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Abstract— For m-input, m-output, finite-dimensional, linear
systems satisfying the classical assumptions of adaptive control
(i.e., (i) minimum phase, (ii) relative degree one and (iii) positive
definite high-frequency gain matrix), two control strategies are
considered: the well-knownλ-tracking and funnel control. An
application of the λ-tracker to systems satisfying (i)–(iii) yields
that all states of the closed-loop system are bounded and|e| is
ultimately bounded by some prespecifiedλ > 0. An application
of the funnel controller achieves tracking of the error e within
a prescribed performance funnel if applied to linear systems
satisfying (i)–(iii). Moreover, all states of the closed-loop system
are bounded. The funnel boundary can be chosen from a large
set of functions.

Invoking the conceptual framework of the nonlinear gap
metric, we show that the λ-tracker and the funnel controller
are robust. In the present setup this means in particular that
λ-tracking and funnel control copes with bounded input and
output disturbances and, more importantly, may be applied to
any system which is “close” (in terms of a “small” gap) to a
system satisfying (i)–(iii), and which may not satisfy any of the
classical conditions (i)–(iii), as long as the initial conditions and
the disturbances are “small”.

I. I NTRODUCTION

In the early 1980s, a novel feature in classical adaptive
control was introduced: adaptive control without identifying
the entries of the system being controlled. Pioneering con-
tributions to the area include [1], [15], [16], [18], [20] (see,
also, the survey [10] and references therein). The classical
assumptions on such a system class – rather than a single
system – of linearm-input,m-output systems are: (i) mini-
mum phase, (ii) strict relative degree one and (iii) positive-
definite high-frequency gain matrix. Then the simple output
feedbacku(t) = −k(t) y(t) stabilizes each system belonging
to the above class andk(·) adapted byk̇(t) = ‖y(t)‖2.
In this work we consider a variation thereof: the so-called
λ-tracker, which has the advantage that, if tracking is the
control objective, it needs not to be combined with an internal
model and, more importantly, is applicable to systems in the
presence of any additive input or outputL∞-disturbances.

However, two major drawbacks of the latter strategy
are first, the gaink(t) is, albeit bounded, monotonically
increasing which might finally become too large whence am-
plifying measurement noise, and secondly, whilst asymptotic
performance is guaranteed, transient behaviour is not taken
into account (apart from [17], where the issue of prescribed
transient behaviour is successfully addressed).
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A fundamentally different approach, the so-called “funnel
controller”, was introduced in [11] in the context of the
following output regulation problem: this controller ensures
prespecified transient behaviour of the tracking error, has
a non-monotone gain, is simpler than the above adaptive
controller (actually it is not adaptive in so far the gain is
not dynamically generated) and does not invoke any internal
model. Funnel control has been applied to a large class
of systems described by functional differential equations
including nonlinear or/and infinite dimensional systems and
systems with higher relative degree [12], it has been success-
fully applied in experiments controlling the speed of electric
devices [13] (see [10] for further applications and a survey),
and recently it has be shown that funnel control copes with
input constraints if a certain feasibility inequality holds [6].

The contribution of the present paper is to show thatλ-
tracker and the funnel controller arerobust in the sense
that the control objectives (bounded signals and asymptotic
tracking (when applying theλ-tracker) and tracking within a
prespecified performance funnel (when applying the funnel
controller), resp.) are still met if theλ-tracker and the
funnel controller, resp., are applied to any system “close”(in
terms of the gap metric) to a system satisfying the classical
assumptions (i)–(iii). This will be achieved by exploiting
the concept of (nonlinear) gap metric and graph topology
from [5], [2]. The results are analogous in structure as these
in [7] and [8].

A. System class

We consider the class of linearn-dimensional,m-input
m-output systems (n,m ∈ N with n ≥ m)

ẋ(t) = Ax(t) +B u1(t), x(0) = x0 ∈ Rn,
y1(t) = C x(t),

}
(1)

which satisfy the classical assumptions in high-gain adaptive
control, that is minimum phase with relative degree one and
positive definite high-frequency gain matrix, i.e. they belong
to

M̃n,m :=





(A,B,C)
∈ Rn×n

× Rn×m

× Rm×n

CB + (CB)T > 0 ,

∀ s ∈ C+ :

det

[
sIn −A B

C 0

]
6= 0




.

