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Robustness oh-tracking and funnel control in the gap metric

Achim llchmann* and Markus Mueller**

Abstract— For m-input, m-output, finite-dimensional, linear A fundamentally different approach, the so-called “funnel
systems satisfying the classical assumptions of adaptive conitro controller”, was introduced in [11] in the context of the
(i.e., (i) minimum phase, (ii) relative degree one and (iii) positive following output regulation problem: this controller enss

definite high-frequency gain matrix), two control strategies are e . . .
considereg: theqwell-k);\gwnA-track?ng and funnel cont?ol. An prespecified transient behaviour of the tracking error, has

application of the A-tracker to systems satisfying (i)(iii) yields @ non-monotone gain, is simpler than the above adaptive
that all states of the closed-loop system are bounded ané| is  controller (actually it is not adaptive in so far the gain is
ultimately bounded by some prespecifiech > 0. An application  not dynamically generated) and does not invoke any internal
of the funnel controller achieves tracking of the errore within - \,54el. Funnel control has been applied to a large class
a prescribed performance funnel if applied to linear systems . . . . .
satisfying (i)—(iii). Moreover, all states of the closed-loop system ,Of sy;tems dgscnbed by .fu-n(.:t|ongl dlﬁgrentlal equations
are bounded. The funnel boundary can be chosen from a |arge |nC|Ud|ng n0n|lnear Or/and |nf|n|te d|mens|0nal SyStemé an
set of functions. systems with higher relative degree [12], it has been sgeces
Invoking the conceptual framework of the nonlinear gap  fully applied in experiments controlling the speed of efiect

metric, we show that the A-tracker and the funnel controller  yayices [13] (see [10] for further applications and a su)yey

are robust. In the present setup this means in particular that . g
Atracking and fun%el control c%pes with boundped input and and recently it has be shown that funnel control copes with

output disturbances and, more importantly, may be applied to  input constraints if a certain feasibility inequality hsl{5].
any system which is “close” (in terms of a “small” gap) to a The contribution of the present paper is to show that

system satisfying (i)—(iii), and which may not satisfy any of the tracker and the funnel controller amebust in the sense
classical conditions (|)“—(|||), as long as the initial conditions and {4t the control objectives (bounded signals and asynptoti
the disturbances are “small" tracking (when applying tha-tracker) and tracking within a

. INTRODUCTION prespecified performance funnel (when applying the funnel
controller), resp.) are still met if the\-tracker and the
Mannel controller, resp., are applied to any system “cldge”
. ) . . terms of the gap metric) to a system satisfying the classical
:h.‘; f.”t”ef Otfhthe Sys.tenl" ge'”f C‘ig”o'i%d' ig’”ezeg”g CONssumptions (i)—(iii). This will be achieved by exploiting
ributions to the area include [1], [15], [16], [18], [20]e, . the concept of (nonlinear) gap metric and graph topology

also, thg survey [10] and references therein). The clds§| Pm [5], [2]. The results are analogous in structure asehes
assumptions on such a system class — rather than a sm%em and [8]

system — of linearn-input, m-output systems are: (i) mini-
mum phase, (i) strict relative degree one and (iii) positiv A, System class
definite high-frequency gain matrix. Then the simple output
feedbacku(t) = —k(t) y(t) stabilizes each system belonging
to the above class and(-) adapted byk(t) = ||y(t)|>.

In this work we consider a variation thereof: the so-called #(t) = Ax(t) + Buy(t), z(0) = 2° e R™, } (1)
A-tracker, which has the advantage that, if tracking is the v1(t) = Cz(t),

control objective, it needs not to be combined with an irdérn which satisfy the classical assumptions in high-gain adapt
model and, more importantly, is applicable to systems in thg, o1 that is minimum phase with relative degree one and

presence of any additive input or outplit*-disturbances. . itive definite high-frequency gain matrix, i.e. theydse
However, two major drawbacks of the latter strategy,

are first, the gaink(t) is, albeit bounded, monotonically

In the early 1980s, a novel feature in classical adapti
control was introduced: adaptive control without ideritify

