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Abstract. This study investigates the effectiveness of a

sensitivity-informed method for multi-objective operation of

reservoir systems, which uses global sensitivity analysis as

a screening tool to reduce computational demands. Sobol’s

method is used to screen insensitive decision variables and

guide the formulation of the optimization problems with

a significantly reduced number of decision variables. This

sensitivity-informed method dramatically reduces the com-

putational demands required for attaining high-quality ap-

proximations of optimal trade-off relationships between con-

flicting design objectives. The search results obtained from

the reduced complexity multi-objective reservoir operation

problems are then used to pre-condition the full search of

the original optimization problem. In two case studies, the

Dahuofang reservoir and the inter-basin multi-reservoir sys-

tem in Liaoning province, China, sensitivity analysis results

show that reservoir performance is strongly controlled by a

small proportion of decision variables. Sensitivity-informed

dimension reduction and pre-conditioning are evaluated in

their ability to improve the efficiency and effectiveness of

multi-objective evolutionary optimization. Overall, this study

illustrates the efficiency and effectiveness of the sensitivity-

informed method and the use of global sensitivity analysis to

inform dimension reduction of optimization problems when

solving complex multi-objective reservoir operation prob-

lems.

1 Introduction

Reservoirs are often operated considering a number of con-

flicting objectives (such as different water uses) related to

environmental, economic, and public services. The optimiza-

tion of the reservoir operation system (ROS) has attracted

substantial attention over the past several decades. In China

and many other countries, reservoirs are operated according

to reservoir operation rule curves which are established at the

planning/design stage to provide long-term operation guide-

lines for reservoir management to meet expected water de-

mands. Reservoir operation rule curves usually consist of a

series of storage volumes or levels at different periods (Liu

et al., 2011a, b).

In order to solve the ROS problem, there are different

approaches, such as implicit stochastic optimization (ISO),

explicit stochastic optimization (ESO), and parameter sim-

ulation optimization (PSO) (Celeste and Billib, 2009). ISO

uses deterministic optimization, e.g., dynamic programming,

to determine a set of optimal releases based on the current

reservoir storage and equally likely inflow scenarios (Young,

1967; Karamouz and Houck, 1982; Castelletti et al., 2012;

François et al., 2014). Instead the use of equally likely in-

flow scenarios, ESO incorporates inflow probability directly

into the optimization process, including stochastic dynamic

programming and Bayesian methods (Huang et al., 1991;

Tejada-Guibert et al., 1995; Powell, 2007; Goor et al., 2010;

Xu et al., 2014). However, many challenges remain in ap-

plication of these two approaches due to their complexity

and ability to deal with conflicting objectives (Yeh, 1985; Si-
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monovic, 1992; Wurbs, 1993; Teegavarapu and Simonovic,

2001; Labadie, 2004).

In a different way, PSO predefines a rule curve shape and

then utilizes optimization algorithms to obtain the combina-

tion of rule curve parameters that provides the best reser-

voir operating performance under possible inflow scenarios

or a long inflow series (Nalbantis and Koutsoyiannis, 1997;

Oliveira and Loucks, 1997). In this way, most stochastic as-

pects of the problem, including spatial and temporal corre-

lations of unregulated inflows, are implicitly included, and

reservoir rule curves could be derived directly with genetic

algorithms and other direct search methods (Koutsoyiannis

and Economou, 2003; Labadie, 2004). Because PSO reduces

the curse of dimensionality problem in ISO and ESO, it is

widely used in reservoir operation optimization (Chen, 2003;

Chang et al., 2005; Momtahen and Dariane, 2007). In this

study, the PSO-based approach is used to solve the ROS

problem.

In the PSO procedure to solve the ROS problem, the val-

ues of storage volumes or levels in reservoir operation rule

curves are optimized to achieve one or more objectives di-

rectly. Quite often, there are multiple curves, related to dif-

ferent purposes of reservoir operation. The dimension of a

ROS problem depends on the number of the curves and the

number of time periods. For a cascaded reservoir system, the

dimension can be very large, which increases the complexity

and problem difficulty and poses a significant challenge for

most search tools currently available (Labadie, 2004; Draper

and Lund, 2004; Sadegh et al., 2010; Zhao et al., 2014).

In the context of multi-objective optimal operation of

a ROS, there is not one single operating policy that im-

proves simultaneously all the objectives and a set of non-

dominating Pareto-optimal solutions are normally obtained.

The traditional approach to multi-objective optimal reservoir

operation is to reformulate the multi-objective problem as a

single-objective problem through the use of some scalariza-

tion methods, such as the weighted sum method (Tu et al.,

2003, 2008; Shiau, 2011). This method has been developed

to repeatedly solve the single-objective problem using differ-

ent sets of weights so that a set of Pareto-optimal solutions

to the original multi-objective problem could be obtained

(Srinivasan and Philipose, 1998; Shiau and Lee, 2005). An-

other well-known method is the ε-constraint method (Ko et

al., 1997; Mousavi and Ramamurthy, 2000; Shirangi et al.,

2008): all the objectives but one are converted into con-

straints and the level of satisfaction of the constraints is op-

timized to obtain a set of Pareto-optimal solutions. However,

with the increase in problem complexity (i.e., the number of

objectives or decision variables), both approaches become in-

efficient and ineffective in deriving the Pareto-optimal solu-

tions.

In the last several decades, bio-inspired algorithms and

tools have been developed to directly solve multi-objective

optimization problems by simultaneously handling all the

objectives (Nicklow et al., 2010). In particular, multi-

objective evolutionary algorithms (MOEAs) have been in-

creasingly applied to the optimal reservoir operation prob-

lems, with the intent of revealing trade-off relationships be-

tween conflicting objectives. Suen and Eheart (2006) used

the non-dominated sorting genetic algorithm (NSGAII) to

find the Pareto set of operating rules that provides decision

makers with the optimal trade-off between human demands

and ecological flow requirements. H. F. Zhang et al. (2013)

used a multi-objective adaptive differential evolution com-

bined with chaotic neural networks to provide optimal trade-

offs for multi-objective long-term reservoir operation prob-

lems, balancing hydro-power operation and the requirement

of a reservoir ecological environment. Chang et al. (2013)

used an adjustable particle swarm optimization – genetic al-

gorithm hybrid algorithm to minimize water shortages and

maximize hydro-power production in management of Tao

River water resources.

