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Endoplasmic reticulum (ER) chaperones (e.g., calreticulin, heat shock proteins, and iso-
merases) perform a multitude of functions within the ER. However, many of these chaper-
ones can translocate to the cytosol and eventually the surface of cells, particularly during
ER stress induced by e.g., drugs, UV irradiation, and microbial stimuli. Once on the cell
surface or in the extracellular space, the ER chaperones can take on immunogenic char-
acteristics, as mostly described in the context of cancer, appearing as damage-associated
molecular patterns recognized by the immune system. How ER chaperones relocate to the
cell surface and interact with other intracellular proteins appears to influence whether a
tumor cell is targeted for cell death.The relocation of ER proteins to the cell surface can be
exploited to target cancer cells for elimination by immune mechanism. Here we evaluate
the evidence for the different mechanisms of ER protein translocation and binding to the
cell surface and how ER protein translocation can act as a signal for cancer cells to undergo
killing by immunogenic cell death and other cell death pathways.The release of chaperones
can also exacerbate underlying autoimmune conditions, such as rheumatoid arthritis and
multiple sclerosis, and the immunomodulatory role of extracellular chaperones as potential
cancer immunotherapies requires cautious monitoring, particularly in cancer patients with
underlying autoimmune disease.

Keywords: calreticulin, damage associated molecular patterns, ER stress, immunogenic cell death, post-
translational modification

INTRODUCTION
The endoplasmic reticulum (ER) is one of many specialized
organelles in the cell with diverse and apparently ever expanding
functionality. When the ER was first observed in chick embryonic
cells by electron microscopy, it was simply described by Porter,
Claude and colleagues as one of many “submicroscopic cyto-
plasmic components” (1). The term “endoplasmic reticulum” was
adopted by Porter and Palade because of its general morphology
and intracellular location (2). Palade in his original Science arti-
cle (3), described the ER as an “organ of complex geometry that
endows it with a large surface for trapping proteins for export.”
Once the subcellular fractionation of the ER organelle was pos-
sible (4), two of the major functions of the ER, namely calcium
sequestration (5) and the correct assembly, folding and secretion of
glycoproteins became established over the pursuing decades (6–8).

In particular, a number of proteins within the ER were discov-
ered to be critical for the correct quality controlled folding and
assembly of nascent glycoproteins – these proteins were termed
chaperones and included a wide array of unrelated protein fami-
lies. Chaperones are also involved in protein repair after episodes
of cell stress, especially thermal shock, hence several proteins are
termed “heat shock proteins (HSP)”. Some of the most plentiful
luminal ER chaperones and folding enzymes in order of relative

abundance are HSP47, binding immunoglobulin protein (BiP),
ERP57, protein disulfide isomerase (PDI), gp96 (GRP94; HSP90),
and calreticulin (9), which all fulfill unique functions required for
protein assembly. For instance, PDI, a folding enzyme, assists in
the correct joining of cysteine residues to create reduced disulfide
bonds in nascent proteins in order to form thermodynamically sta-
ble proteins. PDI is present in millimolar quantities in the lumen
of the ER of secretory cells, reflecting its importance in disulfide
bond formation (10). Other proteins within the ER work in unison
with isomerases to help fold, glycosylate, and post-translationally
modify the majority of the 18,000 proteins that are transported
to other organelles, the cell surface or beyond (11). Chaperones
and folding enzymes are also involved in a number of intracellular
immune functions including the formation of MHC class I and II
molecules and antigen peptide loading.

During chemical or physical cell stress, the expression of chap-
erones are rapidly increased. Likely reasons for this rise in chap-
erone production are: (a) an attempt to generate correctly folded
proteins to help the cell survive or, (b) to assist in shutting down
the protein manufacture and aiding degradation in preparation
for cell death. Another consequence of this stress response may
be the relocation of chaperones to the cell surface via a num-
ber of pathways and the eventual release of chaperones into the
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extracellular space. On the surface, or in the extracellular space,
some chaperones can signal the innate immune system to target
“sick/abnormal” cells for engulfment and subsequent activation
of adaptive immune responses. Indeed, the presence of chaper-
ones on the cell surface or in the serum, is associated with disease,
particularly cancers and autoimmune diseases (Table 1). Of note,
chaperone proteins operating within the ER do so in an environ-
ment very different from that in other organelles or outside of
cells. For example, the ER has a greater oxidizing environment
with high Ca2+ (~1 mM) and the number and frequency of pro-
teins is more abundant than in other organelles (12, 13). In this
review, we describe the functions of ER chaperones in immunity,
and discuss the different mechanisms of ER protein translocation
and their possible roles in various disease pathologies.

EXTRACELLULAR CHAPERONES CAN ACT AS DAMPs
The presence of so-called Pathogen-Associated Molecular Pat-
terns (PAMPs) on e.g., microbes acts as a “danger signal” for the
innate and adaptive immune system and helps the immune sys-
tem to mount protective responses. Many intracellular host and
“self” proteins that are not normally presented to the immune
system similarly act as danger molecules or “alarmins” upon
their release from (dying) cells. One of the most prominent of
such so-called Damage Associated Molecular Patterns (DAMPs) is
the high-mobility group box 1 (HMGB1) DNA binding protein.
HMGB1 normally resides in the nucleus of cells, loosely bound

to chromatin, but is released into the extracellular space dur-
ing necrosis. This in contrast to apoptosis, where the interaction
between HMGB1 and chromatin is strengthened, thus preventing
the release of HMGB1 (35). Once in the extra-cellular environ-
ment, HMGB1 acts as danger signal that leads to the maturation
of dendritic cells by binding to the receptor for advanced glyca-
tion end products (RAGE) and via the Toll-like receptors, TLR2
and TLR4. This subsequently triggers clonal T-cell expansion and
ultimately leads to the killing of targets cells. Of note,dendritic cells
also release their own HMGB1 upon activation, which amplifies
their activation and is required for clonal expansion, survival, and
functional polarization of naive T-cells (36). Similarly, HMGB1 is
actively secreted by monocytes and macrophages upon their acti-
vation, resulting in increased HMGB1 serum levels as shown in
mice (37).

