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Abstract 

The relationship between working memory and deliberative 
processing was examined in a human contingency learning 
experiment that employed the combined positive and negative 
patterning procedure of Shanks and Darby (1998). 
Participants with a large working memory capacity showed 
generalization consistent with the application of an opposites 
rule (i.e., a compound and its elements signal opposite 
outcomes), whilst individuals with a small working memory 
capacity showed generalization consistent with surface 
similarity. Working memory capacity was assessed via the 
Operation Span task (Turner & Engle, 1989). Implications for 
associative, inferential, and dual-process accounts of human 
learning are discussed.                 

Keywords: rules; associative learning; generalization; 
working memory; deliberative processing. 

Introduction 

The distinction between deliberative and non-deliberative 

processing, under a variety of different names, is 

fundamental to the study of cognition. For example, 

theorists seek to distinguish between propositional and 

associative learning (Mitchell, De Houwer & Lovibond, 

2009), between analytic and nonanalytic categorization 

(Brooks, 1978), between automatic and intentional retrieval 

from memory (Jacoby, 1991), and between intuitive and 

deliberate reasoning (Kahneman, 2003).  Deliberative 

processing is generally considered to be characteristic of 

thought processes that go beyond surface similarity to 

extract casual (De Houwer & Beckers, 2003) or abstract 

(Shanks & Darby, 1998) structure, thought processes that go 

beyond simple familiarity to episodic recollection (Jacoby, 

1991), thought processes that are able to detect and correct 

irrational non-deliberative inferences (Kahneman, 2003). 

Deliberative thought processes are also often considered to 

be those that involve a degree of recurrence – in the sense 

that one goes through a series of intermediate stages to 

arrive at the final response (Milton & Wills, 2004). Another, 

related, way of capturing this idea of recurrence is to say 

that deliberative thought approximates the operation of a 

physical symbol system (Newell, 1980) – the ideas are 

related because certain recurrent, neural-like, structures 

have been shown to be able to implement a Universal 

Turing Machine (Siegelmann & Sontag, 1995). 

In the current study we investigated the relationship 

between the availability of working memory resources and 

the extent to which people engage in deliberative processing 

when acquiring new information. People with comparatively 

large working memories learn some tasks more quickly (e.g. 

learning to trace electrical signals through logic gates; 

Kyllonen & Stephens, 1990), and other tasks more slowly 

(e.g. acquisition of a hard-to-verbalize category structure; 

De Caro, Thomas & Beilock, 2008; but see Tharp & 

Pickering, 2009), than people with comparatively small 

working memories. In the current study, we were interested 

primarily in the relationship between availability of working 

memory resources and the nature of what was learned. 

One related study is that by De Houwer and Beckers 

(2003). In their forward cue competition experiment, 

participants first observed (in a computer game scenario) 

that firing a particular weapon (A) was followed by the 

destruction of a tank. Later on, weapon A was fired 

simultaneously with a new weapon, B. This compound 

firing also led to the destruction of the tank. They were then 

asked about the causal status of weapon B with respect to 

the destruction of the tank. On one, non-deliberative, 

account weapon B and the destruction of the tank have been 

repeatedly paired and thus one might say weapon B causes 

destruction of the tank by the mere fact of contiguity. 

However on another, deliberative, account one might argue 

that the causal status of B is uncertain because A causes 

destruction of the tank on its own, and B has never been 

used on its own. De Houwer and Beckers found that the 

imposition of a concurrent working memory load led to 

higher ratings for the extent to which B was considered to 

cause the tank’s destruction, compared to a situation where 

the same contingencies were observed in the absence of a 

concurrent load. Their conclusion was that the imposition of 

a concurrent load interfered with the deliberative (deductive 

reasoning) processes required to work out that the causal 

status of B was uncertain, despite the fact it had been 

repeatedly paired with the destruction of the tank. 
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In another related study, Waldron and Ashby (2001) 

demonstrated that concurrent working memory load 

retarded the acquisition of category structures definable in 

terms of a simple (single-attribute) rule, whilst the 

acquisition of category structures for which the rule was 

complex and non-intuitive was not significantly affected by 

concurrent load. Waldron and Ashby concluded that 

concurrent load interfered with the deliberative (rule-based) 

categorization process that would normally dominate in the 

simple-rule case, but that concurrent load left unaffected the 

non-deliberative processes underlying the acquisition of the 

more complex category structure. 