However, significant challenges remain for using MOEAs

in large, real-world ROS applications. The high dimension-

ality of ROS problems makes it very difficult for MOEAs

to identify “optimal or near-optimal” solutions with the com-

puting resources that are typically available in practice. Thus,

the primary aim of this study is to investigate the effective-

ness of a sensitivity-informed optimization methodology for

multi-objective reservoir operation, which uses sensitivity

analysis results to reduce the dimension of the optimization

problems, and thus improves the search efficiency in solv-

ing these problems. This framework is based on the previ-

ous study by Fu et al. (2012), which developed a framework

for dimension reduction of optimization problems that can

dramatically reduce the computational demands required to

obtain high-quality solutions for optimal design of water dis-

tribution systems. The ROS case studies used to demonstrate

this framework consider the optimal design of reservoir wa-

ter supply operation policies. Storage volumes at different

time periods on the operation rule curves are used as de-

cision variables. It has been widely recognized that the de-

termination of these decision variables requires a balance

among different ROS objectives. Sobol’s sensitivity analy-

sis results are used to form simplified optimization prob-

lems considering a small number of sensitive decision vari-

ables, which can be solved with a dramatically reduced num-

ber of model evaluations to obtain Pareto-approximate solu-

tions. These Pareto-approximate solutions are then used to

pre-condition a full search by serving as starting points for

the multi-objective evolutionary algorithm. The results from

the Dahuofang reservoir and inter-basin multi-reservoir sys-

tem case studies in Liaoning province, China, whose con-

flicting objectives are minimization of industry water short-

age and minimization of agriculture water shortage, illus-

trate that sensitivity-informed dimension reduction and pre-

conditioning provide clear advantages to solve large-scale

multi-objective ROS problems effectively.
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2 Problem formulation

Most reservoirs in China are operated according to rule

curves, i.e., reservoir water supply operation rule curves.

Since they are based on actual water storage volumes, they

are simple to use. Figure 1 shows an illustration of rule

curves for Dahuofang reservoir based on 36 10-day periods.

As we know, water demand can be fully satisfied only

when there is sufficient water in the reservoir. The water sup-

ply operation rule curve, which is used to operate most reser-

voirs in China, represents the limited storage volume for wa-

ter supply in each period of a year. In detail, water demand

will be fully satisfied when the reservoir storage volume is

higher than the water supply operation rule curve; conversely,

water demand needs to be rationed when the reservoir storage

volume is lower than the water supply operation rule curve.

In general, a reservoir has more than one water supply tar-

get, and there is one to one correspondence between water

supply rule curve and water supply target. The water supply

with lower priority will be limited prior to the water sup-

ply with higher priority when the reservoir storage volume is

not sufficient. To reflect the phenomenon that different wa-

ter demands can have different reliability requirements and

thus different levels of priority in practice, the operation rule

curve for the water supply with the lower priority is located

above the operation rule curve for the water supply with the

higher priority.

Figure 1 shows water supply operation rule curves for agri-

culture and industry where the maximum storage is smaller

in the middle due to the flood control requirements in wet

seasons. In Fig. 1, the red line with circles represents the

water supply rule curve for agriculture, the green line with

triangles represents the water supply rule curve for industry.

The water supply rule curve for agriculture with lower prior-

ity is located above the water supply rule curve for industry

with higher priority. The water storage available between the

minimum and maximum storages is divided into three parts:

zone 1, zone 2, and zone 3 by the water supply rule curves

for agriculture and industry.

Specifically, both the agricultural demand D1 and the in-

dustrial demand D2 could be fully satisfied when the actual

water storage is in zone 1, which is above the water supply

rule curve for agriculture. When the actual water storage is in

zone 2, the industrial demand could be fully satisfied, and the

agricultural demand has to be rationed. Both the agricultural

demand and the industrial demand have to be rationed when

the actual water storage is in zone 3. The water supply rule

for a specific water user consists of one water supply rule

curve and rationing factors that indicate the reliability and

priority of the water user. The rationing factors used to deter-

mine the amount of water supply for different water demands

can be either assigned according to the experts’ knowledge

or determined by optimization (Shih and ReVelle, 1995). In

this paper, rationing factors are given at the reservoir’s design

stage according to the tolerable elastic range of each water

Figure 1. Reservoir operational rule curves.

user in which the damage caused by rationing water supply

is limited. Assuming that the specified water rationing factor

α1 is applied to the water supply rule curve for agriculture

in Fig. 1, the agricultural demand D1 could be fully supplied

without rationing when the actual water storage is in zone 1;

however, when the water storage is in zone 2 or zone 3, the

agricultural demand has to be rationed, i.e., α1×D1. Simi-

larly, assuming that the specified water rationing factor α2 is

applied to the water supply rule curve for industry in Fig. 1,

the industrial demand D2 could be fully supplied without ra-

tioning when the actual water storage is in zone 1 or zone 2;

however, when the water storage is in zone 3, the industrial

demand has to be rationed, i.e., α2×D2.