Although ER chaperones are actively retained in the ER and
should normally not be immunogenic, many reports have high-
lighted their role as DAMPs in the extracellular space. ER chap-
erones like calreticulin, BiP, and gp96 can activate the immune
system once secreted in the extracellular space. In this respect, cal-
reticulin was found to be the major determinant in the process of
immunogenic cell death (ICD), as described in detail below (see
Calreticulin Exposure Determines ICD). Similarly, tumor-secreted
BiP induced antigen-specific anti-tumor responses by activating
CD8 T-cells in murine cancer models (38). In addition, extra-
cellular gp96 can also elicit tumor-specific immunity (39). Thus,

Table 1 | Summary of abundant ER chaperones detected on the cell surface or in the extracellular environment and their association with

various diseases.

Protein Localization outside ER Potential therapeutic Over/under expression in diseases Reference

HSP47/serpin

peptidase inhibitor

clade H, member 1

(SERPINH1)

Extracellular matrix and

serum

microRNA-29a (miR-29a) down regulates

HSP47 and inhibits cell migration and

invasion in cervical squamous cell

carcinoma

HSP47 overexpressed in scirrhous

carcinoma of the stomach, rheumatoid

arthritis, systemic lupus erythematosus,

and Sjögren’s syndrome

(14–16)

BiP/GRP78 Cell surface, nucleus HKH40A, an 8-methoxy analog of WMC79,

downregulates BiP, activates the UPR

pathway and directly degrades the protein

Many cancers, especially solid tumors

and musculoskeletal diseases

overexpress BiP

(17–20)

ERP57 Cell surface, nucleus,

cytosol, extracellular

matrix, urine

Enhanced increase in cell surface ERP57

and calreticulin may enhance

anthracycline-induced apoptosis

Under expression of ERP57 in breast

and gastric cancer cells

(21–24)

PDI Cell surface Propynoic acid carbamoyl methyl amides

small molecules can act as PDI inhibitors to

treat ovarian cancer

PDI is upregulated in CNS cancers,

lymphoma’s ovarian, lung and prostate

cancer

Reviewed

by (25, 26)

GRP94/gp96 Cell surface,

transmembrane

GRP94 siRNA may be useful in reducing

resistance of human ovarian cancer cells to

chemotherapy

Upregulated in breast and ovarian

cancer, lung and pancreatic cell lines

(27–30)

Calreticulin Cell surface, extracellular,

cytosol

Photofrin- and hypericin-based

photodynamic therapy increases cell

surface calreticulin increasing anti-tumor

host responsiveness

Calreticulin is upregulated in many

cancers and musculoskeletal diseases

Reviewed

in (31–34)

BiP, binding immunoglobulin protein; PDI, protein disulfide isomerase; UPR, unfolded protein response.
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ER chaperones released in the extracellular space induce (specific)
immune responses. (17, 21, 40–44). The mechanism(s) by which
such ER chaperones elicit immunity is not fully understood and
may differ between respective chaperones. There is a substantial
amount of evidence to suggest post-translational modifications
of chaperones and peptide processing of chaperones changes the
function and immunogenicity of at least some chaperones (see also
below Retrotranslocation and Post-Translational Modification of
Chaperones). For instance, in rheumatoid arthritis, citrullinated
calreticulin is highly prevalent in the synovial tissue (45). This cit-
rullinated calreticulin preferentially binds to the shared epitope
(SE), a sequence motif in the β1 domain of the HLA-DR mole-
cule that is found in 90% of rheumatoid arthritis patients, and
potentiates 10,000-fold greater SE-activated signaling in innate
immune cells compared to non-citrullinated calreticulin (45, 46).
Furthermore, signaling via the SE was blocked by anti-calreticulin
antibodies, but also by antibodies against CD91. CD91 (alpha
2-macroglobulin receptor or the low density lipoprotein-related
protein) is a receptor involved in endocytosis, and has also been
described to regulate the immunogenicity of other ER chaperones
like gp96, HSP90, and HSP70 (47).

Due to their protein folding function, extracellular chaperones
are often present in complexes with antigenic peptides, which
were generated in the cells from which they were released. In
order to elicit an antigen specific immune response, these chap-
eroned peptides needs to be re-presented by antigen presenting
cells. Indeed, gp96 can be re-presented by antigen presenting cells
via cell surface receptor CD91, whereby the chaperone and its
bound peptide are endocytosed. The chaperone–peptide complex
then enters several trafficking and processing pathways, where-
upon chaperone-derived peptides are re-presented on both MHC
class I and II molecules to CD8+ and CD4+ T-cells, respectively.
This process allows activation of both adaptive and indirectly
innate immunity against Meth A fibrosarcoma (48). Similarly,
gp96 release during virally induced lytic cell death induced acti-
vation of specific T-cells when tissue supernatant was pulsed onto
antigen presenting cells (49). Besides, gp96 (47, 50), heat-shock
treatment of Meth A fibrosarcoma induced HSP70 expression,
which did not impair proliferation or cell viability. However, these
cells failed to form a tumor mass when injected in mice (51). Fur-
ther, heat-shocked murine leukemia cells elicited an anti-tumor
immune response and protected against tumor formation upon
re-challenge due to expression of HSP60 and HSP72 (52). This
immune activating response depended on the maturation of den-
dritic cells and activation of cytotoxic T-cells (53). In addition,
the co-injection of purified HSP70 with non-immunogenic apop-
totic leukemia cells potently generated anti-tumor immunity (54).
Similarly, co-injection of non-immunogenic apoptotic colon or
melanoma cells with calreticulin induced curative and protec-
tive T-cell immunity (55). However, extracellular calreticulin can
also bind to C1q opsonized apoptotic cell debris and CD91 on
monocyte/macrophages, leading to removal of apoptotic cells in a
non-inflammatory manner (56). Of note, this pathway appears to
be dysfunctional in some autoimmune diseases (57).

Taken together, despite their specialized functions in the ER,
chaperones can be present in other cellular compartments, can be
exposed on the cell surface, or may be released in the extracellular

space. Once outside the cell, chaperones can act as DAMPs and
activate the immune system, which may promote the clearance
of infections or induce an anti-tumor immune response, but may
also result in autoimmunity. The exact mechanism of the immune
promoting effects of chaperones is not yet fully understood and
may differ from chaperone to chaperone, but is often associated
with the receptor CD91.