The state space dimensionn ∈ N needs not to be known but
only the dimensionm ∈ N of the input/output space. Most
importantly, only structural assumptions are required butthe
system entries may be completely unknown.

Note that for any(A,B,C) ∈ M̃n,m with detCB 6= 0
we may chooseV ∈ Rn×(n−m) with rkV = n − m and
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imV = kerC; thenT := [B(CB)−1, V ] is invertible and

T−1AT =

[
A1 A2

A3 A4

]
, T−1B =

[
CB
0

]
,

CT =
[
Im 0m×(n−m)

]
.

Moreover, if (A,B,C) is minimum-phase, thenA4 has
spectrum in the open left half complex planeC−. Therefore,
we replaceM̃n,m by

Mn,m

:=





(A,B,C)
∈ Rn×n

× Rn×m

× Rm×n

A =

[
A1 A2

A3 A4

]
, B =

[
B1

0

]
,

C = [I, 0], B1, A1 ∈ Rm×m,
spec(A4) ⊂ C−,
B1 +BT

1 > 0




,

and restrict our attention to systems(A,B,C) ∈ Mn,m in
Byrnes-Isidori normal form, see for example [14, Sec. 4],
i.e.

ẏ1 = A1y1 +A2z + CB u1, y1(0) = y0
1 ∈ Rm,

ż = A3y1 +A4z, z(0) = z0 ∈ Rn−m.

}
(2)

We will study the initial value problem (1) or (2) as
plant P mapping the interior input signalu1 to the interior
output signaly1, in conjunction with thecontroller C (the
λ-tracker (4) or funnel controller (5) in our setup, resp.),
mapping the interior output-signaly2 to the interior input
signal u2, and in the presence of additive input/output
disturbancesu0, y0 so that

u0 = u1 + u2, y0 = y1 + y2 , (3)

as depicted in Figure 1.

P

C

u0

y0

+ u1 y1

−

+y2u2

−

Fig. 1. The closed-loop system[P, C]

B. λ-tracker

For λ > 0, k0 ∈ R, the adaptiveλ-tracker

k̇(t) = dist(y2(t), [−λ, λ]) · ‖y2(t)‖, k(0) = k0,
u2(t) = −k(t)y2(t),

}
(4)

where, fore ∈ Rm, dist(e, [−λ, λ]) := max{0, ‖e‖−λ}, has
been introduced by [9], and will be applied to (1) or (2).
Theλ-tracker overcomes the shortcomings of the “classical”
adaptive controlleru(t) = −k(t) y(t), k̇(t) = ‖y(t)‖2,
see [1], namely no internal model is required when tracking
is the control objective and, more importantly, that the
classical controller fails stabilizing systems in the presence
of additive arbitrarily small input or outputL∞-disturbances,
see [4].

C. Performance funnel and funnel controller

For funnel control, the control objective, defined in the
following sub-section, will be captured in terms of the
performance funnel

Fϕ := {(t, e) ∈ R≥0 × Rm ϕ(t)‖e‖ < 1} ,

determined byϕ(·) belonging to

Φ :=





ϕ : R≥0 → R≥0

ϕ ∈W 1,∞(R≥0 → R≥0),

ϕ(0) = 0, ∀ t > 0 : ϕ(t) > 0,

lim inft→∞ ϕ(t) > 0,

∀ ε > 0 : ϕ|[ε,∞)
(·)−1 is

globally Lipschitz continuous





.

Note that the funnel boundary is given by1/ϕ(t), t > 0;
see Figure 2. The concept of performance funnel had been
introduced by [11]. There it is not assumed thatϕ(·) has the
Lipschitz condition as given inΦ; we incorporate this mild
assumption for technical reasons. The assumptionϕ(0) = 0
allows to start with arbitrarily large initial conditionsx0 and
output disturbancesy0. If for special applications the initial
value andy0 are known, thenϕ(0) = 0 may be relaxed
by ϕ(0)‖y0(0) − Cx0‖ < 1, see also the simulations in
Example 3.4.

The funnel controller, for prespecifiedϕ(·) ∈ Φ, is given
by

u2(t) = −k(t)y2(t), k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖
(5)

and will be applied to (1) or (2). Note that the funnel
controller (5) is actually not an adaptive controller in the
sense that it is not dynamic. The gaink(t) is the reciprocal
of the distance betweeny2 = y0 − y1 (i.e. the difference
of a reference signaly0 and the output of (1)) and the
funnel boundaryϕ(t)−1; and, loosely speaking, if the error
approaches the funnel boundary, thenk(t) becomes large,
thereby exploiting the high-gain properties of the system and
precluding boundary contact.