To provide long-term operation guidelines for reservoir

management for meeting expected water demands for fu-

ture planning years, the projected water demands and long-

term historical inflow are used. The optimization objective

for water supply operation rule curves is to minimize water

shortages during the long-term historical period. The ROS

design problem is formulated as a multi-objective optimiza-

tion problem, i.e., minimizing multiple objectives simultane-

ously. In this paper, the objectives are to minimize industry

and agriculture water shortages:

minfi (x)= SIi =
100

N

N∑
j=1

(
Di,j −Wi,j (x)

Di,j

)2

, (1)

where x is the vector of decision variables, i.e., the water

storages at different periods on a water supply rule curve; SIi
is the shortage index for water demand i (agricultural water

demand when i = 1, industrial water demand when i = 2),

which measures the average annual shortage occurred during

N years, and is used as an indicator to reflect water supply

efficiency; N is the total number of years simulated; Di,j
is the demand for water demand i during the j th year; and

Wi,j (x) is the actually delivered water for water demand i

during the j th year. The term Wi,j (x) is calculated below

using agricultural water demand (i = 1) as an example. If the

actual water storage is above the water supply rule curve for

agricultural water demand (i = 1) at period t in a year, the

delivered water at period t is its full demand without being
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rationed, D1,t . If the actual water storage is below the water

supply rule curve for agricultural water demand at period t ,

the delivered water for agricultural water demand at period t

is its rationed demands, α1×D1,t .

For the ROS optimization problem, the mass balance equa-

tions are

St+1− St = It −Rt − SUt −Et , (2)

Rt = g (x) , SUt = k (x) , Et = e (x) , (3)

STmin
t ≤ St ≤ ST

max
t , STmin

t ≤ x ≤ STmax
t , (4)

where St is the initial water storage at the beginning of period

t ; St+1 is the ending water storage at the end of period t ; It ,

Rt , SUt , and Et are inflow, delivery for water use, spill and

evapotranspiration loss, respectively; and STmax
t and STmin

t

are the maximum and minimum storage, respectively. Addi-

tionally, because Wi,j (x) in Eq. (1) is the actually delivered

water for water demand i during the j th year, R in that year

is equal to the sum: W1,j (x)+W2,j (x).

3 Methodology

Pre-conditioning is a technique that uses a set of known good

solutions as starting points to improve the search process

of optimization problems (Nicklow et al., 2010). It is very

challenging to determine good initial solutions, and differ-

ent techniques including the domain knowledge can be used.

This study utilizes a sensitivity-informed dimension reduc-

tion to develop simpler search problems that consider only a

small number of highly sensitive decisions. The results from

these simplified search problems can be used to successively

pre-condition the search for larger, more complex formula-

tions of ROS design problems. The ε-NSGAII, a popular

multi-objective evolutionary algorithm, is chosen as it has

been shown to be effective for many engineering optimiza-

tion problems (Kollat and Reed, 2006; Tang et al., 2006;

Kollat and Reed, 2007). For the two objectives considered in

this paper, their epsilon values in ε-NSGAII (εSI1
and εSI2

)

were chosen based on reasonable and practical requirements

and were both set to 0.01. According to the study by Fu et

al. (2012), the sensitivity-informed methodology, as shown

in Fig. 2, has the following steps:

1. Perform a sensitivity analysis using Sobol’s method to

calculate the sensitivity indices of all decision variables

regarding the ROS performance measure.

2. Define a simplified problem that considers only the

most sensitive decision variables by imposing a user

specified threshold (or classification) of sensitivity.

3. Solve the simplified problem using ε-NSGAII with a

small number of model simulations.

4. Solve the original problem using ε-NSGAII with the

Pareto-optimal solutions from the simplified problem

fed into the initial population.

Figure 2. Flowchart of the sensitivity-informed methodology.

3.1 Sobol’s sensitivity analysis

Sobol’s method was chosen for sensitivity analysis because it

can provide a detailed description of how individual variables

and their interactions impact model performance (Tang et al.,

2007b; C. Zhang et al., 2013). A model could be represented

in the following functional form:

y = f (x)= f
(
x1, · · ·,xp

)
, (5)

where y is the goodness-of-fit metric of model output, and

x =
(
x1, · · ·,xp

)
is the parameter set. Sobol’s method is a

variance-based method, in which the total variance of model

output,D(y), is decomposed into component variances from

individual variables and their interactions:

D(y)=
∑
i

Di +
∑
i<j

Dij +
∑
i<j<k

Dijk + ·· ·+D12···m, (6)

whereDi is the amount of variance due to the ith variable xi ,

and Dij is the amount of variance from the interaction be-

tween xi and xj . The model sensitivity resulting from each

variable can be measured using the Sobol’s sensitivity in-

dices of different orders:

First-order index: Si =
Di

D
, (7)

Second-order index: Sij =
Dij

D
, (8)

Total-order index: ST i = 1−
D∼i

D
, (9)

where D∼i is the amount of variance from all the variables

except for xi , the first-order index Si measures the sensitivity

from the main effect of xi , the second-order index Sij mea-

sures the sensitivity resulting from the interactions between

xi and xj , and the total-order index ST i represents the main

effect of xi and its interactions with all the other variables.

3.2 Performance metrics

Since an MOEA uses random-based search, performance

metrics are used in this study to compare the quality of
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Table 1. Reservoir characteristics and yearly average inflow (106 m3).

Reservoir Minimum Utilizable Flood control Yearly average

name capacity capacity capacity inflow

Dahuofang 134 1430 1000 1570

the approximation sets derived from replicate multi-objective

evolutionary algorithm runs. Three indicators were selected:

the generational distance (Veldhuizen and Lamont, 1998),

the additive ε-indicator (Zitzler et al., 2003), and the hyper-

volume indicator (Zitzler and Thiele, 1998).

The generational distance measures the average Euclidean

distance from solutions in an approximation set to the near-

est solution in the reference set, and indicates perfect per-

formance with zero. The additive ε-indicator measures the

smallest distance that a solution set needs to be translated to

completely dominate the reference set. Again, smaller val-

ues of this indicator are desirable as this indicates a closer

approximation to the reference set.

