibet, western China; Sungun porphyry 

copper deposit, Iran; Mitchell Sulphurets precious metal district, British Columbia, 

Canada; Cambrian Hellyer volcanic-hosted massive sulphide deposit, Australia; 

undiscovered mineral deposits in Gejiu, Yunnan province, China; Zaghia iron ore deposit, 

central Iran; Tangedezan Pb–Zn carbonate hosted deposits, central Iran; bauxite 

orebodies in the Guangxi province, China). The fractal/multifractal modelling has been 

shown to be a useful tool for mineral exploration, rock mechanics and economical 

evaluation of the Kahang porphyry deposit due to ore elements, rock mass and 

economical parameter variation. The advantages of the fractal modelling, using C-V, D-

V, RQD-V, PV-V and NPV-CTO, is its simplicity and easy computational implementation, 

as well as the possibility to compute numerical values for variables, e.g., geochemical 

data, density, RQD and present value (PV) thresholds, which are deemed to be the most 

useful criteria for cross examination of data.  
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Evaluation of ore element distribution via the C-V fractal model was carried out to 

separate ‘barren’ host rock, below the cut-off grade in an open pit optimisation, from 

mineralised zones, especially for the cases in which element concentrations occur in the 

various geological zones. Such complexity can be efficiently recognised by 

fractal/multifractal analysis such as C-V fractal model using log–log plots.  

 

A comparison between the resulting 3D models from multifractal analysis and traditional 

statistical methods indicates that the statistical methods can only consider the elemental 

concentration and they ignore the spatial variability in the block models of the deposits 

which may appear within the model. In fractal models, the spatial correlation of data is of 

interest such as Cu and Mo grades, density, RQD and PV. Statistical analysis applied to 

the data has shown non-normal distribution for Cu, Mo, density, RQD and PV. 

Accordingly, in statistics, only one threshold can be extracted for each element which is 

the mean value. The multifractal model provides several thresholds separating various 

stages of the regional variables. 

 

The Kahang Cu-Mo porphyry deposit in this case study consists of Eocene volcanic–

pyroclastic rocks which were intruded by Oligo-Miocene porphyric granitoids rocks, quartz 

monzonite, monzodiorite-monzogranites and diorites. The geological results from 

lithology, alteration and zonation and also subsurface geochemical data including Cu and 

Mo values in this study have shown a porphyry deposit in this area. The main host rock 

is porphyritic quartz diorite for Cu-Mo mineralisation. The alteration map in Fig. 2. 5a 

shows four major types of hydrothermal alterations in the Kahang deposit: potassic, 
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phyllic, argillic and propylitic. The most extensive hydrothermal alteration zone in the 

Kahang is phyllic. Minor amounts of chalcopyrite and molybdenite are seen in this zone, 

but the major sulphide mineral is pyrite. The Cu mean value within this zone is equal to 

0.14 wt.% based on raw data from drill holes. This zone has occupied a large part of the 

deposit from depth to surface (Fig. 2. 13). Potassic alteration is observable in the NW and 

deep parts of the deposit. The common potassic alteration zone in Kahang was 

distinguished from the presence of mineral assemblages (e.g., KF, secondary biotite, 

quartz veins and veinlets, magnetite and chlorite). Moreover, there is evidence of potassic 

alteration to the west, especially around the three remote drill holes located in the NW 

part, which can suggest that mineralisation within this zone may continue to the west (See 

Cu distribution with different thresholds in the NW drillholes in Fig. 3. 20). In addition, the 

Cu mean value within the potassic zone is 0.12 wt.% based on the raw data. Argillic 

alteration is seen on surface. Main products of this alteration is kaolinite which was 

produced from alteration of plagioclase phenocrysts and groundmass. Jarosite, as the 

second major alteration mineral in this zone is present (Fig. 2. 8c). The propylitic alteration 

zone is developed in marginal parts of the deposit. The most important products of this 

alteration in order of abundance are chlorite, calcite and minor epidote (Fig. 2. 9). Based 

on abundance of chlorite and calcite, this alteration zone is divided into two main chloritic 

and calcitic parts. Hypogene-type mineralisation hosts most Cu ore in the Eastern part of 

the Kahang deposit but the supergene enrichment zone is relatively small and occurs in 

the central part of the area which approaches the surface.  
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According to the C-V fractal model, the main threshold values for Cu and Mo are 0.42 

wt.% and 100 ppm, respectively. Enriched Cu-Mo mineralised zones with Cu ≥ 1.8 wt.% 

and Mo ≥645 ppm are located in the central, NW and NE parts within the hypogene zone. 

The supergene enrichment zone occurs in small areas within the deposit, especially in 

the central and eastern parts close to the surface. The hypogene and supergene 

enrichment zones outlined by the C-V model correlate well with the alterations and 

mineralogical data shown in the 3D geological models. The C-V log-log plots from the 

Kahang deposit show that there is a multifractal model for Cu and Mo. Correlation 

between the results of the C-V model and the chosen geological particulars show that the 

supergene enrichment zone has a high correlation within the chalcocite accumulations 

within the Kahang deposit. The main hypogene zone has an association with the 

chalcopyrite distribution model having Cu ≥ 0.42 wt.%. According to the correlation 

between results driven by fractal modelling and geological models by a logratio matrix, 

the main Cu and Mo mineralised zones generated by the C-V fractal model have a strong 

correlation with the potassic alteration zone with respect to the overall accuracy. 

 

In this research, the D–V (Density–Volume) fractal model has been proposed to delineate 

rock mass characteristics. The results from the D–V fractal model have been correlated 

with the major rock types and validated against an RQD model. The D–V model has been 

successfully applied to model relationships between density values and volumes in the 

Kahang Cu–Mo porphyry deposit. The D–V log–log plot from the Kahang deposit 

indicates that there is a mono-fractal model which has a breakpoint in density of 2.7t/m3. 
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Correlation between the results of D–V and RQD models reveals that the rock units with 

a higher density (>2.7t/m3) are associated with RQD values > 70%. The final pit slope 

geometry and ultimate pit limit will depend on the economic evaluation of the ore body. 