D. Control objectives

We will study properties of the closed-loop system gen-
erated by the application of theλ-tracker (4) or funnel
controller (5), resp., to systems (1) of classMn,m or of
class Pn,m (see below) in the presence of disturbances
(u0, y0) (from signal spaces specified below) satisfying the
interconnection equations (3).

If, for prespecifiedλ > 0, the λ-tracker (4) is applied
to any system (1), belonging to the classMn,m, in the
presence of disturbances(u0, y0) ∈ W 1,∞(R≥0 → Rm) ×
W 1,∞(R≥0 → Rm) satisfying the interconnection equa-
tions (3), then the closed-loop system (2), (4), (3) is supposed
to meet the following control objectives:

• all signals are bounded;
• the output errory2(t) = y0(t) − y1(t) of the output

disturbance and the output of the linear system satisfies

lim sup
t→∞

dist(y2(t), [−λ, λ]) = 0.



Alternatively, if, for prespecifiedϕ ∈ Φ determining the
funnel boundary, the funnel controller (5) is applied to any
system (1), belonging to the classMn,m, in the presence of
disturbances(u0, y0) ∈ L∞(R≥0 → Rm) ×W 1,∞(R≥0 →
Rm) satisfying the interconnection equations (3), then the
closed-loop system (2), (5), (3) is supposed to meet the
control objectives:

• all signals are bounded;
• the output errory2(t) = y0(t) − y1(t) of the output

disturbance and the output of the linear system evolves
in the funnel, in other words

∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ =

{(t, y) ∈ R≥0 × Rm ϕ(t)‖y‖ < 1} .

Fϕ

0 t
λ

ϕ(·)−1

‖y2(t)‖

Fig. 2. FunnelFϕ with ϕ ∈ Φ and inft>0 ϕ(t)−1 = λ

E. Main result: robustness

The main result of the present paper is to show robustness
of theλ-tracker and funnel controller in the following sense:
The control objectives should still be met if(A,B,C) ∈
Mn,m is replaced by some system(Ã, B̃, C̃) belonging to
the system class

Pq,m :=





(A,B,C)
∈ Rq×q

× Rq×m

× Rm×q

(A,B,C) is
stabilizable
and detectable





) Mq,m

where q,m ∈ N with q ≥ m, and (Ã, B̃, C̃) is close (in
terms of the gap metric) to a system belonging toMn,m

and the initial conditions and the disturbances are “small”.
For the purpose of illustration, we will further show that

a minimal realization(Ã, b̃, c̃) of the transfer function

s 7→
N(M − s)

(s− α)(s+N)(s+M)
, α,N,M > 0 , (6)

(which obviously does not satisfy any of the classical as-
sumptions since it is not minimum phase, has relative degree
2 and negative high-frequency gain) is the closer to a system
in Mn,m the largerN andM .

II. A DAPTIVE λ-TRACKING AND FUNNEL CONTROL

In this section we show that theλ-tracker (4) and the
funnel controller (5) applied to any linear system(A,B,C)
of classMn,m achieves, in presence of input/output distur-
bances(u0, y0) in W 1,∞(R≥0 → Rm) × W 1,∞(R≥0 →
Rm), in case ofλ-tracking, or in L∞(R≥0 → Rm) ×

W 1,∞(R≥0 → Rm), in case of funnel control, resp., the con-
trol objectives:lim supt→∞ dist(y2(t), [−λ, λ]) = 0, in case
of λ-tracking, ory2 evolves within a performance funnelFϕ

for prespecifiedϕ ∈ Φ, in case of funnel control, and (in both
cases) all signals and states of the closed-loops (2), (3), (4)
and (2), (3), (5), resp., remain essentially bounded. Moreover,
it is shown that the derivatives of the output signalsy1, y2
and the state( y1

z ) are essentially bounded, too.
Write, for n,m ∈ N with n ≥ m,

DL
n,m := Mn,m × (Rm × Rn−m) × R

×W 1,∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm),

DF
n,m := Mn,m × (Rm × Rn−m) × Φ

× L∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm).

