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Abstract 1 
 
Cultural evolutionary approaches highlight that different social learning processes may be 2 

involved in the maintenance of cultural traditions. Inevitably, for traditions to be maintained, 3 

they must be transmitted with reasonably fidelity. It has been proposed that ‗imitation‘ (i.e., 4 

the direct copying of actions of others displayed in tasks such as toolmaking) generates 5 

relatively low rates of copying error. As such, imitation has often been ascribed an important 6 

role in the maintenance of traditions and in the ‗ratcheting‘ of technological complexity over 7 

time. Conversely, ‗emulation‘ (i.e., the copying of a result but not the behaviors that have led 8 

to that result), is allegedly associated with the production of relatively higher rates of copying 9 

error. However, to what extent these different social learning mechanisms generate distinct 10 

patterns of variation during the manufacture of material traditions remains largely unexplored 11 

empirically. Here, a controlled experiment was implemented using 60 participants who copied 12 

the shape of 3D ‗target handaxe form‘ from a standardized foam block. In an ‗imitation 13 

condition‘, 30 participants were shown manufacturing techniques employed in the production 14 

of the target form and the target form itself. Conversely, in an ‗emulation condition‘, 30 15 

participants were shown only the (target) form. Copying error rates were statistically different, 16 

being significantly lower in the ‗imitation‘ condition compared to the ‗emulation‘ condition. 17 

Moreover, participants in the imitation condition matched the demonstrated behaviors with 18 

significantly higher copying fidelity than the alternative condition. These results illustrate that 19 

imitation may be imperative for the long-term perpetuation of visibly distinct archaeological 20 

traditions, especially in the case of lithic (reductive) traditions, where copying error rates can 21 

be expected to be relatively high. These findings, therefore, provide evidence that imitation 22 

may be required to explain the prolonged continuity of broad shape fidelity such as that seen 23 

in traditions of ‗handaxe‘ manufacture during the Pleistocene. 24 
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1. Introduction 25 
 
Models of cultural evolution highlight the importance of understanding the social mechanisms 26 

that underlie historic trends in human technological continuity and change (Cavalli-Sforza and 27 

Feldman, 1981; Boyd and Richerson, 1985; Mesoudi, 2011; O‘Brien and Shennan, 2010; 28 

Jordan, 2015; Lycett, 2015). One challenge, however, is to understand precisely how social 29 

learning can explain lasting, stable trends in the artifactual record, which draws the focus onto 30 

how different social learning mechanisms act as vehicles of ‗cultural inheritance‘. 31 

 

In the context of cultural evolutionary models, social learning is defined as the non-genetic 32 

transmission of behavioral patterns by observation of another individual and/or their 33 

behavioral outcomes and products (Heyes, 1994). In contrast, individual learning is a non-34 

social process whereby an individual learns to achieve a goal by ‗trial-and-error‘. The study 35 

of the specific social learning mechanisms that can explain the perpetuation of distinct 36 

cultural variants has been undertaken predominantly within the field of comparative 37 

psychology (Whiten and Mesoudi, 2008; Dean et al., 2012; Galef, 2012; Heyes, 2012). 38 

Indeed, convincing evidence for social learning capabilities in animals closely related to 39 

humans has been derived from controlled experimental studies on tool-use in chimpanzees 40 

(Pan troglodytes). For example, separate captive groups of chimpanzees have been shown to 41 

pass on distinct multi-action tool-use techniques along multiple-participant ‗generations‘ 42 

(Horner et al., 2006). Such studies lend support to the notion that social learning processes 43 

lead to the perpetuation of separate stable behavioral ‗traditions‘ over the course of long-term 44 

cultural transmission in wild populations (Whiten et al., 2005, 2009b). Such comparative 45 

research, of course, allows us to draw a common base with our ancestors, in the sense that 46 

commonly shared (i.e., phylogenetically homologous) cultural capacities may have shaped the 47 

earliest examples of prehistoric artifactual traditions seen in the archaeological record 48 

(McGrew, 1992; Lycett et al., 2009; Whiten et al., 2009a). 49 

 

Few ethnographic and experimental approaches to date, however, have actively researched the 50 

impact of different social learning mechanisms on patterns of variation in the archaeological 51 

record. In a rare example, Bettinger and Eerkens (1999) suggested that copying successful or 52 

prestigious individuals leads to greater homogeneity in artifact form (projectile points) than 53 

guided variation (i.e., social learning followed by individual trial-and-error). In a related 54 

study, Mesoudi and O‘Brien (2008) tested the effects of social versus individual learning 55 

experimentally in a virtual hunting game context where participants ‗constructed‘ their own 56 
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digital arrowhead. In the virtual game environment, hunting success depended on the 57 

compositional nature of the arrowheads. The study provided support for Bettinger and 58 

Eerkens‘ (1999) hypothesis, showing that experimentally-induced indirect bias (the copying 59 

of successful group members‘ virtual arrowheads) generated greater artifactual homogeneity 60 

than experimentally-induced guided variation. Such studies help to highlight the important 61 

contribution that can be made to understanding material cultural evolution, specifically by 62 

examining how different social transmission mechanisms potentially generate detectable 63 

macroevolutionary changes in artifactual culture. 64 

 

Definitions of different social learning mechanisms relevant to such issues, have been 65 

formulated on the basis of extensive studies across the animal kingdom (Fisher and Hinde, 66 

1949; Galef, 1992; McQuoid and Galef, 1993; Heyes, 1994; Visalberghi and Fragaszy, 2002; 67 

Zentall, 2003; Whiten et al., 2009b; Galef, 2012). Distinctions between different forms or 68 

‗mechanisms‘ of social learning are ultimately based on distinctions between the precise 69 

means by which one individual ‗copies‘ aspects of another individual‘s behavior (Whiten et 70 

al., 2009b). One distinct form of social learning is ‗imitation‘ (Thorndike,1898), which is 71 

differentiated from other forms of social learning mechanisms because the social learner 72 

copies the precise details and sequences of behavioral actions employed by a ‗model‘ (Heyes, 73 

1993; Byrne, 2003; Tomasello et al., 1993). Hence, a straightforward operational definition of 74 

imitation (see e.g., Whiten et al., 2009b) states simply that it is the copying of demonstrated 75 

behavior(s) exhibited by a model (e.g., the actions involved in the production of an artifact). 76 

