Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Exeter

Robustness of funnel control in the gap metric

Achim llchmann and Markus Mueller

Abstract— For m-input, m-output, finite-dimensional, linear The contribution of the present paper is to show that the
systems satisfying the assumptions (i) minimum phase, (i) rel- funnel controller isrobustin the sense that the control ob-
ative degree one and (iii) positive high-frequency gain), the jectives (bounded signals and tracking within a prespetifie

funnel controller achieves output regulation in the following . . .
sense: all states of the closed-loop system are bounded anol]performance funnel) are still met if the funnel controller i

most importantly, transient behaviour of the tracking error is  applied to any system “close” (in terms of the gap metric)
ensured such that its evolution remains in a performance funnel to a system satisfying the classical assumptions (i)-&fil
with prespecified boundary. As opposed to classical adaptive if initial conditions and disturbances are “sufficiently a1
high-gain output feedback, system identification or internal This will be achieved by exploiting the concept of (nonlinea

model is not invoked and the gain is not monotone. tri d ht | f a1 2
Invoking the conceptual framework of the nonlinear gap gap metric and graph topology from [4], [2].

metric we show that the funnel controller is robust in the We present an example which suggests that there is a tight
following sense: the funnel controller copes with bounded input  trade-off between uncertainty and allowable initial caioai

and output disturbances and, more importantly, it may even and disturbances: initial conditions and disturbanceshinig
be applied to a system not satisfying any of the classical po “very small’ in some cases.

conditions (i)—(iii) as long as the initial conditions and the

disturbances are “small” and the system is “close” (in terms of A, System class

a “small” gap) to a system satisfying (i)—(iii).

Index Terms—funnel control, gap metric, robust stabiliza- We consider the class of linear-dimensional,m-input

tion, tracking, output feedback control m-output systemsr(, m € N with n > m)
(t) = Ax(t) + Buy(t), 2(0) = 2% e R™, 1
I. INTRODUCTION y1(t) = Cx(t), @

Adaptive control without identifying the entries of thewhich satisfy the classical assumptions in high-gain ddapt
system being controlled is known for almost 30 yearscontrol, that is minimum phase with relative degree one and
Pioneering contributions to the area include [1], [10],][11 positive definite high-frequency gain matrix, i.e. theydrej
[13], [17] (see also the survey [7] and the textbook [15}o
and references therein). The classical assumptions onasuch (4,B,C) CB+ (CB)T >0,
system class — rather than a single system — of linearput, o X =

DR N > ) €eR VseCy :
m-output systems are: (i) minimum phase, (ii) strict relativ. = M., p, := « RX™ I _AB
degree one and (iii) positive-definite high-frequency gain « Rmxn | det {S ”C_ O} #0
matrix. Then the simple output feedbagkt) = —k(¢) y(t)
stabilizes each system belonging to the above class ahwte, that only structural assumptions are required but the
k(-) adapted byk(t) = |ly(t)||> and variations thereof. system entries may be completely unknown. £ér B, C) €
Two drawbacks of the latter strategy, i.e. that fik§t) is, M, ,, with det CB # 0 we may choose an invertibl€
albeit bounded, monotonically increasing which might fipal R™*"™ such that
become too large whence amplifying measurement noise, | {Al AQ} g [CB] CT =

and secondly, that, whilst asymptotic performance is guar-T AT = A Ay 0
Moreover, if (4, B,C) is minimum-phase, themd, has

anteed, transient behaviour is not taken into account {apar
from [12], where the issue of prescribed transient behavioul .
is successfully addressed), can be overcome with a ditferetPECtrum in the open left half complex pla@e . Therefore,
approach, the so-called “funnel controller’, introducedg]. e replaceM,, ., by

This controller ensures prespecified transient behavidur o
the tracking error, has a non-monotone gain, is simpler than

the above adaptive controller (actually it is not adaptive i

so far the gain is not dynamically generated) and does not:=
invoke any internal model.

[[m Omx(nfm):l .

