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ABSTRACT

Diverse species exhibit cultural traditions, i.e. population-specific profiles of socially 

learned traits, from songbird dialects to primate tool-use behaviors. However, only 

humans appear to possess cumulative culture, in which cultural traits increase in 

complexity over successive generations. Theoretically, it is currently unclear what 

factors give rise to these phenomena, and consequently why cultural traditions are 

found in several species but cumulative culture in only one. Here, we address this by 

constructing and analyzing cultural evolutionary models of both phenomena that 

replicate empirically attestable levels of cultural variation and complexity in 

chimpanzees and humans. In our model of cultural traditions (Model 1), we find that 

realistic cultural variation between populations can be maintained even when 

individuals in different populations invent the same traits and migration between 

populations is frequent, and under a range of levels of social learning accuracy. This 

lends support to claims that putative cultural traditions are indeed cultural (rather than 

genetic) in origin, and suggests that cultural traditions should be widespread in species

capable of social learning. Our model of cumulative culture (Model 2) indicates that 

both the accuracy of social learning and the number of cultural demonstrators interact 

to determine the complexity of a trait that can be maintained in a population. 

Combining these models (Model 3) creates two qualitatively distinct regimes in which

there are either a few, simple traits, or many, complex traits. We suggest that these 

regimes correspond to nonhuman and human cultures, respectively. The rarity of 

cumulative culture in nature may result from this interaction between social learning 

accuracy and number of demonstrators.

Keywords: animal culture; cultural evolution; demography; innovation; social 
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1. Introduction

Many animal species exhibit social learning, i.e. the acquisition of information from 

conspecifics through learning (Galef and Laland, 2005); examples include the 

transmission of food preferences in rats (Laland and Plotkin, 1990), shoaling routes 

and nest site locations in fish (Helfman and Schultz, 1984), and foraging locations in 

bees and ants (Leadbeater and Chittka, 2007). Some of these species show cultural 

differences in the ‘trait-profiles’ of different populations, termed cultural traditions 

(Fragaszy and Perry, 2003). Examples include differences in the song dialects of 

different bird populations (Catchpole and Slater, 1995) and in the presence or absence 

of various tool-use and gestural behaviors in different populations of chimpanzees 

(Lycett et al., 2007; Whiten et al., 1999), orangutans (van Schaik et al., 2003) and 

capuchins (Perry et al., 2003). Humans, however, as well as exhibiting social learning 

and cultural traditions, appear to be the only species to unambiguously also have 

cumulative culture, where cultural traits are preserved and modified over successive 

generations resulting in a ‘ratcheting up’ of the complexity or efficiency of those traits

(Boyd and Richerson, 1996; Dean et al., 2013; Enquist et al., 2011; Tomasello, 1999). 

A common criterion for cumulative culture is that cultural traits become too complex 

for a single individual to invent in their lifetime. Whereas this does not appear to 

apply to any non-human cultural traits, such as chimpanzee nut-cracking, birdsong 

dialects or fish shoaling routes (although for possible reports in chimpanzees see 

Boesch et al., 2009; Sanz et al., 2010), such traits are commonplace in human cultural 

endeavors such as technology, science, and mathematics (Basalla, 1988; May, 1966; 

Oswalt, 1976; Price, 1963; Wilder, 1968). It is highly unlikely that string theory, 

smartphones and space travel, for example, lie within the inventive capacities of a 

single individual. Even so-called ‘simple’ early human technologies, such as certain 
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types of stone tools, show evidence of having accumulated in complexity over 

multiple generations (Lycett and von Cramon-Taubadel, 2013; Roche, 2005; Simão, 

2002). This cumulative culture, it is argued, has been instrumental in allowing our 

species to invade and inhabit virtually every terrestrial environment on the planet, 

while our closest primate relatives remain highly restricted in range and number 

(Boyd et al., 2011; Hill et al., 2009).

Our aim here is to construct simple models to identify the potential factors responsible

for both the emergence and maintenance of cultural traditions, and for the shift from 

cultural traditions to cumulative culture that appears to be a hallmark of our species. 