Conversely, ‗emulation‘ refers to observational learning whereby only the outcome of an 77 

individual‘s behavior on an object or objects is copied by another, but not necessarily the 78 

exact actions used by the demonstrator (Tomasello et al., 1987; Nagell et al., 1993; Whiten et 79 

al., 2004). This is sometimes referred to as ‗end-state copying‘ in a sense that emulation ―is 80 

classed within copying, but it is only the end-state(s) of what the model has done that is 81 

copied‖ (Whiten et al., 2009b, p. 2419). The crucial distinction with ‗imitation‘, therefore, is 82 

that emulation is purely a ‗result-oriented‘ form of learning, and the behavioral actions or 83 

‗techniques‘ employed by the model are not copied directly. 84 

 

Fidelity inevitably plays a role in the ‗cultural inheritance‘ or long-term maintenance of 85 

detectable patterns of cultural variation, such as those seen in the archaeological record. 86 

Hence, in discussions concerning which social processes might potentially explain the 87 

emergence of stable artifactual traditions, debate has often centered on the social learning 88 
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mechanisms required for the high-fidelity transmission of cultural information (Galef, 1992; 89 

Heyes, 1993; Shea, 2009; Lewis and Laland, 2012). There seems to be wide agreement that 90 

imitation has the capacities for faithful propagation (i.e., ‗high fidelity‘ copying) because of 91 

the more ‗complete‘ and ‗accurate‘ acquisition of both manufacturing actions and the end-92 

state product of an artifact (e.g., Byrne and Russon, 1998; Whiten et al., 2004; Hill et al., 93 

2009). Thus, imitation—in theory—has important implications for the emergence and long-94 

term propagation of distinct artifactual traditions (Mithen, 1999). Such a link between 95 

imitation and high-copying fidelity has been expressed by Tomasello, (1999), Heyes (2009), 96 

Whiten et al. (2009b), and more recently, Lewis and Laland (2012). Importantly, imitation is 97 

also argued to sufficiently reduce cultural mutation rates necessary to sustain the long-term 98 

propagation of modifications in the course of cultural transmission (Shea, 2009). It is for these 99 

reasons that many scientists argue that imitation may also mediate the gradual and 100 

incremental nature of human cumulative cultural evolution, a process also referred to as 101 

‗ratcheting‘ (Boyd and Richerson, 1985; Tomasello et al., 1993; Tomasello, 1999; Shea, 2009; 102 

Dean et al., 2012; Kempe et al., 2014). In other words, imitation has the capacity for change 103 

via descent (‗descent with modification‘) because high copying fidelity allows for the long-104 

term perpetuation of cultural traditions (descent) where novel modifications can be 105 

additionally incorporated. Therefore, a capacity for descent via high copying fidelity is a 106 

fundamental component of ratcheting. 107 

 

Emulation is often contrasted with imitation in terms of copying fidelity, in the sense that 108 

emulation may not have the same capacity to sufficiently sustain cultural variants in the long-109 

term (Galef, 1992; Tomasello et al., 1993; Tomasello, 1999). Since emulation involves only 110 

the ‗end-state‘ copying of an object or behavior, but not the precise action sequences or 111 

‗behavioral means‘ to achieve the goal, emulation is, therefore, argued not to contain the 112 

sufficient capacity to maintain cultural traditions to the same extent as imitation (Tomasello, 113 

1999). Therefore, emulation could (theoretically) be seen as a ‗low-fidelity copying 114 

mechanism‘, at least on a relative basis with imitation. 115 

 

Despite a general consensus that imitation provides a means for high fidelity transmission 116 

(e.g., Tomasello, 1999; Shea, 2009), cultural transmission parameters have not yet been well 117 

studied from an experimental viewpoint in specific regard to material culture, especially 118 

contrasting the outcomes of one learning mechanism against another (Mesoudi and O‘Brien, 119 

2009). Indeed, while material artifacts have been utilized within experimental models of 120 
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cultural evolution, they have been primarily employed as tools for investigation of the social 121 

and psychological mechanisms involved in learning and transmission of cultural variants, 122 

rather than as a means of studying the impact of social learning mechanisms on artifactual 123 

variation for their own sake (e.g., Caldwell and Millen, 2009; Caldwell et al., 2012; 124 

Wasielewski, 2014). However, such studies are essential if we are to connect cultural 125 

evolutionary models to long-term empirical datasets such as the archaeological record. 126 

Indeed, there has been some doubt regarding the differential impact of contrasting social 127 

learning mechanisms on the long-term transmission of morphological artifactual 128 

modifications. For instance, in Caldwell and Millen‘s (2009) cultural chain transmission 129 

experiment, human participants were asked to each manufacture a paper airplane with the aim 130 

to make them fly the greatest possible distance. The findings of this study suggested that 131 

participants were equally good at incrementally improving the flight distance of the previous 132 

generation‘s paper airplanes, irrespective of whether they were placed in a teaching, imitation 133 

or emulation context. A recent experiment by Wasielewski (2014) expanded on Caldwell and 134 

Millen‘s (2009) findings by demonstrating that for less ‗transparent‘ (i.e., ‗opaque‘) tasks, 135 

such as those tasks where information from the end-state product are not enough to 136 

reconstruct the product at high fidelity, imitation may indeed be essential for the sustainability 137 

of cultural traditions. Thus, further experimental endeavor would certainly illuminate the 138 

cultural transmission mechanisms necessary for the long-term perpetuation of the earliest of 139 

stable artifact lineages known from the archaeological record (e.g., Mithen, 1999). 140 

 

One of the main problems for the stable continuity (i.e., fidelity) of artifactual traditions is the 141 

introduction of ‗copying errors‘, which are inevitably produced during repeated bouts of 142 

artifact replication due to perception limitations or other error-inducing factors (Eerkens 2000; 143 

Eerkens and Lipo 2005; Hamilton and Buchanan, 2009; Kempe et al., 2012; Schillinger et al., 144 

2014a, 2014b). Indeed, Eerkens and Lipo (2005) showed via a computer simulation that copy 145 

errors may accumulate in a stochastic fashion over the repeated course of cultural 146 

transmission events. This model, which was later termed the ―accumulated copying error 147 

model‖ or ―ACE‖ model by Hamilton and Buchanan (2009), highlighted that compounded 148 

copying error has the potential to ultimately generate macro-scale level trends and cultural 149 

change. Schillinger et al. (2014a) meanwhile, recently investigated experimentally whether 150 

rates of shape copying error were affected differentially in reversible, or ‗additive-reductive‘ 151 

manufacturing traditions such as basketry and pottery (i.e., where material can be both added 152 

and removed), as opposed to irreversible or ‗reductive-only‘ traditions, such as stone-tool 153 
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knapping (i.e., where material can only be removed during the manufacturing process). The 154 

results of these experiments demonstrated that cultural mutation rates are indeed process 155 

dependent, with reductive manufacturing traditions, such as stone knapping, carrying an 156 

inherently larger ‗mutation load‘ compared to other forms of manufacturing processes. While 157 

such high mutation rates have implications for the ‗evolvability‘ of cultural products 158 

