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Abstract— For m-input, m-output, finite-dimensional, linear
systems satisfying the assumptions (i) minimum phase, (ii) rel-
ative degree one and (iii) positive high-frequency gain), the
funnel controller achieves output regulation in the following
sense: all states of the closed-loop system are bounded and,
most importantly, transient behaviour of the tracking error is
ensured such that its evolution remains in a performance funnel
with prespecified boundary. As opposed to classical adaptive
high-gain output feedback, system identification or internal
model is not invoked and the gain is not monotone.

Invoking the conceptual framework of the nonlinear gap
metric we show that the funnel controller is robust in the
following sense: the funnel controller copes with bounded input
and output disturbances and, more importantly, it may even
be applied to a system not satisfying any of the classical
conditions (i)–(iii) as long as the initial conditions and the
disturbances are “small” and the system is “close” (in terms of
a “small” gap) to a system satisfying (i)–(iii).

Index Terms— funnel control, gap metric, robust stabiliza-
tion, tracking, output feedback control

I. I NTRODUCTION

Adaptive control without identifying the entries of the
system being controlled is known for almost 30 years.
Pioneering contributions to the area include [1], [10], [11],
[13], [17] (see also the survey [7] and the textbook [15]
and references therein). The classical assumptions on sucha
system class – rather than a single system – of linearm-input,
m-output systems are: (i) minimum phase, (ii) strict relative
degree one and (iii) positive-definite high-frequency gain
matrix. Then the simple output feedbacku(t) = −k(t) y(t)
stabilizes each system belonging to the above class and
k(·) adapted byk̇(t) = ‖y(t)‖2 and variations thereof.
Two drawbacks of the latter strategy, i.e. that firstk(t) is,
albeit bounded, monotonically increasing which might finally
become too large whence amplifying measurement noise,
and secondly, that, whilst asymptotic performance is guar-
anteed, transient behaviour is not taken into account (apart
from [12], where the issue of prescribed transient behaviour
is successfully addressed), can be overcome with a different
approach, the so-called “funnel controller”, introduced in [8].
This controller ensures prespecified transient behaviour of
the tracking error, has a non-monotone gain, is simpler than
the above adaptive controller (actually it is not adaptive in
so far the gain is not dynamically generated) and does not
invoke any internal model.
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The contribution of the present paper is to show that the
funnel controller isrobust in the sense that the control ob-
jectives (bounded signals and tracking within a prespecified
performance funnel) are still met if the funnel controller is
applied to any system “close” (in terms of the gap metric)
to a system satisfying the classical assumptions (i)–(iii)and
if initial conditions and disturbances are “sufficiently small”.
This will be achieved by exploiting the concept of (nonlinear)
gap metric and graph topology from [4], [2].

We present an example which suggests that there is a tight
trade-off between uncertainty and allowable initial condition
and disturbances: initial conditions and disturbances might
be “very small” in some cases.

A. System class

We consider the class of linearn-dimensional,m-input
m-output systems (n,m ∈ N with n ≥ m)

ẋ(t) = Ax(t) +B u1(t) , x(0) = x0 ∈ Rn,
y1(t) = C x(t) ,

}
(1)

which satisfy the classical assumptions in high-gain adaptive
control, that is minimum phase with relative degree one and
positive definite high-frequency gain matrix, i.e. they belong
to

M̃n,m :=





(A,B,C)
∈ Rn×n

× Rn×m

× Rm×n

CB + (CB)T > 0 ,

∀ s ∈ C+ :

det

[
sIn −A B

C 0

]
6= 0




.

Note, that only structural assumptions are required but the
system entries may be completely unknown. For(A,B,C) ∈

M̃n,m with detCB 6= 0 we may choose an invertibleT ∈
Rn×n such that

T−1AT =

[
A1 A2

A3 A4

]
, T−1B =

[
CB
0

]
,
CT =[
Im 0m×(n−m)

]
.