An awareness of the spatial variability of parameters such as RQD and density can be 

used to assess the geotechnical characteristics of the rock mass. This can then be used 

to evaluate potential slope stability and be incorporated into a geotechnical risk model for 

the final pit geometry. Regions of high RQD may be targeted as offering greater potential 

for increased slope angles or locations for siting of critical haul roads. Regions of lower 

RQD should, where possible, be avoided for final pit limits. Further geotechnical 

characterisation will, however, be necessary to establish any potential influence of the 3D 

fracture network and presence of any major discontinuity-controlled instability. 

 

The RQD-Volume (RQD-V) fractal model was used to investigate and delineate various 

RQD populations in the Kahang Cu-Mo porphyry deposit (Central Iran). The RQD-V 

fractal model illustrates four RQD populations in the deposit. The RQD threshold value 

for excellent rocks is 89.1% based on the fractal model as situated in the central and NW 

parts of the deposit. Models of good and fair rocks in the central, eastern and NW parts 

of the deposit contain 25.1–89.1% RQD according to the RQD-V model. Furthermore, the 

correlation between results driven by the fractal modelling and major lithological unit 

(PQD) in the Kahang deposit, rocks with excellent RQD defined by the means of the RQD-

V model have a strong correlation with porphyritic quartz diorite shown by the 3D 

geological model. 
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The numbers of mining sequences (nested pits) were determined during optimisation 

studies using an exported dataset of the Cu-Mo block model shown by the means of the 

C-V fractal model. Furthermore, various combinations of nested pits (pit No.1 to pit No. 

100) have been discussed and finally pit No. 92 was selected as the closure of the open 

pit mining of the Kahang deposit. 

 

The need for copper especially in developing countries like Iran is of paramount 

importance therefore, the first choice of Cu block model considering all 48 boreholes is 

recommended due to the higher level of productivity in comparison to the second 

scenario, however the NPV of the second scenario is higher than the NPV of the deposit 

including all 48 boreholes. Therefore, a minable reserve exists in the pit consisting of all 

completed boreholes of 3,648,294 tonnes of sulphide ore which indicates the range of 

greater productivity compared to the final pit, ignoring the three isolated boreholes in the 

NW section of the studied deposit.  

 

With respect to the C-V fractal model histograms, there is no major difference in terms of 

Cu average grades for either of the Cu block models however; there are remarkable 

differences between ore tonnage and the total voxel count considering the two block 

models as depicted in Table. 5. 10. 

 

The PV-V and NPV-CTO fractal models have been proposed to delineate economic 

parameters. The voxels’ values were classified according to the PV-V fractal model in the 

deposit which reveal that the open pit limit can be deeper if grid drilling can be developed. 
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Supporting that, the deposit sections in terms of elemental concentrations (Cu as the main 

target) is low within the initial years of excavation and it will be gradually upgraded at 

depth especially at plan level 2225 m in terms of Z direction (elevation) as depicted in the 

Fig. G. 2 of Appendix. G and Fig. 6. 6 of the Chapter 6. Consequently, the results obtained 

by the PV-V fractal model show that the majority of the orebody can be extracted by an 

underground mining operation. The threshold values obtained by the means of the PV-V 

fractal modelling suggest that the PV values have an increase from the north of the 

deposit to the south which can be used as an indicator for determination of the excavation 

orientation. 

 

Open pit mine design and determination of mining orientation are a critically important 

part of a mining venture from mine development to mine closure and have a profound 

effect on the economic value of the mine. The most established and frequently employed 

practice to mine closure since the 1980s is based on the Lerch and Grossman three 

dimensional graph theory to determine the best mining sequence by which the mining 

operation (ore and waste excavation within the pit) will be terminated. However, the 

proposed NPV-CTO fractal model provided an analytical tool which can be used for 

determination of an OES for an open pit mine. The OES results via NPV Scheduler is 

much the same with the results obtained by the suggested model (Table. 6. 2) meaning 

that the NPV-CTO fractal can be implemented in the absence of optimisation software 

packages. 
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Since hydrological and geotechnical studies have not been undertaken in the study area, 

one is really forced to do such tests and experiments to calculate and evaluate  the total 

gradient of the open pit mine’s slope walls. 

 

The necessity of reviewing the cut-off grade throughout the project lifetime and specifying 

the grade limit using optimisation models to increase the project NPV is highly 

recommended simultaneously with variations in the world metal commodity price. 

 

Furthermore, the general geological observation and careful consideration of geological 

features of the Kahang deposit suggests that the mineralisation continues to the west and 

east and even also towards the Kahang village. As such a more comprehensive and 

systematic drilling programme is recommended in order to better characterise the Kahang 

deposit, which may correspondingly increase its estimated resource. 

 

Mineral resource classification is important in uncertainty assessment and risk analysis. 

The Joint Ore Reserves Committee (JORC) is widely utilised for this purpose which 

classifies mineral resources as measured, indicated and inferred, depending on the 

degrees of confidence. Ore reserves are classified as proven and probable from either 

measured or indicated mineral resource. However; it is recommended for those who are 

interested in the area of this research to establish an innovative application based on the 

combination of geostatistical simulation (e.g., turning bands simulation) and fractal 

modelling for mineral resource classification. 
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An accurate description for geological domains which discriminates types of mineralogy, 

alteration and lithology is an important task in mineral resource and reserve evaluation. 

Deterministic models, based on drill hole data, define just one layout of these domains 

and do not consider uncertainty in a study area so they cannot measure uncertainty in 

the domain boundaries. However, stochastic models with respect to geostatistical 

simulation (especially plurigaussian) have distinctive power to assess uncertainty in the 

spatial layout of the domains which contribute to enhanced geological control for the 

quantitative variables of interest (e.g., porosity, permeability and concentration). 