Models are particularly useful here given the difficulty of directly studying such 

phenomena. Comparative studies have begun to address the underlying cognitive 

abilities that allow humans and other great ape species to solve simple cumulative-like

tasks (Dean et al., 2012). However, comparative studies are limited because (i) only a 

single extant species (Homo sapiens) has cumulative culture, thus providing limited 

data points to test causal hypotheses, and (ii) the acquisition of cumulative cultural 

traits in humans typically takes many years and is thus not amenable to experimental 

investigation. Archaeological evidence can be used to indicate the emergence of 

cumulative culture in the Homo lineage (d'Errico and Stringer, 2011; Roche, 2005). 

However, the archaeological record provides only indirect evidence of the cognitive 

or demographic changes that might be associated with these phenomena. 

Previous models have examined either the evolutionary origin of social learning (Aoki

et al., 2005; Boyd and Richerson, 1985; Enquist et al., 2007; Rogers, 1988), or the 

number of independent (non-cumulative) traits in a single population (Enquist et al., 
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2010; Lehmann et al., 2011; Strimling et al., 2009), or the dynamics of cumulative 

culture in a single population (Mesoudi, 2011; Pradhan et al., 2012) or at a 

macroscopic level that does not permit the study of demographic factors such as 

population size or migration (Enquist et al., 2011; Lewis and Laland, 2012). While all 

of these models have generated useful inferences about cultural dynamics, none have 

directly addressed the emergence and maintenance of between-group cultural 

traditions, which requires the simulation of multiple populations, and none have 

sought to explain the transition from non-cumulative traditions to cumulative culture. 

Here we attempt to fill this gap by first modelling cultural traditions and explicitly 

comparing our model output to empirical data on non-human primate traditions. We 

then present a model of cumulative culture that builds on previous individual-based 

models of non-cumulative culture. Finally, we combine these models, finding that the 

emergence of cumulative culture most likely occurred through the interaction of the 

accuracy of social learning and the number of demonstrators from whom individuals 

copy.

2. Model 1: Cultural traditions

We take as our starting point a model constructed by Strimling et al. (2009), in which 

independent (i.e. non-cumulative) cultural traits are acquired by individuals in a single

population. To this we add multiple populations and migration between those 

populations, in order to permit the emergence of between-population cultural 

traditions. In their model, Strimling et al. showed how the number of different traits 

found in the population and the number of traits known by each individual increased 

as a function of population size, individuals’ social learning accuracy, and individuals’

innovativeness. We are therefore interested in whether, and if so how, cultural 
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traditions are also shaped by these factors, in addition to the novel factor of migration.

As in Strimling et al.’s original model, we make several simplifying assumptions, 

such as that cultural traits have identical cultural fitness and have no effect on 

biological fitness, and that individuals do not vary in their social learning accuracy or 

innovativeness. While these assumptions are most likely unrealistic and deserve 

scrutiny in future research, these tactical simplifications allow us to focus on the 

aforementioned key factors that have been the subject of previous research 

(population size, social learning accuracy and individual innovativeness) in this new 

multi-group context.

Strimling et al’s (2009) model contains three stages. First, one of the N individuals in 

the population is picked at random, dies, and is replaced by a naive individual. 

Second, the naive individual picks one other individual at random and independently 

learns every trait that individual knows with probability a per trait (where 0 < a < 1). 

Third, the individual invents a random number of new traits with expectation μ. (Note 

that social learning and innovation are therefore modelled as separate processes; for 

simplicity, Strimling et al. assumed that social learning cannot itself give rise to new 

traits through inferential copying errors.) To this we add a fourth stage, in which the 

individual migrates to another population with probability 



m

2
 (where 0 ≤ m ≤ 2). 

There are p such populations in the metapopulation, and the individual is equally 

likely to migrate to any of the p - 1 other populations. When the individual migrates, it

swaps population memberships with a randomly chosen member of its target 

population, so that the size of each population remains constant. Because each 

migration event involves two individuals and the target population is picked at 
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random, the expected number of individuals who migrate away from any given 

population in one timestep is 



m

2


m

2
(p 1)

p 1
 m ; this is why m is halved above.

In order to model multiple populations of such learners, we must also decide which 

traits individuals invent. Strimling et al. (2009) do not specify this, assuming only that

individuals always invent traits that are currently unknown in the population. 