€ Rmxm As Ay 0
x R™m | ¢ =I,0], By,A; € Rmxm_ [~
x R™*" | spedAy) C C_, By + Bf >0
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We will study the initial value problem (1) or (2) gdant C. Control objectives
P mapping the interior input signal; to the interior output
signal 1, in conjunction with thecontroller C' (the funnel
controller (4) in our setup), mapping the interior output
signaly- to the interior input signal:;, and in the presence
of additive input/output disturbances), yo so that

We will study properties of the closed-loop system gen-
erated by the application of the funnel controller (4) to
‘systems (1) of class\,, ,,, or of classP,, ., (see below)
in the presence of disturbancés,,yo) € L®(R>o —
R™) x Wh>(Rs, — R™) satisfying the interconnection
equations (3).

Yo = uituz, Yo = Yity2, ®) If, for prespecifiedy € ® determining the funnel bound-

ary, the funnel controller (4) is applied to any system (1),
belonging to the clas#,, ,,, in the presence of disturbances
+  w 1”1 (up,yo) satisfying the interconnection equations (3), then

as depicted in Figure 1.

Uug O P the closed-loop system (2), (4), (3) is supposed to meet the
- following control objectives:
C 'e) Yo « all signals are bounded;
Uz Y2+ «» the output erroryz(t) = yo(t) — y1(¢) of the output

disturbance and the output of the linear system evolves

Fig. 1. The closed-loop systefi®, C]. ) :
in the funnel, in other words
B. Performance funnel and funnel control VE>0 ¢ (tya(t) € Fp =

The control objective, defined in the following sub-section {(t,y) € Rso x R™ | o(t)]ly]| < 1}.

will be captured in terms of thperformance funnel
Fo:=A{(t,e) € Rzo x R™ | p(t)]le]| < 1},

determined byy(-) belonging to o)

0 € WHe(Rsg — Rxo),
©(0) =0, Vt>0: p(t) >0,

®:={ p: Ryg = Ryg| liminf;, o ¢(t) > 0, .
B T e >0 : tp“ )(_)71 is Fig. 2. FunnelF, with ¢ € ® andinfisq ()~ = A

ly2@)
t

globally Lipschitz continuous
D. Main result: robustness

Note 'Fhat the funnel boundary is given ly(t), ¢ > 0; The main result of the present paper is to show robustness
see Figure 2. The concept of performance funnel had begf the funnel controller in the following sense: The control
introduced by [8]. There it is not assumed thdt) has the objectives should still be met ifA, B,C) € M, ., is

Lipschitz condition as given i®; we incorporate this mild replaced by some systefd, B, C) belonging to the system
assumption for technical reasons. The assumpti@) = 0

class
allows to start with arbitrarily large initial conditions, and
output disturbanceg,. If for special applications the initial (Avav C) (A,B,C) is
value andy, are known, thenp(0) = 0 may be relaxed  p  ._ € RY :Xm stabilizable > My
téy 90(0%||y§(é)) — C2Y < 1, see also the simulations in igqu and detectable
xample 3.5.

The funnel controller, for prespecified € @, is given by where g,m € N with ¢ > m, and (/T B 5) is close (in

o(t) terms of the gap metric) to a system belonging/A, ,,
T—o)n®] (4)  and the initial conditions and the disturbances are “small”
Iy For the purpose of illustration, we will further show that

and will be applied to (1) or (2). Note that the funnel@ minimal realization( A, b, ¢) of the transfer function
controller (4) is actually not an adaptive controller in the N(M — )

sense that it is not dynamic. The gdi(t) is the reciprocal 5 , a, N M >0, (5)

of the distance betweep, = yo — y1 (i.e. the difference (s —a)(s + N)(s + M)

of a reference signal, and the output of (1)) and the (which obviously does not satisfy any of the classical as-
funnel boundaryl /¢(t); and, loosely speaking, if the error sumptions since it is not minimum phase, has relative degree
approaches the funnel boundary, thieft) becomes large, 2 and negative high-frequency gain) becomes arbitrarily
thereby exploiting the high-gain properties of the systewh a close to a system belonging t%1,, ,,, as N and M tend
precluding boundary contact. to infinity.