Another intriguing function of ER chaperones in the extracel-
lular space, in particular calreticulin, is their ability to counteract
“don’t eat me” signals displayed on cells (Figure 1). Healthy cells
and tumor cells display the “don’t eat me” CD47 molecule. How-
ever, many types of cancer cells express higher quantities of CD47
compared to normal cells. When cells express CD47 on their
cell surface it helps them avoid phagocytosis, as CD47 engages
with the anti-phagocytic receptor SIRPα on phagocytic cells (58).
The administration of anti-CD47 blocking antibodies enhances
phagocytic uptake of tumor cells, but surprisingly not healthy
cells (59). The latter finding suggests that tumor cells possess an
extra signaling molecule that promotes phagocyte activity against
tumor cells that is absent on healthy cells. Several authors have
suggested that this overriding “eat me” signal on tumor cells is
calreticulin, which cannot be substituted by other chaperones (58,
60). However, this may not be the complete picture of tumor cell
recognition, as calreticulin is also expressed to varying degrees on
non-apoptotic cells. Therefore, the distribution of native or post-
translationally modified isoforms of calreticulin on the cell surface
and its association with other co-stimulants may be necessary for
efficient targeting of cells for phagocytosis. A number of co-factors
identified by ourselves and others aid in surface expression of cal-
reticulin, including ATP, Lysyl tRNA, and ERP57 (50, 61, 62). Thus,
in addition to the immune activating properties shared by calreti-
culin with other extracellular chaperones, calreticulin is also an
important player in phagocytosis by counteracting the inhibitory
signaling provided by CD47.

APPEARANCE OF EXTRACELLULAR ER CHAPERONES AND
AUTOANTIBODIES IN DISEASE STATES AND INDUCTION OF
IMMUNITY
During disease, cells are often exposed to high levels of stress that
may eventually lead to cell death. Stress and cell death may trig-
ger release of intracellular proteins like chaperones. In line with
this, extracellular calreticulin is present in the synovial fluid sur-
rounding the joints of patients with rheumatoid arthritis (43,
63). When proteins that normally reside intracellular become
exposed to the immune system, this likely induces (auto)antibody
responses. Indeed, early studies demonstrated that ER chaperones
are target of autoimmunity in murine models (64) and patients
(57), leading to the generation of autoantibodies against a num-
ber of chaperones in serum of patients with autoimmune diseases
or malignancies (17, 21, 40–44) (Table 2). Thus, ER chaperones
are being released and can trigger autoantibody formation. This
release occurs most likely from dead, dying, or stressed cells and
may be accompanied by their post-translational modification. For
instance, a number of autoimmune diseases are known to have
increased cell death in the form of dysfunctional apoptosis and
increased necrosis (65), leading to an array of highly concentrated
chaperone proteins in membrane bound ER “blebs.” Here, these
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FIGURE 1 | Disruption of the “don’t eat me” signal. Cells express the
“don’t eat me” signaling molecule CD47 on their cell surface that interacts
with SIRPα on phagocytes. This must be overridden when cells are preparing
to die. During apoptosis, normal cells express greater amounts of
phosphatidylserine (PS), which both the first component of complement
(C1q) and calreticulin (CRT) can bind to directly. Extracellular calreticulin can
act as a bridging molecule between C1q and CD91 on phagocytes and

enhance the uptake of apoptotic cells. Even if normal cells have transient
non-PS bound calreticulin on their cell surface this may not be sufficient to
override the CD47− SIRPα “don’t eat me” signal. Non-immunogenic tumor
cells have high levels of CD47 on their cell surface to avoid phagocytosis.
However, immunogenic tumor cells have high levels expression of calreticulin
on their cell surface that appears in punctate patches that can promote an
“eat me” signal.

Table 2 |The generation of anti-chaperone antibodies in autoimmune

diseases and cancers.

Disease Anti-chaperone Reference

AUTOIMMUNE DISEASES

Autoimmune hepatitis Anti-ERp57 IgG (67)

Inflammatory bowel disease Anti-calreticulin/BiP IgG (44, 68)

Juvenile idiopathic arthritis Anti-BiP IgG (40)

Myasthenia gravis Anti-GRP94 IgG (69)

Primary biliary cirrhosis Anti-calreticulin IgA (70)

Rheumatoid arthritis Anti-calreticulin/BiP/GRP94/

calnexin IgG

(43, 44, 71)

SLE Anti-calreticulin IgG/anti-PDI

IgG/BiP/GRP94/calnexin

(44, 72, 73)

Systemic sclerosis Anti-BiP/GRP94/calnexin IgG (44)

CANCERS

Colorectal carcinoma Anti-BiP IgG (74)

Refractory celiac disease Anti-calreticulin IgA (75)

Pancreatic cancer Anti-calreticulin IgG (76)

Melanoma Anti-GRP94 (77)

Hepatoma Anti-PDI IgG (73)

chaperones are susceptible to attack by reactive oxygen and nitro-
gen species, leading, e.g., to nitrosylation. Such post-translational
modifications may make ER chaperones sufficiently “foreign” as to
elicit an immune response. Whether the initiation of an immune
response to ER chaperones is simply a reflection of a “normal”
preventative autoimmune reaction that ensures removal of dying

and/or damaged cells, or a precursor to autoimmune disease has
been debated ever since the proposal of the “danger theory” model
in 1994 (66).

Of note, the overexpression of chaperones has been considered
as a sign of increased malignancy, with calreticulin in particular
being over-expressed in numerous tumor tissues possibly to cope
with increased ER stress (Figure 2). Whilst this may thus be simply
a biomarker of increased ER stress due to malignancy, some stud-
ies have suggested chaperones are engaged directly in the spread of
tumors by promoting cell proliferation (78), migration (79), and
metastasis (80, 81).

The production of anti-chaperone antibodies could possibly be
a mechanism to suppress innate and adaptive immune responses
in autoimmunity, while inadvertently neutralizing chaperone-
dependent immune responses that help prevent cancer. It is known
that patients with prior autoimmune disease are at a higher risk
of subsequently developing certain forms of cancer (90–93). In
contrast, some patients with parasitic diseases, for example, Try-
panosoma cruzi are more resistant to developing some forms of
cancer (94–96). In a number of forms of cancer anti-chaperone
antibodies have been detected (see Table 2), but the clinical rele-
vance of chaperone antibodies in the circulation of cancer patients
have not been evaluated in depth. Whether anti-chaperone anti-
bodies enhance tumor growth by blocking detection by immune
cells, or are generated to protect against tumor formation are
questions that remains to be addressed.