One of the inherent difficulties in attempting to 

demonstrate a relationship between the availability of 

working memory resources and the extent to which learning 

proceeds deliberatively is to find a type of learning behavior 

that is unambiguously outside the scope of non-deliberative 

theories of cognition. For example, Nosofsky and Kruschke 

(2002) have argued that the results of Waldron and Ashby 

(2001) can be accounted for by a non-recurrent, non-

deliberative, exemplar model (ALCOVE; Kruschke, 1992). 

The basis of Nosofsky and Kruschke’s argument is that 

concurrent load may be hypothesized to disrupt learned 

selective attention. This disruption will affect learning tasks 

in which selective attention is helpful (such as categories 

defined by a single attribute). Forward cue competition is 

also, at least in part, the result of learned selective attention 

(Kruschke, Kappeman & Hetrick, 2005; Wills, Lavric, Croft 

& Hodgson, 2007), so the idea that concurrent load disrupts 

selective attention might also, in principle, account for the 

forward cue competition results of De Houwer and Beckers 

(discussed above). 

In the current studies, we examined the role of working 

memory in the learning and generalization task introduced 

by Shanks and Darby (1998). The task is unusual in that the 

performance of a subset of participants in this task is widely 

considered to be strong evidence for the role of deliberative 

processing in learning. This view is held both by those who 

argue for a central role of non-deliberative (associative) 

processes in human learning (e.g. Cobos, Almaraz & 

Garcia-Madruga, 2003), and for those who argue against 

this position (e.g. Mitchell et al., 2009). Verguts and Fias 

(2009) have argued that the behavior of this subset of 

participants can be accounted for by a recurrent 

connectionist model – this argument is consistent with the 

position, outlined above, that recurrence is a characteristic 

feature of deliberative processing and that recurrent network 

architectures can implement general-purpose computational 

systems. 

The design and key result of Shanks and Darby (1998) is 

shown in Figure 1. Participants were asked to take the role 

of an allergist, attempting to predict which foods will cause 

an allergic reaction in a hypothetical patient, Mr. X. In 

Figure 1, letters stand for foods, “+” indicates the presence 

of an allergic reaction, and “-“ indicates the absence of an 

allergic reaction. The training phase contained two complete 

positive patterning problems (e.g. A+, B+, AB-) and two 

complete negative patterning problems (e.g. C-, D-, CD+). 

Training also contained four incomplete patterning 

problems (e.g. participants see I+ and J+ but not IJ). The 

critical results concern participants’ generalization to novel 

items, such as IJ, in the absence of feedback. For example, 

say you have observed that Mr. X develops an allergic 

reaction when he eats ice cream (I) and when he eats jelly 

(J). Do you predict the presence or absence of an allergic 

reaction when eating ice cream and jelly together? 

A non-deliberative, surface similarity, process is likely to 

predict allergic reaction to IJ, as IJ is similar to both I and J, 

both of which produced an allergic reaction. A deliberative 

process, however, might detect that an opposites rule 

succinctly captures the information available during training 

– single foods produce the opposite reaction to their 

compounds. On this basis, IJ is predicted to not result in an 

allergic reaction, because this is the opposite outcome to 

that for I occurring on its own (and for J occurring on its 

own). As shown in Figure 1, Shanks and Darby found that 

participants who achieved a high level of accuracy during 

training showed generalization consistent with the 

 
 

Figure 1: A. The training and test trial types in the Shanks and Darby (1998, Experiment 2) allergy prediction task; letters 

indicate foods eaten by a hypothetical patient Mr. X, + = patient develops an allergic reaction; - = patient does not develop 

an allergy reaction; ? = no feedback given. B. Critical test trials of Shanks and Darby (1998, Experiment 2) – probability 

of participants predicting an allergic reaction in Mr. X to novel meals, as a function of accuracy in the training phase. 
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application of an opposites rule, while participants who 

performed less well in training showed generalization 

consistent with surface similarity. Our hypothesis is that this 

transition in generalization reflects a transition from non-

deliberative to deliberative processing during the course of 

training. We further hypothesize that, if opposites-rule and 

surface-feature generalization are indeed the products of 

deliberative and non-deliberative processing respectively, 

then the availability of working memory resources should 

determine whether opposites-rule or surface-feature 

generalization is seen (under the assumption that 

deliberative processing makes greater demands on working 

memory than non-deliberative processing). 