up(t) = —k(t)y2(t), k()=




Il. FUNNEL CONTROL « regularly well posedif, and only if, it is locally well

In this section we show that the funnel controller (4)  Posed and

applied to any linear systemjd, B,C) of class M,, ,, Yo eW : [ww < oo —
achieves, in presence of input/output disturbariegsy,) € ’
L*Rso — R™) x WH>(Rso — R™), the control |[0,T)HW7xWT
objectivesys, is forced to evolve within a performance funnel Tg measure the distance between two plaftand P, it

F, for prespecifiedp € ® and all signals and states ofjs necessary to find sets associated with the plant operators
the closed-loop (2), (3), (4) remain essentially boundedyithin some space where one may define a map which
Moreover, it is shown that the derivatives of the outpuldentifies the gap. These sets are gnaphsof the operators:

signalsyi,y» and the statg %} ) are essentially bounded, for the plant operatoP: i/, — Y, define thegraph Gp as
too. Write, forn,m € N, n > m,

| (Hp,cwo) — 00 AST = Wy, |- (9)

u
Dn,m = Mn,,m X (Rm X R7L7m) x P gP = {<Pu> ue u, Pu < y} < W
m 1,00 m . . . .

X L=(Rxp = R™) x WH*(Rxo — R™). Robust stability is the property that the stability propest

Proposition 2.1:Let n,m € N, n > m andp € ®. Then Of a globally well posed closed-loop systeif}, C] persists
there exists a map: D,,., — Rsg such that, for alld = under “sufficiently small” perturbations of the plant. Irhet
([41 421, B, C, (49,1°), @, o, Yo) € Dym, the associated Words, robust stability is the property thdt , C] inherits the
closed-loop initial value problem (2), (3), (4) satisfies stability properties of P, C], when the plant? is replaced
by any plantP; sufficiently “close” to P. In the present

1k 2o g2, I o gremy <v(d), (6) context, plants and P; are deemed to be close if, and only

KWL (R g R 7 ) if, their respective graphs amosein the gap sense of [4]:

the nonlinear gap (P, P,) is small (see [6, Sec. 3.3] for a
definition of the gap).
We close this sub-section with an example. Define, for
V>0 : (¢ e F,= ) !
- (t:32()) v a,N,M >0, 2° € R, 2° € R? and for signal spaceg and

{(t,y) € Roo x R™ [o(@)[lyll <1}. (7) as in Prop. 2.1, the plant opera: 1,1),29): U,
Proof: See proof of [6, Prop. 2.1]. [ ] % Pt thep peratB((a, 1, 1), 2%): Ue =

and

IIl. ROBUSTNESS OF THE FUNNEL CONTROLLER

In this section we show that the funnel controller (4) are
robust in the sense that one may apply these controllers a8d, for a minimal realizatior(4,b,¢) of (5), the plant
any stabilizable and detectable system which is “close” (inperatorP((A4,5,2),2°): U, — Y.,
terms of a “small” gap) to any system i#,, ,,, as long as
the initial conditions and the disturbances are “small”.

up oy =, = ox+uy, x(0) =1 (20)

Uy~ =ca, #=Ax+buy, x(0) =7 (11)

In [5, Sec. 3] it is shown that, for sufficiently largel > 0
nd N = 2M, P((a,1,1),0) is close toP((A,b,¢),0) in
he sense

A. The concept of the gap metric

We refer the reader to [3, Sec. 2], [6, Sec. 3] an
mainly [14, Ch. 6] for a detailed outline of all required .
definitions for extended and ambient spaces, well posedness  limsup 6 (P((e, 1,1),0), P((A, b ,¢),0)) = 0. (12)
the nonlinear gap, gain-functions and gain-function dtsbi M—e0
which are required for the results on robust stability. B. Well posedness of the nominal closed-loop system

However, we recall some basic concepts. Let, for signal For normed signal spacésand) and (6, 2°) € Prm X
spaced/,Y andW = U x ), and for plant and controller g~ wheref = (A4, B,C) is the plant and:® € R™ is the
operatorsP: U, — Va, ur — y1, andC: Y, — Ua, y2 = initial value of a linear system (1), we associate the causal
ug, resp., the closed-loop plant operator

PO) i yy=Pu, g =g, W2 @) PO U Ve e PO w) =y, (13)
— Y1 2

correspond to Figure 1, and introduce the closed-loop ope
ator

where, foru; € U, with dom(u;) = [0,w), we havey; =
cx, = being the unique solution of (1) o, w). Consider,
for ¢ € @, the control strategy (4) and associate the causal

control operator, parameterized by i.e.
The closed-loop syster, C], given by (8), is said to be: ) .