(Schillinger et al., 2014a), there is also an increased potential that cultural traditions 159 

associated with high mutation loads face erosion in the long-term (Schillinger et al., 2014b; 160 

Lycett et al., 2015). Hence, wherever specific shape properties are an important component of 161 

an artifactual tradition, these may require the implementation of ‗fidelity mechanisms‘, 162 

specifically to counteract such high mutation rates. Such issues again stress the importance of 163 

better understanding the impact of specific social learning mechanisms on artifactual 164 

variation. 165 

 

Given the foregoing, this study aimed to elucidate whether emulation and imitation exhibit 166 

significantly different levels of copying fidelity when material artifacts are produced 167 

manually. This experiment particularly emphasized the effects of social processes on shape 168 

variation, which is inevitably a component of many artifactual traditions. ‗Shape‘ is inherently 169 

a multivariate property of artifacts in that it describes the association between multiple 170 

morphological features of 3D cultural artifacts, as opposed to ‗size‘ which can be described 171 

adequately in univariate terms (e.g., via a single measure such as volume). Shape has long 172 

been utilized in the biological sciences to understand variation, evolutionary change, and the 173 

adaptations of biological organisms (Rohlf and Marcus, 1993; Slice, 2007) as well as by 174 

archaeologists to study temporal patterns of human behavioral change (see e.g., O‘Brien and 175 

Lyman (2000) for review). Shape in the archaeological record may have specific functional 176 

and/or aesthetic relevance, which is one potential reason explaining its long-term preservation 177 

in lineages of artifactual products, and also makes it an appropriate target of study in cultural 178 

evolutionary analyses of artifactual variation (e.g., O‘Brien et al., 2010; Chitwood 2014; 179 

Okumura and Araujo, 2014; Lycett and von Cramon-Taubadel, 2015). In that respect, shape 180 

may have come under the direct influence of evolutionary transmission biases promoting the 181 

preservation of shape components in the artifactual record (e.g., Buchanan and Collard, 2010), 182 

yet may also be affected by drift processes (Lycett, 2008; Eren et al. 2015). Some of the first 183 

prehistoric cultural artifacts known to exhibit shape preservation across spatial and temporal 184 

spans are Acheulean handaxes, which were manufactured by extinct hominins from around 185 

1.7 million years ago and continued to be made for over one million years thereafter (Roche, 186 
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2005; Gowlett, 2011). The reproduction of shape properties seen in the reductive stone tool 187 

technology of the Acheulean is particularly interesting given the experimental findings that 188 

‗reductive‘ manufacturing processes produce higher cultural mutation rates (i.e., copying 189 

errors) compared to ‗additive‘ manufacturing traditions; thus, making stone tool traditions 190 

particularly prone to shape degradation in cultural systems (Schillinger et al., 2014a). In this 191 

respect, the study of the effects of different social learning mechanisms on shape preservation 192 

may offer answers as to how a decrease in cultural shape mutation rates might have been 193 

achieved under such conditions. Hence, findings from this study could further provide crucial 194 

implications regarding the specific mechanisms required for the emergence and spread of 195 

lasting artifactual shape traditions. 196 

 

The purpose of this study was thus to understand whether contrasting social learning 197 

mechanisms generate diverging patterns of shape copying error within an experimental 198 

context where rates of variation can be compared in a controlled laboratory environment. Two 199 

contrasting experimental conditions were employed, utilizing a simple copying task. 200 

Participants were asked to faithfully copy a foam handaxe ‗target‘ form using a standardized 201 

block of foam and a plastic table knife. The experimental conditions differed in respect to the 202 

learning conditions provided. In an ‗imitation condition‘, participants were shown both the 203 

end product (i.e., target handaxe form) as well as a video that allowed them to directly 204 

observe a variety of techniques that were employed in the manufacture of the original target 205 

form. In the ‗emulation condition‘, participants observed only the target form. Morphometric 206 

properties (size-adjusted shape data) of the ‗handaxes‘ produced in each condition were then 207 

subjected to statistical analysis. It was predicted that if indeed imitation is a ‗high fidelity‘ 208 

copying mechanism, then, this should result in significantly lower rates of copying error 209 

compared to the emulation condition. Additionally, we analyzed video data to test specifically 210 

whether differences in the rates of shape copying errors can confidently be attributed to the 211 

differences in the experimental learning contexts of each group. This second set of analyses 212 

involved statistical analysis of the videos, which recorded the participants manufacturing their 213 

handaxes in each condition. It was predicted that if participants in the ‗imitation‘ condition 214 

were indeed imitating, then accordingly, they should match their behaviors to the video to a 215 

significantly greater extent compared with participants in the ‗emulation‘ condition. 216 

 

2. Methods and materials 217 
 
2.1 Participants 218 
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A total of 60 participants took part in this experiment. The majority of these participants were 219 

undergraduates from the University of Kent who were recruited via advertisement. Of these, 220 

30 were female (mean age = 23, SD = 5.2, age range = 18-44 years) and 30 were male (mean 221 

age = 24, SD = 4.8, age range = 18-34 years), thus facilitating even distribution of male and 222 

female participants between experimental conditions (see below). All participants were 223 

reimbursed with £4 for their participation. Ethical approval for this study was provided by the 224 

University of Kent Research Ethics Committee. All participants read a summary that briefed 225 

them about the nature of the experimental task and signed a consent form prior to the task. 226 

 
2.2 Materials 227 
  

The ‗target model form‘ copied by participants in this experiment was made from foam blocks 228 

(described in Schillinger et al., 2014b and below) and modeled after the shape of an 229 

‗Acheulean handaxe‘ (Figure 1). Handaxes of the ‗Acheulean techno-complex‘ first appear in 230 

the archaeological (Palaeolithic) record first around 1.75‒1.5 million years ago in Africa 231 

(Lepre et al. 2011; Beyene et al. 2013). They later appeared in large parts of Asia and western 232 

Europe (Lepre et al. 2011; Beyene et al. 2013) and subsequently remained a persistent feature 233 

of the archaeological record for over one million years (Clark, 1994; Lycett and Gowlett, 234 