The hypervolume indicator, also known as the S metric or

the Lebesgue measure, measures the size of the region of ob-

jective space dominated by a set of solutions. The hypervol-

ume not only indicates the closeness of the solutions to the

optimal set but also captures the spread of the solutions over

the objective space. The indicator is normally calculated as

the volume difference between a solution set derived from an

optimization algorithm and a base solution set. In this study,

the worst case solution is chosen as base. For example, the

worst solution is (1, 1) for two minimization objectives in the

normalized objective space. Thus, larger hypervolume indi-

cator values indicate improved solution quality and imply a

larger distance from the worst solution.

4 Case study

Two case studies of increasing complexity are used to

demonstrate the advantages of the sensitivity-informed

methodology: (1) the Dahuofang reservoir, and (2) the inter-

basin multi-reservoir system in Liaoning province, China.

The inter-basin multi-reservoir system test case is a more

complex ROS problem with the Dahuofang, Guanyinge, and

Shenwo reservoirs. In the two ROS problems, the refer-

ence sets were obtained from all the Pareto-optimal solutions

across a total of 10 random seed trials, each of which was

run for a maximum number of function evaluations (NFEs)

of 500 000. Additionally, the industrial and agricultural wa-

ter demands in the future planning year, i.e., 2030, and the

historical inflow from 1956 to 2006 were used to optimize

reservoir operation and meet future expected water demands

in the two case studies.

4.1 Dahuofang reservoir

The Dahuofang reservoir is located in the main stream

of Hun River, in Liaoning province, northeast China. The

Dahuofang reservoir basin drains an area of 5437 km2, and

within the basin the total length of Hun River is approxi-

mately 169 km. The main purposes of the Dahuofang reser-

voir are industrial water supply and agricultural water supply

to central cities in Liaoning province. The reservoir charac-

teristics and yearly average inflow are illustrated in Table 1.

The Dahuofang ROS problem is formulated as follows: the

objectives are minimization of industrial shortage index and

minimization of agricultural shortage index as described in

Eq. (1); the decision variables include storage volumes on the

industrial and agricultural curves. For the industrial curve,

a year is divided into 24 time periods (with 10 days as the

scheduling time step from April to September, and 1 month

as the scheduling time step in the remaining months). Thus,

there are 24 decision variables for industrial water supply.

The agricultural water supply occurs only in the periods from

the second 10 days of April to the first 10 days of September;

thus, there are 15 decision variables for agricultural water

supply. In total, there are 39 decision variables.

4.2 Inter-basin multi-reservoir system

As shown in Fig. 3, the Dahuofang, Guanyinge, and Shenwo

reservoirs compose the inter-basin multi-reservoir system in

Liaoning province, China.

Liaoning province in China covers an area of 146×

103 km2 with an extremely uneven distribution of rainfall in

space. The average amount of annual precipitation decreases

from 1100 mm in the east to 600 mm in the west (MWR-

PRC, 2008). However, the population, industries, and agri-

cultural areas are mainly concentrated in the western parts.

Therefore, it is critical to develop the best water supply rules

for the inter-basin multi-reservoir system to decrease the risk

of water shortages caused by the mismatch of water supplies

and water demands in both water deficit regions and water

surplus regions. Developing inter-basin multi-reservoir wa-

ter supply operation rules has been promoted as a long-term

strategy for Liaoning province to meet the increasing water

demands in water shortage areas. In the inter-basin multi-

reservoir system of Liaoning province, the abundant water

in Dahuofang, Guanyinge, and Shenwo reservoirs is diverted

downstream to meet the water demands in water shortage ar-
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Table 2. Characteristics of each reservoir in the inter-basin multi-reservoir system.

Reservoir Active storage (106 m3) Role in water

Flood season Non-flood season supply project

Dahuofang 1000 1430 Supplying water

Guanyinge 1420 1420 Supplying water

and exporting

water to Shenwo

Shenwo 214 543 Supplying water

and importing water

from Guanyinge

Figure 3. Layout of the inter-basin multi-reservoir system.

eas, especially in the region between Daliaohekou and San-

hekou hydrological stations.

The main purposes of the inter-basin multi-reservoir sys-

tem are industrial water supply and agricultural water supply

to eight cities (Shenyang, Fushun, Anshan, Liaoyang, Panjin,

Yingkou, Benxi, and Dalian) of Liaoning province, and envi-

ronmental water demands need to be satisfied fully. The char-

acteristics of each reservoir in the inter-basin multi-reservoir

system are illustrated in Table 2.

The flood season runs from July to September, during

which the inflow takes up a large part of the annual in-

flow. The active storage capacities of Dahuofang and Shenwo

reservoirs reduce significantly during flood season for the

flood control.

The inter-basin multi-reservoir operation system problem

is formulated as follows: the objectives are minimization of

industrial shortage index and minimization of agricultural

shortage index as described in Eq. (1). With regard to the

Shenwo reservoir, which has the same water supply oper-

ation rule curve features as Dahuofang reservoir, the deci-

sion variables include storage volumes on the industrial and

agricultural curves and there are 39 decision variables. Re-

garding Guanyinge reservoir, the decision variables include

storage volumes on the industrial curve and water transfer-

ring curve due to the requirement of exporting water from

Guanyinge reservoir to Shenwo reservoir in the inter-basin

multi-reservoir system, which is similar to the water supply

operation rule curve for industrial water demand, and there

are 48 decision variables. Therefore, the inter-basin multi-

reservoir system has six rule curves and 39× 2+ 48= 126

decision variables in total.

5 Results and discussions

5.1 Dahuofang reservoir

In the Dahuofang reservoir case study, a set of 2000 Latin hy-

percube samples were used per decision variable yielding a

total number of 2000× (39+ 2)= 82 000 model simulations

used to compute Sobol’s indices. Following the recommen-

dations of Tang et al. (2007a, b) boot strapping the Sobol

indices showed that 2000 samples per decision variable were

sufficient to attain stable rankings of global sensitivity.