Therefore, the use of a plurigaussian simulation is recommended to determine geological 

domains that control the grade distribution to obtain a final grade model for the Kahang 

deposit. 
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Appendix. A: Certificate of Data Sources 
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Fig. A. 1. Letter issued by the Kahang deposit project manager authorising the use of data and 

choice of input parameters to the pit optimisation study  
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Appendix. B: Cu Re-Analysed or Duplicated Samples in the Kahang 

Deposit  

Table. B. 1. 399 randomised samples for Cu selected and analysed for assay quality assurance 

and quality control 

 

 

 

 

 



301 
 

 

 

 

 



302 
 

 

 

 

 

 



303 
 

 

 

 

 



304 
 

 

 

 

 

 



305 
 

 

 

 

 



306 
 

 

 

 

 



307 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



308 
 

Appendix. C: Geochemical Data Variances via F-Distribution 

 

 

 

Table. C. 1. Fisher distribution F(n1,n2) with n1 and n2 degrees of freedom, α = 0.025 and 97. 5% 

of confidence level (Emery, 2012)   
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Appendix. D: Distribution of Student (T) with n Degrees of Freedom  

 

 

Table. D. 1. Critical values for student’s T distributions (column headings denote probabilities’ α 

above tabulated values: Emery, 2012)   
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Appendix. E: Density and RQD Plans in Different Levels 

 

 

 

 

 

Fig. E. 1. Density plan view for layer # 32 (Z =1900 m) 
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Fig. E. 2. RQD plan view for layer # 32 (Z =1900 m) 
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Fig. E. 3. Density plan view for layer # 37 (Z =1950 m) 
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Fig. E. 4. RQD plan view for layer # 37 (Z =1950 m) 
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Fig. E. 5. Density plan view for layer # 42 (Z =2000 m) 
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Fig. E. 6. RQD plan view for layer # 42 (Z = 2000m) 
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Appendix. F: Economic Models in the Kahang Deposit 

Table. F. 1. The individual economic properties at all elevations (generated by NPV Scheduler 

software)  

 

Rock Revenue Processing Cost Mining Cost ORE Cu Mo Cu R Mo R

tonnes $ $ $ tonnes tonnes g tonnes g

Elevation 2360.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 2350.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 2340.00 9,032,698 352,689 235,197 36,543,325 56,520 57.924 2,131,657 44.949 1,654,166

Elevation 2330.00 9,181,637 3,933,008 2,573,962 38,051,538 616,757 694.2483 9,068,299 538.7367 7,037,000

Elevation 2320.00 9,330,494 22,333,601 11,305,510 41,238,636 2,673,549 3,953 48,381,836 3,067 37,544,305

Elevation 2310.00 9,331,390 9,282,607 6,258,133 40,457,095 1,502,934 1,585 37,806,669 1,230 29,337,975

Elevation 2300.00 9,331,123 8,806,450 5,894,721 39,925,122 1,414,317 1,537 25,560,388 1,193 19,834,861

Elevation 2290.00 9,330,651 13,233,657 7,228,669 40,267,129 1,717,344 2,319 35,601,503 1,800 27,626,766

Elevation 2280.00 9,421,616 15,084,434 6,338,199 40,311,682 1,481,192 2,664 34,448,430 2,067 26,731,982

Elevation 2270.00 9,448,712 17,154,578 8,066,531 41,150,138 1,899,480 3,022 41,388,101 2,345 32,117,166

Elevation 2260.00 9,481,392 25,883,725 8,681,095 41,081,036 1,991,168 4,617 44,945,946 3,583 34,878,054

Elevation 2250.00 9,482,797 26,068,428 11,226,408 41,806,517 2,629,322 4,556 73,927,805 3,536 57,367,977

Elevation 2240.00 9,482,554 22,353,675 9,052,246 41,639,910 2,109,890 3,945 51,849,770 3,061 40,235,421

Elevation 2230.00 9,489,563 25,217,308 11,182,161 41,957,644 2,622,562 4,465 53,952,212 3,465 41,866,917

Elevation 2220.00 9,490,387 15,271,558 6,967,022 41,207,374 1,636,674 2,718 28,500,705 2,109 22,116,547

Elevation 2210.00 9,490,979 16,565,029 7,602,964 41,138,049 1,788,267 2,893 47,790,545 2,245 37,085,463

Elevation 2200.00 9,488,928 16,645,859 8,915,088 41,210,997 2,117,070 2,868 59,672,108 2,226 46,305,555

Elevation 2190.00 9,489,166 19,906,548 8,808,052 41,476,358 2,066,827 3,474 57,998,104 2,696 45,006,528

Elevation 2180.00 9,574,547 18,599,586 8,613,910 41,454,441 2,030,506 3,126 90,824,624 2,426 70,479,908

Elevation 2170.00 9,601,150 18,312,328 8,689,065 42,000,570 2,047,771 3,206 50,338,290 2,488 39,062,513

Elevation 2160.00 9,602,128 21,369,488 10,784,993 42,268,380 2,551,000 3,745 57,452,098 2,906 44,582,828

Elevation 2150.00 9,621,101 25,711,762 12,955,453 43,077,426 3,066,822 4,405 99,842,612 3,419 77,477,868

Elevation 2140.00 9,621,848 27,341,372 12,076,400 42,485,149 2,831,880 4,829 62,320,722 3,747 48,360,880

Elevation 2130.00 9,622,366 37,335,117 12,732,713 42,447,296 2,925,688 6,630 73,925,020 5,145 57,365,816

Elevation 2120.00 9,625,715 31,523,737 13,695,741 43,015,405 3,210,568 5,473 100,500,011 4,247 77,988,008

Elevation 2110.00 9,624,093 32,208,151 12,806,872 42,465,159 2,980,376 5,706 68,037,942 4,428 52,797,443

Elevation 2100.00 9,622,622 34,179,284 13,324,379 42,667,702 3,096,834 6,030 79,940,457 4,679 62,033,795

Elevation 2090.00 9,619,555 28,624,330 12,140,447 42,441,936 2,838,426 5,076 58,845,125 3,939 45,663,817

Elevation 2080.00 9,628,918 35,090,334 12,474,049 42,905,364 2,877,643 6,194 81,031,058 4,806 62,880,101

Elevation 2070.00 9,624,630 28,993,026 12,941,047 42,857,911 3,038,491 5,056 85,560,266 3,924 66,394,767