Moreover, if (A,B,C) is minimum-phase, thenA4 has
spectrum in the open left half complex planeC−. Therefore,
we replaceM̃n,m by

Mn,m

:=





(A,B,C)
∈ Rn×n

× Rn×m

× Rm×n

A =

[
A1 A2

A3 A4

]
, B =

[
B1

0

]
,

C = [I, 0], B1, A1 ∈ Rm×m,
spec(A4) ⊂ C−, B1 +BT

1 > 0




,

and restrict our attention to systems(A,B,C) ∈ Mn,m in
Byrnes–Isidori normal form, see for example [9, Sec. 4], i.e.

ẏ1 = A1y1 +A2z + CB u1, y1(0) = y01 ∈ Rm,

ż = A3y1 +A4z, z(0) = z0 ∈ Rn−m.

}
(2)
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We will study the initial value problem (1) or (2) asplant
P mapping the interior input signalu1 to the interior output
signal y1, in conjunction with thecontroller C (the funnel
controller (4) in our setup), mapping the interior output-
signaly2 to the interior input signalu2, and in the presence
of additive input/output disturbancesu0, y0 so that

u0 = u1 + u2, y0 = y1 + y2 , (3)

as depicted in Figure 1.

u0
u1 y1

P

C y0
u2 y2

−

+

+

−

Fig. 1. The closed-loop system[P,C].

B. Performance funnel and funnel control

The control objective, defined in the following sub-section,
will be captured in terms of theperformance funnel

Fϕ := {(t, e) ∈ R≥0 × Rm | ϕ(t)‖e‖ < 1} ,

determined byϕ(·) belonging to

Φ :=





ϕ : R≥0 → R≥0

ϕ ∈W 1,∞(R≥0 → R≥0),

ϕ(0) = 0, ∀ t > 0 : ϕ(t) > 0,

lim inft→∞ ϕ(t) > 0,

∀ ε > 0 : ϕ|[ε,∞)
(·)−1 is

globally Lipschitz continuous





.

Note that the funnel boundary is given by1/ϕ(t), t > 0;
see Figure 2. The concept of performance funnel had been
introduced by [8]. There it is not assumed thatϕ(·) has the
Lipschitz condition as given inΦ; we incorporate this mild
assumption for technical reasons. The assumptionϕ(0) = 0
allows to start with arbitrarily large initial conditionsx0 and
output disturbancesy0. If for special applications the initial
value andy0 are known, thenϕ(0) = 0 may be relaxed
by ϕ(0)‖y0(0) − Cx0‖ < 1, see also the simulations in
Example 3.5.

The funnel controller, for prespecifiedϕ ∈ Φ, is given by

u2(t) = −k(t)y2(t) , k(t) =
ϕ(t)

1− ϕ(t)‖y2(t)‖
(4)

and will be applied to (1) or (2). Note that the funnel
controller (4) is actually not an adaptive controller in the
sense that it is not dynamic. The gaink(t) is the reciprocal
of the distance betweeny2 = y0 − y1 (i.e. the difference
of a reference signaly0 and the output of (1)) and the
funnel boundary1/ϕ(t); and, loosely speaking, if the error
approaches the funnel boundary, thenk(t) becomes large,
thereby exploiting the high-gain properties of the system and
precluding boundary contact.

C. Control objectives

We will study properties of the closed-loop system gen-
erated by the application of the funnel controller (4) to
systems (1) of classMn,m or of classPn,m (see below)
in the presence of disturbances(u0, y0) ∈ L∞(R≥0 →
Rm) × W 1,∞(R≥0 → Rm) satisfying the interconnection
equations (3).

If, for prespecifiedϕ ∈ Φ determining the funnel bound-
ary, the funnel controller (4) is applied to any system (1),
belonging to the classMn,m, in the presence of disturbances
(u0, y0) satisfying the interconnection equations (3), then
the closed-loop system (2), (4), (3) is supposed to meet the
following control objectives:

• all signals are bounded;
• the output errory2(t) = y0(t) − y1(t) of the output

disturbance and the output of the linear system evolves
in the funnel, in other words

∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ =

{(t, y) ∈ R≥0 × Rm ϕ(t)‖y‖ < 1} .