« locally well posedf, and only if, it has the existence and Cle): Ya = Ua, vo = Clp)(y2) = vz (14)
uniqueness properties and the operathsc: W — Proposition 3.1:Let n,m € N with n > m,
Wa X Wa, wo — (w1, ws), is causal o € @, (0,2°) € Muym x R* and (uo,y0) €

« globally well posedif, and only if, it is locally well L>*(Rs, — R™) x WL*°(Rsq — R™). Then, for
posed anddp (W) C W, x W; plant operatorP(6,2°) and funnel control operatof(y),

HP,C: W —= W, X Wa, wo — (’LUl,'lUQ).



given by (13) and (14), resp., the closed-loop initiall/2 holds m < 2/A. Thusk = #ﬂm“
value problem [P(6,2°),C(y)], given by (2) (3), (4), L*([0,w) — R). Hence, by continuity of the solution
is globally well posed and moreoveP (6, z°), C(p)] is

(L®(Rsp — R™) x Wh*(Rs — R™))-stable. Je>0Vie0,w) : 1—op(t)|yt)] e 17)

Proof. The statement is a consequence of Prop. 1. Then, Variation of Constants applied to (15) yields the

C. Well posedness of the general closed-loop system  existence of constantgy = co(B,\,¢), ¢c; = ¢1(A4) > 0
For (A, B,C) € Ppm, 2° € R* andp € &, the closed- Such that

IooP initial value problem (1), (3), (4) may be written as 1@l < co (ecw . /w 1) (o)l + [l d52
i(t) = Az(t) + Bluo(t) — u2(t)], =(0) =2° e R, 0 )

1
k(t) = ﬁ, for all t € [0,w). Sincey, € L>=([0,w) = R™) andug €
1= o(®)lly2(1)]l (15) L>®(Rsy — R™), it follows that the right hand side of (18) is
y2(t) = yo(t) — Cx(t), bounded byez = co (e + (e + 1)(|[uo | £oo ([0,0) ) +
us(t) = —k(t)y2(t). Y2l Lo (0,0)—rm))/c1) > 0 on [0,w) which gives that

Proposition 3.2:Letn € Nwithn > m, p € ®, (0,2°) € K = {(tz)e€ H%lyo |t €[0,w], [Jz]]| <c3} is a compact
'pn m XR™ and(ug, o) € L= (R —>Rm)><le°°(R>o _, subset ofH,,, with (t,z(t)) € K for all t € [0,w),

R™). Then, for plant operatoP (6, z°) and funnel control which contradicts the fact that the solution can be maxinall
operatorC(¢p), given by (13) and (14), resp., the closed-loogeXtended, see (i). Therefore,= oo and in view of (17) we
initial value problem{P(6, 29, C(¢)], given by (15), has the havek bounded an@2 is uniformly bounded away from the

following properties: funnel boundaryp(-)~* o

(i) there exists a unique solutiom: [0,w) — R", for (iii): OBy @, _the closed-loop initial val_ue problem
somew € (0,00], and the solution can be maximally [P(8,2°),C(p)] is locally well posed. It suffices to show
extended: that (9) holds. Forwy = (ug, yo) € W consider(w;, wy) =

(i) if (u2,0) € L2(0,w) — R™M)xWL([0,w) — R™),  HPo.a0).c(p)(wo) where dom(wy,wy) = [0,w) s
thenw = oo, k € L®(Rso — R) andys, is uniformly maximal. Suppose, contrary to the right hand side
bounded away from the funnel boundary(-); of (9), H(wl’w)\[a,w)nwwxww < co. Then (uz,y2) €

