
ar
X

iv
:c

on
d-

m
at

/0
30

64
14

v1
  [

co
nd

-m
at

.m
es

-h
al

l] 
 1

6 
Ju

n 
20

03

Anyon exciton revisited

D G W Parfitt and M E Portnoi
School of Physics, University of Exeter, Exeter EX4 4QL, UK

Abstract. We review the main results of the anyon exciton model in lightof recent criticism
by Wójs and Quinn. We show that the appearance of fractionally charged anyon ions at the
bottom of their numerically calculated excitation spectrais an artefact caused by finite-size
effects in a spherical geometry.

1. Review of anyon exciton model

The anyon exciton model [1, 2] provides a full classificationof the multiple-branch spectra
of a four-particle anyon exciton, a neutral composite particle consisting of a valence hole and
three anyons with charge−e/3. This model is only applicable for large enough separation
between a photoexcited hole and a two-dimensional electrongas at exact fractional filling
factor, when the Coulomb field from the hole cannot destroy the incompressible quantum
liquid.

As a neutral particle, the anyon exciton possesses an in-plane momentumk. At k = 0 it
is also described by the angular momentumLz = −L, whereL is the degree of the polynomial
symmetric with respect to interchange of anyon coordinates. There is an additional quantum
number which enumerates different polynomials of the same degree. An important parameter
of the problem is the separationh between electron and hole confinement planes, measured
in units of magnetic lengthl. Two examples of numerically calculated energy spectra for
h = 2 and 3 are shown in Fig. 1. Forh = 2, the minimum of the spectrum occurs for
non-zerok, which means that the exciton in the lowest energy state possesses a non-zero
dipole moment. The negative dispersion in Fig. 1a arises because of the mutual repulsion of
L = 2 andL = 3 branches. For higher values ofh, the ground state is always atk = 0,
as in Fig. 1b, and the lowest-branch dispersion is always positive. The value ofL at k = 0
for the lowest branch increases with increasingh, and thus direct optical transitions from
the ground state are forbidden. However, fork 6= 0 the wavefunction is a mixture of states
with differentL values, and magnetoroton-assisted transitions become possible. Fig. 2, which
shows the negative charge distribution around a valence hole for two different values ofk,
implies a simple qualitative picture of such a transition. Aquasihole appears as a result of
recombination of the hole with two negatively-charged anyons which are close to it. The
quasihole and a split-off anyon form a magnetoroton. Notably, for the particular value of
h = 2 used in Figs. 1a and 2, the asymmetrick 6= 0 distribution has a lower energy than the
symmetric one. Nevertheless, we wish to emphasise that the exciton remains neutral, contrary
to the statements in Ref. [3].

Such features of the anyon exciton model as multiple-branchspectra, dark ground
states, and absence ofL = 1 states coincide with the results of exact diagonalisation for
a few-electron system in the spherical geometry [3, 4]. Similarities between the electron
density distribution and pair correlation functions for low-lying states in planar and spherical
geometries are discussed in Ref. [2]. We wish to emphasise that such a comparison is only
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Figure 1. Anyon exciton dispersionǫ(k) for two values of electron-hole separationh.
Numbers showL values;h is in units of magnetic lengthl.

Figure 2. Electron density distribution in an anyon exciton for different values of the exciton
in-plane momentumk. The distanceh between the hole and the incompressible electron liquid
is equal to two magnetic lengths. The hole is at the origin; thex-axis is chosen in the direction
of the exciton dipole moment.

valid in the region of intermediate electron-hole separation, h ≈ 2, where both approaches
are applicable.