2008). Handaxe artifacts are widely agreed to constitute a shift from the manufacture of 235 

relatively simple cutting tools (i.e., flakes), via knapping procedures not necessarily directed 236 

towards producing deliberate forms in the residual block of stone (Toth, 1985a), to the 237 

strategic shaping of the eventual artifact (Schick and Toth, 1993; Roche, 2005; Gowlett, 238 

2006). 239 

 

There were specific reasons why we elected to conduct a copying task that involved the 240 

production of handaxe replicas from foam blocks. For safety and feasibility reasons actual 241 

stone knapping exercises was not employed, especially given that large numbers of 242 

participants were required to make statistical analysis viable. The manufacture of stone 243 

handaxes requires extensive practice and relevant skills which are learned over months or 244 

even years (Edwards, 2001) and may result in serious injury (e.g., Whittaker, 1994). By 245 

contrast, foam handaxe manufacture was sufficiently easy such that it facilitated the 246 

recruitment of suitable numbers of participants who do not have specialized manual 247 

manufacturing skills. The production of foam ‗handaxes‘ is a relatively simple artifact 248 

manufacturing task, but one that requires participants to manipulate multivariate and 249 
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interrelated three-dimensional shape properties such as relative lengths, widths and 250 

thicknesses in order to invoke the characteristic shape of these artifacts (Gowlett, 2006). 251 

Given this, we have argued that in regard to the study of cultural evolutionary phenomena, 252 

simple experiments that require participants to replicate certain aspects of handaxe form (i.e., 253 

their size and/or shape) make a particularly useful subject of study, for directly analogous 254 

reasons to those that lead biologists to use ‗model organisms‘ in the context of evolutionary 255 

studies (Schillinger et al., 2014a, 2014b; Lycett et al., 2015). 256 

 257 

Standardized blocks supplied by OASIS DRY SEC foam, a type of dense, porous and hard 258 

floral foam, were used to make the handaxe replicas. These blocks are machine-cut in a pre-259 

determined, standardized format and, therefore, allowed for maximum replicability of starting 260 

conditions. The blocks measured 22.3cm in length, 11cm width and 7.8cm in thickness. The 261 

experimental ‗handaxe replicas‘ were produced from this foam using a simple plastic table 262 

knife. The plastic knife was suitable for use in either the left or right hand. Dimensions and 263 

visual display of the standardized foam block and the plastic table knife can be found in the 264 

supplementary material (Figures S1 and S2). Participants were also provided with the option 265 

to use mouth protection and eye protection glasses to protect against irritations resulting from 266 

small parts of dispersing foam dust. All participants also wore a lab coat to protect their 267 

clothing from the foam dust. Video recordings were undertaken using a DSLR Fujifilm 268 

Finepix HS 20 (focal range of 24 - 720mm) and a tripod. 269 

 

2.3 Experimental conditions  270 
 
The experiment was divided into two alternative conditions. 271 

 
2.3.1 Condition 1 – The imitation condition 272 
 
The first condition tested the effects of imitative learning on the production of shape copying 273 

error. Participants were shown the relevant manufacturing techniques involved in the 274 

production of the target form and were also shown the end product of a ‗target handaxe form‘ 275 

(Figure 1). These action sequences were displayed in the form of a video demonstration that 276 

was 4 minutes and 50 seconds in length. The video illustrated, in sequence, the main 277 

procedures and steps taken to produce the target model. It should be noted that the video 278 

demonstration was produced and edited in a fashion where the prolonged exposure to the final 279 

target form was avoided. Thus, participants in the imitation condition were not exposed to the 280 

final target form any longer than the participants in the alternate condition. The choice of a 281 
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video demonstration was the preferred method over the alternative option of a human 282 

demonstrator because the video format allowed for the ‗total repeatability‘ of the 283 

demonstrated behaviors across all participants.  284 

 
2.3.2 Condition 2 – The emulation condition 285 
 
The second condition assessed the effects of end-state copying (emulative learning) on the 286 

production of shape-copying errors in the copying task. A video demonstration was not 287 

provided in this condition. Participants were only given the opportunity to view the end 288 

product of the target handaxe model prior to the copying task. This condition was referred to 289 

as the ‗emulation‘ condition. 290 

 
2.4 Experimental design and procedure 291 
 
All 60 participants were divided into the two experimental conditions so that there was an 292 

equal number of participants (n = 30) in each condition. Within each condition, participants 293 

were equally divided into 15 females and 15 males to control for sex differences. In addition, 294 

both sample groups consisted each of 27 right-handed individuals (90% of the group) and 295 

three left-handed participants (10% of the group). This distribution of left-and right-handed 296 

individuals is representative to that of the natural population distribution of modern human 297 

populations (Toth, 1985b; Corballis, 1989; Raymond et al., 1996). Inconsistencies in 298 

handedness were unlikely to be of relevance given the overall experimental design and also 299 

because numbers were balanced across conditions.  300 

 

In the experimental task, all participants were assigned to an experimental condition 301 

alternatively and took part only once in one of the two conditions. In both conditions, 302 

participants were asked to copy the shape of the foam target handaxe form as accurately as 303 

possible. All participants were advised to pay attention to the overall form and shape features 304 

of the target form but to prioritize the copying of the handaxe shape. The instructions also 305 

clarified that video recording would take place during the copying task for further analysis. To 306 

encourage their motivation to perform well, all participants were informed that the person 307 

who produced the most accurate handaxe copy (the replica with the lowest shape copying 308 

error), would win a prize in the form of a £20 book voucher from a well-known internet book 309 

seller in addition to their £4 reimbursement. 310 
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All participants read the task instructions before beginning the experimental task. In the 311 

imitation condition, participants were then shown the video demonstration illustrating the 312 

action sequences employed in the production of the target form (participants in the emulation 313 

condition proceeded immediately with the next step in the experimental procedure). In both 314 

conditions, participants were provided with one minute to inspect and handle the target 315 

handaxe form from all sides and were verbally reminded of the instructions. When the minute 316 

was over, they were placed at a table and provided with one standardized foam block and a 317 

plastic knife for the manufacturing task. They were given a time frame of 20 minutes to 318 

complete the copying task. Previous analyses have shown that this is ample time for 319 

participants to conduct the required replication task effectively (Schillinger et al., 2014b). To 320 

control for memory effects, the target handaxe remained with the participants throughout the 321 

experiment. The participants were also advised that they may compare the target handaxe 322 

form with their own foam replica from any side or angle at any point desired during the 323 

experimental task. All participants were provided with a countdown clock which allowed 324 

them to track the remaining time of the experiment whenever desired. In addition, at five 325 

minute intervals the participants were reminded of the remaining time left until task 326 

completion. There was only one attempt at the experimental task but all participants managed 327 

to complete the task within the time limit given. 328 

 