We consider the class of linear-dimensional,m-input
m-output systemsr(, m € N with n > m)

increasing which might finally become too large whence am- (A4,B,0C) ¢B ‘t(CB)T >0,
plifying measurement noise, and secondly, whilst asymptot oy . ) €R™™ VseC, :
performance is guaranteed, transient behaviour is nohtake o x Rrxm det sl, —A B 0
into account (apart from [17], where the issue of prescribed x Rmn ¢ c 0|7

transient behaviour is successfully addressed). The state space dimensianc N needs not to be known but
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imV = kerC; thenT := [B(CB)~!,V] is invertible and C. Performance funnel and funnel controller

For funnel control, the control objective, defined in the
A Ay 1 CB . ) . :
A5 Al T—B=|4 | following sub-section, will be captured in terms of the

T 'AT = [
performance funnel
CT = [Im Oan(nfm)} .

: . Fo = A{(t;e) € Roo x R™ [p(t)[le] <1},
Moreover, if (4, B,C) is minimum-phase, therd, has

spectrum in the open left half complex pla@e . Therefore, determined byy(-) belonging to

we replaceM,, ,,, by @ € WL(Rsg — Rxo),
e(0) =0, VE>0: p(t) >0,
Mn,m . .
A A B D := < p: Ry — Rxg| liminfy o () > 0,
(A,B,C) | A= [A; Aﬂ ,B= [01], Ve>0: gl ()" is
_J € 157£77Xm C=1[1,0], B, A, e Rmxm, b globally Lipschitz continuous
o gmxn | SPe¢ds) CC_, Note that the funnel boundary is given byy(t), t > 0;
B+ Bl >0 see Figure 2. The concept of performance funnel had been

introduced by [11]. There it is not assumed thdt) has the
Lipschitz condition as given i®; we incorporate this mild
assumption for technical reasons. The assumpti@) = 0
allows to start with arbitrarily large initial conditions, and
th = A1yr + Asz + CBuy, 11(0) = o) € R™, } ( output disturbanceg,. If for special applications the initial

and restrict our attention to systertd, B,C) € M, ,, In
Byrnes-Isidori normal form, see for example [14, Sec. 4]
ie.

2= Agyr + Ay, 2(0) = 20 € R value andy, are known, theny(0) = 0 may be relaxed
by ¢(0)]|y0(0) — C2°|| < 1, see also the simulations in
We will study the initial value problem (1) or (2) as Example 3.4.
plant P mapping the interior input signal; to the interior The funnel controller, for prespecifigd(-) € @, is given
output signaly;, in conjunction with thecontroller C (the by
A-tracker (4) or funnel controller (5) in our setup, resp.), o(t)
mapping the interior output-signak to the interior input uz(t) = —k(®)y2(t), k()= i~ ()
signal us, and in the presence of additive input/output — @yl
disturbancesi, yo so that and will be applied to (1) or (2). Note that the funnel
controller (5) is actually not an adaptive controller in the
ug = Ui+ uo, Yo = Y1+ ye, (3) sense that it is not dynamic. The gdif¥) is the reciprocal
of the distance betweem, = yo — y1 (i.e. the difference
of a reference signal, and the output of (1)) and the
+ o n funnel boundaryp(t)~!; and, loosely speaking, if the error
O approaches the funnel boundary, theeft) becomes large,
thereby exploiting the high-gain properties of the systeh a
precluding boundary contact.

as depicted in Figure 1.
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D. Control objectives

Fig. 1. The closed-loop systef#, C] We will study properties of the closed-loop system gen-
erated by the application of tha-tracker (4) or funnel
controller (5), resp., to systems (1) of clasd,, ,, or of

B. A-tracker class P,.,. (see below) in the presence of disturbances
For A > 0, k° € R, the adaptive\-tracker (uo,yo) (from signal spaces specified below) satisfying the
. _ interconnection equations (3).
k(t) = dist(ya(t), [ A, A]) - [ly2(0)]l,  k(0) = &°, } @) If, for prespecified\ > 0, the A-tracker (4) is applied
u(t) = —k(t)y2(t), to any system (1), belonging to the clasd,, ., in the
i 1,00 m
where, fore € R™, dist(e, [-\, \]) i= max{0, || — A}, has Presence of disturbancéao, yo) € W=>(Rxo — R™) x
. : . Wh>(R>y — R™) satisfying the interconnection equa-
been introduced by [9], and will be applied to (1) or (2).,. = .
; B . Ztjons (3), then the closed-loop system (2), (4), (3) is seppdo
The A-tracker overcomes the shortcomings of the “classical ; SV
, : 5 to meet the following control objectives:
adaptive controlleru(t) = —k(t)y(t), k(t) = ly@)|?, ) _
see [1], namely no internal model is required when tracking * 2l signals are bounded;
is the control objective and, more importantly, that the ¢ the output errorys(t) = yo(t) — 41 (t) of the output