Existing evidence could be employed, in a fairly indirect 

manner, to argue either for, or against, our hypothesis. On 

the one hand, Winman, Wennerholm, Juslin and Shanks 

(2005) demonstrated that opposites-rule generalization was 

related to performance on Raven’s Progressive Matrices 

(RPM). RPM are considered to be a measure of general 

intelligence (g) and g appears to be related to working 

memory capacity (Conway, Kane & Engle, 2003). Hence 

one might argue that those with high working memory 

capacity should be more likely to show opposites-rule 

generalization than those with low working memory 

capacity. On the other hand, De Houwer and Vandorpe 

(2009) demonstrated performance consistent with opposites-

rule generalization in the Implicit Association Test (IAT; 

Greenwald, McGhee & Schwartz, 1998). Although a matter 

of some debate (Fazio & Olson, 2003), the IAT (as its name 

suggests) is often considered to index non-deliberative 

processing. Also, opposites-rule generalization is related to 

participants demonstrating an inverse base-rate effect 

(Winman et al., 2005), yet demonstration of an inverse base-

rate effect has been reported to be unaffected by a 

concurrent load (Lamberts & Kent, 2007). 

In the current article, we examined the relationship 

between working memory and deliberative processing in 

two ways. We measured individuals’ working memory 

using an Operation Span task (OSPAN; Turner & Engle, 

1989) and tested the hypothesis that those with relatively 

large working memory capacity would show generalization 

more consistent with the application of an opposites rule, 

whilst individuals with a relatively small working memory 

capacity would show generalization more consistent with 

surface similarity.  

Experiment 

Method 

 

Participants and apparatus. Forty-two adults from the 

Exeter and Guernsey regions of the United Kingdom took 

part on a voluntary basis. They were tested individually in a 

quiet testing room using a PC laptop (17” screen) running 

the E-prime software package (Version 1.1, Psychology 

Software Tools, Pittsburgh, USA).  

 

Design and stimuli (learning task). The design of the 

learning task is shown in Figure 1A. For half the 

participants the foods A-P were, respectively, coconut, 

cheese, apple, orange, carrots, cabbage, chips, nuts, eggs, 

banana, beetroot, rice, milk, and garlic. For the remaining 

participants, the foods assigned to A and B were swapped 

with those assigned to C and D, and similarly for E/F and 

G/H, for I/J and K/L, and for M/N and O/P.  

 

Procedure. Participants were asked to assume the role of an 

allergist, predicting whether a hypothetical patient, Mr. X, 

would or would not develop an allergic reaction after eating 

a meal containing certain foods. On each trial, food names 

were presented on the screen, and participants pressed a key 

to indicate whether or not Mr. X would suffer an allergic 

reaction. No time limit was set for these responses. During 

the training phase, each trial was followed by a feedback 

message of 1500ms duration (e.g. “Correct! Mr. X 

developed an allergic reaction”). No feedback was given 

during the test phase. The training phase comprised eight 

blocks; each block contained two of each of the 18 training 

trial types shown in Figure 1A, presented in a random order. 

The test phase comprised two of each of the 24 test trial 

types shown in Figure 1A, again presented in a random 

order. The transition between blocks and phases was not 

signaled to participants, although they were forewarned that 

feedback would not be available towards the end of the 

experiment. 

After a short break (1-2 minutes), the participants 

proceeded to the operation span (OSPAN) task. In this task, 

participants were presented with a total of 60 trials split into 

15 groups of trials. There were 3 groups each of 2, 3, 4, 5 

and 6 trials and participants were presented with the groups 

of trials in a pseudo-random order. Each trial consisted of a 

simple mathematical equation (e.g. 2 x 3 + 1 = 7) presented 

simultaneously with a word (e.g. BED). The participant’s 

task was to indicate whether the answer to the equation was 

correct or incorrect. They were also required to remember 

each word. Each equation/word combination was response 

terminated with a timeout of 5 seconds. At the end of each 

group of trials, participants were asked to recall, in order, 

the words presented within that group. For example, in a 

block size of 3, participants would be presented with three 

equation/word pairs. After the presentation of the third pair, 

participants would be asked to recall the first word in the 

group followed by the second word and finally, the third 

word. Participants were not allowed to backtrack and 

change a previously given answer. There was no limit 

placed on time for recall, and no feedback was given. A 

participant’s score on the OSPAN task was calculated as the 

sum of correctly recalled words for trial groups that were 

perfectly recalled (e.g. Conway & Engle, 1994; Turner & 

Engle, 1989).  
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The operation span task proper was preceded by three 

practice spans (all of length two) to familiarize participants 

with the task. These practice spans were not analyzed.  