Participants were also allowed to wear spectacles and contact lenses if so required for close-329 

up tasks to avoid major inconsistency in visual perception. The use of additional external aids 330 

to improve perceptual accuracy (e.g., scaled rules) was not permitted. 331 

 
2.5 Video analysis 332 
 
An analysis of the video recordings of participants‘ behavior was conducted to test whether 333 

participants in the imitation condition matched the behaviors seen in the video demonstration 334 

to a higher degree compared to participants in the emulation context. Thus, the aim of the 335 

video analysis was to collect direct evidence for imitation. 336 

 

Every video was systematically tested for the degree to which each participant‘s 337 

manufacturing behaviors matched the video demonstrations, therefore evaluating the level of 338 

copying fidelity. Copying fidelity was assessed by assigning one ‗fidelity code‘ to every video 339 

in both the imitation and emulation condition. The fidelity code ranged from 0‒ 7; the lowest 340 
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degree of copying fidelity being scored as zero and the highest degree of copying fidelity 341 

being scored as seven. 342 

 

Overall, the assignment of one fidelity code to every video could be understood as the 343 

combined result of three factors 1) number of demonstrated behaviors that were copied from 344 

the video demonstration (also termed ‗matched behaviors‘) 2) sequence adherence and 3) 345 

presence of ‗aberrant behaviors‘ (i.e., behaviors not shown in the video demonstration). In the 346 

first instance, the fidelity code reflected the numbers of demonstrated behaviors that were 347 

copied. Thus, the higher the number of ‗matched behaviors‘, the higher the fidelity code 348 

assigned. However, the assignment of the final fidelity code was also influenced by the 349 

sequence adherence and presence of ‗aberrant behaviors‘. The coding system systematically 350 

‗clustered‘ varying combinations of these three factors within one fidelity code. The fidelity 351 

coding system can be found in the digital supplementary material (Text S1). The three main 352 

constituents of the coding procedure are also described in the following sections. 353 

 

2.5.1 Number of demonstrated behaviors 354 
 
Scores of ‗matched behaviors‘ were counted for each video. Matched behaviors were 355 

identified as the behaviors that were copied from the demonstration video (Figure 2). Table 1 356 

lists the six behavioral categories that would count as ‗matched behaviors‘. More detailed 357 

definitions of the six behavioral categories identified in the video demonstration can also be 358 

found in the supplementary material section (Text S2). The highest achievable copying score 359 

would be a score of six (i.e., one score for each of the six demonstrated behaviors). For two 360 

specific behavioral categories (i.e., categories 1) cutting corners and 2) cutting margins), the 361 

score was based on the number of their occurrence. Here, participants could score in one of 362 

two subcategories for each of those behaviors. One subcategory identified if the exact 363 

consecutive count was reached as displayed in the video (categories 1.1 and 2.1 in Table 1). 364 

The second subcategory identified whether at least 50% of the count was reached (categories 365 

1.2 and 2.2 in Table 1). The purpose of the additional behavioral categories was to show that 366 

participants still copied the demonstrated behavior despite failing to match the exact count as 367 

displayed in the video. However, it may be noted that a score in the subcategory which 368 

identified a 50% count of corner and margin cutting could affect the final fidelity code 369 

awarded (i.e., result in a potentially lower-ranking code).  370 

 

2.5.2 Sequence adherence 371 
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Each video was also assessed as to whether it followed the exact sequence of manufacturing 372 

behaviors as illustrated in the video demonstration (chronology as displayed in Figure 2). If 373 

the sequence was also matching with that of the demonstration, the video would be given a 374 

‗complete sequence‘ status. If a video‘s sequence of manufacturing techniques was not 375 

matching with that of the video demonstration, it would be given a ‗mixed sequence‘ status. In 376 

order to score a ‗complete sequence‘ participants were expected to copy all demonstrated 377 

behaviors. Mixing up the sequence and/or otherwise missing one or more demonstrated 378 

behaviors was treated as a deviation from copying fidelity and resulted in a fidelity code 379 

below the ‗complete sequence‘ category. 380 

 

2.5.3 Presence of aberrant behaviors 381 
 
‗Aberrant‘ behaviors were also incorporated into the composite fidelity score. Aberrant 382 

behaviors were defined as any behaviors exhibited by a participant that were not displayed in 383 

the demonstration. If aberrant behaviors were also present, this additionally affected the final 384 

fidelity code awarded. Aberrant behaviors were assessed on an ‗absence or presence‘ basis. 385 

The presence of aberrant behaviors was regarded as deviation from full copying fidelity and a 386 

sequence violation. In the presence of one or more aberrant behaviors, the final fidelity code 387 

awarded was one below the recorded number of matched behaviors in combination with the 388 

‗mixed sequence‘ status.  389 

 

Generally speaking, the fidelity coding system followed a systematic procedure by which a 390 

higher level of matching to the demonstrated behavior resulted in the assignment of a ‗higher‘ 391 

fidelity code. In other words, the more of the demonstrated behaviors were copied, the higher 392 

the number of the fidelity code. Yet, this coding system also took into consideration multiple 393 

factors of deviations from the video demonstration and incorporated these within one 394 

integrated multi-dimensional definition of ‗copying fidelity‘. To establish intra-rater 395 

reliability, we also double-coded a subset of the videos. Intra-class correlation demonstrated a 396 

strong agreement between the original set of scores and the re-test analysis of 10 participant 397 

videos (i.e., 30% of the video data), thus confirming intra-rater reliability (r (10) = 0.996, p = 398 

0.0001). 399 

 

2.6 Morphometric procedure and computation of shape error data 400 
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For all ‗handaxe replicas‘ including the ‗target‘ model, a set of measurements was recorded 401 

comprising a total of 42 morphometric variables. 28 of these measurements were obtained 402 

from the plan-view and 14 from the profile-view. To capture the 42 bilateral and lateral 403 

measurements, a digital grid was placed on the photographic images of the plan-view and 404 

profile-view perspectives of each handaxe replica (Figure S3). All measurements were 405 

recorded digitally by importing photographic images of each handaxe replica into a freely 406 

accessible morphometric software tpsDig (v2.16, Rohl, 2010). Photographic images were 407 

obtained by placing each handaxe replica on a lightbox which facilitated the capturing of the 408 

shape outline in the photographs. A Fujifilm DSLR camera (30x zoom lens: 24-720mm) was 409 

used to take the photographic images and was firmly attached to a copystand. To acquire 410 

homologous measurements, a standardized orientation protocol was applied. The orientation 411 

protocol utilized here was a slightly modified variant from that originally employed by 412 