Fϕ

0 t
λ

ϕ(·)−1

‖y2(t)‖

Fig. 2. FunnelFϕ with ϕ ∈ Φ and inft>0 ϕ(t)−1 = λ

D. Main result: robustness

The main result of the present paper is to show robustness
of the funnel controller in the following sense: The control
objectives should still be met if(A,B,C) ∈ Mn,m is
replaced by some system(Ã, B̃, C̃) belonging to the system
class

Pq,m :=





(A,B,C)
∈ Rq×q

× Rq×m

× Rm×q

(A,B,C) is
stabilizable
and detectable





) Mq,m

where q,m ∈ N with q ≥ m, and (Ã, B̃, C̃) is close (in
terms of the gap metric) to a system belonging toMn,m

and the initial conditions and the disturbances are “small”.
For the purpose of illustration, we will further show that

a minimal realization(Ã, b̃, c̃) of the transfer function

s 7→
N(M − s)

(s− α)(s+N)(s+M)
, α,N,M > 0 , (5)

(which obviously does not satisfy any of the classical as-
sumptions since it is not minimum phase, has relative degree
2 and negative high-frequency gain) becomes arbitrarily
close to a system belonging toMn,m as N and M tend
to infinity.



II. FUNNEL CONTROL

In this section we show that the funnel controller (4)
applied to any linear system(A,B,C) of class Mn,m

achieves, in presence of input/output disturbances(u0, y0) ∈
L∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm), the control
objectives:y2 is forced to evolve within a performance funnel
Fϕ for prespecifiedϕ ∈ Φ and all signals and states of
the closed-loop (2), (3), (4) remain essentially bounded.
Moreover, it is shown that the derivatives of the output
signals y1, y2 and the state( y1

η ) are essentially bounded,
too. Write, forn,m ∈ N, n ≥ m,

Dn,m := Mn,m × (Rm × Rn−m)× Φ

× L∞(R≥0 → Rm)×W 1,∞(R≥0 → Rm).

Proposition 2.1:Let n,m ∈ N, n ≥ m andϕ ∈ Φ. Then
there exists a mapν : Dn,m → R≥0 such that, for alld =([

A1 A2

A3 A4

]
, B,C, (y01 , η

0), ϕ, u0, y0
)
∈ Dn,m, the associated

closed-loop initial value problem (2), (3), (4) satisfies

‖(k, u2, y2, η)‖ L∞(R≥0→R
1+m)

×W 1,∞(R≥0→R
m+n−m)

≤ ν(d), (6)

and

∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ =

{(t, y) ∈ R≥0 × Rm ϕ(t)‖y‖ < 1} . (7)
Proof: See proof of [6, Prop. 2.1].

III. ROBUSTNESS OF THE FUNNEL CONTROLLER

In this section we show that the funnel controller (4) are
robust in the sense that one may apply these controllers to
any stabilizable and detectable system which is “close” (in
terms of a “small” gap) to any system inMm,n, as long as
the initial conditions and the disturbances are “small”.

A. The concept of the gap metric

We refer the reader to [3, Sec. 2], [6, Sec. 3] and
mainly [14, Ch. 6] for a detailed outline of all required
definitions for extended and ambient spaces, well posedness,
the nonlinear gap, gain-functions and gain-function stability,
which are required for the results on robust stability.

However, we recall some basic concepts. Let, for signal
spacesU ,Y andW = U × Y, and for plant and controller
operatorsP : Ua → Ya, u1 7→ y1, andC : Ya → Ua, y2 7→
u2, resp., the closed-loop

[P,C] : y1 = Pu1, u2 = Cy2,
u0 = u1 + u2
y0 = y1 + y2

(8)

correspond to Figure 1, and introduce the closed-loop oper-
ator

HP,C : W → Wa ×Wa, w0 7→ (w1, w2).