(i) [P(0,2°),C(¢)] is regularly well posed. L>([0,w) — R™) x WH*°([0,w) — R™), which, in view
Proof: Set, forp € ® andyy € WH° (R — R™), of (ii), yields w = oo, i.e. the contrary of the left hand side

- of (9), hence[P (0, 2°), C(y)] is regularly well posed. =

Hg&,yo I—{ tl‘ ER>0XR”|(Q Hyo() Cl‘||<1}

(): The initial value problem (15) may be written as D. Robustness of funnel control
) 0 Theorem 3.3.Let n,q,m € N with n,q > m, U =
T = g(tvx)a J:(O) =T, (O,yo(()) - Cﬂ?o) € Hgo,yo, (16) LOO(RZO - Rm), Yy = Wl’OO(RZO S R™), W =UxD,
where g Hoouo _> ]R" (t,z) — Az + Bug(t) + » € ®anddec M, ,. For (6,3°) € P, x RY consider the
- so(t)l\yo(t) oz — (), satisfies a local Lipschitz associated operato(6,3°): Uy — Yo and C(p): Yo —
condition on t¥1e relatlvely open sé{,,, as required to U, defined by (13) and (14), resp., and the closed-loop initial
apply [16, Th. I11.11.111], which yields that (16), and trer Vvalue problem (1), (3), (4). Then there exist a continuous
fore (15), has an absolutely continuous solutian0,w) —  function 7: (0,00) — (0,00) and a functiony: P, ., —
R™ for somew € (0, cc], and the graph of the solution is not (0, c0) such that the following holds:
completely contained in any subset#t, ,,, i.e. the solution ~
can Fl;e mgximally extendeﬁ, as requIiorgd. ¥ (0,8, wo,1) € Py x RT X W x (0, 00) (: o)
(ii): Suppose (ug,y2) € L*®([0,w) — R™) x 0 Vi>0: (ty2(t)) € Fp
Whe([0,w) — R™) and, for contradiction, < oco. By YOI+ wollw < v } ke L*(R>o — R)
boundedness op it follows that there exists\ > 0 such 5( (8,0), (9’0)) < n(r) r € WH°(Rsg — RY),

that p(t) < 1/ for all t € [0,w). Thus (19)
1— o)) <1 = <o)y < el where (z, k) andys, satisfy (15).
2 2 A
= ly0t)] = % Loosely speaking, the main result shows that funnel con-

trol achieves the control objectives if applied to a system
(A, B, C) € P, m as long as this system is sufficiently close
— in the terms of the gap metric — to a system B, C) €
M,.m and the initial valuer® € R? for (A, B,C) and the

forall t € [0,w), which yields, in view ofy; € L ([0,w) —
R™) and #ﬁ;“yg =ug € L*([0,w) — R), that

Vie0,w) : 1—o)|ly2(t)]| < 3

= fusfloe > 2 ) Hyz(t%\l > Ap(t) ’ input/output disturbancegug, yo) are sufficiently small. As
= Ty = 2T ®)l2(O)D a consequencéA, B,C) € P,,, may not even satisfy any
thus ;% is bounded on{t € [0,w) |1 — ¢(t)||ly2(t)| < of the classical assumptions: minimum phase, relativeategr

1/2} Moreover for allt € [0,w) with 1 — ¢(¢)|ly2(¢)|| > one and positive high-frequency gain.



