Probing two-subband systems in a quantizing magnetic field with non-equilibrium phonons

M.E. Portnoi, K.V. Kavokin

School of Physics, University of Exeter, Exeter EX4 4QL, UK

V.M. Apalkov

Department of Physics, University of Utah, Salt Lake City, UT 84112, USA

Abstract. We propose to use phonon absorption spectroscopy to study many-body gaps and phases of two-subband heterostructures in the quantum Hall regime. Implications of the spin-orbit interaction for phonon absorption in this system are considered.

Phonon spectroscopy is a powerful experimental technique that has been successfully used in the study of the properties of a two-dimensional (2D) electron gas in the quantum Hall regime [1]. It allows probing of the states with non-zero momentum, which are not accessible by either cyclotron resonance or photoluminescence methods. We propose to use acoustic-phonon spectroscopy to study many-body effects in a two-subband quasi-2D system, formed at a single semiconductor heterojunction and subjected to a quantizing magnetic field. We show that the formation of many-body gaps and the existence of different spin phases in this system result in a striking difference in the magnetic field dependence of the phonon absorption rate at different filling factors.

Acoustic-phonon scattering of 2D electrons in a quantizing magnetic field is strongly suppressed due to the dispersionless structure of the Landau levels (LLs). In a two-subband system, however, a sharp enhancement of the electron-phonon interaction occurs when the two LLs corresponding to different size-quantization subbands (we consider the second LL of the first subband and the first LL of the second subband only) approach one another, and the separation between these energy levels, $\Delta = \Delta_{12} - \hbar \omega_c$, becomes close to $\hbar s/l$. Here $\hbar \omega_c$ is the cyclotron energy, Δ_{12} is the intersubband splitting, s is the velocity of sound and l is the magnetic length. This electron-phonon interaction enhancement should manifest itself in the magnetic field dependence of the phonon absorption rate and dissipative conductivity. At filling factor slightly greater than two, when the electron-electron interaction between the particles belonging to either of the intersecting LLs can be neglected, a double-peak structure in the magnetic field dependence of the phonon-mediated transport properties of the two-subband system has been predicted [2]. With increasing electron density, the repulsion between the levels due to electron-electron exchange interactions opens a gap in the interlevel excitation spectra. At filling factor v = 3 this gap exists at all values of the bare level splitting Δ and can well exceed $\hbar s/l$. As a result, the double-peak structure transforms into a singlepeak one (see Figure 1). By far the most interesting case is when the electron filling factor v = 4. When the cyclotron energy is close to the intersubband splitting the system can be mapped onto a four-level electron system with an effective filling factor $v^* = 2$. The ground state is either a ferromagnetic state or a spin-singlet state, depending on the values of the interlevel splitting and Zeeman energy Δ_Z . The electron-electron interaction renormalizes the phase boundaries, which results in the existence of a ferromagnetic phase even for $\Delta_Z = 0$. The excitation spectrum has a gap for any value of the interlevel splitting Δ and Zeeman

splitting Δ_Z . This results in strong suppression of the electron-phonon interaction. The rate of phonon absorption by the considered quasi-2D electron system at v=4 again has a double-peak structure as a function of level splitting and a steplike structure as a function of Zeeman splitting (see Figure 2).

In the absence of the spin-orbit interaction, the transitions between levels with different spin indices are forbidden because the electron-phonon interaction conserves the electron spin. The spin-orbit interaction allows such transitions. Matrix elements of the spin-orbit interaction Hamiltonian H_{SO} between levels differing by subband number, LL number, and spin projection on the normal to the structure plane, are given by following expressions [3]:

$$\langle \eta, n, k_{x}, -1/2 | H_{SO} | \mu, n-1, k_{x}, +1/2 \rangle = iC \frac{1}{l_{H}} \sqrt{2n},$$

$$\langle \eta, n, k_{x}, +1/2 | H_{SO} | \mu, n-1, k_{x}, -1/2 \rangle = A \frac{1}{l_{H}} \sqrt{2n},$$

$$\langle \eta, n-1, k_{x}, -1/2 | H_{SO} | \mu, n, k_{x}, +1/2 \rangle = A \frac{1}{l_{H}} \sqrt{2n},$$

$$\langle \eta, n-1, k_{x}, +1/2 | H_{SO} | \mu, n, k_{x}, -1/2 \rangle = -iC \frac{1}{l_{H}} \sqrt{2n},$$
(1)