classical controller fails stabilizing systems in the pres disturbance and the output of the linear system satisfies
of additive arbitrarily small input or output*>°-disturbances, lim sup dist(ys (£), [\, A]) = 0.
see [4]. t—o00



Alternatively, if, for prespecifiedr € ® determining the W?>°(R>, — R™), in case of funnel control, resp., the con-
funnel boundary, the funnel controller (5) is applied to anyrol objectives:lim sup,_, . dist(y2(t), [-A, A]) = 0, in case
system (1), belonging to the clagd,, ,,,, in the presence of of A-tracking, ory. evolves within a performance funnél,
disturbancegug, yo) € L= (R>o — R™) x WH>(Rso —  for prespecifiedr € ®, in case of funnel control, and (in both
R™) satisfying the interconnection equations (3), then theases) all signals and states of the closed-loops (2),4B), (
closed-loop system (2), (5), (3) is supposed to meet thend (2), (3), (5), resp., remain essentially bounded. Ma@go
control objectives: it is shown that the derivatives of the output signasys

. all signals are bounded:; and the staté ¥! ) are essentially bounded, too.

« the output erroryy(t) = yo(t) — y1(t) of the output ~ Write, for n,m € N with n > m,

disturbance and the output of the linear system evoIvesD[; = Mo % (R™ x R*™™) x R

in the funnel, in other words o
x WH2(Rsg — R™) x W (Rso — R™),
V=0 : (tya(t) € Fp = DY = My < (R™ x R"™™) x ®
{(t,y) € Roo x R™ [o(t)[lyll < 1}. x L%(Rsp — R™) x WH®(Rso — R™).

Proposition 2.1:Let n,m € N with n > m
and A > 0. Then there exists a continuous map
ve: Dy, — Rso such that, for all tuplesd =
([4: 421, B,C, (1, 1°), k°, ug, o) € D, the associated
closed-loop initial value problem (2), (3), (4) satisfies

H(u27 Y2, 2, k)HWLOO(REUHR"HMJA) <wve(d) (7)

and

liinsup ly=2()] < A (8)

Fig. 2. FunnelF, with ¢ € ® andinfiso @(t) ™1 = A

Furthermore, there exists a functiog : D{f’m — R>g, such
that, for all tuples: = ([g‘; fﬁ B, C, (y?,1°), 0,u0,90) €

_ _ D7 .., the associated closed-loop initial value prob-
The main result of the present paper is to show robustnegsy, (2), (3), (5) satisfies

of the A-tracker and funnel controller in the following sense:

E. Main result;: robustness

The control objectives should still be met [, B,C) € (K, u2, Y2, Ml Lo (mo g1 +m) w00 (Ro g —Rm) < VF(€)
M. is replaced by some systefal, B, C') belonging to 9)
the system class and
Vie>0: (t,y2t)) € Fp, =
AED B0 - "
Pam =4 €t | stabilizable  § 2 M, {(t:y) € Rao x R™ [o(®)llyll < 1} (10)
xR and detectable
x R™M*4

Proof: The first statement, i.e\-tracking, is proved
whereq,m € N with ¢ > m, and (4, B,C) is close (in by [7, Prop. 2.1]. A proof for the second statement, i.e. &Inn
terms of the gap metric) to a system belonging, ,,  control, can be found in [8, Prop. 2.1]. u
and the initial conditions and the disturbances are “small” m

For the purpose of illustration, we will further show that

a minimal realizatior(ﬁ,E,E) of the transfer function ) )
In this section we show that tha-tracker (4) and the

N(M - s) a.N.M >0 (6) funnel controller (5) are robust in the sense that one may
(s—a)(s+N)(s+ M)’ T ’ apply these controllers to any stabilizable and detectable
(which obviously does not satisfy any of the classical assystem which is “close” (in terms of a “small” gap) to any
sumptions since it is not minimum phase, has relative degrégstem inM,, ,,, as long as the initial conditions and the
2 and negative high-frequency gain) is the closer to a systegisturbances are “small”.
in M, ,, the largerN and M.