The presence of a ‘tight’(L = 0) state in the upper part of the exciton energy spectrum,
together with a magnetoroton-assisted transition from thelower part of the spectrum, may
explain the double-line feature observed in the intrinsic spectroscopy of incompressible
quantum liquids [5].
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2. Classical limit in planar and spherical geometry

When the separationh exceeds two magnetic lengths (which is a requirement for theanyon
exciton model to be valid), the ground state atk = 0 is formed by the states with angular
momentum obeying the superselection ruleL = 3N , whereN ≥ 2. All these states are hard-
core states, i.e. their wavefunctions are zero if any two of the anyon coordinates coincide. This
means that the three anyons in the exciton form an equilateral triangle; this is in complete
agreement with the classical picture. In fact, for large values of separation, the result of a
quantum mechanical calculation for the ground state energyis the same as that obtained by a
simple classical approach. This is true for quasielectronsobeying both anyonic and bosonic
statistics [2].

It is natural to compare the results of classical calculations for anyon excitons and ions
in both planar (Fig. 3) and spherical (Fig. 4) geometries. These calculations are based
on minimising the classical potential energy of the system,and the hole and anyons are
considered as point charges. Fig. 3a shows the ‘classical’k = 0 anyon exciton, the energy of
which is given by

E =
1

3
√

3r
− 1

(h2 + r2)1/2
, (1)

wherer is the distance from each anyon to the centre of negative charge. Here, and in what
follows, charge is measured in units of electron chargee. Minimising this energy with respect
to r gives

Emin = −
(

2

3

)3/2 1

h
≈ −0.544

h
. (2)

This result coincides exactly with quantum mechanical calculations in the limit of largeh [2].
A similar calculation for an ion (Fig. 3b) gives a potential energy

E =
1

18r
− 2

3(h2 + r2)1/2
, (3)

which, when minimised, leads to

Emin = −(122/3 − 1)3/2

18h
≈ −0.485

h
. (4)

Therefore, as expected, the neutral exciton is more energetically favourable than a positively-
charged ion.

For a spherical geometry, with the valence hole at the north pole of the sphere, the anyon
exciton corresponds to the configuration shown in Fig. 4a, whereas for the ion, one of the
anyons goes to the south pole of the sphere (Fig. 4b), which corresponds to infinity on the
plane. Note that the electron-hole separation is taken intoaccount by introducing an effective
interactionV = −(r2

c + h2)−1/2/3, whererc is taken as the anyon-hole chord length. The
expression for the energy (with the radius of the sphere taken as unity) is

E =

√
3

9(1 − d2)1/2
− 1

(h2 − 2d + 2)1/2
, (5)

whered is the distance between the centre of negative charge and thecentre of the sphere.
Minimising this expression in the limit of large electron-hole separationh, we obtain

Emin =
1

3
√

3
− 1

h
+

1

h3
− 3

2h5
+ O

(

1

h6

)

. (6)
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Figure 3. ‘Classical’ anyon exciton (a) and ion (b) in the planar geometry, whereh is the
separation between the electron and hole confinement planesandr is the distance between
each anyon and the centre of negative charge. Note that charges are scaled by the electron
chargee.
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Figure 4. ‘Classical’ anyon exciton (a) and ion (b) in the spherical geometry, whered is the
distance between the centre of negative charge and the centre of the sphere.

A similar calculation for the configuration in Fig. 4b gives apotential energy

E =

√
3

27(1 + d)1/2(1 − 3d)1/2
+

2
√

3

27(1 + d)1/2

− 2

3(h2 − 3d + 1)1/2
− 1

3(h2 + 4)1/2
, (7)

which, when minimised, yields

Emin =
1

3
√

3
− 1

h
+

1

h3
− 9

4h5
+ O

(

1

h6

)

. (8)



Anyon exciton revisited 5

Comparing Eqs. 6 and 8, one can see that for large electron-hole separation in a spherical
geometry, the positively-charged ion is energetically more favourable than the neutral exciton,
which is not the case in the more realistic planar geometry.

Introducing realistic form factors [3], which reduce anyon-anyon repulsion at large
distances, is unlikely to push one of the anyons to infinity and make the ion energetically
favourable in the planar geometry.

In conclusion, we believe that the appearance of fractionally-charged anyon ions at the
bottom of the numerically calculated excitation spectra [3] is an artefact caused by finite-size
effects in the spherical geometry.
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