Proposition 2.1:Let n,m ∈ N with n ≥ m
and λ > 0. Then there exists a continuous map
νL : Dλ

n,m → R≥0 such that, for all tuplesd =([
A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), k0, u0, y0

)
∈ DL

n,m, the associated
closed-loop initial value problem (2), (3), (4) satisfies

‖(u2, y2, z, k)‖W 1,∞(R≥0→Rm+n+1) ≤ νL(d) (7)

and
lim sup

t→∞
‖y2(t)‖ ≤ λ. (8)

Furthermore, there exists a functionνF : DF
n,m → R≥0, such

that, for all tuplese =
([

A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), ϕ, u0, y0

)
∈

DF
n,m, the associated closed-loop initial value prob-

lem (2), (3), (5) satisfies

‖(k, u2, y2, η)‖L∞(R≥0→R1+m)×W 1,∞(R≥0→Rn) ≤ νF (e),
(9)

and

∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ =

{(t, y) ∈ R≥0 × Rm ϕ(t)‖y‖ < 1} . (10)

Proof: The first statement, i.e.λ-tracking, is proved
by [7, Prop. 2.1]. A proof for the second statement, i.e. funnel
control, can be found in [8, Prop. 2.1].

III. ROBUSTNESS OFλ-TRACKING AND FUNNEL

CONTROL

In this section we show that theλ-tracker (4) and the
funnel controller (5) are robust in the sense that one may
apply these controllers to any stabilizable and detectable
system which is “close” (in terms of a “small” gap) to any
system inMm,n, as long as the initial conditions and the
disturbances are “small”.

A. The concept of the gap metric

We refer the reader to [3, Sec. 2], [8, Sec. 3] and
mainly [19, Ch. 6] for a detailed outline of all required
definitions for extended and ambient spaces, well posedness,
the nonlinear gap, gain-functions and gain-function stability,
which are required for the results on robust stability in
Section III.



However, we recall some basic concepts which are re-
quired for the robustness analysis in this section. For signal
spacesU ,Y and W = U × Y, recall the definitions for
local, global and regular well posedness: Assume that, for
plant and controller operatorsP : Ua → Ya, u1 7→ y1, and
C : Ya → Ua, y2 7→ u2, resp., the closed-loop

[P,C] : y1 = Pu1, u2 = Cy2,
u0 = u1 + u2

y0 = y1 + y2
(11)

corresponding to the closed-loop shown in Figure 1, has the
existence and uniqueness property. For eachw0 ∈ W, define
ωw0

∈ (0,∞], by the property

[0, ωw0
) :=

⋃

(ŵ1,ŵ2)∈Xw0

dom(ŵ1, ŵ2)

and(w1, w2) ∈ Wa×Wa, with dom(w1, w2) = [0, ωw0
), by

the property:(w1, w2)|[0,t) solves (11) for allt ∈ [0, ωw0
).

This construction induces the closed-loop operator

HP,C : W → Wa ×Wa, w0 7→ (w1, w2).

The closed-loop system[P,C], given by (11), is said to be:

• locally well posedif, and only if, it has the existence and
uniqueness properties and the operatorHP,C : W →
Wa ×Wa, w0 7→ (w1, w2), is causal;

• globally well posedif, and only if, it is locally well
posed andHP,C(W) ⊂ We ×We;

• regularly well posedif, and only if, it is locally well
posed and

∀w0 ∈ W :
[
ωw0

<∞ =⇒
∥∥(HP,Cw0)|[0,τ)

∥∥
Wτ×Wτ

→ ∞ asτ → ωw0

]
. (12)

To measure the distance between two plantsP andP1 it
is necessary to find sets associated with the plant operators
within some space where one may define a map which
identifies the gap. These sets are thegraphsof the operators:
for the plant operatorP : Ua → Ya define thegraphGP as

GP :=

{(
u
Pu

)
u ∈ U , Pu ∈ Y

}
⊂ W.

The essence of this section is the study of robust stability
of λ-tracking and funnel control in a specific control context.
Robust stability is the property that the stability properties
of a globally well posed closed-loop system[P,C] persists
under “sufficiently small” perturbations of the plant. In other
words, robust stability is the property that[P1, C] inherits the
stability properties of[P,C], when the plantP is replaced
by any plantP1 sufficiently “close” to P . In the present
context, plantsP andP1 are deemed to be close if, and only
if, their respective graphs areclose in the gap sense of [5].
The nonlinear gap is defined as follows: Let, for signal spaces
U andY, Γ(U ,Y) :=

{
P : Ua → Ya P is causal

}
and, for

P1, P2 ∈ Γ, define the (possibly empty) set

OP1,P2
:={

Φ: GP1
→ GP2

Φ is causal, surjective, andΦ(0) = 0
}
.