. ROBUSTNESS OFA\-TRACKING AND FUNNEL
CONTROL

S

A. The concept of the gap metric

Il. ADAPTIVE A-TRACKING AND FUNNEL CONTROL We refer the reader to [3, Sec. 2], [8, Sec. 3] and
In this section we show that tha-tracker (4) and the mainly [19, Ch. 6] for a detailed outline of all required
funnel controller (5) applied to any linear systém, B, C')  definitions for extended and ambient spaces, well posedness

of classM,, ., achieves, in presence of input/output disturthe nonlinear gap, gain-functions and gain-function $itgbi
bances(ug, yo) iIn WH*(R>o — R™) x WH>(Rs>o —  which are required for the results on robust stability in
R™), in case of A\-tracking, or in L*(R>y — R™) x  Section IIl.



However, we recall some basic concepts which are r&he directed nonlinear gaps given by

quired for the robustness analysis in this section. Foradign

spacesi/,)y and W = U x Y, recall the definitions for

local, global and regular well posedness: Assume that, for

plant and controller operato®: U, — Y,, u1 — yi1, and
C: Y, — Uy, y2 — ua, resp., the closed-loop

Ug = U1 + U2
P,C] : y1 = Puy, us = Cyo, 11
P.CT = b Y2 gy =y e (1)

0:T(U,Y) xT'(U,Y) — [0,00],
HTT(\I}_I”gPl (@)llw

(P1,Py) —  inf sup ,
VEOP, Py weGp \{0} 1Tl
>0

-

with the convention thad (P, P,) := o if Op, p, = 0.

We close this sub-section with an example. Define, for

corresponding to the closed-loop shown in Figure 1, has tife &V: M >0, =’ € R, ° € R® and any signal spaces for

existence and uniqueness property. For eagle VW, define
W, € (0,00], by the property

[0, wWay, ) := U
(1 ,102) € X

and (wy, wa) € W, x W,, with dom(wy, we) = [0, wy, ), by
the property:(wy, wsa)|jo+) solves (11) for allt € [0, w.y, ).
This construction induces the closed-loop operator

dom(ty , 1)

Hpc: W — Wy X Wy, wo — (w1, ws).

The closed-loop systerfP, C], given by (11), is said to be:
« locally well posedf, and only if, it has the existence and

uniqueness properties and the operakbsc: W —
Wa X Wy, wo — (w1, w2), IS causal;

« globally well posedif, and only if, it is locally well
posed anddp (W) C W, x W,;

« regularly well posedif, and only if, it is locally well
posed and

Ywyg €W : [ww0<00 =
H(HP,CUJO)\[O,T) HW,xWT T 00 aST = Wuyg ] (12)

To measure the distance between two platand P; it

is necessary to find sets associated with the plant operatorsP (6, 2°): U, — V.,
within some space where one may define a map which

identifies the gap. These sets are ghaphsof the operators:
for the plant operatoP: U, — Y, define thegraph Gp as

o={()

uEU,PuE)}}CW.

The essence of this section is the study of robust stabili
of A-tracking and funnel control in a specific control context.

Robust stability is the property that the stability propest
of a globally well posed closed-loop systdi, C| persists
under “sufficiently small” perturbations of the plant. Irhet

words, robust stability is the property tHdt , C] inherits the
stability properties of P, C], when the plantP is replaced
by any plantP; sufficiently “close” to P. In the present

tracking or funnel control (see Prop. 2.1), the plant operat

Pa:ueﬁyev

up oy =, © = ax + ug, 2(0) = 20, (13)

and, for a minimal realization(4,b,¢) of (6), the plant
operator

PN,I\Loz: U, — yea
Uy~ =ca, &= Ax+ by, 2(0)=2°. (14)

In [7, Sec. 3] it is shown that, for sufficiently large/ > 0
and N = 2M, P, is close toPy . in the sense

lim sup 6(Ph, Panima) = 0.