Results 

Our hypothesis was that those with a high working memory 

capacity (as measured by the OPSAN task) would show 

generalization consistent with an opposites rule, whilst 

participants with a low working memory capacity would 

show generalization consistent with surface similarity. High 

and low working memory capacity was operationalized as 

the upper and lower quartiles of the sample on the OSPAN 

score (Conway & Engle, 1994).  

Figure 2 (left panel) illustrates the generalization to novel 

compounds MN and IJ, as a function of high vs. low 

OSPAN. An ANOVA with one between-subjects factor 

(high vs. low span), and one within-subjects factor 

(stimulus; MN vs. IJ), revealed a significant interaction 

between these factors, F(1,20) = 15.87, p = 0.001. The main 

effects of span and stimulus were not significant, F(1,20) < 

2.55, p > 0.10. Under an opposites rule, the appropriate 

response to MN is that an allergic reaction is expected, and 

the appropriate response to IJ is that an allergic reaction is 

not expected. Under the application of surface similarity, the 

predictions are reversed. The generalization to novel 

compounds MN and IJ shown by high working memory 

capacity participants is therefore more consistent with the 

application of an opposites rule, whilst the generalization 

shown by low working memory capacity participants is 

more consistent with the application of surface similarity. 

Figure 2 (right panel)  illustrates a similar result for novel 

test stimuli K/L and O/P although, as in Shanks and Darby 

(1998), the interaction is marginally significant, F(1,20) = 

3.91, p = 0.06. The main effects are non-significant, F(1,20) 

< 1.  

Performance on familiar test items (i.e. those also seen 

during training) was consistent with the feedback received 

during training, for both groups. High OSPAN participants 

predicted an allergic reaction on 92% of occasions for 

stimuli that had been associated with allergy in training, and 

predicted an allergic reaction on 13% of occasions for 

stimuli that had not been associated with allergy in training. 

For low OSPAN participants, the figures were 71% and 

39%. An ANOVA with one within-subjects factor (stimulus 

type: allergy vs. no allergy) and one between-subjects factor 

(high vs. low working memory) revealed a main effect of 

stimulus type, F(1, 20) = 67.3, p < 0.0005, and a significant 

interaction, F(1, 20) = 11.9, p = 0.003.  There was no main 

effect of group, F(1,20) < 1. The significant interaction 

reflects more accurate performance on familiar items by the 

high working memory capacity participants. 

Discussion 

We found that participants with a comparatively large 

working memory capacity generalized to novel stimuli in a 

learning task (Shanks & Darby, 1998) in a way consistent 

with the application of an abstract rule, whilst participants 

with a comparatively small working memory capacity 

generalized to novel stimuli in a way consistent with surface 

similarity. Those participants with a large working memory 

capacity also learned more quickly than those with a small 

working memory capacity. Both positive (Kyllonen & 

Stephens, 1990), and negative (DeCaro et al., 2008) 

relationships between working memory capacity and rate of 

learning have been reported in other tasks. 

The learning task employed in these studies was 

introduced by Shanks and Darby (1998). The task is unusual 

in that there is a broad consensus, from a range of 

theoretical perspectives, that the abstract-rule generalization 

seen in this task is outside the scope of non-deliberative 

thought processes (e.g. those processes captured by simple 

associative, and non-recurrent connectionist, models; Cobos 

et al., 2003; De Houwer & Beckers, 2003; Mitchell et al., 

2009; Verguts & Fias, 2009). The consensus concerning the 

Shanks and Darby task stands in contrast to the contentious 

nature of some other forms of putatively deliberative 

behavior that have been reported in adults (e.g. DeCaro et 

al., 2008 vs. Tharp & Pickering, 2009).  

The explanation we tentatively offer for our results is that 

participants initially approach the training phase through a 

process of exemplar storage and retrieval. This is a 

relatively non-deliberative process (which is not to say it is 

necessarily entirely automatic). Later in training, some 

participants notice there is a non-intuitive rule that 

substantially reduces the number of things one has to 

remember. At limit, all one needs to remember is the rule 

that compounds predict the opposite to their elements, and 

that the compounds CD, EF, and KL make Mr. X sick. 