To establish gap margin results, we show gain-function staealization in normal form
bility of the so-called augmented closed-loop systemhe. 3 01 0]/& 0
closed-loop of extensions d? and C' be incorporation the Sl=1|r m rs||& ~N|u, =6, (22)
system class, see [6, Prop. 4.3]. This leads to: z -1 0 M 0

Proposition 3.4:Let n,q,m € N with n,q > m, U = with 71 — o

T i N / _ rn=aN+2M(a—-M—-N),ra=a—-2M — N and

L¥Rz0 = RY), Y = W (Rao = R™), W = 9M(NM + M2~ oM — aN).
UxYyandd < M. FON (0,27, ¢) € Py x RT X @, Recall from (12) that for zero initial conditions the gap
considerP (6, z°): Uy, — Ya, andC(p): Vo — U, defined papveen the systerfd, b, @) € Ps1 \ M, and(a,1,1) €
by (13) and (14), resp. Then there exist a continuous functloM tends to zero a®v — 2M and M tend to infinity.

n: (0,00) — (0,00) and a function): Py, — (0,00) such Note that Thm. 3.3 shows only existence of the functions

that the following holds: 1) andn which guarantee the robust stability result; it is not
(5 70 wo, T ) € Pym x RTx W x (0,00) straightforward to find these functions. We now discuss simu
lations for various values oV, M > 0, initial valuesz®, and
$(0)[3°] + [[wollw < 7 Hp G 70,000 (W0) input disturbances, (we consideny, = 0 for convenience:
5(P(8,0), P(6,0)) < n(r) EWXW. with yo # 0 systems become extremely stiff and MATLAB's
See [6, Prop. 4.4] for a proof. solvers fail to provide a numerical solution); all simutats
Proof of Thm. 3.3. Step: 1We show are performed by MATLAB fore = 1 and funnel boundary
1. 15.31 — 7.8t + 2, if t € [0,3.9)
((uhyl) (U2,y2)) Hp(g 79),C(p) (wO) EWXW. (20) 4,0( ) R>0 = R>o,tm 0.1, if t>3.9.

The variablesy; and k of the nominal closed- -loop sys-

Choose functions): (0,00) — (0,00) and ¢: Pom = tem (10), (4), (3) are depicted in Figure 3(a) for initial vel
(0,00) from Prop. 3.4. Let 20 = 1 andug = sin(2").

(5 70 wo, T ) € Pym X RI x W x (0,00) Consider the closed-loop system (22), (4), (3) fér=
0 ~ 2M = 100. In Figure 3(a) we depict the simulations for
( )Z] + [[wollw <7 A 5( (6,0), P(6,0)) < n(r). initial value ' = (0.1,0.1,0.08) ", which is sufficiently
Then Prop. 3.4 gives (20). small to guarantee funnel control: all components of the

Step 2 By Prop. 3.2 it follows that (15) has a uniqueSelution (€O 2() = ((),91(),2(-)) and k(-) and
solutionz: [0,w) — R? on a maximal interval of existence uy(-) are bounded However, a slight increase of the third

0,w) for somew € (0,0c]. Prop. 3.2(iii) yieldsw = oo component of the initial value t8> = (0.1,0.1,0.1) T leads

andk — € L®(Rso — R), the second assertion to a finite escape time: the outpyt tends to the funnel
1=l =0 boundary in finite timet; > 0 and thereforeu, (¢) tends to
of (19). y 1 1