M—oo

(15)

B. Well posedness oftracking and funnel control

For n,m € N with n > m, we may considetM,, ,,
and P, ,, as subspaces of the Euclidean sp&fﬁ“’”ﬂ
by identifying a plantd = (A4, B,C) with a vector 6
consisting of the elements of the plant matrices, ordered
lexicographically. With normed signal spad#sand ) and
(0,2°) € Py, x R™, wherez? is the initial value of a linear
system (1), we associate the causal plant operator

Uy — P(G,xo)(m) =1, (16)

where, foru; € U, with dom(u;) = [0,w), we have
11 = cx, = being the unique solution of (1) ofo,w).
Consider, forA > 0, k& € R and ¢ € @, the control
strategies (4) and (5), resp., and associate the causabkont
operators, parameterized Byand the initial value? in case

the A-tracker, and parameterized byin case of the funnel
ontroller, resp., i.e.

CC()‘7 ko): ya, - uaa Y2 — Cﬁ()‘v ko)(yQ) = U2. (17)

Cr(p): Vo = Uay, Y2 Cr(p)(y2) :=u2.  (18)
Next we show that the closed-loop systems
[P(0,2°),Cc(A\ k%)) and [P(6,2°),Cr(g)] of any

plant¢ € P, ,, of the form (1) and initial value:® € R™

context, plants” and P, are deemed to be close if, and only(with associated operatd? (6, 2°)) and controller (4) (with

if, their respective graphs ardosein the gap sense of [5]. associated operatof'z(\, k°) for A > 0 and k° € R)
The nonlinear gap is defined as follows: Let, for signal spaceyr (5) (with associated operatat's(p) for ¢ € ®) are
Uandy, IU,Y) :={P:U, — V.| P is causa} and, for regularly well posed. Furthermore we show that, for
Py, P, €T, define the (possibly empty) set 0 € M, ., the closed-loop system# (6, 2°), Cz(\, k°)]
and [P(#,2°),Cx(¢)] are globally well posed and
(u X y)—stable, where we consider signal spates ) =
Whe(Rso — R™) x WH°(Rso — R™) for A-tracking,

Op, p, :=
{®: Gp, — Gp, | ® is causal, surjective, andi(0) = 0}.



andU x Y = L®(Rso — R™) x WH°(Rso — R™) for  (vii) [P(0,2°),Cx(p)] is regularly well posed.
funnel control, resp. Proof: Statements (i)—(iv) are proved by [7, Prop. 4.2]
Proposition 3.1:Let n,m € N with n > m, A > 0, and statements (v)—(vii) are proved by [8, Prop. 4.2] &
K* € R, p € ® and (0,2°) € M,,., x R™. Then, for
Uxy = WL<>O(R20 — R™) x Wh(Rsg — R™),
plant operatorP (6, z°) and \-tracking operatoiC (), k°), In Prop. 3.1 we have established that, f@ 2°) €
given by (16) and (17), resp., the closed-loop initial valueMnm x R™, wheren,m € N with n > m, and\ > 0,
problem [P(6,2°), C-(\, k°)], given by (2), (3), (4), is K e R and p e d and correspondmg signal spacks
globally well posed and moreovéP (6, z°), C-(), k)], is and Y, the closed- Ioop systemgP(6, 2°), Cc (A k°)] (A-
U x Y-stable. Furthermore, fot/ x ¥ = L®(Rs, — tracking) andP(6,z°),Cx(y)] (funnel control) are globally
R™) x Wh®(Rsy — R™) and funnel control operator Well posed and have certain stability properties.