MECHANISMS OF TRANSLOCATION OF ER CHAPERONES TO
THE CELL SURFACE – KDEL MOTIFS AND RECEPTORS
Our own studies and those of independent researchers have
focused on the release of ER-resident chaperones like calreticulin,
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FIGURE 2 |Tumor factors that lead to changes in chaperone expression
during ER stress. Once tumors begin to proliferate in various tissues, the
local microenvironment begins to become “stressed” leading to a change
in metabolic and vascular demands. The ER is required to increase the rate
of protein production, involving the synthesis, folding, and secretion of
proteins involved in the production of tumors. This furthers stresses the ER
organelle, leading to protein production errors, triggering the unfolded
protein response pathway to remove incorrectly folded proteins from the
ER for degradation in the cytosol via retrotranslocation to the proteasome.
Some unfolded proteins are accompanied by chaperones, and these now
enter the cytosol, where via a number of proposed mechanisms can leave
the cell (82–89).

BiP, gp96 and PDI. The ER is an industrious place of protein
production and transport therefore it was argued that the chaper-
one proteins must be distinguished from secretory proteins to be
exported in order to prevent their release via the secretory pathway.
Munro and Pelham (97) identified a carboxyl terminus sequence of
Lys-Asp-Glu-Leu (KDEL) on three ER-resident proteins, namely
BiP, gp96, and PDI. They showed that deletion of the KDEL
sequence from BiP, led to its “secretion” from mammalian cells.
Subsequently many other chaperones were found to have a KDEL
carboxyl terminus or a related sequence (Figure 3), including cal-
reticulin, ERP72, and others. Chaperones armed with a KDEL
sequence can safely traffic protein cargos in vesicles between the
ER, Golgi complex intermediate ER-Golgi (ERGIC) complex, and
Trans Golgi Network (TGN). These secretary pathway organelles
and intermediates possess docking stations or KDEL receptors,
which can recapture chaperones and returns them to the ER.

KDEL containing chaperones are present on the cell surface
of various animal and human cells. Two decades ago gp96 was
observed on mouse sarcoma (98) and Xenopus lymphoid cells
(99). Evidence is not restricted to the transport of ER luminal
chaperones. The transmembrane ER chaperone calnexin has been
detected on the surface of various immature thymocyte cell lines

complex with CD3 antigen, (100). At the time, it was speculated
that the lack of retention of such the ER proteins was most likely
during their initial formation, and that nascent ER proteins in
immature hematopoietic cells may adopt a folding formation that
masks their retention ligand, which is later corrected in mature
thymocytes. A murine fibroblast cell line (3T6) when placed
under various cell stress conditions including heat shock (43°C
for 30 min), or lowering the intracellular pH with Na+/H+ trans-
porter inhibitors or alkalizing the endosomal compartments with
chloroquine, resulted in the cell surface expression of HSP47 (101).
This study provided evidence that interaction of KDEL proteins
binding to KDELRs is dependent upon a stable pH environment.

In humans, there are three KDEL receptor genes (KDELR1,
KDELR2, and KDELR3) that encode for three types of seven trans-
membrane spanning KDEL receptors. KDEL receptors have a high
degree of amino acid homology ~65–85%, with the KDELR3 gene
producing two isoforms with even higher homology to each other.
These receptors are mostly concentrated in the Golgi complex, but
are also found in all of the above-described secretory organelles
whereas they are absent in endosomal vesicles. The binding of
chaperones requires both the KDEL sequence on the chaperone
and the KDEL chaperones to be unmutated. This is exemplified
by the recent discovery that patients with myeloproliferative neo-
plasms (MPNs) that did not have a janus kinase 2 (JAK2) mutation
(a mutation occurring in the vast majority of patients) are char-
acterized by somatic mutations in their calreticulin gene (102).
Such mutations lead to release of calreticulin by megakaryocytes,
possibly into the bone marrow (103). Interestingly, many of the
mutations are found in the carboxyl terminus of the protein lead-
ing to changes in peptide structure. This region of calreticulin
has a low affinity binding site for calcium and contains the KDEL
sequence that is believed to be important in retaining the pro-
tein within the ER (104). Mutated forms of calreticulin identified
in MPN lack KDEL raising the possibility that some mutated
calreticulin isoforms may not be retained in the lumen of the
ER by KDEL receptors, whilst other are retain in the ER despite
lacking a KDEL sequence (personal communication – Prof Tony
Green).

The above may account for some of the extracellular cal-
reticulin, but does not fully explain why extracellular and cell
membrane bound calreticulin are observed in other forms of can-
cers or in autoimmune patients (see Figure 3 and Table 1). The
notion that KDEL receptors “retain” chaperones has changed over
a number of years and it is now believed KDEL receptors act more
as retrieval systems shepherding chaperones between the ER and
Golgi complex during cell stress via retrograde (104) and allow-
ing their protein cargoes to move toward the plasma membrane
via anterograde (105) transport pathways. If these pathways are
impaired, chaperones could accumulate in the cytosol in endoso-
mal vesicles. Moreover when KDEL receptors become saturated
with chaperones, non-bound chaperones may escape the ret-
rograde retrieval system and fail to return to the ER. Certain
chaperones have additional retention mechanisms. The enzyme
aminoacyl-tRNA synthetase (AIMP1) enhances the dimerization
of gp96 and aids greater retention of gp96 by the KDEL-1 recep-
tor; suggesting different ER chaperones rely on different regulatory
retention mechanisms (106).
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FIGURE 3 |The role of KDEL ligand and receptor in chaperone
retrieval and retention within the ER and escape into the cytosol.
Within the ER, membrane bound and soluble chaperones assist in the
folding (not shown) and transport of glycoproteins to the cell surface.
During this process the chaperones, e.g., calreticulin (CRT) escort their
cargos between the ER and Golgi complex. Upon chaperone docking to
the KDEL receptors (KDELR) via their KDEL ligand, the KDELR activates
a number of G proteins (βγ, Gq, and Gs) and kinases (PKC, PKA, and Src),
which allows released proteins to be transported via the secretory
anterograde pathway toward the plasma membrane, while chaperones
are returned to the ER via a retrograde pathway. There are a number of

situations in which the process of chaperones interacting with their
KDEL receptors might be impaired. During ER stress induced by
tumorgenesis, the ER chaperone production increases and may lead to
increased saturation of the KDEL receptors with chaperones. In addition,
the optimum acid pH can increase during cell stress reducing KDEL
ligand/receptor interaction. In hematopoietic cells carrying Type I (52 bp
deletion) and Type II (5 bp insertion) mutations in the carboxyl terminus of
calreticulin, may result in lack of binding of chaperones to the KDEL
receptors. This leaves the chaperones vulnerable to being trafficked by a
number of secretory and alternative mechanisms into the cytosol and
ultimately out of the cell.