Callow (1976) and also recently applied by Costa (2010). A detailed description of the 413 

orientation protocol can be found in the digital supplementary material (Text S3). 414 

 

Since the main aim of the analyses was to investigate the effects of social learning 415 

mechanisms on shape attributes, the next step included the extrapolation of shape data from 416 

the raw measurement data. This was achieved by size-adjusting the raw data using the 417 

geometric mean method (Falsetti, 1993; Jungers et al., 1995). Size-adjustment via the 418 

geometric mean method has been demonstrated to efficiently control for scaling variation between 419 

objects by creating a ‗dimensionless scale-free variable‘ whereby the original shape data are 420 

preserved, and for these reasons is widely used in biological studies of shape variation (Falsetti et 421 

al., 1993; Jungers et al., 1995). In more specific mathematical terms, the geometric mean derived 422 

from a series of n variables (a1, a2, a3 ... an) is correspondent to                .  423 

Hence, the geometric mean may be described simply as the nth root of the product of all n 424 

variables (Jungers et al., 1995). The method proceeds on a specimen-by-specimen basis, dividing 425 

each variable in turn by the geometric mean of the variables to be size-adjusted. Hence, to 426 

implement the method, the geometric mean of each foam replica was calculated separately and, 427 

thereafter, each of the 42 morphometric variables for each specimen were divided by that 428 

particular specimen‘s geometric mean. 429 

 

To compute the shape error data used in the subsequent statistical analyses, the 42 size-adjusted 430 

variables for each handaxe replica were simply subtracted from the equivalent 42 variables of the 431 

target model. Lastly, mean shape errors were calculated for each of the 42 variables across the 30 432 
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handaxe copies produced in each of the two experimental conditions. It is these 42 mean error 433 

rates for each experimental condition that were used in the subsequent statistical analyses. 434 

 

2.7 Statistical analysis 435 
 
2.7.1 Analysis of shape copying error 436 
 

In a first statistical analysis, the shape error data between the imitation and emulation 437 

conditions were compared using a non-parametric Mann-Whitney U test, where α = 0.05. 438 

Both the Monte Carlo p-value (10,000 random assignments) and the asymptotic p-value were 439 

documented. The comparison of the rates of shape copying error was undertaken in PAST 440 

v2.17 (Hammer et al., 2001). 441 

 
2.7.2 Analysis of ‗fidelity codes‘ 442 
 
To test whether participants in the imitation condition displayed a significantly higher level of 443 

copying of the relevant manufacturing techniques compared to the emulation condition, the 444 

fidelity codes assigned to the videos were compared statistically between conditions. A 445 

Pearson‘s chi-square test was used to assess whether there was a significant difference in the 446 

frequencies of the categories of fidelity codes between conditions. The Pearson‘s chi-square 447 

test was undertaken in IBM SPSS Statistics v20. 448 

 

The Pearson‘s chi-square test was further supported by an additional quantitative analysis of 449 

the participants‘ scores of matched behaviors only between the imitation and emulation 450 

condition. This analysis simply compared the central tendencies (median values) of the 451 

matched behaviors in each condition. The purpose of this analysis was to establish whether 452 

any effect for contrasting levels of behavioral matching would emerge when using only the 453 

‗matched behaviors‘ element of the coding system. Note that scores from the two behavioral 454 

subcategories for removing corners and margins were merged into one for each of the 455 

behavioral criteria to facilitate the data analysis. The merged behavioral categories 456 

incorporated the possibilities of cutting three to six corners or margins. Since the data failed 457 

normality tests, a non-parametric Mann-Whitney U test was used to compare the data 458 

statistically. This second set of statistical analyses was again undertaken in IBM SPSS 459 

Statistics v20. 460 

 

3. Results 461 
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3.1 Shape copying error 462 
 
In the imitation condition, shape error displayed a mean of 0.121 (SD = 0.05) and in the 463 

emulation condition the mean shape error was 0.137 (SD = 0.047) (see Figure 3). The mean 464 

shape copying error rates for every morphometric variable for the imitation and emulation 465 

conditions can be viewed in the supplementary material (Figures S4 and S5). The Mann-466 

Whitney U test demonstrated a significant difference in overall copying error rates for shape 467 

in the imitation condition compared to the emulation condition (U = 652, asymptotic p = 468 

0.0393, Monte Carlo p = 0.0383). The test illustrated that participants created significantly 469 

less shape copying errors when they viewed the video in the imitation-learning context 470 

compared to participants in the emulation context.  471 

 
3.2 Video analysis 472 
 

The majority of participants in both conditions scored between 0 and 5 fidelity coding 473 

categories. Since none of the participants in either condition scored in the two highest ranking 474 

fidelity codes 6 and 7, this led to those two code categories to be removed from the chi-square 475 

analysis (Table 2). In addition, due to the low numbers of participants in code 5, the 476 

participant who scored in this category was merged with the lower-ranking fidelity code 4, 477 

resulting in the code category 5 to be collapsed with category 4. Therefore, the contingency 478 

table for the chi-square analysis contained five fidelity copying categories (fidelity codes 479 

0‒ 4) versus the two learning contexts (imitation/emulation) (i.e., a 2×5 contingency table). In 480 

the statistical test assessing the main video analyses, a Pearson‘s chi-square test established a 481 

significant difference in the frequencies of the categories of fidelity codes between the two 482 

experimental conditions (χ2 = 26.065, DF= 4, n = 60, asymptotic p = 0.00003, Monte Carlo p 483 

= 0.0001). Hence, the test provided evidence that participants in the two experimental 484 

conditions possessed contrasting fidelity scores. 485 

 