Lehmann et al. (2011), using a similar model, assume that there are a very large 

number of traits, tending towards infinity, and individuals invent a random trait 

chosen from this set. This strikes us as unrealistic, particularly for foraging or gestural

behaviours that are constrained by the affordances of the objects and food types found

in a species’ habitat, and motor constraints on the possible gestures or calls that can be

produced. Thus, we assume instead that there are infinitely many traits which are 

invented in a fixed sequence that is the same in all populations. We use the simplest 

possible sequence, in which traits are labeled by the natural numbers and invented in 

the order 1, 2, 3, etc. Individuals always invent the first trait in the sequence that is not

currently known by any individual in their population. For example, if traits 1, 2, 4 

and 5 are present in the population, then a naïve individual will first invent trait 3, 

rather than trait 6. This represents an idealized situation in which individuals’ physical

and cognitive predispositions and the nature of their physical and social environments 

create a clear ranking in the “obviousness” of traits; for example, tool techniques for 

foraging easily-visible food resources may be invented before techniques for foraging 

hard-to-find foods, and foraging technologies in general may be invented before 

social or symbolic behaviors that are less important for survival. While this situation 
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is clearly idealized, it is more realistic than assuming random draws from a large set 

of traits, and it is simple enough to analyze. Note that, as in Strimling et al. and 

Lehmann et al.’s models, these traits are not cumulative; later traits do not build on 

earlier traits, and an individual can socially learn any set of traits irrespective of the 

traits’ position in the sequence. A trait may also be lost from the population and later 

re-invented without affecting any other traits.

Fig. 1 shows the time course and end result of one simulation of the model, at this 

point with no migration (i.e. m = 0). In this and all subsequent simulations we ran the 

model until the values of the various measurements (e.g. number of traits) had clearly 

reached a stable value and were performing random walks around that value. Fig. 1a 

shows that the number of different traits known in each population, called S by 

Strimling et al., hovers around the expected value they derived in their Equation 3, 

providing a replication of their model and confirming the validity of ours. Fig. 1b 

shows the trait-profiles present in each population at the end of the simulation. 

Intuitively, one expects that if all populations invent the same traits in the same order, 

different populations will have identical trait profiles. However, the trait-profiles in 

Fig. 1b clearly show variation between populations. To quantify this variation we 

define s, the cultural similarity between two populations, in the same way as Enquist 

et al. (2011): 



s 
X Y

X Y
.., where X is the set of traits known in the first population 

and Y is the set known in the second. Thus, s is the proportion of all traits known in 

either population that are known in both populations. To compare more than two 

populations we define 



s as the mean similarity between every possible combination of

populations in a metapopulation.
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[Figure 1 here]

Fig. 2 shows how the mean similarity between populations 



s increases with 

population size N (in a decelerating fashion) and accuracy of social learning a (in an 

accelerating fashion). Fig. 2c shows how 



s varies across the parameter space created 

by N and a, demonstrating that no realistic parameter values generate complete inter-

population homogeneity. The reason that the assumption of a fixed sequence of traits 

does not lead to complete inter-population homogeneity is trait loss due to imperfect 

social learning. We show in the Appendix that in the absence of migration, the 

probability that a trait will spread beyond its inventor is 



a

1 a
. Since a must be less 

than 1, this probability is always less than ½. In other words, most newly invented 

traits die out with their inventor, even with high fidelity cultural transmission. This 

feature of the model accords reasonably with evidence on chimpanzee (P. t. 

schweinfurhii) inventions documented at Mahale, Tanzania, where approximately 

43% of innovations documented over a 30-year period did not spread (Nishida et al., 

2009). In the model, this frequent loss of traits is balanced by the re-invention of traits

that have been lost, and this dynamic creates the moderate (and realistic) dissimilarity 

between population trait-profiles.

[Figure 2 here]

We now analyze the effects of migration. Fig. 3 shows how the mean number of 

different traits known in a population 



S  and the mean similarity between populations
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

s both increase with m. We show values from simulations with m ranging from 0 (no 

migration) to 0.5 (half of all individuals migrate); the latter may be realistic in both 

chimpanzees, where one sex typically disperses (Hiraiwa-Hasegawa, Hasegawa, & 

Nishida, 1984), and humans, where there is frequent migration of both sexes (Hill et 

al., 2011). As expected, migration makes populations more similar in their trait-

profiles, but even frequent migration does not completely homogenize them. 

Migration also increases the total number of traits known, because migrants can bring 

traits that have not been invented in the target population; this resembles the 

beneficial effect of migration on accumulation found by Powell et al. (2009), but not 

as pronounced. A possible empirical example of this is the introduction of ant-fishing 

into the Kasekela chimpanzee (P. t. schweinfurthii) community by a female immigrant

from the Mitumba community at Gombe, Tanzania (O'Malley et al., 2012).