A large number of mutations have also been identified in the
KDEL receptor but many of these do not affect the intracellular
location or KDEL binding capacity of KDEL receptors. However,
retrograde transport of the KDEL containing proteins is depen-
dent on a presence of a single aspartic acid residue in the seventh
membrane-spanning region, which may be important for confor-
mational changes and intermolecular interaction in the membrane
bilayer of KDEL receptor possessing vesicles (107). The binding of
KDEL ligands to the KDEL receptors leads to activation of a num-
ber of specific kinase signaling pathways, specifically activation of
G-proteins (108). This triggers a series of signaling pathways (109)
that can aid the return of chaperones back to the Golgi complex
and ER retrograde pathways or possibly transport them toward
the plasma membrane by anterograde pathways in endosomal
compartments (Figure 4).

RETROTRANSLOCATION AND POST-TRANSLATIONAL
MODIFICATION OF CHAPERONES
Many of the chaperones of the heat shock protein family are nor-
mally resident in the cytosol (47). However, other chaperones such
as calreticulin are typically retained in the ER, but have also been
identified in the cytosol after having somehow escaped the ret-
rograde retention pathway between the ER and Golgi complex

(Figure 4). The expression of ER chaperones on the cell surface or
extracellular environment could be explained if chaperones can
be demonstrated to reach the cell surface via the anterograde
type secretory pathways. In the case of calreticulin, its normal
physiological isoform cannot enter the secretory pathway as it is
non-glycosylated. However, Panaretakis and colleagues created a
glycosylated form of calreticulin that trafficked to the cell surface
in an anterograde manner via the Golgi complex/actin mediated
exocytic vesicle secretory pathway in murine colon cancer cell
line CT26 (110). Further, a naturally glycosylated form of cal-
reticulin has been observed in the myeloid tumor cell line HL60
(111). Therefore, in certain settings glycosylation of calreticulin
may occur and may trigger secretion into the extracellular space.
Such glycosylation may occur on surface exposed asparagine pep-
tides in the P-domain of the protein that can, at least artificially,
be N-glycosylated.

There is also evidence to suggest that ER chaperones can leave
the ER via a retrotranslocation pathway, particularly under stress
conditions (112). Mis-folded proteins retrotranslocate into the
cytosol and are commonly post-translationally modified by a
process of ubiquitylation. In brief, ubiquitin binds to lysines on
the protein, which act as a proteasomal degradation signal for the
protein (113). Afshar and colleagues, used digitonin to specifically
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FIGURE 4 | Intracellular post-translational modifications of calreticulin.
Mis-folded proteins directly leave the ER and are ubiquitinated in the cytosol
before degradation in the proteasome. Calreticulin has been shown to be
transported to the cytosol possibly via the nucleus. Within the nucleus,
calreticulin is exposed to protein arginase deaminase 4 (PAD4) where it may
be citrullinated before being shuttled to the cytosol in association with nuclear
export proteins. There is no evidence of calreticulin being ubiquitinated in the
cytosol, but it does encounter arginyl-tRNA transferases, which can arginylate

the protein. The addition of arginine on the protein can be further citrullinated
in the cytosol in the presence of iNOS as a byproduct of nitric oxide
production from the conversion of arginine to citrulline. Both citrullinated and
arginylated isoforms of calreticulin have been found outside of the cell, where
they exert specific biological functions. Artificial glycosylation of calreticulin
leads to the secretion of calreticulin out of the cell via the secretory pathway
and glycosylated isoforms of calreticulin have been observed in human
myeloid cells.

permeabilize only the outer cell membrane of mammalian cells,
while leaving the membranes of intracellular organelles intact
(114). Using this strategy they recovered ~14% of total calreticulin,
whilst other chaperones such as PDI and gp96 were retained in
the ER. Of note, the recovered calreticulin was not ubiquitinated,
suggesting that calreticulin passed into the cytosol through an
ubiquitin- and proteasome-independent retrotranslocation path-
way. In a series of deletion experiments, they showed that the C
domain of calreticulin mediated this retrotranslocation. Reversely,
insertion of the C-domain of calreticulin in PDI allowed this chap-
erone to retrotranslocate to the cytosol. There is some evidence to
suggest that such retrotranslocation of calreticulin from the ER to
the cytosol occurs via the nucleus, where it may interact with pro-
teins with nuclear export signals and exit the nucleus in complex
with nuclear proteins (115).

Whether this cytosolic calreticulin is the source of plasma-
membrane calreticulin is not known for certain. However, calretic-
ulin on the cell membrane has been found to be arginylated (116).
Protein arginylation is catalyzed by a cytosolic-based enzyme,
arginyl-tRNA protein transferase (ATE1). Under cell stress con-
ditions, ATE1 can promote the linkage of arginine to N-terminal
amino groups, but also to mid-chain side groups of aspartate and
glutamic acid (117, 118). Such arginylated isoforms of calreticulin
have been found in the cytosol associated with stress granules, but
are not found in the ER (119). Once on the cell surface, arginylated

calreticulin can influence cell survival, with exogenously applied
arginylated calreticulin increasing cellular apoptosis and overcom-
ing resistance to apoptosis (116). Of note, this may not be the case
for other isoforms of calreticulin detected outside the cell. Inter-
estingly in cells lacking ATE1, no calreticulin could be detected on
the cell surface, suggesting that arginylation of calreticulin is a req-
uisite for surface exposure. As mentioned earlier, another isoform
of calreticulin exists in the form of citrullinated calreticulin, which
was found to modulate immune function in rheumatoid arthritis
patients (120, 121).