The first-order indices representing the individual contri-

butions of each variable to the variance of the objectives are

shown in blue in Fig. 4. The total-order indices representing

individual and interactive impacts on the variance of the ob-

jectives are represented by the total height of bars. Agr4_2

represents the decision variable responding to water storage

volume on the agricultural curve at the second 10 days of

April and ind3_3 represents the decision variable responding

to water storage volume on the industrial curve at the last 10

days of March, and so on. Considering the shortage index for

the industrial water demand, the water storages at time peri-

ods ind1, ind2, ind3, ind10, ind11, and ind12, i.e., the water

storages at time periods 1, 2, 3, 10, 11, and 12 of water sup-

ply operation rule curves for industrial water demand are the

most sensitive variables, accounting for almost 100 % of the

total variance. Considering the agricultural shortage index,

the water storages at time periods from agr4-2 to agr5-3, i.e.,

the water storages at the first five time periods of water sup-

ply operation rule curves for agricultural water demand, are

the most sensitive variables. The explanation for the most

Hydrol. Earth Syst. Sci., 19, 3557–3570, 2015 www.hydrol-earth-syst-sci.net/19/3557/2015/



J. Chu et al.: Improving multi-objective reservoir operation optimization 3563

Figure 4. First-order and total-order indices for the Dahuofang ROS

problem regarding (a) industrial shortage index and (b) agricultural

shortage index. The x axis labels represent decision variables (water

storage volumes on the industrial and agricultural curves).

sensitive variables in water supply operation rule curves for

industrial and agricultural water demands will be provided in

Sect. 5.1.3.

5.1.1 Simplified problems

Building on the sensitivity results shown in Fig. 4, one sim-

plified version of the Dahuofang ROS problem is formulated:

only 11 periods are considered for optimization, i.e., time pe-

riods ind1, ind2, ind3, ind10, ind11, and ind12 for industrial

curve and agr4-2, agr4-3, agr5-1, agr5-2, and agr5-3 for agri-

cultural curve based on a total-order Sobol’s index thresh-

old of greater than 10 %. The threshold is subjective and its

ease-of-satisfaction decreases with increasing number of pa-

rameters or parameter interactions. In all of the results for

the Sobol’s method, parameters classified as the most sensi-

tive contribute, on average, at least 10 percent of the overall

model variance (Tang et al., 2007a, b). The full-search 39-

period problem serves as the performance baseline relative

to the reduced complexity problem.

5.1.2 Pre-conditioned optimization

In this section, the pre-conditioning methodology is demon-

strated using the 11-period simplification of the Dahuofang

ROS test case from the prior section, while the insensitive

decision variables are set randomly first with domain knowl-

edge and kept constant during the solution of the simplified

problem.

Using the sensitivity-informed methodology, the 11-

period case was first solved using ε-NSGAII with a maxi-

mum NFEs of 2000, and the Pareto-optimal solutions com-

bined with the constant insensitive decision variables were

then used as starting points to start a complete new search

with a maximum NFEs of 498 000. The standard search us-

ing ε-NSGAII was set to a maximum NFEs of 500 000, so

that the two methods have the same NFEs used for search. In

this case, 10 random seed trials were used given the comput-

ing resources available. The search traces in Fig. 5 show for

all three metrics (generational distance, additive epsilon in-

dicator, and hypervolume) that the complexity-reduced case

can reliably approximate their portions of the industrial and

agricultural water shortage trade-off given their dramatically

reduced search periods. All three metrics show diminishing

values at the end of the reduced search periods. The pre-

conditioning results are shown in Fig. 5 in red search traces

continuing from the blue reduced complexity search results.

Figure 5 clearly highlights that the sensitivity-informed

pre-condition problems dramatically enhance search effi-

ciency in terms of the generational distance, additive epsilon

indicator, and hypervolume metrics. Overall, sensitivity-

informed dimension reduction and pre-conditioning yield

strong efficiency gains and a more reliable search (i.e., nar-

rower band widths on search traces) for the Dahuofang ROS

test case.

Figure 6a shows Pareto fronts from a NFEs of 3000,

5000, and 8000 in the evolution process of one random seed

trial. In the case of the pre-conditioned search, the solutions

from 3000, 5000, and 8000 evaluations are much better than

the corresponding solutions in the case of standard baseline

search. The results show that the Pareto-approximate front

of the pre-conditioned search is much wider than that of the

standard search, and clearly dominates that of the standard

search in all the regions across the entire-objective space.

Figure 6b shows the best and worst Pareto fronts from a

NFEs of 500 000 and 8000 in the evolution process of 10

seed trials. In the case of the pre-conditioned search, the best

solutions from 500 000 evaluations are better than the corre-

sponding solutions in the case of standard baseline search.

Although it is obvious that there are not many differences

between solutions obtained from pre-conditioned search and

solutions from standard baseline search due to the complex-

ity of the problem, the best Pareto fronts from a NFEs of 8000

in the case of the pre-condition search are approximately the

same as the best Pareto fronts from a NFEs of 500 000 in the

case of the standard baseline search.
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Figure 5. Performance metrics for the Dahuofang ROS problem

– (a) generational distance, (b) additive epsilon indicator, and (c)

hypervolume.

Figure 7 shows the computational savings for two thresh-

olds of hypervolume values 0.80 and 0.85 in the evolution

process of each seed trial. In both cases of the thresholds

of hypervolume values 0.80 and 0.85, NFEs of the pre-

conditioned search is less than standard baseline search for

each seed. In the case of the threshold of hypervolume value

0.80, the average NFEs of full search and pre-conditioned

full search are approximately 94 564 and 25 083 for one seed

run, respectively, and the computation is saved by 73.48 %.

Although the NFEs of Sobol’s analysis are 82 000, the av-

erage NFEs of pre-conditioned full search is approximately

25 083+ 82 000 / 10= 33 283 for each seed run, and the

computational saving is 64.80 %.