Everything else can be derived – for example, A on its own 

will make Mr.X sick, because A is not in any of the three 

compounds that make him sick (CD, EF, KL), and 

compounds predict the opposite to their elements. 

This process of rule extraction is assumed to be relatively 

deliberative and effortful, requiring as it does the generation 

of verbal hypotheses and then testing them against 

subsequently presented training items. If the process of rule 

extraction is assumed to be relatively deliberative and 

 
 

Figure 2: mean probability of participants predicting an 

allergic reaction in response to novel stimuli IJ, MN, O/P 

(the mean of responses to O and P), and K/L, shown as a 

function of participants’ working memory capacity 

(upper vs. lower quartile). 
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effortful, then it is not unreasonable to assume it might be 

more likely to occur in those with a relatively large working 

memory. Generalization to novel test items will depend on 

the nature of the representations developed during training. 

For those with a small working memory capacity, the 

representations are exemplars, and generalization would 

therefore be expected to be on the basis of surface 

similarity. Those with a large working memory, however, 

extract the opposites rule, and generalization might 

therefore be expected to be on the basis of that opposites 

rule.  

The idea that rule extraction in the Shanks-Darby task is 

deliberative, effortful, and requiring of working memory 

resources, is also supported by related work in our 

laboratory. Across two experiments, Wills, Graham, Koh, 

McLaren and Rolland (2011) demonstrated that the 

imposition of a concurrent working memory load during the 

training phase of the Shanks-Darby task resulted in 

similarity-based generalization during the test phase. In the 

absence of concurrent working memory load during 

training, participants produced opposites-rule 

generalization. Opposites-rule generalization in the absence 

of  load was to be expected in these experiments as 

participants were trained to a high criterion  (89% 

accuracy); those not meeting the criterion were excluded 

from analysis. Interestingly, Wills et al. (2011) found that 

the presence of concurrent working memory load during the 

test phase had no effect. Hence, it appears to be the 

extraction of a rule in this task that requires substantial 

working memory resources, rather than the application of an 

extracted rule. It may be that substantial working memory 

resources are required to generate and/or evaluate a rule that 

summarizes (and hence simplifies) the information 

presented during training. 

The explanation we offer for our results falls amongst the 

broad class of explanations that assume cognition in adult 

humans is the product of at least two systems – one system 

that is deliberative, and perhaps approximates the function 

of a physical symbol system (Newell, 1980), and another 

system that is non-deliberative, and which might be 

approximated by a simple associative system. Explanations 

of this general class include those forwarded by Ashby et al. 

(1998), Brooks (1978), and Sloman (1996).  

In addition to dual-process accounts of human cognition, 

another class of theory is that all learning is the product of a 

deliberative system (e.g. inferential accounts; Mitchell et al., 

2009). In relation to the results of the current experiments, 

inferential accounts would presumably assume that not only 

opposites-rule performance, but also surface similarity 

performance, was the product of an inferential process in 

this task. In order to predict any effect of working memory 

capacity, such an account must assume that opposites-rule 

performance is more effortful than surface similarity 

performance – perhaps because participants arrive with a 

pre-experimental hypothesis that similar meals lead to 

similar outcomes, whilst the non-intuitive opposites-rule 

hypothesis is only arrived at through a relatively effortful 

process of hypothesis-testing during training. Having a 

relatively limited working memory capacity presumably 

interferes with this process, leaving the participant with just 

memory for the examples (which is employed for familiar 

test items) and a pre-experimental surface similarity 

hypothesis (which is employed for novel test items).  

In summary, an inferential explanation seems to need to 

assume both the presence of a relatively non-deliberative 

exemplar storage and retrieval process, and that certain 

types of inferential process are also relatively non-

deliberative (e.g. inferences on the basis of a pre-

experimental hypothesis about novel test items). In other 

words, an inferential explanation seems to need to assume 

the presence of not only relatively non-effortful forms of 

learning and retrieval, but also the presence of relatively 

non-effortful forms of inference. When expressed in those 

terms, an inferential account seems to largely converge with 

the dual-process we offer above.  

In summary, we have reported an experiment that 

suggests the availability of working memory resources is an 

important determinant of how we generalize from what we 

have learned. In our studies, information learned and tested 

in the presence of substantial working memory resources 

seems to lead to generalization more consistent with the 

application of an abstract rule, whilst information learned 

and tested in the presence of more limited working memory 

capacity seems to lead to generalization more consistent 

with surface similarity. 
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