Elevation 2060.00 9,621,541 28,384,376 9,916,674 42,385,513 2,283,789 5,029 59,880,729 3,902 46,467,445

Elevation 2050.00 9,662,571 31,925,895 13,218,188 43,153,065 3,086,480 5,611 81,156,842 4,354 62,977,709

Elevation 2040.00 9,654,058 29,830,005 12,213,544 42,428,700 2,849,336 5,252 72,809,496 4,076 56,500,169

Elevation 2030.00 9,641,288 35,746,696 13,418,225 42,540,906 3,112,821 6,181 121,739,848 4,796 94,470,122

Elevation 2020.00 9,536,663 34,600,255 13,879,150 42,197,072 3,232,736 6,104 81,002,611 4,736 62,858,026

Elevation 2010.00 9,528,478 31,923,163 13,393,076 42,227,111 3,129,136 5,652 68,483,387 4,386 53,143,108

Elevation 2000.00 9,522,661 39,475,263 15,488,844 42,564,472 3,602,915 6,918 106,307,095 5,368 82,494,306

Elevation 1990.00 9,457,766 46,406,926 14,266,289 41,829,155 3,245,968 8,249 89,671,195 6,401 69,584,848

Elevation 1980.00 9,445,909 51,162,105 15,682,269 42,139,121 3,572,942 8,878 164,663,453 6,889 127,778,840

Elevation 1970.00 9,435,226 47,174,842 15,105,093 41,960,335 3,453,978 8,256 130,337,038 6,407 101,141,542

Elevation 1960.00 9,429,946 37,106,416 14,217,274 41,880,778 3,296,890 6,659 52,430,757 5,167 40,686,267

Elevation 1950.00 9,446,502 59,257,392 15,041,979 41,943,059 3,355,443 10,346 171,342,763 8,028 132,961,984

Elevation 1940.00 9,433,090 43,164,730 14,330,607 41,741,437 3,288,949 7,515 131,437,446 5,831 101,995,459

Elevation 1930.00 9,415,318 33,261,814 12,630,563 41,510,774 2,931,694 5,790 101,476,235 4,493 78,745,558

Elevation 1920.00 9,356,635 36,287,687 10,835,532 41,065,834 2,467,573 6,100 176,655,762 4,734 137,084,872

Elevation 1910.00 9,334,368 42,349,766 11,805,429 40,835,705 2,675,339 6,904 271,436,265 5,358 210,634,541

Elevation 1900.00 9,267,184 38,443,692 9,756,401 40,006,008 2,192,710 6,105 295,815,803 4,738 229,553,064

Elevation 1890.00 9,242,189 30,992,846 8,230,910 39,504,916 1,862,798 4,788 279,321,626 3,715 216,753,582

Elevation 1880.00 9,215,891 22,904,176 6,850,172 39,060,596 1,567,299 3,589 191,090,043 2,785 148,285,873

Elevation 1870.00 9,181,584 18,006,565 5,545,494 38,514,810 1,269,906 2,907 124,119,545 2,256 96,316,767

Elevation 1860.00 9,147,789 15,757,662 4,898,402 37,961,342 1,121,509 2,588 95,320,754 2,008 73,968,905

Elevation 1850.00 9,123,883 21,915,101 4,500,830 37,727,449 978,819 3,691 104,494,575 2,864 81,087,790
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Elevation 1840.00 9,106,318 17,010,375 3,941,386 37,493,496 872,562 2,838 89,443,509 2,202 69,408,163

Elevation 1830.00 9,090,488 12,593,760 3,422,890 37,303,833 773,824 2,046 82,995,508 1,587 64,404,514

Elevation 1820.00 9,078,981 7,194,576 2,678,609 37,060,244 619,413 1,303 6,684,634 1,011 5,187,276

Elevation 1810.00 9,071,219 6,688,723 2,205,226 36,894,177 504,733 1,204 8,440,405 934.0113 6,549,754

Elevation 1800.00 9,062,357 7,245,690 1,560,840 36,690,390 342,550 1,194 42,702,893 926.2184 33,137,445

Elevation 1790.00 9,056,654 2,567,146 1,098,557 36,539,766 257,866 423.285 15,007,978 328.4691 11,646,191

Elevation 1780.00 9,051,291 2,219,637 679,185 36,391,130 154,971 375.6501 10,035,073 291.5045 7,787,217

Elevation 1770.00 9,046,488 1,163,588 571,277 36,348,010 135,048 198.6992 4,720,615 154.1906 3,663,197

Elevation 1760.00 9,043,013 954,156 470,781 36,305,747 111,413 159.6237 4,879,002 123.868 3,786,105

Elevation 1750.00 9,039,635 684,504 367,443 36,263,473 87,443 111.4461 4,433,501 86.4822 3,440,397

Elevation 1740.00 9,036,195 533,661 295,403 36,229,341 70,467 84.729 4,113,223 65.7497 3,191,861

Elevation 1730.00 9,033,666 413,750 236,153 36,202,364 56,418 65.6459 3,202,658 50.9412 2,485,262

Elevation 1720.00 9,031,310 304,077 184,805 36,178,366 44,270 48.5246 2,268,665 37.6551 1,760,484

Elevation 1710.00 9,029,592 235,018 146,046 36,160,358 34,992 38.5344 1,439,899 29.9027 1,117,362

Elevation 1700.00 9,028,008 171,248 106,376 36,142,618 25,488 28.0368 1,061,847 21.7566 823,994

Elevation 1690.00 9,027,216 139,337 86,544 36,133,747 20,736 22.8096 864,816 17.7002 671,098

Elevation 1680.00 9,023,760 72,660 45,076 36,108,000 10,800 11.88 455,386 9.2189 353,379

Elevation 1670.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1660.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1650.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1640.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1630.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1620.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1610.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1600.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1590.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Elevation 1580.00 9,023,760 0 0 36,095,040 0 0 0 0 0