When considering the frequency distribution across the fidelity codes that represented higher 486 

levels of copying fidelity (Table 2), more than 50 percent of the participants in the imitation 487 

condition reached fidelity codes three to five. By reaching codes three to five, this meant that 488 

the majority of participants in this condition copied between three to six demonstrated 489 

behaviors. Conversely, only seven percent of participants in the emulation condition reached 490 

fidelity code three which means that a minority matched, maximally, three to four of the 491 

demonstrated behaviors. In this case, these seven percent of participants in the emulation 492 
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context innovated behaviors such as those demonstrated in the video demonstration through 493 

individual learning. By contrast to participants in the imitation condition, the majority of 494 

participants in the emulation condition (67%) were placed in lower-ranking fidelity codes, 495 

such as zero and one. Only around 27% of participants in the imitation condition are found in 496 

these lower-ranking fidelity codes. 497 

 
In the final step of the behavioral analysis, the differences in the scores of only the ‗matched 498 

behaviors‘ between the experimental conditions were assessed. Figure 4 shows that higher 499 

percentages of participants in the imitation condition copied the six demonstrated behaviors, 500 

compared to participants in the emulation condition. When averaging the scores for all 501 

participants in each condition across the six demonstrated behaviors, participants in the 502 

imitation condition scored an average of 3.533 matched behaviors (SD = 1.408). Participants 503 

in the emulation condition had a mean score of 1.233 matched behaviors (SD = 1.331). When 504 

comparing the different individual scores for all six behaviors between the two experimental 505 

groups, a Mann-Whitney U test established that participants in the imitation condition copied 506 

significantly more of the demonstrated manufacturing techniques compared to participants in 507 

the emulation condition (Mann-Whitney U test: U = 115; n1 = 30; n2 = 30; asymptotic p = 508 

0.0001; Monte Carlo p = 0.0001). Therefore, the results of the Pearson‘s chi-square and 509 

Mann-Whitney U test reveal a clear pattern that participants in the imitation condition 510 

matched the behaviors displayed in the video to a considerably higher degree compared to 511 

participants in the emulation condition. 512 

 

Altogether, the results of this experiment demonstrated that participants in the imitation 513 

condition generated significantly lower levels of shape error, compared to the emulation 514 

condition. It could also be demonstrated that the low rate of shape error in the imitation 515 

condition was associated with participants copying demonstrated manufacturing techniques 516 

significantly more so than participants in the emulation condition. Thus, differences in the 517 

shape error rates between the two conditions could be confidently traced to the differences in 518 

the learning context. 519 

 
4. Discussion  520 
 
Recent experimental and ethnographic studies suggest that distinct individual-level social 521 

transmission processes generate different patterns of variation in material culture, which affect 522 

the evolution of detectable morphological attributes on the population-level (Bettinger and 523 
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Eerkens, 1999; Mesoudi and O‘Brien, 2008; Kempe et al., 2012). In the last two decades, 524 

research from the comparative psychology literature has emphasized the study of distinct 525 

social learning processes in the quest for the specific conditions required for the ‗heritable 526 

continuity‘ underlying the emergence and long-term preservation of cultural traditions 527 

(Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985; Tomasello, 1993; Whiten et 528 

al., 2009b; Galef, 2012). It is due to the ‗complete‘ transmission of manufacturing techniques 529 

and end-state product that imitation is argued to contain the capacity to considerably reduce 530 

variation-generating rates of cultural mutation which threaten to erode emerging patterns of 531 

artifactual traditions (Shea, 2009). Conversely, emulation is often assumed not to be capable 532 

of transmitting cultural modifications at the level of copying fidelity required to maintain 533 

‗artifactual traditions‘ over the long-term, because only the end-state is copied rather than the 534 

exact behavioral patterns involved (Tomasello, 1999; Whiten et al. 2009b). For this reason, 535 

emulation has been hypothesized potentially incapable of sufficiently impeding rates of 536 

‗cultural mutations‘ to explain the long-term preservation of lasting artifactual ‗traditions‘ in 537 

the archaeological record (Shea, 2009). 538 

 

Consistent with the theoretical predictions, this study provides evidence for the hypothesis 539 

that imitative learning (i.e., the goal-directed copying of a model‘s manufacturing techniques) 540 

can significantly reduce shape copying error compared to a contrasting social learning 541 

mechanism where the manufacturing techniques are not directly copied (i.e., emulation). 542 

These findings suggest that imitation has the capacity for high-fidelity copying and so would 543 

better ensure the preservation of detailed morphological manifestations (i.e., ‗heritable 544 

continuity‘), underlying cultural lineages of ‗shaped‘ artifactual traditions. The results further 545 

suggest that in the absence of high-fidelity copying of manufacturing techniques, the cultural 546 

mutation rate in the shape morphology of cultural artifacts is considerably higher, which 547 

potentially renders ‗emulated‘ cultural traditions relatively unstable over the course of cultural 548 

transmission. 549 

 

The video analysis that we conducted provided further evidence that the copy-error 550 

differences between the two conditions were indeed due to differences between the two social 551 

learning contexts. However, it should be noted that despite the significant differences in 552 

copying fidelity between the distinct learning contexts, the video analysis also demonstrated 553 

that even in the imitation condition, participants failed to copy the entire set of behavioral 554 

demonstrations. In addition, most participants who were exposed to the video demonstration 555 
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also engaged in aberrant behaviors, such as innovative uses of the plastic knife or behavioral 556 

modifications of the techniques demonstrated. A few explanations and implications regarding 557 

these observations may be suggested. First of all, in the light of the experimental set-up, it can 558 

be noted that participants were given only one opportunity to view the video demonstration. 559 

This may have impacted memory recall to some extent and may explain why participants in 560 

the imitation condition did not copy all behaviors perfectly. In addition, there is also the 561 

possibility that participants deliberately engaged in novel behaviors in the attempt to complete 562 

the task to the best of their abilities (i.e., they may have attempted to ‗improve‘ upon the 563 

demonstrated set of behaviors). Importantly, however, the analysis illustrates that while 564 

participants in the video condition did not perfectly copy all the behaviors demonstrated, they 565 

clearly engaged in imitative learning sufficiently more so compared to participants who have 566 

not viewed the demonstrations, to significantly reduce copy-error rates. In other words, the 567 

results from the video analysis demonstrated that the tendency toward higher copying fidelity 568 

induced by imitative learning was sufficient to generate statistically significant effects, even 569 

despite the fact that participants in the imitation condition did not copy the demonstrated 570 

behaviors ‗perfectly‘ and had only one demonstration and one attempt. 571 

 

The findings of this research also have direct implications with regard to the social 572 

mechanisms required for the emergence and perpetuation of some the earliest of prehistoric 573 

artifactual traditions, such as is seen in the Acheulean. The Acheulean is famous for its 574 

imposition of high congruence in shape over time and space (Gowlett, 1984; Wynn 2002; 575 

Petraglia et al., 2005). It is sometimes argued that social learning with high copying-fidelity 576 

was required for such high levels of homogeneity in shape to persist (Wynn, 1993; Mithen, 577 

1999; Nielsen, 2012). Indeed, it has been argued that imitation may have been required in the 578 