[Figure 3 here]

To compare the results shown in Fig. 3b with empirical data, we calculated the values 

of 



s from data reported on chimpanzees (Pan troglodytes) (Whiten et al., 1999) and 

orangutans (Pongo pygmaeus) (van Schaik et al., 2003), ignoring all comparisons 

involving traits thought to be absent for ecological reasons or insufficient observation.

The values of 



s were approximately 0.46 and 0.32, respectively. Note that these 

values probably underestimate the true values, because these studies only included 

traits that the investigators suspected a priori might vary between populations. With 

this in mind, Figs. 2c and 3 show that the model produces realistic between-

population variability. 
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3. Model 2: Cumulative culture

We now construct and analyse a model of cumulative culture in a single population, 

before adding the assumption of multiple populations in the following section. For our

cumulative culture model, we take as our starting point Enquist et al.’s (2010) model 

which expanded Strimling et al.’s (2009) to include multiple demonstrators. Hence 

our model has two parameters: a, the accuracy of social learning (as before), and n, 

the number of cultural models (where in Model 1, as well as in previous models of 

cumulative culture such as Mesoudi [2011], n = 1, but which in Model 2 can vary). As

in Model 1, both parameters are assumed to be constant across all individuals. The 

population consists of N individuals, and as above, in each time step a randomly 

chosen individual dies and is replaced by a naive individual. The individual then 

randomly picks n other individuals from the population to be its cultural 

demonstrators. The individual attempts to learn the trait from each of the n 

demonstrators in turn. Whether this learning is successful depends on whether or not 

the demonstrators carry the trait and on a. Finally, after attempting to learn socially 

from all n demonstrators, the individual innovates with probability μ.

The trait has an infinite number of complexity levels. Learning any given level is 

dependent on having learned all previous levels. The levels represent cumulative 

improvements that can be made to the basic, level 1 trait. Thus, they may roughly 

correspond to Oswalt's (1976) “techno-units,” or to successive modifications to a 

technology or social practice; plausible definitions and examples of different levels 

are given by Pradhan et al. (2012). In our model, individuals learn these levels as 

follows: for each demonstrator, the individual learns the first level of the trait that it 

does not already know with probability a, and moves on to the next level if successful,
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which it again learns with probability a, and so on. Thus the probability of a naive 

individual learning a given level l from a demonstrator who knows at least l levels of 

the trait is 



al . After social learning, each individual has a probability μ of improving 

its knowledge of the trait by one level through innovation.

We are interested in understanding how 



l, the mean level of cultural complexity that a

population maintains, depends on the accuracy of social learning a, the number of 

cultural models n, and the innovativeness μ. In each simulation of the model the 

population begins completely unknowledgeable. Fig. 4 shows the time course and end

result of one simulation of the model. In Fig. 4a we see that the mean level of the trait 

in the population initially rises and then stabilizes; Fig. 4b shows the resulting 

distribution of levels amongst the individuals of the population.

[Figure 4 here]

Fig. 5 shows the effects of a and n on the mean level 



l of the trait that is maintained in

the population. The mean level 



l increases linearly with n (Fig. 5a), and non-linearly 

with a (Fig. 5b). When varying the innovativeness μ in simulations, we found that 

increasing μ from 0.1 to 1 increases 



l by ≈ 3 regardless of the values of the other 

parameters; thus, the effects of a and n are much stronger than the effect of μ. This 

replicates previous modelling results that innovation is far less important for 

cumulative culture than is social learning accuracy (Lewis and Laland, 2012) or 

number of demonstrators (Enquist et al., 2010). 
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Fig. 5c shows how 



l varies across the parameter space created by a and n. Enquist et 

al. (2010) showed that only if an > 1 could the trait be stably maintained in the 

population through social learning in their model. Since the trait in their model 

corresponds to the basic level 1 trait of ours, this result clearly applies here too. Much 

of the parameter space features realistic levels of accumulation; compare the values of



l shown in Fig. 5c to the mean techno-unit values of 3-7 found by an empirical 

analysis of the complexity of marine foraging technology in a number of Oceanic 

human populations (Kline and Boyd, 2010). However, there are clearly many different

combinations of a and n that will maintain a given mean level 



l in the population; 

thus, observing a given level of accumulation in a population does not allow us to 

completely identify the values of a and n for that population.