Total 734,934,618 1,433,650,948 536,892,565 3,118,312,984 124,521,903 248,105 4,815,385,183 192,529 3,736,738,904
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Fig. F. 1. 2D economic model (Section level 1970 m, Plan view) 
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Fig. F. 2. 2D economic model (Section level 1900 m, Plan View) 
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Fig. F. 3. 2D economic model (Section 638400 E North-South View) 
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Fig. F. 4. 2D economic model (Section 3644688.00 N East-West View) 
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Appendix. G: The Kahang Ultimate Pit Limit 

 

 

Fig. G. 1. 2D pit limit (Section level 2225 m, Plan View) 
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Fig. G. 2. 3D Ultimate pit limit view of the Kahang deposit including all boreholes (Section 

5140.00 E) 
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Appendix. H: Extraction Sequences (Nested Pits) 

 

Table. H. 1. Pit optimisation: Extraction sequences for incremental and cumulative NPV 

generated by NPV Scheduler software (sequence No. 92 specifies OES)  

Incremental Data 

Point Profit Revenue 
Processing 

Cost 
Mining Cost NPV Total Rock Total Ore 

Total 
Waste 

Strip 
Ratio 

 $ $ $ $ $ Tonnes Tonnes Tonnes  

1 -302,720 0 0 302,720 -301,976 170,280 0 170,280 0 

2 -302,720 0 0 302,720 -300,489 170,280 0 170,280 0 

3 -302,720 0 0 302,720 -299,010 170,280 0 170,280 0 

4 -302,720 0 0 302,720 -297,537 170,280 0 170,280 0 

5 -137,860 202,453 37,593 302,720 -134,990 171,420 7,980 163,440 20.479 

6 26,464 412,809 83,624 302,720 25,506 172,867 18,009 154,857 8.599 

7 793,812 1,268,154 171,621 302,720 769,741 174,971 33,969 141,001 4.151 

8 105,371 499,501 91,410 302,720 101,672 175,492 19,329 156,163 8.079 

9 -134,013 213,817 45,109 302,720 -128,436 172,222 9,772 162,449 16.623 

10 -73,933 298,893 70,106 302,720 -70,094 173,537 15,427 158,110 10.249 

11 -302,720 0 0 302,720 -287,275 170,280 0 170,280 0 

12 64,932 467,785 100,133 302,720 61,523 177,492 21,734 155,758 7.166 

13 -137,780 214,213 49,272 302,720 -129,308 173,390 10,812 162,577 15.036 

14 -302,720 0 0 302,720 -282,968 170,280 0 170,280 0 

15 -302,720 0 0 302,720 -281,574 170,280 0 170,280 0 

16 -26,561 435,028 158,868 302,720 -24,522 177,174 36,691 140,483 3.829 

17 -302,720 0 0 302,720 -278,752 170,280 0 170,280 0 

18 -302,720 0 0 302,720 -277,380 170,280 0 170,280 0 

19 -214,493 183,810 95,583 302,720 -195,599 172,751 22,631 150,120 6.633 

20 -252,914 132,560 82,753 302,720 -229,454 174,083 19,784 154,299 7.799 

21 -257,887 112,450 67,617 302,720 -232,801 173,248 16,134 157,113 9.738 

22 -85,507 439,206 221,992 302,720 -77,039 192,001 52,473 139,528 2.659 

23 -96,224 304,941 98,445 302,720 -86,066 174,462 22,491 151,971 6.757 

24 -66,359 390,875 154,514 302,720 -59,158 178,339 35,945 142,393 3.961 

25 -19,790 483,914 200,984 302,720 -17,443 179,244 46,889 132,355 2.823 

26 21,957 567,760 243,083 302,720 19,451 184,651 56,820 127,830 2.25 

27 -147,140 483,294 327,714 302,720 -128,609 186,587 78,619 107,968 1.373 

28 -98,236 463,734 259,250 302,720 -85,557 182,576 61,686 120,889 1.96 

29 -115,813 455,952 269,045 302,720 -100,337 179,969 64,195 115,774 1.803 

30 -210,706 186,391 94,377 302,720 -181,214 177,382 22,313 155,068 6.95 

31 -302,720 0 0 302,720 -259,296 170,280 0 170,280 0 

32 -302,720 0 0 302,720 -258,020 170,280 0 170,280 0 

33 -302,720 0 0 302,720 -256,749 170,280 0 170,280 0 

34 -302,720 0 0 302,720 -255,484 170,584 0 170,584 0 



325 
 

35 -302,720 0 0 302,720 -254,225 170,280 0 170,280 0 

36 -302,720 0 0 302,720 -252,973 170,280 0 170,280 0 

37 -302,720 0 0 302,720 -251,727 170,280 0 170,280 0 

38 -302,720 0 0 302,720 -250,488 170,280 0 170,280 0 

39 -302,720 0 0 302,720 -249,254 170,280 0 170,280 0 

40 -302,720 0 0 302,720 -248,027 170,280 0 170,280 0 

41 -302,720 0 0 302,720 -246,806 170,280 0 170,280 0 

42 -302,720 0 0 302,720 -245,590 170,280 0 170,280 0 

43 -302,720 0 0 302,720 -244,381 170,280 0 170,280 0 

44 -302,720 0 0 302,720 -243,177 170,705 0 170,705 0 

45 -302,720 0 0 302,720 -241,974 170,948 0 170,948 0 

46 -302,720 0 0 302,720 -240,781 170,280 0 170,280 0 

47 -302,720 0 0 302,720 -239,595 170,280 0 170,280 0 

48 -302,720 0 0 302,720 -238,416 170,280 0 170,280 0 

49 -302,720 0 0 302,720 -237,242 170,280 0 170,280 0 

50 -302,720 0 0 302,720 -236,074 170,280 0 170,280 0 

51 -302,720 0 0 302,720 -234,911 170,280 0 170,280 0 

52 -291,811 12,710 1,801 302,720 -225,335 170,280 360 169,920 472 