The directed nonlinear gapis given by

~δ : Γ(U ,Y) × Γ(U ,Y) → [0,∞],

(P1, P2) 7→ inf
Ψ∈OP1,P2

sup
x∈GP1

\{0}
τ>0

‖Tτ (Ψ − I)|GP1
(x)‖W

‖Tτx‖W
,

with the convention that~δ(P1, P2) := ∞ if OP1,P2
= ∅.

We close this sub-section with an example. Define, for
α,N,M > 0, x0 ∈ R, x̃0 ∈ R3 and any signal spaces forλ-
tracking or funnel control (see Prop. 2.1), the plant operator

Pα : Ue → Ye,

u1 7→ y1 = x, ẋ = αx+ u1, x(0) = x0, (13)

and, for a minimal realization(Ã, b̃, c̃) of (6), the plant
operator

PN,M,α : Ue → Ye,

ũ1 7→ ỹ1 = c̃ x, ẋ = Ã x+ b̃ ũ1, x(0) = x̃0. (14)

In [7, Sec. 3] it is shown that, for sufficiently largeM > 0
andN = 2M , Pα is close toPN,M,α in the sense

lim sup
M→∞

~δ(Pα, P2M,M,α) = 0. (15)

B. Well posedness ofλ-tracking and funnel control

For n,m ∈ N with n ≥ m, we may considerMn,m

and Pn,m as subspaces of the Euclidean spaceRn2+2nm

by identifying a plant θ = (A,B,C) with a vector θ
consisting of the elements of the plant matrices, ordered
lexicographically. With normed signal spacesU andY and
(θ, x0) ∈ Pn,m×Rn, wherex0 is the initial value of a linear
system (1), we associate the causal plant operator

P (θ, x0) : Ua → Ya, u1 7→ P (θ, x0)(u1) := y1 , (16)

where, for u1 ∈ Ua with dom(u1) = [0, ω), we have
y1 = cx, x being the unique solution of (1) on[0, ω).
Consider, forλ > 0, k0 ∈ R and ϕ ∈ Φ, the control
strategies (4) and (5), resp., and associate the causal control
operators, parameterized byλ and the initial valuek0 in case
of theλ-tracker, and parameterized byϕ in case of the funnel
controller, resp., i.e.

CL(λ, k0) : Ya → Ua, y2 7→ CL(λ, k0)(y2) := u2. (17)

CF (ϕ) : Ya → Ua, y2 7→ CF (ϕ)(y2) := u2. (18)

Next we show that the closed-loop systems
[P (θ, x0), CL(λ, k0)] and [P (θ, x0), CF (ϕ)] of any
plant θ ∈ Pn,m of the form (1) and initial valuex0 ∈ Rn

(with associated operatorP (θ, x0)) and controller (4) (with
associated operatorCL(λ, k0) for λ > 0 and k0 ∈ R)
or (5) (with associated operatorCF (ϕ) for ϕ ∈ Φ) are
regularly well posed. Furthermore we show that, for
θ ∈ Mn,m, the closed-loop systems[P (θ, x0), CL(λ, k0)]
and [P (θ, x0), CF (ϕ)] are globally well posed and(
U × Y

)
-stable, where we consider signal spacesU × Y =

W 1,∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm) for λ-tracking,



andU × Y = L∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm) for
funnel control, resp.

Proposition 3.1:Let n,m ∈ N with n ≥ m, λ > 0,
k0 ∈ R, ϕ ∈ Φ and (θ, x0) ∈ Mn,m × Rn. Then, for
U × Y = W 1,∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm),
plant operatorP (θ, x0) andλ-tracking operatorCL(λ, k0),
given by (16) and (17), resp., the closed-loop initial value
problem [P (θ, x0), CL(λ, k0)], given by (2), (3), (4), is
globally well posed and moreover[P (θ, x0), CL(λ, k0)], is
U × Y-stable. Furthermore, forU × Y = L∞(R≥0 →
Rm) × W 1,∞(R≥0 → Rm) and funnel control operator
CF (ϕ), given by (18) the closed-loop initial value problem
[P (θ, x0), CF (ϕ)], given by (2), (3), (5), is globally well
posed and moreover[P (θ, x0), CF (ϕ)], is U × Y-stable.