[Figure 5 here]

4. Model 3: Combined model

Here we combine our two models to ask under what conditions cultural traditions 

become cumulative. Imagine that each trait in Model 1 comes in the infinite number 

of levels described in Model 2, and that instead of choosing only one cultural 

demonstrator, naive individuals choose n cultural demonstrators, learn from them, and

then both invent new traits and improve existing ones. The structure of the traits and 

trait levels in this model is shown in Fig. 6. As illustrated in the figure, the difference 

between traits and trait levels is that ‘traits’ measure the quantity of cultural traits and 

‘trait level’ measures their complexity. The combined model then simulates the 

dynamics of independent cumulative traits within and between populations that 

interact by migration. To fully analyse this combined model, a choice must be made as
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to how cumulative traits are improved; whether, for example, there is a fixed expected

number of improvements per individual, or whether more knowledgeable individuals 

make on average more improvements. Unfortunately there is little empirical evidence 

on this question.

[Figure 6 here]

Without deciding this one way or another, we can still make useful statements about 

the combined model. Consider the expected number of different traits S in a 

population. If n = 1, Strimling et al. (2009) derived an analytical approximation for S, 

which shows that, for realistic but high values of these parameters, say N = 100, a = 

0.9, and μ = 0.5, then S ≈ 133 traits. On the other hand, if n > 1 no analytical 

approximation for S is known, but we can approximate S by following Strimling et al. 

and noting that S = μNT, where T is the expected lifetime, in generations, of a newly 

invented trait. We conducted simulations that showed that even for very small values 

of the parameters which satisfy the criterion an > 1, say N = 30, a = 0.65, and n = 2, 

then T  ≈ 100, and T increases very rapidly with increases in the parameters. 

Assuming additionally a low value for innovativeness, e.g. μ = 0.1, then S ≈ 300 traits

(Fig. 7) and rises very quickly into the thousands and tens of thousands of traits with 

increases in the parameters. Moreover, the condition an >1 is also the condition for 

cumulative culture to arise, as noted above.

[Figure 7 here]

5. Discussion
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Our models give results that mimic the phenomena of between-population cultural 

traditions and cumulative culture in reasonably realistic ways. In our model of cultural

traditions (Model 1) we find that realistic differences between populations are 

maintained despite assuming that all individuals invent the same traits in the same 

order, individuals learn from only a single demonstrator, and despite frequent 

migration between populations. This occurs because traits die out with non-negligible 

frequency, and most traits do not spread beyond their inventor. In our model of 

cumulative culture (Model 2), we find that the accuracy of social learning and the 

number of cultural demonstrators interact to determine the cumulative level of a trait 

that a population can stably maintain, and that portions of the parameter space feature 

realistic levels of accumulation.

Results from Model 1 show that it is surprisingly easy to generate realistic cultural 

traditions, defined as moderately dissimilar trait profiles in different populations 

linked by migration, in contrast to the lack of spread of any cultural traits (the absence

of culture), or the homogenisation of all populations to an identical trait profile (the 

absence of traditions). Inter-population similarity increases with social learning 

accuracy, population size and migration rate, but traditions reliably emerge at broad 

ranges of values of these parameters rather than a specific range. Even assuming very 

inaccurate social learning (e.g. a = 0.1), as is often claimed to characterize non-human

social learning, we still obtain values of inter-population similarity that match those 

found empirically, at realistic population sizes and migration rates (Fig. 2). In general,

Model 1 is in line with analyses indicating that behavioural traditions in non-human 

primates are cultural rather than genetic (Lycett et al., 2007; 2010), and in fact 

suggests that stable cultural traditions may be more widespread in nature than 
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currently thought. Indeed, since the landmark paper by Whiten et al. (1999), more and

more cultural traditions have been identified in diverse species as researchers have 

begun to look for such patterns (Laland and Galef, 2009). Furthermore, the time series

in Fig. 1a imply that phenomena such as chimpanzee cultures have inherent historical 

dimensions (Lycett, 2010), which have begun to be investigated using archaeological 

(Haslam et al., 2009) and phylogenetic (Lycett et al., 2010) methods. On the grounds 

of phylogenetic homology, we might also therefore expect traditions in prehistoric 

hominins to have displayed similar historical dynamics (Kuhn, 2004; Lycett, 2013).