The closed-loop system[P,C], given by (8), is said to be:
• locally well posedif, and only if, it has the existence and

uniqueness properties and the operatorHP,C : W →
Wa ×Wa, w0 7→ (w1, w2), is causal;

• globally well posedif, and only if, it is locally well
posed andHP,C(W) ⊂ We ×We;

• regularly well posedif, and only if, it is locally well
posed and

∀w0 ∈ W :
[
ωw0

<∞ =⇒∥∥(HP,Cw0)|[0,τ)
∥∥
Wτ×Wτ

→ ∞ asτ → ωw0

]
. (9)

To measure the distance between two plantsP andP1 it
is necessary to find sets associated with the plant operators
within some space where one may define a map which
identifies the gap. These sets are thegraphsof the operators:
for the plant operatorP : Ua → Ya define thegraphGP as

GP :=

{(
u
Pu

)
u ∈ U , Pu ∈ Y

}
⊂ W.

Robust stability is the property that the stability properties
of a globally well posed closed-loop system[P,C] persists
under “sufficiently small” perturbations of the plant. In other
words, robust stability is the property that[P1, C] inherits the
stability properties of[P,C], when the plantP is replaced
by any plantP1 sufficiently “close” to P . In the present
context, plantsP andP1 are deemed to be close if, and only
if, their respective graphs areclose in the gap sense of [4]:
the nonlinear gap~δ(P, P1) is small (see [6, Sec. 3.3] for a
definition of the gap).

We close this sub-section with an example. Define, for
α,N,M > 0, x0 ∈ R, x̃0 ∈ R3 and for signal spacesU and
Y as in Prop. 2.1, the plant operatorP ((α, 1, 1), x0) : Ue →
Ye,

u1 7→ y1 = x, ẋ = αx+ u1, x(0) = x0, (10)

and, for a minimal realization(Ã, b̃, c̃) of (5), the plant
operatorP

(
(Ã, b̃, c̃), x̃0

)
: Ue → Ye,

ũ1 7→ ỹ1 = c̃ x, ẋ = Ã x+ b̃ ũ1, x(0) = x̃0. (11)

In [5, Sec. 3] it is shown that, for sufficiently largeM > 0
andN = 2M , P ((α, 1, 1), 0) is close toP ((Ã, b̃, c̃), 0) in
the sense

lim sup
M→∞

~δ
(
P ((α, 1, 1), 0), P ((Ã, b̃, c̃), 0)

)
= 0. (12)

B. Well posedness of the nominal closed-loop system

For normed signal spacesU andY and(θ, x0) ∈ Pn,m ×
Rn, whereθ = (A,B,C) is the plant andx0 ∈ Rn is the
initial value of a linear system (1), we associate the causal
plant operator

P (θ, x0) : Ua → Ya, u1 7→ P (θ, x0)(u1) := y1 , (13)

where, foru1 ∈ Ua with dom(u1) = [0, ω), we havey1 =
cx, x being the unique solution of (1) on[0, ω). Consider,
for ϕ ∈ Φ, the control strategy (4) and associate the causal
control operator, parameterized byϕ, i.e.

C(ϕ) : Ya → Ua, y2 7→ C(ϕ)(y2) := u2 . (14)

Proposition 3.1:Let n,m ∈ N with n ≥ m,
ϕ ∈ Φ, (θ, x0) ∈ Mn,m × Rn and (u0, y0) ∈
L∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm). Then, for
plant operatorP (θ, x0) and funnel control operatorC(ϕ),



given by (13) and (14), resp., the closed-loop initial
value problem [P (θ, x0), C(ϕ)], given by (2), (3), (4),
is globally well posed and moreover[P (θ, x0), C(ϕ)] is(
L∞(R≥0 → Rm)×W 1,∞(R≥0 → Rm)

)
-stable.

Proof: The statement is a consequence of Prop. 2.1.

C. Well posedness of the general closed-loop system

For (A,B,C) ∈ Pn,m, x0 ∈ Rn andϕ ∈ Φ, the closed-
loop initial value problem (1), (3), (4) may be written as

ẋ(t) = Ax(t) +B[u0(t)− u2(t)], x(0) = x0 ∈ Rn,

k(t) =
ϕ(t)

1− ϕ(t)‖y2(t)‖
,

y2(t) = y0(t)− Cx(t),

u2(t) = −k(t)y2(t).