Proof: The proposition is a direct consequence of
Prop. 2.1.

We will show that an application of theλ-tracker or
controller to any stabilizable and detectable linear system
(A,B,C) yields a closed-loop system which is regularly
well posed. This is required for the robustness analysis in the
next Sub-section C, namely the application of [19, Th. 6.5.3
and Th. 6.5.4]. Note that, for(A,B,C) ∈ Pn,m, x0 ∈ Rn,
λ > 0, k0 ∈ R and ϕ ∈ Φ, the closed-loop initial value
problems (1), (3), (4) and (1), (3), (5) may be written as

ẋ(t) = Ax(t) +B[u0(t) − u2(t)], x(0) = x0,

either
k̇(t) = dist(y2(t), [−λ, λ]) |y2(t)|, k(0) = k0,

for λ-tracking, or

k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖
, for funnel control,

y2(t) = y0(t) − Cx(t),

u2(t) = −k(t)y2(t).





(19)

Proposition 3.2:Let n ∈ N with n ≥ m, λ > 0,
k0 ∈ R, ϕ ∈ Φ, (θ, x0) ∈ Pn,m × Rn. Then, for plant
operatorP (θ, x0) andλ-tracking operatorCL(λ, k0), given
by (16) and (17), resp., and forU × Y = W 1,∞(R≥0 →
Rm) × W 1,∞(R≥0 → Rm), the closed-loop initial value
problem [P (θ, x0), CL(λ, k0)], given by (19), has the fol-
lowing properties:
(i) there exists a unique solutionx : [0, ω) → Rn, for some

ω ∈ (0,∞], and the solution is maximal in the sense
that for every compactK ⊂ R≥0 ×Rn existst ∈ [0, ω)
such that(t, x(t)) /∈ K;

(ii) if k ∈W 1,∞([0, ω) → R), thenω = ∞;
(iii) if y2 ∈W 1,∞([0, ω) → Rm), thenω = ∞;
(iv) [P (θ, x0), CL(λ, k0)] is regularly well posed.
Furthermore, for the funnel control operatorCF (ϕ), given
by (18) and for U × Y = L∞(R≥0 → Rm) ×
W 1,∞(R≥0 → Rm), the closed-loop initial value problem
[P (θ, x0), CF (ϕ)], given by (19), has the properties:
(v) there exists a unique solutionx : [0, ω) → Rn, for some

ω ∈ (0,∞], and the solution is maximal;
(vi) if (u2, y2) ∈ L∞([0, ω) → Rm)×W 1,∞([0, ω) → Rm),

thenω = ∞, k ∈ L∞(R≥0 → R) andy2 is uniformly
bounded away from the funnel boundary1/ϕ(·);

(vii) [P (θ, x0), CF (ϕ)] is regularly well posed.
Proof: Statements (i)–(iv) are proved by [7, Prop. 4.2]

and statements (v)–(vii) are proved by [8, Prop. 4.2]

C. Robustness

In Prop. 3.1 we have established that, for(θ, x0) ∈
Mn,m × Rn, wheren,m ∈ N with n ≥ m, and λ > 0,
k0 ∈ R and ϕ ∈ Φ and corresponding signal spacesU
and Y, the closed-loop systems[P (θ, x0), CL(λ, k0)] (λ-
tracking) and[P (θ, x0), CF (ϕ)] (funnel control) are globally
well posed and have certain stability properties.

The purpose of this sub-section is to determine conditions
under which these properties are maintained when the plant
P (θ, x0) is perturbed to a plantP

(
θ̃, x̃0

)
where

(
θ̃, x̃0

)
∈

Pq,m × Rq for some q ∈ N, q ≥ m, in particular when
θ̃ /∈ Mq,m. Prop. 3.2 shows that the closed-loop systems
[P (θ̃, x̃0), CL(λ, k0)] and [P (θ̃, x̃0), CL(ϕ)] are regularly
well posed. This provides the basis for our main result:
Thm. 3.3 shows that stability properties of theλ-tracker and
the funnel controller persist if (a) the plantsP

(
θ̃, 0

)
and

P (θ, 0) are sufficiently close (in the gap sense) and (b) the
initial datax̃0 and disturbancew0 = (u0, y0) are sufficiently
small. As a consequence

(
Ã, B̃, C̃

)
= θ̃ ∈ Pq,m may

not even satisfy any of the classical assumptions: minimum
phase, relative degree one and positive high-frequency gain.