53 -90,719 310,050 98,048 302,720 -69,561 170,280 22,320 147,960 6.629 

54 -294,195 14,699 6,174 302,720 -224,927 170,280 1,440 168,840 117.25 

55 -274,259 50,029 21,568 302,720 -208,641 170,280 5,040 165,240 32.786 

56 -302,720 0 0 302,720 -229,169 177,332 0 177,332 0 

57 -302,720 0 0 302,720 -228,008 170,401 0 170,401 0 

58 -291,174 23,728 12,182 302,720 -218,235 170,523 2,880 167,643 58.209 

59 -302,427 2,029 1,735 302,720 -225,540 176,907 420 176,486 419.407 

60 -290,988 117,539 105,806 302,720 -215,870 183,144 25,688 157,456 6.13 

61 -283,584 38,944 19,807 302,720 -209,301 170,462 4,680 165,782 35.424 

62 -222,790 105,973 26,043 302,720 -163,611 170,888 5,760 165,128 28.668 

63 -78,237 336,201 111,717 302,720 -57,438 176,603 25,560 151,043 5.909 

64 58,983 558,886 197,182 302,720 43,221 170,948 45,360 125,588 2.769 

65 -3,251 510,359 210,889 302,720 -2,364 175,132 49,145 125,987 2.564 

66 177,601 853,272 372,951 302,720 127,686 175,630 87,265 88,364 1.013 

67 113,192 776,331 360,418 302,720 81,061 179,400 84,694 94,705 1.118 

68 -209,846 168,892 76,018 302,720 -149,388 180,129 17,832 162,297 9.101 

69 406,831 1,080,798 371,247 302,720 288,339 176,116 85,246 90,870 1.066 

70 251,995 721,505 166,789 302,720 178,042 177,089 36,608 140,481 3.837 

71 -150,600 223,021 70,900 302,720 -105,686 187,547 16,163 171,384 10.603 

72 -243,195 87,166 27,640 302,720 -169,701 188,144 6,300 181,843 28.86 

73 -247,876 169,045 114,200 302,720 -172,022 176,707 27,430 149,276 5.442 

74 129,464 629,298 197,114 302,720 89,151 178,622 44,865 133,756 2.981 

75 92,462 621,500 226,317 302,720 63,619 175,950 52,219 123,731 2.369 

76 1,112,962 1,882,716 467,033 302,720 760,176 176,907 103,460 73,446 0.71 

77 1,589,793 2,450,295 557,781 302,720 1,080,859 173,441 122,120 51,321 0.42 
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78 1,263,254 2,087,980 522,005 302,720 854,637 180,251 115,748 64,502 0.557 

79 1,541,488 2,339,445 495,237 302,720 1,036,973 172,772 107,238 65,534 0.611 

80 1,578,076 2,398,261 517,465 302,720 1,055,895 180,731 112,385 68,345 0.608 

81 1,528,337 2,422,321 591,264 302,720 1,017,190 185,284 130,700 54,584 0.418 

82 2,781,670 3,698,135 613,744 302,720 1,842,401 182,654 127,238 55,416 0.436 

83 1,465,090 2,214,107 446,296 302,720 965,308 181,782 95,931 85,851 0.895 

84 1,210,660 2,057,535 544,154 302,720 793,814 186,803 121,572 65,230 0.537 

85 388,737 1,214,670 523,213 302,720 253,478 187,854 122,406 65,447 0.535 

86 737,539 1,691,310 651,051 302,720 477,955 190,339 151,100 39,238 0.26 

87 391,134 1,261,510 567,655 302,720 252,373 191,819 133,255 58,563 0.439 

88 296,330 1,010,935 411,885 302,720 189,996 186,951 96,048 90,903 0.946 

89 474,331 1,278,375 501,323 302,720 301,919 190,363 116,561 73,801 0.633 

90 808,655 1,580,718 469,343 302,720 512,737 191,439 106,399 85,039 0.799 

91 1,747,427 2,596,472 546,324 302,720 1,101,455 190,678 118,568 72,110 0.608 

92 1,732,457 2,464,485 429,308 302,720 1,086,318 190,430 90,212 100,217 1.111 

93 3,810 460,839 154,308 302,720 2,278 179,721 35,340 144,380 4.085 

94 -99,673 431,512 228,464 302,720 -61,923 182,126 54,153 127,972 2.363 

95 151,539 643,635 189,376 302,720 93,866 181,168 42,872 138,296 3.226 

96 -219,275 250,807 167,361 302,720 -134,725 178,635 40,136 138,499 3.451 

97 10,026 517,422 204,675 302,720 6,124 188,830 47,606 141,224 2.966 

98 -7,950 443,913 149,143 302,720 -4,579 184,275 34,216 150,059 4.386 

99 114,108 642,500 225,672 302,720 68,995 181,112 51,915 129,196 2.489 

100 296,279 774,060 221,780 256,000 177,855 150,406 50,110 100,296 2.002 

Cumulative Data 

          

Point Profit Revenue 
Processing 

Cost 
Mining Cost NPV Total Rock Total Ore 

Total 
Waste 

Strip 
Ratio 

 $ $ $ $ $ tonnes tonnes tonnes  

1 -302,720 0 0 302,720 -301,976 170,280 0 170,280 0 

2 -605,440 0 0 605,440 -602,465 340,560 0 340,560 0 

3 -908,160 0 0 908,160 -901,474 510,840 0 510,840 0 

4 -1,210,880 0 0 1,210,880 -1,199,011 681,120 0 681,120 0 

5 -1,348,740 202,453 37,593 1,513,600 -1,334,000 852,540 7,980 844,560 105.824 

6 -1,322,276 615,262 121,218 1,816,320 -1,308,493 1,025,408 25,990 999,417 38.453 

7 -528,463 1,883,417 292,839 2,119,040 -538,752 1,200,379 59,959 1,140,419 19.02 

8 -423,092 2,382,918 384,250 2,421,760 -437,079 1,375,871 79,289 1,296,582 16.352 

9 -557,105 2,596,735 429,359 2,724,480 -565,515 1,548,094 89,062 1,459,031 16.382 

10 -631,037 2,895,629 499,466 3,027,200 -635,609 1,721,631 104,489 1,617,142 15.477 

11 -933,757 2,895,629 499,466 3,329,920 -922,883 1,891,911 104,489 1,787,422 17.106 

12 -868,825 3,363,415 599,599 3,632,640 -861,360 2,069,404 126,223 1,943,180 15.395 