(15)

Proposition 3.2:Let n ∈ N with n ≥ m, ϕ ∈ Φ, (θ, x0) ∈
Pn,m×Rn and(u0, y0) ∈ L∞(R≥0 → Rm)×W 1,∞(R≥0 →
Rm). Then, for plant operatorP (θ, x0) and funnel control
operatorC(ϕ), given by (13) and (14), resp., the closed-loop
initial value problem[P (θ, x0), C(ϕ)], given by (15), has the
following properties:
(i) there exists a unique solutionx : [0, ω) → Rn, for

someω ∈ (0,∞], and the solution can be maximally
extended;

(ii) if (u2, y2) ∈ L∞([0, ω) → Rm)×W 1,∞([0, ω) → Rm),
thenω = ∞, k ∈ L∞(R≥0 → R) andy2 is uniformly
bounded away from the funnel boundary1/ϕ(·);

(iii) [P (θ, x0), C(ϕ)] is regularly well posed.
Proof: Set, forϕ ∈ Φ andy0 ∈W 1,∞(R≥0 → Rm),

Hϕ,y0
:=

{
(t, x) ∈ R≥0 × Rn

∣∣ϕ(t)‖y0(t)− C x‖ < 1
}
.

(i): The initial value problem (15) may be written as

ẋ = g(t, x), x(0) = x0, (0, y0(0)− C x0) ∈ Hϕ,y0
, (16)

where g : Hϕ,y0
→ Rn, (t, x) 7→ Ax + Bu0(t) +

ϕ(t)
1−ϕ(t)‖y0(t)−Cx‖B(y0(t) − Cx), satisfies a local Lipschitz
condition on the relatively open setHϕ,y0

as required to
apply [16, Th. III.11.III], which yields that (16), and there-
fore (15), has an absolutely continuous solutionx : [0, ω) →
Rn for someω ∈ (0,∞], and the graph of the solution is not
completely contained in any subset ofHϕ,y0

, i.e. the solution
can be maximally extended, as required.

(ii): Suppose (u2, y2) ∈ L∞([0, ω) → Rm) ×
W 1,∞([0, ω) → Rm) and, for contradiction,ω < ∞. By
boundedness ofϕ it follows that there existsλ > 0 such
thatϕ(t) ≤ 1/λ for all t ∈ [0, ω). Thus

1− ϕ(t)‖y2(t)‖ ≤ 1
2 ⇒ 1

2 ≤ ϕ(t)‖y2(t)‖ ≤ ‖y2(t)‖
λ

⇒ ‖y2(t)‖ ≥ λ
2

for all t ∈ [0, ω), which yields, in view ofy2 ∈ L∞([0, ω) →
Rm) and −ϕ

1−ϕ‖y2‖
y2 = u2 ∈ L∞([0, ω) → R), that

∀ t ∈ [0, ω) : 1− ϕ(t)‖y2(t)‖ ≤ 1
2

⇒ ‖u2‖∞ ≥ ϕ(t) ‖y2(t)‖
1−ϕ(t)‖y2(t)‖

≥ λϕ(t)
2(1−ϕ(t)‖y2(t)‖)

,

thus ϕ
1−ϕ‖y2‖

is bounded on
{
t ∈ [0, ω)

∣∣ 1− ϕ(t)‖y2(t)‖ ≤

1/2
}

. Moreover, for allt ∈ [0, ω) with 1 − ϕ(t)‖y2(t)‖ >

1/2 holds ϕ(t)
1−ϕ(t)‖y2(t)‖

≤ 2/λ. Thus k = ϕ
1−ϕ‖y2‖

∈

L∞([0, ω) → R). Hence, by continuity of the solution

∃ ε > 0 ∀ t ∈ [0, ω) : 1− ϕ(t)‖y2(t)‖ ≥ ε. (17)

Then, Variation of Constants applied to (15) yields the
existence of constantsc0 = c0(B, λ, ε), c1 = c1(A) > 0
such that