Theorem 3.3:Let n, q,m ∈ N with n, q ≥ m, θ ∈ Mn,m

and W = U × Y for signal spacesU and Y specified in
due course. For(θ̃, x̃0) ∈ Pq,m ×Rq consider the associated
operatorP (θ̃, x̃0) : Ua → Ya defined by (16).

Consider, for U × Y = W 1,∞(R≥0 → Rm) ×
W 1,∞(R≥0 → Rm), and the λ-tracking operator
CL(λ, k0) : Ya → Ua defined by (17), whereλ > 0 and
k0 ∈ R, the closed-loop initial value problem (1), (3), (4).
Then there exist a continuous functionηL : (0,∞) → (0,∞)
and a functionsψL : Pq,m → (0,∞) such that the following
holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψL(θ̃)‖x̃0‖
+‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)

≤ ηL(r)





⇒





lim sup
t→∞

‖y2(t)‖ ≤ λ,

k ∈W 1,∞(R≥0 → R),

x ∈W 1,∞(R≥0 → Rq),

where(x, k) andy2 satisfy (19) in case ofλ-tracking.
Consider, forU ×Y = L∞(R≥0 → Rm)×W 1,∞(R≥0 →

Rm), and the funnel control operatorCF (ϕ) : Ya → Ua

defined by (17), whereϕ ∈ Φ, the closed-loop initial value
problem (1), (3), (5). Then there exist a continuous function
ηF : (0,∞) → (0,∞) and a functionψF : Pq,m → (0,∞)
such that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψF (θ̃)‖x̃0‖
+‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)

≤ ηF (r)





⇒





∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ,

k ∈ L∞(R≥0 → R),

x ∈W 1,∞(R≥0 → Rq) ,



where(x, k) andy2 satisfy (19) in case of funnel control.
Proof: The first part, namely robustness ofλ-tracking,

is shown in [7, Thm. 4.5]. The second statement, namely
robustness of funnel control, is shown in [8, Thm. 4.5].

Note that Thm. 3.3 is proved by first showing gain-
function stability of the so-called augmented closed-loops
[P̃ , C̃L] and[P̃ , C̃F ], see [7, Prop. 4.3] and [8, Prop. 4.3] for
details, and secondly utilizing the robust stability results [19,
Th. 6.5.3 and Th. 6.5.4] to showU×Y-stability of the closed-
loop systems[P (θ̃, x̃0), CL(λ, k0)] and [P (θ̃, x̃0), CL(ϕ)]
for a systemθ̃ belonging to the system classPq,m if, for
a systemθ belonging toMn,m, the gap betweenP (θ̃, 0)
andP (θ, 0), the initial valuex̃0 ∈ Rq and the input/output
disturbancesw0 = (u0, y0) are sufficiently small, see [7,
Prop. 4.4] and [8, Prop. 4.4].

Example 3.4:Finally, we revisit the example systems (13)
and (14). We have already shown that for zero initial condi-
tions the gap between the system

(
Ã, b̃, c̃

)
∈ P3,1 \ M3,1

and (α, 1, 1) ∈ M1,1 tends to zero asN = 2M and
M tends to infinity, see (15). Now we visualize the above
theoretical result. Letλ = 0.1 and specify the funnel
boundary1/ϕ(·) : R≥0 → R>0 by

t 7→ 1/ϕ(t) =

{
15.31 − 7.8 t+ t2, if t ∈ [0, 3.9)

λ, if t ≥ 3.9.

Then, for initial valuesx0 = 1 for system (13) and
x̃0 = (0.1, 0.1, 0.08)T for system (14) and input/output
disturbancesu0 = y0 ≡ 0, Figures 3 and 4 indicate that the
λ-tracker and the funnel controller are applicable to a system
which is “close” to a system which satisfies the classical
assumptions for adaptive control, namely relative degree one,
minimum phase and positive high-frequency gain.
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Fig. 3. [Pα;x0 , CL(λ, k0)] and [PN,M,α;x̃0 , CL(λ, k0)] with k0 = −1
andu0 = y0 ≡ 0
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