Results from Model 2 imply that cumulative culture is more difficult to generate: note

the large parameter space in Fig. 5c where accumulation does not occur (i.e. 



l = 1). 

Cumulative culture requires some combination of high fidelity social learning and 

multiple demonstrators, replicating the findings of previous macroscopic (Henrich, 

2004; Lewis and Laland, 2012) and non-cumulative (Enquist et al., 2010) models. The

relative unimportance of individuals’ innovativeness is supported by comparative 

work showing that humans appear to possess unusually high-fidelity social learning, 

and are roughly comparable in their individual learning abilities, compared to other 

great apes (Dean et al., 2012; Herrmann et al., 2007). This reinforces arguments that 

humans inhabit a ‘cultural niche’ (Boyd et al., 2011), characterized by faithful social 

learning rather than particularly enhanced individual cognitive abilities.

The dependence of cumulative culture on two different factors may help to explain its 

rarity in nature. Our analysis of the combined Model 3 reinforced this further, 

showing that social learning accuracy and number of demonstrators interact to 

generate two qualitative regimes dictating both number of traits and trait complexity. 
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When an <1, the number of traits known in the population is relatively low and there 

is no cumulative culture. When an >1, many traits are known in the population and 

there can be cumulative culture. To our knowledge, this is the first time this link 

between trait number and trait complexity has been drawn. It seems plausible that 

these regimes correspond qualitatively to nonhuman and human cultures, respectively:

human culture is not only cumulative, as noted in the Introduction, but also has a huge

number of both cumulative and non-cumulative traits (see Mesoudi et al., 2004 for 

estimations of the magnitude of human cultural variation).

We caution that the models we have presented contain many simplifying assumptions.

We assumed that our parameters (e.g. innovativeness, social learning accuracy) 

operate identically across all individuals, whereas in reality these probably vary across

individuals. The extent to which this individual variation is important, or just averages

out at the population level, remains to be determined. More complex and realistic 

social learning biases are possible, such as copying successful individuals (Mesoudi, 

2008) or conforming to the group majority (Henrich and Boyd, 1998). However, we 

note that adding such biases is not straightforward given the ambiguous and often 

conflicting evidence across non-human species for biases such as conformity (van 

Leeuwen and Haun, 2013). Moreover, we might expect in some cases that such biases

will magnify our findings: conformity, for example, emphasises between-population 

variation (Henrich and Boyd, 1998), thus reinforcing our conclusion that cultural 

traditions should be commonplace. Another interesting question is whether our 

assumption in Model 2 that individuals copy n demonstrators once per generation is 

reasonable. It is also possible that individuals may sample the same demonstrator(s) 

multiple times over their lifetime. Whether multiple learning trials, as well as (or 
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instead of) access to multiple models, facilitates cumulative culture, and which of 

these is a more realistic assumption, remains to be explored.

The emergence of cumulative culture in human evolution is sometimes framed in 

terms of cognition vs. demography: was there some genetically-derived change in 

hominin cognition such that social learning became more accurate (e.g. via imitation 

or teaching) and which allowed cumulative culture to take off (Klein, 2009), or did 

cumulative culture emerge when populations became large enough to support 

increasing cultural complexity (Henrich, 2004; Powell et al., 2009)? Our models 

suggest that the answer to this question is unlikely to be one or the other, and the 

interaction between social learning accuracy and number of demonstrators is key. We 

also note that our (and other modellers’) parameters do not necessarily neatly map 

onto ‘cognition’ and ‘demography’. While it is possible that social learning accuracy 

improved through some genetically-based adaptation for imitation or theory of mind, 

it could equally have increased through purely cultural means. Examples of this in 

recent history might include the invention of writing or the printing press, which 

would have dramatically reduced errors in cultural transmission (see Mesoudi, 2011 

for a cumulative culture model incorporating such cultural innovations). Some kind of

prehistoric equivalent may have similarly driven increases in early hominin social 

learning accuracy, and hence cumulative culture. Similarly, an increase in the number 

of demonstrators may have depended straightforwardly on the overall population size.

Alternatively, it may have required cognitive changes that allowed a shift from 

vertical uniparental cultural transmission to ‘many-to-one’ cultural transmission 

(Cavalli-Sforza and Feldman, 1981), independently of overall population size. 
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Modelling alone cannot ultimately address such questions, but can guide comparative 

and archaeological study to begin to answer them.