CALRETICULIN, NITRIC OXIDE, AND INHIBITION OF FLIPASES
Many chaperones and HSP in the cytosol of cells are detected
on the cell surface, but very little is known as how these get out
of cells via non-ERGIC pathways. Despite this, for many years
some of these proteins, especially the HSP70 and HSP90 families
of proteins have been known to play a number of extracellu-
lar roles in infections, autoimmune disease, and tumor-specific
recognition (122). Some chaperones present in the cytosol may
associate with the phospholipids facing the lumen of the cell.
Heat shock protein chaperones are known to be in close prox-
imity to the plasma membranes and assist in the translocation
of proteins across the membrane for export out of the cell. In
artificial lipid bilayers, HSP have been demonstrated to create
ATP-dependent transmembrane ion channels (123). We showed
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calreticulin binds in a Ca2+ -dependent manner directly to phos-
phatidylserine (PS) (112). Normally 80% of PS is located on the
inner leaflet with only 20% of PS on the outer surface of healthy
cells. The polar head of PS was shown to bind to CRT with high
affinity (KD= 1.5× 10−5 M) (124). We observed the interaction of
calreticulin occurred in punctate regions of the membranes and in
a further study demonstrated the calreticulin was associated with
lipid rafts (as demonstrated by incorporation of cholera toxin B)
in association with ERp57 (61). Whether these chaperones asso-
ciated with lipid rafts can leave the cells through dimerizing and
clustering in rafts that bud from the cell is unknown.

As discussed above, citrullinated calreticulin binding to the SE
on the surface of effector cells can lead to NO production in oppo-
site cells. NO production is a cell stress signal that can deplete ER
Ca2+ and lead to overexpression of calreticulin (125). The overex-
pression of calreticulin may result in the protein leaving the ER by
the mechanisms discussed above. The KDEL retention receptors
may also become saturated preventing its retention in the ERGIC
complex. The increased calreticulin further promotes intracellular
NO production (126). Cytosolic calreticulin has the ability to bind
to PS on the inner leaflet in a Ca2+ -dependent manner in close
proximity to the flipase, aminophospholipid translocase (APLT).
In an environment of increase NO activity, the SH groups of APLT
are susceptible to transnitrosylation/oxidation, this leads to the
inhibition of APLT to retain PS on the inner leaflet of the plasma
membrane. Our own experiments demonstrated that Jurkat T-
cells exposed to S-nitroso-l-cysteine-ethyl-ester, an intracellular
NO donor and inhibitor of APLT results in PS and calretic-
ulin externalization together in an S-nitrosothiol-dependent and
caspase-independent manner (112). Other forms of cell stress also
appear to promote surface expression of chaperones that can be
exploited to tumor eradication as discussed below.

CALRETICULIN EXPOSURE DETERMINES IMMUNOGENIC
CELL DEATH
The potential pro-immunogenic role of chaperones gained promi-
nence by the discovery that cell surface exposure of calreticulin
determines the immunogenicity of cancer cell death. This so-called
ICD is induced by certain chemotherapeutics, e.g., anthracycins, or
irradiation, and hinges on the rapid pre-apoptotic translocation of
calreticulin to the cell surface (55). Such surface-exposed calreti-
culin induces the uptake of dying cancer cells by CD11c-positive
myeloid dendritic cells, leading to tumor antigen presentation
to T-cells and concomitant clonal T-cell expansion. Injection of
calreticulin-exposing dying tumor cells prevented tumor growth
upon re-challenge with viable tumor cells. Selective knock-down
of calreticulin reduced the phagocytic uptake of anthracyclin
treated cells by dendritic cells and abolished T-cell-mediated elimi-
nation of the tumor. Analogously, apoptotic human bladder cancer
cells and murine colon cancer cells treated with the photodynamic
therapeutic hypericin exposed calreticulin on their membrane.
Again, surface calreticulin induced maturation of human imma-
ture dendritic cells, and elicited an anti-tumor immune response
in mice (50). Of note, non-immunogenic cytotoxic treatment
of cancer cells was converted to immunogenic by co-treatment
with recombinant calreticulin (55), highlighting the pivotal role
of calreticulin in ICD.

In addition to calreticulin exposure, late apoptotic or necrotic
release of HMGB-1 from dying cells, and subsequent binding to
TLR-4 on dendritic cells was necessary to obtain optimal anti-
gen presentation of chemotherapy or radiotherapy treated cancer
cells (127). Indeed, dendritic cells lacking TLR-4 or its down-
stream adaptor molecule Myd88 could not present antigen from
dying tumor cells and did not elicit a T-cell mediated anti-cancer
immune response in mice (127). Further, knock-down of HMGB-
1 inhibited the potential of irradiated tumor cells to stimulate
dendritic cells. In addition to the role of HMGB1 in ICD, it was
found that upon hypericin treatment of bladder cancer cells or
upon oxaliplatin or doxyrubicin treatment high levels of ATP
were secreted, which like calreticulin also preceded apoptotic PS
exposure (50). Inhibition of ATP abolished the inflammatory
response (128).

Based on the above, there is a cascade of events that determines
the immunogenicity of cell death. Here, calreticulin is translo-
cated to the cell membrane during early (pre-apoptotic) stages
of dying tumor cells, which facilitates efficient uptake by den-
dritic cells. In addition, the release of ATP during early apoptotic
stages is essential to mount an immune response. Further, HMGB-
1 release at late apoptotic stages is required for efficient antigen
presentation by dendritic cells to T-cells. Of note, whereas cap-
saicin treatment induced pre-apoptotic calreticulin exposure and
ATP release, HSP90 and HSP70 release occurred (129). Similarly,
hypericin treated cancer cells actively exposed calreticulin, with
no detectable levels of HSP90, calnexin, or BiP. However, at later
(late apoptotic) stages, certain levels of extracellular calreticulin,
HSP70 and HSP90 were detected, as a result of passive extracellu-
lar release (31). Thus, calreticulin exposure is required to induce
ICD, although several additional stimuli contribute to an efficient
immune response.