Cx(p), given by (18) the closed-loop initial value problem The purpose of this sub-section is to determine conditions
[P(8,2°), Cx ()], given by (2), (3), (5), is globally well under which these properties are maintained when the plant

C. Robustness

posed and moreovéP (6, 2°), Cx(p)], isU x Y-stable. P(9,2°) is perturbed to a planP (4, % ’) where (6,2°) €
Proof: The proposition is a direct consequence ofPgm x R? for someq € N, ¢ > m, in particular when
Prop. 2.1. m 0 ¢ Myn, Prop. 3.2 shows that the closed-loop systems

We will show that an application of the-tracker or [P(6,7°),Cz (A, k%) and [P(6,%°),C.(y)] are regularly
controller to any stabilizable and detectable linear systewell posed. This provides the basis for our main result:
(A,B,C) yields a closed-loop system which is regularlyThm. 3.3 shows that stability properties of thd@racker and
well posed. This is required for the robustness analysisen t the funnel controller persist if (a) the pIanB(&O) and
next Sub-section C, namely the application of [19, Th. 6.5.®(6,0) are sufficiently close (in the gap sense) and (b) the
and Th. 6.5.4]. Note that, fofA, B,C) € Pnm, 2° € R?, initial dataz” and disturbancesy = (uo, o) are sufficiently

A >0,k € Randy € ®, the closed-loop initial value small. As a consequencéd, B,C) = 0 € P,,, may
problems (1), (3), (4) and (1), (3), (5) may be written as not even satisfy any of the classical assumptions: minimum
(t) = Az(t) + Bluo(t) — ua2(t)], 2(0) =2, phase, relative degree one and positive high-frequenay. gai
either Theorem 3.3:Letn,¢,m € Nwithn,q >m, 6 € M,, ,,
S 0 and W = U x ) for signal space¢/ and ) specified in
h(t) = d's't(y2(t)’ (=2 AN I (B, k(0) = &7, due course. Foft, 2°) € P,.., x R? consider the associated
for A-tracking, or (19) operatorP(6,%): U, — Y, defined by (16).
k(t) = el , for funnel control, Consider, fortd x ¥ = WL®[Rxy — R™) x
L =) y=(t)]l Wl>(Rs, — R™), and the M-tracking operator
ya(t) = yo(t) — Cz(2), CrNEYY: Vo — U, defined by (17), where\ > 0 and
kY € R, the closed-loop initial value problem (1), (3), (4).
up(t) = —k(t)ya(t).

Then there exist a continuous functiga: (0, 00) — (0, c0)

Proposition 3.2:Let » € N with n > m, A > 0, and a functions), : P, — (0,00) such that the following
KO e R, ¢ € ® (,2°) € Poum x R™. Then, for plant pg|gs:

operatorP (6, z") and A-tracking operatolC (), k), given ~
by (16) and (17), resp., and fé&f x ¥ = WH®(Rsg — ¥V (6,3%, wo, 1) € Pym x RT x W x (0,00) :
R™) x WH°(R>q — R™), the closed-loop initial value W (0)]7)
problem [P(0, 29), Cz(\, k°)], given by (19), has the fol- Hlwollw < lim sup 2O < A,
; P . - 1,00
onvmg propgrues. . i o 5(P(6,0), P(8,0)) = k: e W (R>p — R),
(i) there exists a unique so utiar '[O,w) — R", for some < ne(r) z € W (Rsq — RY),
w € (0,00], and the solution is maximal in the sense

that for every compadt C R x R™ existst € [0,w)  where(x, k) andy, satisfy (19) in case of-tracking.

- such that(t, z(t)) ¢ K Consider, fotf x Y = L®(Rso — R™) x W1 (Rx( —
(i) if keW ’100([0"0) — R), thenw = oo; R™), and the funnel control operataf'z(p): YV, — U,
(iif) if s EOW ’m([oaué) — R™), thenw = oo; defined by (17), where € ®, the closed-loop initial value
(iv) [P(6,27),Cc(A k7)] is regularly well posed. problem (1), (3), (5). Then there exist a continuous furrctio
Furthermore, for the funnel control operat6-(¢), given -: (0,00) — (0,00) and a functiony: Pym — (0,00)
by (18) and fort/ x ¥ = L®([R>o — R™) x such that the following holds:

Whe(Rso — R™), the closed-loop initial value problem ~ .