Figure 6. Pareto fronts derived from pre-conditioned and standard

full searches for the Dahuofang ROS problem. (a) Sample Pareto

fronts with different numbers of function evaluations for one ran-

dom seed trial. (b) The best and worst Pareto fronts of 10 seed trials.

Similarly, in the case of the threshold of hypervolume

value 0.85, which is extremely difficult to achieve, the av-

erage NFEs of full search and pre-conditioned full search are

approximately 214 049 and 105 060 for each seed run, re-

spectively, and the computation is saved by 50.92 %. When

the computation demand by Sobol’s analysis is considered,

the computational saving is still 47.09 %.

5.1.3 Optimal operation rule curves

The rule curves for Dahuofang reservoir from the final Pareto

fronts based on the projected water demands and long-term

historical inflow are shown in Fig. 8 (S2). The effectiveness

and reasonability of the rule curves for Dahuofang reservoir

are analyzed as follows.

First, the optimal operational rule curves in Fig. 8 (S2)

have the same characteristics as they are used in practice.

During the pre-flood season (from April to June), the curves

gradually become lower so that they can reduce the probabil-

ity of limiting water supply and empty the reservoir storage

for the flood season (from July to early September). Dur-
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Figure 7. Computational savings for two hypervolume values –

(a) hypervolume= 0.80 and (b) hypervolume= 0.85.

ing the flood season, the curves also stay in low positions

owing to the massive reservoir inflow and the requirement

of flood control, so that it is beneficial to supply as much

water as possible. However, during the season from mid-

September to March, the curves remain high, especially from

mid-September to October, in order to increase the proba-

bility of limiting water supply and retaining enough water

for later periods to avoid severe water supply shortages as

drought occurs.

Second, Fig. 8 (S2) shows that different water demands oc-

cur at different periods; e.g., industrial water demand occurs

throughout the whole year, and agricultural water demand

occurs only at the periods from the second 10 days of April

to the first 10 days of September. Especially during the flood

season, there are still agricultural water demands due to tem-

poral and spatial variations of rainfall though they are sig-

nificantly reduced. Furthermore, note that the water supply

curves are developed based on a historical, long-term rainfall

series and the projected demands are also based on historical

demands, covering stochastic uncertainties in demands and

rainfalls. Due to the higher priority of industrial water sup-

ply than agricultural water supply, the industrial water sup-

ply curve is closer to minimum storage throughout the year

than the agricultural water supply curve. Due to the conflict-

ing relationship between industrial and agricultural water de-

mands, the industrial water supply curve is higher during the

non-flood season, compared to the same curve in the flooding

season. Thus, if the industrial water supply curve is too low

during the non-flood season from January to April, which im-

plies that the industrial water demand is satisfied sufficiently,

there would not be enough water supplied for the agricul-

tural water demand in the same year. Similarly, if the indus-

trial water supply curve is too low during the non-flood sea-

son from September to December, there would not be enough

water supplied for the agricultural water demand in the next

1 or more years.

Third, the inflow and industrial water demands are rela-

tively stable during the non-flood seasons from January to

March and from October to December, so 1 month is taken as

the scheduling time step, which is in accordance with the re-

Figure 8. Optimal rule curves for different solutions: (S0) industry-

favouring solution, (S1) agriculture-favouring solution, and (S2)

compromised solution.

quirement of Dahuofang reservoir operation in practice. Due

to the larger amount of industrial water demand in periods 1,

2, 3, 10, 11, and 12 (January–March and October–December)

than other periods, the water storages at these time periods

are very important to industrial water supply, making them

the most sensitive variables. Because the agricultural water

demand is very high during the non-flood period from April

to May, the agricultural water supply curve at this time period

is higher, and the water storages at time periods from agr4-2

to agr5-3, i.e., the water storages at the first five time periods

of the water supply operation rule curve for agricultural wa-

ter demand, are the most important variables. On the other

hand, in practice, if the agricultural water demand could not

be satisfied at the first few periods of the water supply oper-

ation rule curve, the agricultural water supply at each period

throughout the year would be limited, i.e., the interactive ef-

fects from variables are noticeable at time periods from agr4-

2 to agr5-3.

Additionally, comparisons are made among the optimized

solutions from the final Pareto fronts, including the industry-

favouring solution (S0), agriculture-favouring solution (S1),

and compromised solution (S2). The comparisons of water

shortage indices among different solutions are shown in Ta-

ble 3, and the optimal rule curves for different solutions are

shown in Fig. 8.

It could be seen from Table 3 and Fig. 8 that there

are larger differences among different solutions. With the

industry-favouring solution (S0), the agricultural water sup-

ply curve at the period from April to May is the highest

among the three solutions. Because the agricultural water de-

mand is very high during the non-flood period from April

to May, the highest position of the agricultural water sup-

ply curve at these periods could be caused by the agricultural

water demand not being satisfied at the first few periods of

the agricultural water supply operation rule curve, and the

agricultural water supply at each period throughout the year

would be limited easily. Therefore, in S0, the industrial water

demand could be fully satisfied through limiting agricultural

water supply to a large extend, and lowering the industrial
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Table 3. Comparisons of water shortage indices among different solutions.

Solutions Water shortage index (–/no units)

Industrial Agricultural

water demand water demand

(S0) Industry-favouring solution 0.000 3.550

(S1) Agriculture-favouring solution 0.020 1.380

(S2) Compromised solution 0.007 1.932

water supply curve; industrial and agricultural water short-

age indices are 0.000 and 3.550, respectively. Opposite to S0,

the agricultural water demand in S1 could be satisfied largely

through lowering the agricultural water supply curve on the

period from April to May and raising the industrial water

supply curve; and industrial and agricultural water shortage

indices are 0.020 and 1.380, respectively. Compared with so-

lutions S0 and S1, two objectives are balanced in the compro-

mised solution (S2), where industrial and agricultural water

shortage indices are 0.007 and 1.932, respectively.