TRANSLOCATION OF CALRETICULIN TO THE CELL SURFACE
DURING CANCER THERAPY
The exact translocation pathway of calreticulin during ICD is
not known. In certain cases, the chaperone ERp57 was found
to steer calreticulin translocation, specifically upon anthracyclin
treatment (21, 62). ERp57 and calreticulin extracellular expression
levels correlated and also co-translocated to the surface of mitox-
antrone treated tumor cells. Further, calreticulin and ERp57 were
needed for each others translocation in mitoxantrone and radia-
tion treated cells, as calreticulin knock-outs failed to expose both
calreticulin and ERp57 to the cell surface and vice versa (21, 62). In
contrast, the interaction between ERp57 and calreticulin was not
required to induce calreticulin cell surface exposure in thapsigar-
gin treated cells (130). Here, mouse embryonic fibroblasts (MEFs)
that expressed a mutated form of calreticulin that was unable to
bind ERp57, had equal amounts of cell surface calreticulin com-
pared to wildtype MEFs during thapsigargin treatment. Similarly,
the translocation of calreticulin upon hypericin photodynamic
therapy was not accompanied by co-translocation of ERp57 (31,
50). However, both mitoxantrone and hypericin mediated translo-
cation of calreticulin was blocked by Brefeldin A, an inhibitor of
anterograde protein transport from the ER to the Golgi appara-
tus (50, 110). In addition, extracellular calreticulin but not ERp57
was required to induce phagocytosis and subsequent induction of
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anti-tumor immune responses (31, 62). Thus, the mechanism and
routing of calreticulin to the cell surface seems to be dependent on
the ICD-inducing compound, and likely also cell type dependent.

TRANSLOCATION OF ER CHAPERONES REQUIRES
ACTIVATION OF THE ER STRESS RESPONSE
The exposure of tumor cells to anthracycline antibiotics such as
doxorubicin, mitoxantrone (55) or physical treatments such as
photodynamic therapy with hypericin (32) commonly induce ER
cell stress. This ER stress response appears to be an obligatory step
in inducing extracellular expression of ER chaperones. In contrast,
nuclear damage or signaling is not a requisite, as enucleated cells
exposed calreticulin on their surface to a similar degree as observed
for normal cells upon anthracyclin therapy (21).

The ER stress response via PERK and eIF2α was found to be
involved in the translocation of calreticulin to the cell surface dur-
ing ICD. When PERK phosphorylates eIF2α, translation initiation
is halted, resulting in reduced protein synthesis. In mitoxantrone
treated CT26 colon cancer cells, the translocation of calreticulin
and ERp57 was accompanied by phosphorylation of PERK and
its substrate eIF2α (21). Similarly, hypericin mediated photody-
namic therapy induced eIF2α phosphorylation and PERK acti-
vation (50). When CT26 cells were depleted for PERK or when
a non-phosphorylatable form of eIF2α was expressed, this com-
pletely abolished calreticulin/ERp57 exposure, whereas it did not
affect the sensitivity toward anthracyclin induced cell death. In
contrast, eIF2α was not required for hypericin induced calreti-
culin exposure, but solely relied on PERK activation (50). This
discrepancy might rely on the pronounced localization into the
ER of hypericin, whereby sufficient ER stress might already be
induced upon photodynamic disruption of the organelle. In line
with this, the photodynamic therapeutic photofrin, which has a
less pronounced ER localization,was not able to induce calreticulin
exposure (50). However, also spontaneous release of calreticulin
from acute myeloid leukemia (AML) blast was associated with
eIF2α hyperphosphorylation (131). Furthermore, the disruption
of the PP1/GADD34 complex, a complex that is involved in the
dephosphorylation of eIF2α was already sufficient to induce cal-
reticulin exposure (55, 132). Thus, the induction of an ER stress
response is required to induce extracellular calreticulin exposure,
which might be induced via various pathways, depending on the
therapeutic.

In addition to ER stress, the formation of reactive oxygen
species (ROS) and reduction of ER Ca2+ levels may favor cell mem-
brane surface exposure of calreticulin. Indeed, most therapies that
can induce ICD also induce ROS formation. When CT26 cells,
treated with anthracylines or radiation therapy, were incubated
with ROS scavengers (N-Acetyl cysteine, glutathion ethyl ester)
this prevented apoptosis as well as calreticulin exposure (110).
Similarly, the presence of the 1O2 quencher l-histidine decreased
calreticulin translocation in hypericin treated bladder cancer cells
(50). However, the presence of redox stress alone does not suffice to
translocate calreticulin, as cisplatin treated osteosarcoma cells were
unable to expose calreticulin, although significant levels of apop-
tosis, mitochondrial damage, and ATP release were induced (133).
This lack in calreticulin exposure was associated with inefficient
induction of the ER stress response as eIF2α was only minimally

phosphorylated upon cisplatin treatment. Of note, thapsigargin
treatment alone was also inefficient for induction of calreticulin
exposure, although it did phosphorylate eIF2α (110, 133). Inter-
estingly, when cisplatin and thapsigargin therapy were combined,
this restored the ER stress response and induced calreticulin expo-
sure, which was sufficient to induce an immune response in mice
(133). Of note, thapsigargin is an inhibitor of SERCA pumps,
whereby the ER Ca2+ levels decrease, which might also contribute
to ER stress. Indeed, levels of cell membrane expressed calreticulin
were enhanced in thapsigargin treated neuroblastoma cells, which
were genetically manipulated to have reduced Ca2+ levels in the
ER (134). Of note, in addition to the ER stress response, a spe-
cific apoptotic response is also required in some cases, whereas
it is not necessary in others. In this respect, caspase-8 activa-
tion was needed to induce calreticulin/ERp57 translocation in
mitoxantrone treated CT26 cells ore MEFs, as cells depleted for
caspase-8 lost their ability to translocate calreticulin/ERp57 (110).
In contrast, inhibition of caspase-8 activity did not affect hypericin
induced calreticulin exposure (50). Thus, ER stress and ROS pro-
duction are both required for calreticulin translocation, whereas
additional stimuli, i.e., caspase activation or ER Ca2+ depletion,
are essential depending on therapeutic strategy of cell type.