Step 3 By Step 2 we havek € L®(Rsy — R) infinity est%tl, see Figure 3(b).
which, in view of continuity ofl — ¢||ys|| on (0, c0), yields Consider the closed-loop system (22), (4), (3) for=
1= o)) = llellsollk|=t > 0. Thus, for allt > 0, 2M = 10,000. Then the gap IS. very emall, and> 0 may '
o(t)|ly=2(£)|| < 1, which yields the first assertion of (19). be large such that the second inequality of the left hand side
Step 4 It remains to show that € W1 (Rsq — RY). of (19)_ holds_. I_-|ovyever, the system hes very unstable zero
Let (;1 B 5) € P, associated with (1). Detectability dynamics; thls_lndlcates that(A, b, ¢) might be very Iarge._
m Therefore, the initial value must be very small so that the fir
of (A B C) yields the existence of’ € R7*™ such that
inequality of the left hand side of (19) holds. Singemaps
spec(A+ FC) C C... Settingg := —[F+k 5] (yo — o) + any system(A, b,¢) into (0,00), then in view of (19) and
Buo + B kyo gives given that the second inequality holds foand (A, b, ), it
0= [/Tfkéé]erEqurE kyo = [Z+F5}a:+g. (21) is always possible to choose a sufficiently small initialueal
not equal to zero such that the first inequality holds.
By Prop. 3.4 and Step 3 we hayg € WH>(R>o — R™) Figure 4(a) shows that funnel control is achieved in case
and k € L*(Ryo — R) and sincewy = (ug,y0) € of the initial valuez® = (0.001,0.001,0.001)", whereas
L>®(R>o — R™) x Wh°(R>o — R™) it follows that funnel control is not achieved in case of the initial value
g € L*(R>o — R?). Hence, by (21) and Variation of 74 = (0.001,0.001,0.0015)", see Figure 3(b).
Constants we obtain € L>°(R>o — R?). The first equation  Finally we consider the general system with zero ini-
in (15) then givesi € L*(R>o — R?) which shows the tial conditions but non-zero input disturbance. Figures) 4(
third assertion in (19) and the proof is complete. B and 4(c) show that folV = 2M = 100 and u} = sin(2-)
Example 3.5: We revisit, fOI’a,N,M > 0, the plant funnel control is achieved, that fo¥ = 2M = 100 andu? =
operators (short for convenienc = P((a,1,1),2°)  2sin(2-) the controller fails to stablllze the system, however,
and P&, := P((A b ,¢),z°) defined by (10) and (11), resp. that for N = 2M = 400 and u? = 2sin(2-) the funnel
These plants will be studied in conjunction with the controtontroller achieves the control objectives. These sinarat
operatorC(p) defined by (14). show that, for large disturbances, the first inequality i) (1
In passing, note thaP}, has transfer functions — ﬁ; gives larger and therefore the gaﬁ(POg,POg) has to be
the plant P%, with transfer function (5) has a minimal smaller than for small disturbances.



y1 nom.
y1 gen.
SEy1 gen
===k nom.
- =k gen.
— +1/e()

o 2 T 6
@ y1, k, of [PT,_,,C(p)] for wo = sin(2); y1, 91, k of
(P2 _

C(p)] for N =2M =100 andug = 0

(0.1,0.1,0.08) T’

0.0002

0.0004

(b) y1, k of [P5g2:(041,g.1,0.1)77C(“’)} for N = 2M = 100 and
uop = 0; y1, k of [Pi4:(0‘001,0.001,0.0015)7’C(“D)] for N =
2M = 10,000 andug = 0

Fig. 3. Funnel control simulations: nominal systén{(a, 1, 1), z%) with

ug = sin(2-) and general syster?((A4,b,3), %), i = 1,2,4, with N =
2M =100, N = 2M = 10,000, resp., andug = 0.

20

10
0
—10
—20 .
0 2 4 6
3 _
@ y1, 2, k anduy of [P 441 .001,0.001)7 C(#)] for N =
2M = 10,000 andug =0
/,NV«‘ ':;’,
’ \‘\, VI i
yo for (i) |/
==k for (i)
=== yq for (ii) [
ook for (i) W
— *1/e()

6

(b) y2, k of [PE,C(p)] for (i) N =2M = 100 andu}; (i) N =
2M = 400 andu?

The simulations show that funnel control may be applied
to system (11) despite the fact that it has unstable zero
dynamics, relative degree two and negative high-frequency

gain. Restrictions are that the zero is “far” in the rightfhal
complex plane, the initial conditiog® is “small” and the
L> x W= input/output disturbancesg, andy, are “small”.

IV. CONCLUSIONS

M =
We have shown robustness of the funnel controller (43

40 ‘ ‘ ‘ ;

20

0

0 2 4

(©) y2, 92, k anduz of [Py s .55, C(p)] for [P§, C(p)] for N =
2M = 100 andu3

Fig. 4. Funnel control simulations: general syst[si?§370(go)}, with N =

10,000 andug = 0; [BE, C(y)] with u}, j = 1,2.

for a class of linear systems which are close in the gaRg) a. isidori, Nonlinear Control Systemsrd ed., ser. Communications

metric to minimum phase systems with (strict) relative degr

one; moreover, funnel control copes with certain boundeld®!

input/output disturbances.
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