[P(0,2"), Cx(p)], given by (19), has the properties: V(0,2°% wo,7) € Pgm x RY x W x (0,00) :

(v) there exists a unique solutian [0,w) — R™, for some 1 (6)|7°|| ViSO : (fus(t o
w € (0,00], and the solution is maximal; +Hlwollw <r 20 = (bualt) € 5,

(V) if (u2,p0) € L2([0,) > R™)xW([0,0) = R™),  §(pg,0), p@,0)) ( ~ | 5L B0 =R,
thenw = oo, k € L>®(R>¢ — R) andys is uniformly < ne(r) z € WH®(Rso — RY9),

bounded away from the funnel boundaryp(-);



where(z, k) andy, satisfy (19) in case of funnel control.
Proof: The first part, namely robustness »dtracking,

is shown in [7, Thm. 4.5]. The second statement, namely

robustness of funnel control, is shown in [8, Thm. 4.5k

Note that Thm. 3.3 is proved by first showing gain-
function stability of the so-called augmented closed-kop
[P,C] and[P,Cx], see [7, Prop. 4.3] and [8, Prop. 4.3] for
details, and secondly utilizing the robust stability rés{19,
Th. 6.5.3 and Th. 6.5.4] to shalx )-stability of the closed-
loop systems|[P(6,2°),Cz(A, k°)] and [P(6,2°),C(¢)]
for a system¢ belonging to the system clasg, ,,, if, for
a systemd belonging toM,, ,,,, the gap betweerP(6,0)
and P(6,0), the initial valuez® € R? and the input/output
disturbanceswy = (ug,yo) are sufficiently small, see [7,
Prop. 4.4] and [8, Prop. 4.4].

Example 3.4:Finally, we revisit the example systems (13)

Fig.

—5f Ty of [P 0.CF(e)]
—kof (P, 0.Cr(e)]
—10f Y1 Of [Py 1y 050, CF ()
Tk of [Py 0.50,CF ()]
~15 ‘ 2 V% ‘
0 1 2 3 4 5

4. [Pa;zo,C]:(cp)] and [PN,AI,a;a”sOvC}'(QD)] with ug =yo =0

and (14). We have already shown that for zero initial condi-[3] M. French, A. lichmann, and M. Mueller, “Robust stabilia by

tions the gap between the syste(rﬁ,E,E) € P31\ Mz
and (a,1,1) € M;; tends to zero asvV = 2M and

(4]

M tends to infinity, see (15). Now we visualize the above

theoretical result. Leth\ = 0.1 and specify the funnel
boundaryl/¢(-): R>¢9 — R by
15.31 — 7.8t +t2, if t €[0,3.9
Fio 1/(t) = e €[0,3.9)
A, if ¢ >3.9.
Then, for initial valuesz® = 1 for system (13) and

7° = (0.1,0.1,0.08)7 for system (14) and input/output
disturbancesiy = yo = 0, Figures 3 and 4 indicate that the

(5]

(6]

(7]

linear output delay feedback3IAM J. Control Optim.vol. 48, no. 4,
pp. 2533-2561, 2009.

M. French, A. lichmann, and E. P. Ryan, “Robustness in theply
topology of a common adaptive controlleGIAM J. Control Optim.
vol. 45, no. 5, pp. 1736-1757, 2006.

T. T. Georgiou and M. C. Smith, “Robustness analysis of limear
feedback systems: An input-output approad&EE Trans. Autom.
Control, vol. 42, no. 9, pp. 1200-1221, 1997.

N. Hopfe, A. lichmann, and E. P. Ryan, “Funnel control with
saturation: linear MIMO systems,” 2009, provisionally guieel,
http://www.tu-ilmenau.de/fakmn/5980+M54099f70862.thht

A. lichmann and M. Mueller, “Robustness oftracking in the gap
metric,” SIAM J. Control Optim.vol. 47, no. 5, pp. 2724-2744, 2008.

8] ——, “Robustness of funnel control in the gap

A-tracker and the funnel controller are applicable to a syste [9]
which is “close” to a system which satisfies the classical

assumptions for adaptive control, namely relative degrex o
minimum phase and positive high-frequency gain.

20
R RLGLLLLLELELELELE
1
151 ) i
B ——y1 of (P 0.0 (3 k0]
\ ——k of (P, _0.CcO0k0)]
) ;
107! —y; of [PN,NI,Q;EO,CL(A,}CO)] |
! ---k of [PN.VIW.’(!@O‘CL(A&O)]
! — £
1
1
1
1
1

Fig. 3. [P,.,0,C(A k)] and [Py a7 .70, C (A k0)] with k0 = —1
andug =yo =0
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