13 -1,006,604 3,577,628 648,872 3,935,360 -990,667 2,242,795 137,036 2,105,758 15.366 

14 -1,309,324 3,577,628 648,872 4,238,080 -1,273,634 2,413,075 137,036 2,276,038 16.609 

15 -1,612,044 3,577,628 648,872 4,540,800 -1,555,208 2,583,355 137,036 2,446,318 17.852 



327 
 

16 -1,638,605 4,012,656 807,740 4,843,520 -1,579,729 2,760,529 173,727 2,586,801 14.89 

17 -1,941,325 4,012,656 807,740 5,146,240 -1,858,481 2,930,809 173,727 2,757,081 15.87 

18 -2,244,045 4,012,656 807,740 5,448,960 -2,135,860 3,101,089 173,727 2,927,361 16.85 

19 -2,458,538 4,196,467 903,324 5,751,680 -2,331,459 3,273,841 196,359 3,077,481 15.673 

20 -2,711,451 4,329,027 986,077 6,054,400 -2,560,913 3,447,924 216,143 3,231,780 14.952 

21 -2,969,337 4,441,478 1,053,694 6,357,120 -2,793,714 3,621,172 232,278 3,388,894 14.59 

22 -3,054,844 4,880,684 1,275,687 6,659,840 -2,870,752 3,813,174 284,751 3,528,422 12.391 

23 -3,151,067 5,185,625 1,374,132 6,962,560 -2,956,817 3,987,636 307,243 3,680,393 11.979 

24 -3,217,426 5,576,501 1,528,646 7,265,280 -3,015,975 4,165,976 343,188 3,822,787 11.139 

25 -3,237,216 6,060,415 1,729,631 7,568,000 -3,033,417 4,345,220 390,078 3,955,142 10.139 

26 -3,215,259 6,628,176 1,972,714 7,870,720 -3,013,965 4,529,872 446,899 4,082,972 9.136 

27 -3,362,398 7,111,471 2,300,429 8,173,440 -3,142,574 4,716,459 525,518 4,190,940 7.975 

28 -3,460,634 7,575,206 2,559,679 8,476,160 -3,228,131 4,899,035 587,204 4,311,830 7.343 

29 -3,576,446 8,031,158 2,828,724 8,778,880 -3,328,467 5,079,004 651,400 4,427,604 6.797 

30 -3,787,152 8,217,550 2,923,102 9,081,600 -3,509,681 5,256,387 673,713 4,582,673 6.802 

31 -4,089,872 8,217,550 2,923,102 9,384,320 -3,768,976 5,426,667 673,713 4,752,953 7.055 

32 -4,392,592 8,217,550 2,923,102 9,687,040 -4,026,996 5,596,947 673,713 4,923,233 7.308 

33 -4,695,312 8,217,550 2,923,102 9,989,760 -4,283,744 5,767,227 673,713 5,093,513 7.56 

34 -4,998,032 8,217,550 2,923,102 10,292,480 -4,539,228 5,937,811 673,713 5,264,097 7.814 

35 -5,300,752 8,217,550 2,923,102 10,595,200 -4,793,452 6,108,091 673,713 5,434,377 8.066 

36 -5,603,472 8,217,550 2,923,102 10,897,920 -5,046,424 6,278,371 673,713 5,604,657 8.319 

37 -5,906,192 8,217,550 2,923,102 11,200,640 -5,298,151 6,448,651 673,713 5,774,937 8.572 

38 -6,208,912 8,217,550 2,923,102 11,503,360 -5,548,638 6,618,931 673,713 5,945,217 8.825 

39 -6,511,632 8,217,550 2,923,102 11,806,080 -5,797,892 6,789,211 673,713 6,115,497 9.077 

40 -6,814,352 8,217,550 2,923,102 12,108,800 -6,045,918 6,959,491 673,713 6,285,777 9.33 

41 -7,117,072 8,217,550 2,923,102 12,411,520 -6,292,723 7,129,771 673,713 6,456,057 9.583 

42 -7,419,792 8,217,550 2,923,102 12,714,240 -6,538,313 7,300,051 673,713 6,626,337 9.836 

43 -7,722,512 8,217,550 2,923,102 13,016,960 -6,782,694 7,470,331 673,713 6,796,617 10.088 

44 -8,025,232 8,217,550 2,923,102 13,319,680 -7,025,870 7,641,036 673,713 6,967,323 10.342 

45 -8,327,952 8,217,550 2,923,102 13,622,400 -7,267,843 7,811,985 673,713 7,138,272 10.595 

46 -8,630,672 8,217,550 2,923,102 13,925,120 -7,508,623 7,982,265 673,713 7,308,552 10.848 

47 -8,933,392 8,217,550 2,923,102 14,227,840 -7,748,218 8,152,545 673,713 7,478,832 11.101 

48 -9,236,112 8,217,550 2,923,102 14,530,560 -7,986,634 8,322,825 673,713 7,649,112 11.354 

49 -9,538,832 8,217,550 2,923,102 14,833,280 -8,223,875 8,493,105 673,713 7,819,392 11.606 

50 -9,841,552 8,217,550 2,923,102 15,136,000 -8,459,948 8,663,385 673,713 7,989,672 11.859 

51 -10,144,272 8,217,550 2,923,102 15,438,720 -8,694,858 8,833,665 673,713 8,159,952 12.112 

52 -10,436,083 8,230,261 2,924,903 15,741,440 -8,920,193 9,003,945 674,073 8,329,872 12.358 

53 -10,526,801 8,540,311 3,022,952 16,044,160 -8,989,753 9,174,225 696,393 8,477,832 12.174 

54 -10,820,996 8,555,010 3,029,126 16,346,880 -9,214,680 9,344,505 697,833 8,646,672 12.391 

55 -11,095,255 8,605,040 3,050,694 16,649,600 -9,423,320 9,514,785 702,873 8,811,912 12.537 

56 -11,397,975 8,605,040 3,050,694 16,952,320 -9,652,489 9,692,118 702,873 8,989,244 12.789 