‖x(t)‖ ≤ c0

(
ec1ω +

∫ ω

0

ec1(ω−s) (‖u0(s)‖+ ‖y2(s)‖) ds

)

(18)
for all t ∈ [0, ω). Sincey2 ∈ L∞([0, ω) → Rm) andu0 ∈
L∞(R≥0 → Rm), it follows that the right hand side of (18) is
bounded byc3 = c0

(
ec1ω +(ec1ω +1)(‖u0‖L∞([0,ω)→Rm)+

‖y2‖L∞([0,ω)→Rm))/c1
)
> 0 on [0, ω) which gives that

K := {(t, x) ∈ Hϕ,y0
t ∈ [0, ω], ‖x‖ ≤ c3} is a compact

subset ofHϕ,y0
with (t, x(t)) ∈ K for all t ∈ [0, ω),

which contradicts the fact that the solution can be maximally
extended, see (i). Therefore,ω = ∞ and in view of (17) we
havek bounded andy2 is uniformly bounded away from the
funnel boundaryϕ(·)−1.

(iii): By (i), the closed-loop initial value problem
[P (θ, x0), C(ϕ)] is locally well posed. It suffices to show
that (9) holds. Forw0 = (u0, y0) ∈ W consider(w1, w2) =
HP (θ,x0),C(ϕ)(w0) where dom(w1, w2) = [0, ω) is
maximal. Suppose, contrary to the right hand side
of (9),

∥∥(w1, w2)|[0,ω)

∥∥
Wω×Wω

< ∞. Then (u2, y2) ∈

L∞([0, ω) → Rm) ×W 1,∞([0, ω) → Rm), which, in view
of (ii), yields ω = ∞, i.e. the contrary of the left hand side
of (9), hence[P (θ, x0), C(ϕ)] is regularly well posed.

D. Robustness of funnel control

Theorem 3.3:Let n, q,m ∈ N with n, q ≥ m, U =
L∞(R≥0 → Rm), Y = W 1,∞(R≥0 → Rm), W = U × Y,
ϕ ∈ Φ andθ ∈ Mn,m. For (θ̃, x̃0) ∈ Pq,m×Rq consider the
associated operatorsP (θ̃, x̃0) : Ua → Ya andC(ϕ) : Ya →
Ua defined by (13) and (14), resp., and the closed-loop initial
value problem (1), (3), (4). Then there exist a continuous
function η : (0,∞) → (0,∞) and a functionψ : Pq,m →
(0,∞) such that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖+ ‖w0‖W ≤ r
~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r)

}
⇒





∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ

k ∈ L∞(R≥0 → R)

x ∈W 1,∞(R≥0 → Rq),
(19)

where(x, k) andy2 satisfy (15).
Loosely speaking, the main result shows that funnel con-

trol achieves the control objectives if applied to a system(
Ã, B̃, C̃

)
∈ Pq,m as long as this system is sufficiently close

– in the terms of the gap metric – to a system(A,B,C) ∈
M̃n,m and the initial valuẽx0 ∈ Rq for

(
Ã, B̃, C̃

)
and the

input/output disturbances(u0, y0) are sufficiently small. As
a consequence

(
Ã, B̃, C̃

)
∈ Pq,m may not even satisfy any

of the classical assumptions: minimum phase, relative degree
one and positive high-frequency gain.



To establish gap margin results, we show gain-function sta-
bility of the so-called augmented closed-loop system, i.e.the
closed-loop of extensions ofP andC be incorporation the
system class, see [6, Prop. 4.3]. This leads to:

Proposition 3.4:Let n, q,m ∈ N with n, q ≥ m, U =
L∞(R≥0 → Rm), Y = W 1,∞(R≥0 → Rm), W =

U × Y and θ ∈ Mn,m. For (θ̃, x̃0, ϕ) ∈ Pq,m × Rq × Φ,
considerP (θ̃, x̃0) : Ua → Ya, andC(ϕ) : Ya → Ua defined
by (13) and (14), resp. Then there exist a continuous function
η : (0,∞) → (0,∞) and a functionψ : Pq,m → (0,∞) such
that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)|x̃0|+ ‖w0‖W ≤ r
~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r)

}
⇒

HP (θ̃,x̃0),C(ϕ)(w0)

∈ W ×W.