where $H_{SO} = \left(\alpha \hbar^3 \left(2m^3 E_g\right)^{-1/2} \mathbf{K} + \beta \left[\mathbf{k} \times \nabla V\right]\right) \cdot \mathbf{S}$, $\mathbf{K} = \left[k_x (k_y^2 - k_z^2), k_y (k_z^2 - k_x^2), k_z (k_x^2 - k_y^2)\right]$, η and μ numerate subbands, n is the LL number, and α and β are phenomenological spin-orbit constants of the semiconductor [4]. The expressions for A and C are given by

$$A = \alpha \hbar^3 \left(2m^3 E_g\right)^{-1/2} \int_{-\infty}^{+\infty} \Psi_{\mu}(z) \frac{d^2 \Psi_{\eta}(z)}{dz^2} dz,$$

$$C = \beta \int_{-\infty}^{+\infty} \Psi_{\mu}(z) \Psi_{\eta}(z) \frac{dV_{QW}}{dz} dz,$$
(2)

where V_{QW} is the quantum-well confinement potential. These matrix elements cause an admixture of states with opposite spin direction to both the initial and final states for the phonon absorption. As a result, the phonon absorption rate at v=4 never becomes zero; in the region between peaks, it is of the order of $(M/\Delta_g)^2$ times its value at the peak of absorption, where M is the corresponding matrix element of the spin-orbit interaction (Eq.(1)), and Δ_g is the many-body energy gap.

In the absence of many-body effects, the inter-subband spin-orbit coupling results in anticrossing of levels with different spin, subband and LL indices. The resulting energy gaps can be measured by high-resolution spectroscopic techniques (optical or spin/cyclotron resonance spectroscopy), as has been suggested for one-subband systems in tilted magnetic fields [5].

This work was supported by the UK EPSRC.

References

- [1] U. Zeitler, A.M. Devitt, J.E. Digby, C.J. Mellor, A.J. Kent, K.A. Benedict, and T. Cheng, Phys. Rev. Lett. **82**, 5333 (1999), and references therein.
- [2] V.M. Apalkov and M.E. Portnoi, Physica E 12, 470 (2002).
- [3] K.V. Kavokin and M.E. Portnoi, to be published.
- [4] G.L. Bir and G.E. Pikus, Symmetry and strain-induced effects in semiconductors (Wiley, New York, 1974).
- [5] V.I. Falko, Phys. Rev. B 46, 4320 (1992).

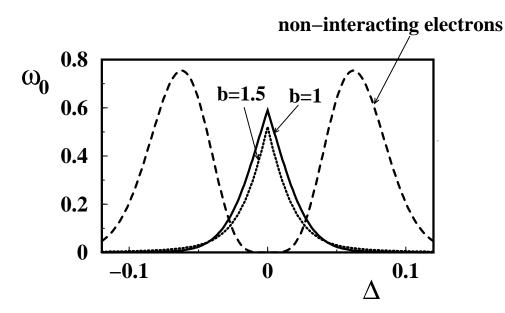


Figure 1. The phonon absorption rate per phonon, $\omega_0 = \omega_{abs}/n(q_0)$, as a function of bare level separation, $\Delta = \Delta_{12} - \hbar \omega_c$, at filling factor $\nu = 3$ (solid and dotted lines) and for the case of non-interacting electrons (dashed line). The results for $\nu = 3$ are shown for two different values of the Fang-Howard parameter (inverse quantum well width) b = 1 and b = 1.5 in units of inverse magnetic length l^{-1} . The absorption rate ω_0 is in units of $10^{10} \, \mathrm{s}^{-1}$; Δ is in Coulomb units ($\varepsilon_C = e^2/\kappa l$).

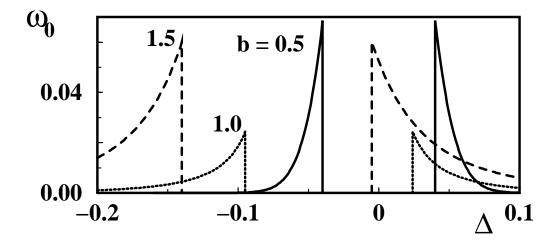


Figure 2. The phonon absorption rate ω_0 at filling factor v=4 as a function of interlevel separation Δ for the case of zero Zeeman splitting, $\Delta_Z=0$, for three values of parameter b. The data for b=1.0 and 1.5 are multiplied by 10. The absorption rate ω_0 is in units of 10^{10} s⁻¹; Δ is in units of ε_C .