In conclusion, we have presented a set of models that extend and combine previous 

theoretical findings concerning the emergence of cultural traditions and cumulative 

culture. Regarding the former, we find that empirically realistic patterns of cultural 

traditions are surprisingly easy to generate with minimal assumptions, supporting 

recent work suggesting that cultural traditions are widespread in nature. Regarding the

latter, we reinforce previous findings that cumulative culture can only emerge through

an interaction of social learning accuracy and number of demonstrators, and that these

conditions favour both a rapid increase in the number and cumulative complexity of 

cultural traits. We suggest that this two-parameter threshold is why cumulative culture

is restricted to just our own species.
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Figures

Figure 1. One simulation of the cultural differences model. (a) Time series of the 

number of traits S known in each population. The initial part of the simulation is not 

shown. The dashed line shows the exact expected value derived by Strimling et al 

(2009, Equation 3). (b) Trait-profiles of each population at the end of the simulation, 

with grey cells marking the presence of a given trait in a given population and white 

cells marking its absence. The average similarity 



s between the populations is 0.71. 

Parameter values: N = 100, a = 0.9, μ = 0.1, m = 0, p = 5.
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Figure 2. The effect of (a) the population size N, (b) the accuracy of social learning a, 

and (c) both, on the mean similarity between populations 



s. Panel (c) shows the value 

of 



s on a contour plot in an analogous way to a geographical map showing the height 

of a mountain at various points in space. All panels show the value found after 2000 

timesteps, averaged over 1500 simulations with parameter values μ = 0.1, p = 5, and 

m = 0; in (a) a = 0.9 and in (b) N = 50.
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Figure 3. The effect of the migration rate m on (a) the mean number of different traits 

across all populations 



S  and (b) the mean similarity between populations 



s. Both 

panels show the value found after 2000 timesteps, averaged over 2000 simulations 

with parameter values N = 50, a = 0.9, μ = 0.1, and p = 5.
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Figure 4. One simulation of the cumulative culture model. (a) Time series of the mean

level 



l 



lknown in the population. (b) The distribution of levels in the population at 

the end of the simulation. Parameter values: N = 100, a = 0.7, n = 3, μ = 0.1.
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Figure 5. The effect of (a) the number of cultural models n, (b) the accuracy of social 

learning a, and (c) both, on the mean trait level 



l maintained in the population. All 

panels show the value found after 10000 timesteps, averaged over 20 simulations, 

with N = 100 and μ = 0.1; in (a) a = 0.9 and in (b) n = 3.
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Figure 6. A schematic illustration of the structure of the traits and trait levels for one 

hypothetical individual in the combined Model 3. In this example, the individual 

knows trait number 1 to level 5, trait number 2 to level 4, trait number 3 only at the 

first level, does not know trait number 4, and knows trait number 5 to level 2.
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Figure 7. The number of traits known in the population in one simulation of the 

combined model. Parameter values: N = 30, n = 2, a = 0.7, μ = 0.1, m = 0, p = 1.
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Appendix

Imagine, in Strimling et al’s model (i.e. with m = 0), that a focal individual has just 

invented a new trait. In the next timestep, one of three things can happen: the trait can 

be lost because the individual dies, the trait can continue to be known only by the 

inventor, or another individual can learn the trait. Let us denote the probabilities of 

these three events by plost, pkept and pcopied. The trait will be lost if the inventor is 

randomly picked to die; thus,

plost = 



1

N

The trait will be learned by another individual if the inventor does not die, and the

individual randomly picks the inventor to learn from, and is successful at learning; 

thus,

pcopied = 



(1
1

N
)(

1

N 1
)a 

a

N

Finally,

pkept = 1 - plost - pcopied = 



1
1

N

a

N

N  a 1

N

What is the probability P(t) that the trait is learnt by another individual for the first 

time exactly t timesteps after it was invented? For this to happen, the trait must 

continue to be known only by the inventor for t - 1 timesteps, and must then be learnt 

by another individual on the tth. Thus,



P(t)  pkept
t1 pcopied  (

N  a 1

N
)t1

a

N

Finally, what is the probability that the trait will ever spread beyond its inventor? This 

happens if P(t) ever happens, i.e. with probability



P(t)
t1



  (
N  a 1

N
)t1

a

Nt1





35

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678



Using the standard identity for infinite geometric series, this can be shown to be equal

to



a

1 a
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