57 -11,700,695 8,605,040 3,050,694 17,255,040 -9,880,497 9,862,520 702,873 9,159,646 13.032 

58 -11,991,868 8,628,768 3,062,876 17,557,760 -10,098,731 10,033,043 705,753 9,327,289 13.216 
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59 -12,294,295 8,630,798 3,064,612 17,860,480 -10,324,271 10,209,950 706,174 9,503,776 13.458 

60 -12,585,282 8,748,337 3,170,418 18,163,200 -10,540,140 10,393,094 731,862 9,661,232 13.201 

61 -12,868,865 8,787,281 3,190,226 18,465,920 -10,749,441 10,563,556 736,542 9,827,014 13.342 

62 -13,091,655 8,893,255 3,216,269 18,768,640 -10,913,051 10,734,444 742,302 9,992,142 13.461 

63 -13,169,891 9,229,456 3,327,987 19,071,360 -10,970,489 10,911,048 767,862 10,143,185 13.21 

64 -13,110,908 9,788,343 3,525,170 19,374,080 -10,927,267 11,081,996 813,222 10,268,774 12.627 

65 -13,114,158 10,298,702 3,736,059 19,676,800 -10,929,631 11,257,129 862,368 10,394,761 12.054 

66 -12,936,557 11,151,975 4,109,011 19,979,520 -10,801,944 11,432,760 949,633 10,483,126 11.039 

67 -12,823,364 11,928,307 4,469,430 20,282,240 -10,720,883 11,612,160 1,034,328 10,577,832 10.227 

68 -13,033,209 12,097,199 4,545,448 20,584,960 -10,870,270 11,792,289 1,052,160 10,740,129 10.208 

69 -12,626,378 13,177,998 4,916,696 20,887,680 -10,581,930 11,968,406 1,137,406 10,831,000 9.523 

70 -12,374,382 13,899,504 5,083,486 21,190,400 -10,403,888 12,145,496 1,174,014 10,971,481 9.345 

71 -12,524,982 14,122,525 5,154,386 21,493,120 -10,509,573 12,333,043 1,190,177 11,142,865 9.362 

72 -12,768,176 14,209,692 5,182,027 21,795,840 -10,679,274 12,521,187 1,196,478 11,324,708 9.465 

73 -13,016,051 14,378,738 5,296,228 22,098,560 -10,851,295 12,697,894 1,223,908 11,473,985 9.375 

74 -12,886,587 15,008,036 5,493,342 22,401,280 -10,762,144 12,876,516 1,268,774 11,607,742 9.149 

75 -12,794,124 15,629,537 5,719,660 22,704,000 -10,698,524 13,052,467 1,320,993 11,731,473 8.881 

76 -11,681,161 17,512,253 6,186,694 23,006,720 -9,938,348 13,229,374 1,424,454 11,804,920 8.287 

77 -10,091,368 19,962,549 6,744,476 23,309,440 -8,857,489 13,402,816 1,546,574 11,856,241 7.666 

78 -8,828,113 22,050,529 7,266,481 23,612,160 -8,002,851 13,583,067 1,662,323 11,920,744 7.171 

79 -7,286,625 24,389,974 7,761,718 23,914,880 -6,965,878 13,755,840 1,769,561 11,986,278 6.774 

80 -5,708,548 26,788,236 8,279,184 24,217,600 -5,909,983 13,936,571 1,881,947 12,054,624 6.405 

81 -4,180,211 29,210,558 8,870,448 24,520,320 -4,892,792 14,121,856 2,012,648 12,109,208 6.017 

82 -1,398,540 32,908,693 9,484,193 24,823,040 -3,050,390 14,304,510 2,139,886 12,164,624 5.685 

83 66,550 35,122,800 9,930,489 25,125,760 -2,085,082 14,486,292 2,235,817 12,250,475 5.479 

84 1,277,211 37,180,336 10,474,644 25,428,480 -1,291,268 14,673,096 2,357,390 12,315,705 5.224 

85 1,665,948 38,395,007 10,997,858 25,731,200 -1,037,789 14,860,950 2,479,796 12,381,153 4.993 

86 2,403,488 40,086,317 11,648,909 26,033,920 -559,834 15,051,289 2,630,897 12,420,392 4.721 

87 2,794,623 41,347,827 12,216,564 26,336,640 -307,461 15,243,108 2,764,153 12,478,955 4.515 

88 3,090,953 42,358,763 12,628,450 26,639,360 -117,464 15,430,060 2,860,201 12,569,859 4.395 

89 3,565,284 43,637,138 13,129,773 26,942,080 184,456 15,620,424 2,976,763 12,643,660 4.247 

90 4,373,939 45,217,857 13,599,117 27,244,800 697,194 15,811,864 3,083,163 12,728,700 4.128 

91 6,121,367 47,814,330 14,145,442 27,547,520 1,798,650 16,002,542 3,201,731 12,800,811 3.998 

92 7,853,825 50,278,816 14,574,750 27,850,240 2,884,968 16,192,972 3,291,944 12,901,028 3.919 

93 7,857,636 50,739,655 14,729,058 28,152,960 2,887,246 16,372,694 3,327,284 13,045,409 3.921 

94 7,757,963 51,171,167 14,957,523 28,455,680 2,825,323 16,554,820 3,381,438 13,173,382 3.896 

95 7,909,502 51,814,802 15,146,900 28,758,400 2,919,189 16,735,988 3,424,310 13,311,678 3.887 

96 7,690,228 52,065,610 15,314,261 29,061,120 2,784,465 16,914,624 3,464,446 13,450,177 3.882 

97 7,700,255 52,583,032 15,518,937 29,363,840 2,790,590 17,103,454 3,512,052 13,591,401 3.87 

98 7,692,305 53,026,946 15,668,080 29,666,560 2,786,011 17,287,729 3,546,268 13,741,460 3.875 

99 7,806,413 53,669,446 15,893,753 29,969,280 2,855,007 17,468,841 3,598,184 13,870,657 3.855 

100 8,102,692 54,443,507 16,115,534 30,225,280 3,032,862 17,619,248 3,648,294 13,970,953 3.829 
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