See [6, Prop. 4.4] for a proof.
Proof of Thm. 3.3. Step 1: We show
(
(u1, y1), (u2, y2)

)
= HP (θ̃,x̃0),C(ϕ)(w0) ∈ W ×W. (20)

Choose functionsη : (0,∞) → (0,∞) and ψ : Pq,m →
(0,∞) from Prop. 3.4. Let
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)|x̃0|+ ‖w0‖W ≤ r ∧ ~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r).

Then Prop. 3.4 gives (20).
Step 2: By Prop. 3.2 it follows that (15) has a unique

solutionx : [0, ω) → Rq on a maximal interval of existence
[0, ω) for someω ∈ (0,∞]. Prop. 3.2(iii) yieldsω = ∞
and k = ϕ

1−ϕ‖y2‖
∈ L∞(R≥0 → R), the second assertion

of (19).
Step 3: By Step 2 we havek ∈ L∞(R≥0 → R)

which, in view of continuity of1−ϕ‖y2‖ on (0,∞), yields
1 − ϕ(t)‖y2(t)‖ ≥ ‖ϕ‖∞‖k‖−1

∞ > 0. Thus, for all t ≥ 0,
ϕ(t)‖y2(t)‖ < 1, which yields the first assertion of (19).

Step 4: It remains to show thatx ∈W 1,∞(R≥0 → Rq).
Let

(
Ã, B̃, C̃

)
∈ Pq,m associated with (1). Detectability

of
(
Ã, B̃, C̃

)
yields the existence ofF ∈ Rq×m such that

spec(Ã+FC̃) ⊂ C−. Settingg := −
[
F +k B̃

]
(y0 − y2)+

B̃ u0 + B̃ ky0 gives

ẋ =
[
Ã−k B̃C̃

]
x+ B̃ u0+ B̃ ky0 =

[
Ã+FC̃

]
x+g . (21)

By Prop. 3.4 and Step 3 we havey2 ∈ W 1,∞(R≥0 → Rm)
and k ∈ L∞(R≥0 → R) and sincew0 = (u0, y0) ∈
L∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm) it follows that
g ∈ L∞(R≥0 → Rq). Hence, by (21) and Variation of
Constants we obtainx ∈ L∞(R≥0 → Rq). The first equation
in (15) then givesẋ ∈ L∞(R≥0 → Rq) which shows the
third assertion in (19) and the proof is complete.

Example 3.5: We revisit, for α,N,M > 0, the plant
operators (short for convenience)P n

x0 := P ((α, 1, 1), x0)

andP g
x̃0 := P ((Ã, b̃, c̃), x̃0) defined by (10) and (11), resp.

These plants will be studied in conjunction with the control
operatorC(ϕ) defined by (14).

In passing, note thatP n
x0 has transfer functionss 7→ 1

s−α ;
the plant P g

x̃0 with transfer function (5) has a minimal

realization in normal form

d
dt



ξ1
ξ2
z


 =




0 1 0
r1 r2 r3
−1 0 M





ξ1
ξ2
z


+




0
−N
0


u1, y1 = ξ1, (22)

with r1 = αN + 2M(α−M −N), r2 = α− 2M −N and
r3 = 2M(NM +M2 − αM − αN).

Recall from (12) that for zero initial conditions the gap
between the system

(
Ã, b̃, c̃

)
∈ P3,1 \M3,1 and (α, 1, 1) ∈

M1,1 tends to zero asN = 2M andM tend to infinity.
Note that Thm. 3.3 shows only existence of the functions

ψ andη which guarantee the robust stability result; it is not
straightforward to find these functions. We now discuss simu-
lations for various values ofN,M > 0, initial valuesx̃i, and
input disturbancesuj0 (we considery0 = 0 for convenience:
with y0 6= 0 systems become extremely stiff and MATLAB’s
solvers fail to provide a numerical solution); all simulations
are performed by MATLAB forα = 1 and funnel boundary

ϕ(·)−1 : R≥0 → R>0, t 7→
{
15.31− 7.8 t+ t2, if t ∈ [0, 3.9)
0.1, if t ≥ 3.9.