5.2 Inter-basin multi-reservoir system

5.2.1 Sensitivity analysis

Similarly to the Dahuofang case study, a set of 2000 Latin

hypercube samples were used per decision variable yielding

a total number of 2000×(126+ 2)= 256 000 model simula-

tions to compute Sobol’s indices in this case study.

The first-order and total-order indices for 126 decision

variables are shown in Fig. 9. Similarly to the results obtained

from the Dahuofang ROS problem in Fig. 4, the variance in

the two objectives, i.e., industrial and agricultural shortage

indices, are largely controlled by the water storages at time

periods from agr4-2 to agr5-3 of Shenwo reservoir water sup-

ply operation rule curves for agricultural water demand, and

the water storages at time periods from agr4-2 to agr5-3 of

Dahuofang reservoir water supply operation rule curves for

agricultural water demand, the water storages at time pe-

riods ind1, ind2, ind3, ind7-1, ind10, ind11, and ind12 of

Dahuofang reservoir water supply operation rule curves for

industrial water demand based on a total-order Sobol’s in-

dex threshold of greater than 3 %, which is subjective and its

ease-of-satisfaction decreases with increasing numbers of pa-

rameters or parameter interactions. These 17 time periods are

obvious candidates for reducing the dimension of the origi-

nal optimization problem and formulating a pre-conditioning

problem. Therefore, the simplified problem is defined from

the original design problem with the 109 intensive time pe-

riods removed, while the insensitive decision variables are

set randomly first with domain knowledge and kept constant

during the solution of the simplified problem. The increased

interactions across sensitive time periods in this test case

Figure 9. First-order and total-order indices for the inter-basin

multi-reservoir operation problem regarding industrial shortage in-

dex and agricultural shortage index. The x axis labels represent de-

cision variables (water storage volumes on the industrial, agricul-

tural and water transferring curves).

should be noted; these interactions verify that this problem

represents a far more challenging search problem.

5.2.2 Pre-conditioned optimization

Using the sensitivity-informed methodology, the simplified

problem was first solved using ε-NSGAII with a maximum

NFEs of 5000, and the Pareto-optimal solutions combined

with the constant insensitive decision variables were then

used as starting points to start a completely new search with

a maximum NFEs of 495 000. The standard search using ε-

NSGAII was set to a maximum NFEs of 500 000 so that

the two methods have the same NFEs used for search. In

this case, 10 random seed trials are used given the com-

puting resources available. Similarly to the results obtained

from the Dahuofang ROS problem in Fig. 5, the search

traces in Fig. 10 show all three metrics (generational dis-
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Figure 10. Performance metrics for the inter-basin multi-reservoir

water supply operation problem – (a) generation distance, (b) addi-

tive epsilon indicator, and (c) hypervolume.

tance, additive epsilon indicator, and hypervolume) that rep-

resent performance metrics for the inter-basin multi-reservoir

water supply operation system problem. Similarly, the pre-

conditioning results are shown in Fig. 10 in red search traces

continuing from the blue reduced complexity search results.

It is clear that the sensitivity-informed pre-condition prob-

lems enhance search efficiency in terms of the generational

distance, additive epsilon indicator, and hypervolume met-

rics. However, with the increase in problem complexity in

comparison to the first case study (i.e., the number of deci-

sion variables from 39 to 126), the search of the ROS opti-

mization problem becomes more difficult, and so the met-

rics obtained from the pre-conditioned search are not im-

proved greatly compared with the standard baseline search.

Both Figs. 5 and 10 show that sensitivity-informed dimen-

sion reduction and pre-conditioning could also yield strong

efficiency gains and more reliable search (i.e., narrower band

widths on search traces) for the inter-basin multi-reservoir

system.

Figure 11a shows Pareto fronts from a NFEs of 6000,

8000 and 10 000 in the evolution process of one random

seed trial. In the case of the pre-conditioned search, the so-

lutions from the three NFE snapshots are much better than

those from the standard baseline search. Similar to Fig. 6a,

the results show that the Pareto-approximate front of the pre-

conditioned search is much wider than that of the standard

search, and clearly dominates that of the standard search in

all the regions across the entire-objective space. Additionally,

in the case of the pre-conditioned search, the solutions from

6000 evaluations are as good as those from 8000 evaluations

and 10 000 evaluations. Furthermore, they are much better

than the solutions from the standard baseline search. It should

be noted that the slow progress in the Pareto-approximate

fronts from 6000 to 10 000 evaluations reveals the difficulty

of the inter-basin multi-reservoir operation system problem.

Figure 11b shows the best and worst Pareto fronts from

a NFEs of 500 000 in the evolution process of 10 seed tri-

als. Although it is obvious that the best Pareto-approximate

front of the pre-conditioned is approximately as good as that

of the standard search in all the regions across the entire-

objective space, the Pareto solutions from 10 trials of the pre-

conditioned search have significantly reduced variation, in-

dicating a more reliable performance of the pre-conditioned

method. In other words, the results show that the Pareto solu-

tion from one random seed trial of the pre-conditioned search

is as good as the best solution from 10 random seed trials of

the standard search. That is to say, in the case of the pre-

conditioned search, one random seed trial with a NFEs of

500 000 is sufficient to obtain the best set of Pareto solu-

tions; however, in the case of the standard search, 10 seed

trials with a total of 500 000×10= 5 000 000 NFEs are re-

quired to obtain the Pareto solutions. Note that the NFEs of

Sobol’s analysis are 256 000, which is about half of the NFEs

of one random seed trial. Thus, an improvement in search re-

liability can significantly reduce the computational demand

for a complex search problem such as the multi-reservoir

case study, even when the computation required by sensitiv-

ity analysis is included.