POTENTIAL ROLE OF EXTRACELLULAR ER CHAPERONES AS
THERAPEUTICS IN CANCER THERAPY: EVIDENCE FOR ICD IN
CLINICAL SETTINGS
Most of the work on ICD has been performed in animal studies
or in vitro. However, there are some studies on the existence of
ICD in the clinic. For instance, a combination of heat shock/γ-
ray/UV-radiation therapy was used to induce cell death in pri-
mary indolent non-Hodgkin’s lymphoma cells, which were ex vivo
loaded on autologous dendritic cells, for vaccination strategies
(135). Here, 6 out of 18 patients showed clinical and immunologic
responses. Of note, the levels of calreticulin and HSP90 expo-
sure were significantly higher in heat shock/γ-ray/UV-ray treated
tumor cells from responders compared to non-responders. In line
with this, clinical responders showed higher amounts of circulat-
ing antibodies against HSP90 and calreticulin after vaccination.
In contrast, there was no difference in the amount of cell death
or HSP70 or HMGB-1 release between tumor cells from respon-
ders and non-responders. Similarly, there was no difference in
the expression of HLA class I and II. As a consequence, NK-cell
maturation was increased, which directly correlated with the lev-
els of calreticulin and HSP90 expression. In another study, the
expression of cell surface calreticulin was found on AML blasts,
although this was regardless of chemotherapy (131). In addi-
tion, the in vivo treatment of patients with anthracylines did not
enhance calreticulin exposure on malignant blasts and did not
alter the serum calreticulin levels. However, the presence of cal-
reticulin on the cell surface of malignant AML blasts did associate
with enhanced immune responses, since T-cells from calreticulin-
positive patients produced IFNγ upon interaction with autologues
dendritic cells, whereas T-cells from calreticulin-negative patients
failed to respond upon this trigger. However, the overall survival of
these AML patients did not correlate with calreticulin levels. The
capacity of clinical drugs to induce ICD was also tested on pri-
mary patient derived ovarian and prostate cancer cells. Exposure
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to anthracylines was sufficient to induce translocation of calretic-
ulin, HSP70 and HSP90 to the cell surface, and HMGB-1 release
at later time point (136), but the clinical implications of ICD in
these cancer types warrants further analysis. In addition to the
well known ICD inducers (i.e., anthracyclins and radiation), car-
diac glycosides were recently also recognized as inducers of ICD,
also eliciting anti-cancer immune responses in mice (137). Using
retrospective clinical analysis of human carcinoma patients, it was
found that the administration of the cardiac glycoside digoxin
during chemotherapy improved overall survival of patients with
colorectal, breast or head, and neck cancer. However, it should
be noticed that this positive effect was only observed in patients
treated with chemotherapeutics considered as non-immunogenic.
Indeed, the addition of digoxin failed to affect overall survival of
patients that received anthracyclin therapy.

Taken together, in clinical settings, calreticulin and associated
chaperones can be exposed on tumor cells or in serum from
patients. However, the induction of immune responses and benefit
in terms of survival are not as straightforward as postulated in ani-
mal studies. Thus, many challenges remain in terms of identifying
the essential set of signal requisites for induction of ICD in order
to achieve efficient immune responses upon ICD in patients.

CHALLENGES FOR THE THERAPEUTIC IMPLICATION OF ICD
From the above, it appears that the induction of ICD and accom-
panied calreticulin exposure on tumor cells is a promising strategy
to obtain curative cancer therapies in patients. However, there are
several challenges that remain to be addressed. First, the induc-
tion of calreticulin exposure by anthracycline therapy seems to be
hampered in vivo and shows a high variability between patients
(131, 138). Although, calreticulin was found on malignant blast
from AML patients, this was independent of therapy and caused
by spontaneous release (131). Similarly, apoptotic AML cells,
which died spontaneously or as a result of cytotoxic drugs in ex
vivo assays, showed calreticulin exposure and release of HSP70
and HSP90. However, there was a wide variation in the levels
between different patients, which depended on individual patient
characteristics, rather than the cell death inducing therapeutics
(138). Thus, ways of reliably and uniformly inducing calreticulin
exposure in cancer patients will have to be identified.

Secondly, induction of ICD by a certain chemotherapeutic
appears to be cell type and perhaps context-dependent. For
instance, thapsigargin was found to induce an ER stress response
in CT26 colon cancer cells, but failed to stimulate cellular cal-
reticulin/ERp57 exposure (110). In contrast, thapsigargin induced
both ER stress and calreticulin release in neuroblastoma and MEFs
(139). In the case of the former, surface exposure of calreticulin
was strongly enhanced when Ca2+ levels in the ER lumen were
depleted (134). Also in primary cells isolated from ovarian and
prostate cancer patients, anthracyclines were able to induce calreti-
culin exposure and release of HSP70 and HSP90, whereas there was
completely no induction of ICD upon UV-radiation (136). There-
fore, optimal treatment strategies need to be evaluated for each
cancer type with special focus on combining different therapies
to optimize induction of key immunogenic molecules. Indeed, in
non-Hodgkin lymphoma cell lines (NHL), the combination of
heat shock, γ-ray, and UVC-ray therapy induced higher amounts

of calreticulin and HSP90 exposure, and HMGB-1 and ATP release
than each single treatment (135).

Of note, many of the cytotoxic agents that in pre-clinical models
of ICD elicit pre-apoptotic calreticulin exposure, such as dox-
orubicin, can induce severe myelosuppression and leukopenia.
This toxicity may negatively affect the pro-immunogenic effect of
extracellular calreticulin in patients by deleting requisite immune
components of the ICD pathway. Indeed, although calreticulin-
dependent ICD has been described for various cytotoxic agents
in pre-clinical settings these typically have not translated into
reports on effective anti-cancer immunity upon treatment of
patients. In this respect, the identification of optimally immuno-
genic treatments with minimum toxicity toward critical immune
cells seems warranted, e.g., in further combination with therapeu-
tics that selectively target negative immunoregulatory cells such as
myeloid-derived suppressor cells and regulatory T-cells.

Finally, as already discussed above, the calreticulin “eat me”
signaling is counterbalanced by the “don’t eat me” signaling via
CD47. For high CD47-expressing cancer it may therefore be bene-
ficial to include CD47-blocking therapeutics in order to optimize
therapeutic efficacy. In this respect, it is interesting to mention
that the only study in which clinical responses to tumor expressed
calreticulin was found, has been described in NHL patients (135).
These NHL patients typically also show strong overexpression of
CD47 (59).

CONCLUSION
Chaperone molecules play a number of specific roles related to
protein processing within the cell. However, new knowledge indi-
cates that a select number of chaperones in the extracellular
environment can play a role in both innate and adaptive immu-
nity that may be useful in the treatment of tumors. In contrast, the
release of potent immunogenic-stimulating molecules may have a
detrimental role in some autoimmune diseases. Therefore, it is cru-
cial to understand how various post-translational modified forms
of chaperones are release from cells under resting and stressed
conditions and how the released chaperones exert their immune-
promoting responses. Clearly, there are several ways in which these
chaperone proteins can be released from cells other than through
the process of passive necrosis. Their complex interactions with
the immune system, especially chaperone–immune cell signaling
pathways and receptors interactions requires further studies to
help understand their role of potential therapeutics to treat cancers
and in their ability to induce inflammation in autoimmune disease.
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