The variablesy1 and k of the nominal closed-loop sys-
tem (10), (4), (3) are depicted in Figure 3(a) for initial value
x0 = 1 andu0 = sin(2·).

Consider the closed-loop system (22), (4), (3) forN =
2M = 100. In Figure 3(a) we depict the simulations for
initial value x̃1 = (0.1, 0.1, 0.08)⊤, which is sufficiently
small to guarantee funnel control: all components of the
solution (ξ(·)⊤, z(·)) = (y1(·), ẏ1(·), z(·)) and k(·) and
u1(·) are bounded. However, a slight increase of the third
component of the initial value tõx2 = (0.1, 0.1, 0.1)⊤ leads
to a finite escape time: the outputy1 tends to the funnel
boundary in finite timet1 > 0 and thereforeu1(t) tends to
infinity as t→ t1, see Figure 3(b).

Consider the closed-loop system (22), (4), (3) forN =
2M = 10, 000. Then the gap is very small, andr > 0 may
be large such that the second inequality of the left hand side
of (19) holds. However, the system has very unstable zero
dynamics; this indicates thatψ(Ã, b̃, c̃) might be very large.
Therefore, the initial value must be very small so that the first
inequality of the left hand side of (19) holds. Sinceψ maps
any system(Ã, b̃, c̃) into (0,∞), then in view of (19) and
given that the second inequality holds forr and (Ã, b̃, c̃), it
is always possible to choose a sufficiently small initial value
not equal to zero such that the first inequality holds.

Figure 4(a) shows that funnel control is achieved in case
of the initial value x̃3 = (0.001, 0.001, 0.001)⊤, whereas
funnel control is not achieved in case of the initial value
x̃4 = (0.001, 0.001, 0.0015)⊤, see Figure 3(b).

Finally we consider the general system with zero ini-
tial conditions but non-zero input disturbance. Figures 4(b)
and 4(c) show that forN = 2M = 100 and u10 = sin(2·)
funnel control is achieved, that forN = 2M = 100 andu20 =
2 sin(2·) the controller fails to stabilize the system, however,
that for N = 2M = 400 and u20 = 2 sin(2·) the funnel
controller achieves the control objectives. These simulations
show that, for large disturbances, the first inequality in (19)
gives larger and therefore the gap~δ

(
P g
0 , P

g
0 ) has to be

smaller than for small disturbances.
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(a) y1, k, of [Pn
x0=1

, C(ϕ)] for u0 = sin(2·); y1, ẏ1, k of
[P g

x̃1=(0.1,0.1,0.08)⊤
, C(ϕ)] for N = 2M = 100 andu0 = 0
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(b) y1, k of [P g

x̃2=(0.1,0.1,0.1)⊤
, C(ϕ)] for N = 2M = 100 and

u0 = 0; y1, k of [P g

x̃4=(0.001,0.001,0.0015)⊤
, C(ϕ)] for N =

2M = 10, 000 andu0 = 0

Fig. 3. Funnel control simulations: nominal systemP ((α, 1, 1), x0) with
u0 = sin(2·) and general systemP ((Ã, b̃, c̃), x̃i), i = 1, 2, 4, with N =
2M = 100, N = 2M = 10, 000, resp., andu0 = 0.

The simulations show that funnel control may be applied
to system (11) despite the fact that it has unstable zero
dynamics, relative degree two and negative high-frequency
gain. Restrictions are that the zero is “far” in the right half
complex plane, the initial conditioñx0 is “small” and the
L∞×W 1,∞ input/output disturbancesu0 andy0 are “small”.

IV. CONCLUSIONS

We have shown robustness of the funnel controller (4)
for a class of linear systems which are close in the gap
metric to minimum phase systems with (strict) relative degree
one; moreover, funnel control copes with certain bounded
input/output disturbances.
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