5.3 Discussions

The methodology tested in this study aims to reduce the num-

ber of decision variables through sensitivity-guided dimen-

sion reduction to form simplified problems. The optimiza-

tion results from the two ROS problems show the reduction

in decision space can make an impact on the reliability and

efficiency of the search algorithm. For the Dahuofang ROS

problem, recall that the original optimization problem has

39 decision variables, and the simplified problem has 11 de-

www.hydrol-earth-syst-sci.net/19/3557/2015/ Hydrol. Earth Syst. Sci., 19, 3557–3570, 2015



3568 J. Chu et al.: Improving multi-objective reservoir operation optimization

Figure 11. Pareto fronts derived from pre-conditioned and standard

full searches for the inter-basin multi-reservoir operation problem.

(a) Sample Pareto fronts with different numbers of function evalua-

tions for one random seed trial. (b) The best and worst Pareto fronts

of 10 seed trials.

cision variables based on Sobol’s analysis. In the case of the

inter-basin multi-reservoir operation system, the original op-

timization problem has 126 decision variables, and the sim-

plified problem has a significantly reduced number of de-

cision variables, i.e., 17. Searching in such significantly re-

duced space formed by sensitive decision variables makes it

much easier to reach good solutions.

Although Sobol’s global sensitivity analysis is computa-

tionally expensive, it captures the important sensitive infor-

mation between a large number of variables for ROS models.

This is critical for correctly screening insensitive decision

variables and guiding the formulation of ROS optimization

problems of reduced complexity (i.e., fewer decision vari-

ables). For example, in the Dahuofang ROS problem, ac-

counting for the sensitive information, i.e., using total-order

or first-order indices, results in a simplified problem for a

threshold of 10 % as shown in Fig. 4. Compared with the

standard search, this sensitivity-informed method dramati-

cally reduces the computational demands required for at-

taining high-quality approximations of optimal ROS trade-

offs relationships between conflicting objectives, i.e., the

best Pareto fronts from a NFEs of 8000 in the case of the

pre-condition search are approximately the same as the best

Pareto front from a NFEs of 500 000 in the case of the stan-

dard baseline search.

In reality, for a very large and computationally intensive

problem, the full search with all the decision variables would

likely be so difficult that it may not be optimized sufficiently.

However, as shown here, these simplified problems can be

used to generate high-quality pre-conditioning solutions and

thus dramatically improve the computational tractability of

complex problems. The framework could be used for solving

the complex optimization problems with a large number of

decision variables.

For example, Fu et al. (2012) has used the framework for

reducing the complexity of the multi-objective optimization

problems in water distribution system (WDS), and applied

it to two case studies with different levels of complexity –

the New York tunnels rehabilitation problem and the Any-

town water distribution network rehabilitation/redesign prob-

lem. For the New York tunnels network, because the original

optimization problem has 21 decision variables (pipes) and

each variable has 16 options, the decision space is 1621
=

1.934× 1025. The simplified problem with eight decision

variables based on Sobol’s analysis have a decision space of

168
= 4.295× 109. To obtain the same threshold of hyper-

volume value 0.78 for the New York tunnels rehabilitation

problem, the most pre-conditioned search need is 30 to 40 %

of the NFEs compared to the full search through 50 random

seed trials. In the case of the Anytown network, the origi-

nal problem has a space of 2.859× 1073, and the simplified

problem has a significantly reduced space of 8.364× 1038.

Through 50 random seed trials for the Anytown rehabilita-

tion/redesign problem, the full search requires an average of

800 000 evaluations to reach hypervolume value 0.77, and

the pre-conditioned search exceeds the hypervolume value

of 0.8 in all trials in fewer than 200 000 evaluations. The re-

sults also show that searching in such significantly reduced

space formed by sensitive decision variables makes it much

easier to reach good solutions, and the sensitivity-informed

reduction of problem size and pre-conditioning improve the

efficiency, reliability, and effectiveness of the multi-objective

evolutionary optimization.

It should be noted that the framework for sensitivity-

informed dimension reduction of optimization problems is

completely independent of multi-objective optimization al-

gorithms; that is, any multi-objective algorithms could be

embedded in the framework. When dealing with three or

more objectives, the formulation of the optimization prob-

lems with a significantly reduced number of decision vari-

ables will dramatically reduce the computational demands

required to attain Pareto-approximate solutions in a similar

way to the two-objective optimization case studies consid-

ered in this paper.
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6 Conclusions

This study investigates the effectiveness of a sensitivity-

informed optimization method for the ROS multi-objective

optimization problems. The method uses a global sensitiv-

ity analysis method to screen out insensitive decision vari-

ables and thus forms simplified problems with a signifi-

cantly reduced number of decision variables. The simplified

problems dramatically reduce the computational demands re-

quired to attain Pareto-approximate solutions, which them-

selves can then be used to pre-condition and solve the orig-

inal (i.e., full) optimization problem. This methodology has

been tested on two case studies with different levels of com-

plexity – the Dahuofang reservoir and the inter-basin multi-

reservoir system in Liaoning province, China. The results ob-

tained demonstrate the following:

1. The sensitivity-informed dimension reduction dramat-

ically increases both the computational efficiency and

effectiveness of the optimization process when com-

pared to the conventional, full search approach. This is

demonstrated in both case studies for both MOEA ef-

ficiency (i.e., the NFEs required to attain high-quality

trade-offs) and effectiveness (i.e., the quality approx-

imations of optimal ROS trade-offs relationships be-

tween conflicting design objectives).

2. The Sobol’s method can be used to successfully identify

important sensitive information between different deci-

sion variables in the ROS optimization problem and it is

important to account for interactions between variables

when formulating simplified problems.

Overall, this study illustrates the efficiency and effec-

tiveness of the sensitivity-informed method and the use of

global sensitivity analysis to inform dimension reduction.

This method can be used for solving the complex multi-

objective optimization problems with a large number of de-

cision variables, such as optimal design of water distribution

and urban drainage systems, distributed hydrological model

calibration, multi-reservoir optimal operation and many other

engineering optimization problems.
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