Acheulean not only to countermand the effects of copying errors, but also to reduce specific 579 

costs (i.e., injury risks) involved in the manufacture of artifacts such as handaxes (Lycett et 580 

al., 2015). The results of this study support the idea that imitation could have been a means by 581 

which stability in shape traditions can be maintained, especially in the face of relatively high 582 

copying errors (i.e., ‗mutation loads‘) that are likely to accompany such ‗reductive‘ processes 583 

of manufacture (Schillinger et al., 2014a). Hence, these findings suggest that hominin stone-584 

tool manufacturers were employing imitation in order to obtain the manufacturing skills 585 

necessary for the cultural continuity of the Acheulean across time and space. Our results thus 586 

support Morgan et al.‘s (2015) recent experimental work suggesting that relatively complex 587 

social learning mechanisms (beyond stimulus enhancement and emulation) would have been 588 
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required to initiate, but more importantly sustain, Acheulean traditions. In particular, our 589 

results highlight the importance of imitation in the maintenance of a tradition involving 590 

shaping. 591 

 

These findings, therefore, specifically inform about the role of social learning in the 592 

archaeological record and could be viewed as directly addressing what Mithen (1999, p.389) 593 

describes as ―limited reference … to the nature of social learning of pre-modern humans, as 594 

reconstructed from the fossil and archaeological records‖. This also supports research 595 

literature stating that ―the reliance on social learning suggests that complex technologies, 596 

which are costly to invent, learn, and maintain, should be more dependent on social learning 597 

than simpler technologies‖ (Mesoudi and O‘Brien, 2008, p. 23). Imitation is often suggested 598 

to represent a prerequisite for cumulative cultural evolution (Boyd and Richerson, 1985; 599 

Tomasello et al., 1993; Tomasello, 1999; Lewis and Laland, 2012; Dean et al., 2012). 600 

However, the necessity for high fidelity transmission mechanisms, like imitation, to be 601 

present for the successful transmission of effective cultural variants in the face of cumulative 602 

copying error highlights a novel facet of cultural evolution that is perhaps underestimated in 603 

the current research literature. That is, that the longevity of cultural traditions depends largely 604 

on the active containment of variation (i.e., mutation) via high fidelity transmission 605 

mechanisms. The findings of this study support the hypothesis (see e.g., Shea, 2009) that 606 

imitation specifically allows for a significant reduction of continuously produced rates of 607 

mutation during inter-generational transmission, so facilitating the long-term continuity of 608 

selected cultural traits. Thus, by illustrating the capacity for imitative learning to reduce 609 

mutation loads that threaten to erode shape traditions during cultural transmission (Eerkens 610 

and Lipo 2005; Hamilton and Buchanan, 2009; Kempe et al., 2012; Schillinger et al., 2014a, 611 

2014b), it has been demonstrated how imitation assures the long-term survival of cultural 612 

traditions, despite the persistence of newly generated variation. It is not simply the case that 613 

imitation allows manufacturing techniques to be transmitted with greater ease culturally; but 614 

rather, that imitation, when incorporated into the cultural learning process, acts directly as a 615 

mutation-reducing ‗repair‘ mechanism, actively countermanding the effect of copying errors 616 

that are also—inevitably—part of cultural processes over the longer term. 617 
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Figure captions: 838 
 
Figure 1: Target foam model handaxe used during experiment. 839 
 
Figure 2: The six manufacturing techniques displayed in the video demonstration. 840 
 
Figure 3: Mean shape error in the emulation and imitation conditions. Whiskers mark +/- one 841 
standard error. 842 
 
Figure 4: Distribution of participants in the imitation and emulation conditions engaging in 843 
the six categories of matched behaviors. 844 
 
Table captions: 845 
 
Table 1: Behavioral categories for ‗matched‘ behaviors. For corner and margin cutting, 846 
participants could only score in one of each behavior‘s subcategory (e.g., 1.1 or 1.2). 847 
 
Table 2: Percentages of participants that fit the respective fidelity codes of the main coding 848 
system in the imitation and emulation conditions. 849 
 
Supporting information legends 850 
 
Text S1: A coding system was developed that scaled the level of copying fidelity depending 851 
on three factors: 1) the total count of copied behaviors that were accurately identified 2) 852 
whether the sequence of demonstrated behaviors was adhered to by separating ‗complete‘ 853 
from ‗mixed‘ behavioral sequences 3) presence of aberrant behaviors. The ‗OR‘ sign is 854 
therefore placed to separate one combination from an alternative when both sets of 855 
combinations were clustered within the same fidelity code. 856 
 
Text S2: Definitions of behavioral categories for video coding. 857 

 
Text S3. Orientation protocol. 858 
 
Figure S1: Example of machine-cut foam blocks provided to participants during experiment. 859 
Each block measured 22.3×11×7.8cm. 860 
 
Figure S2: Dimensions of plastic knives provided to participants. 861 
 
Figure S3: Measurement scheme and the position of measurement gridlines in plan-view (A) 862 
and profile-view (B). This grid system provided a total of 42 variables. 863 
 
Figure S4: Mean shape error for 42 morphometric variables in the imitation condition. 864 
 
Figure S5: Mean shape error for 42 morphometric variables in the emulation condition. 865 
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Table 1: Behavioral categories for ‘matched’ behaviors. For corner and margin cutting, 
participants could only score in one of each behavior’s subcategory (e.g., 1.1 or 1.2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Categories Knife Foam    

1.1 Cutting ‘Corner cutting’: minimum six consecutive corners 

1.2 Cutting ‘Corner cutting’: minimum of three non-consecutive 

corners 

2.1 Cutting ‘Margin cutting’ minimum six consecutive margins 

2.2 Cutting ‘Margin cutting’: minimum of three non-consecutive 

margins 

3 Cutting Initial tip and base cutting 

4 Scraping 30 sec scraping (dominant foam removal technique) 

5 Both Two repetitions of scraping and tip and base cutting 

6 Scraping Final shaping via scraping  

Table 1



Table 2: Percentages of participants that fit the respective fidelity codes of the main coding 
system in the imitation and emulation conditions. 
 
Fidelity 
Code 

Copying behaviors  Emulation  
(in %) 

Imitation (in 
%) 

0 0 to 1 matched (plus aberrant behavior) 66.67 10.00 
1 1 to 2 matched (plus aberrant behavior) 10.00 16.67 
2 2 to 3 matched (plus aberrant behavior) 16.67 16.67 
3 3 to 4 matched (plus aberrant behavior) 6.67 20.00 
4 4 to 5 matched (plus aberrant behavior) 0 33.33 
5 5 to 6 matched (plus aberrant behavior) 0 3.33 
6 6 matched (mixed sequence) 0 0 
7 6 matched (perfect sequence) 0 0 

 

Table 2


