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Abstract 8 

This paper presents a methodological solution to The Battle of Background Leakage Assessment 9 

for Water Networks (BBLAWN) competition. The methodology employs two constrained 10 

multiple-objective optimization problems and is implemented in the context of a software 11 

application for the generic hydraulic optimization and benchmarking of Water Distribution System 12 

(WDS) problems.  The objectives are the combined infrastructure and operational costs and 13 

system-wide leakage, both to be minimized.  In order to accelerate the evaluation of potential 14 

solutions, a distributed computing approach permits multiple EPANET solutions to be evaluated 15 

in parallel.  A pressure-driven demand extension to EPANET assists the optimization in accurately 16 

ranking near-feasible solutions and to dynamically allocate leakage demand to nodes.  Pressure 17 

Reducing Valves (PRVs) have been located in two ways: a priori, with respect to the optimization 18 

analysis and a posteriori after the infrastructure optimization to reduce excess pressure and pipe 19 

leakage. The latter demonstrates better overall fitness, leading to optimal configurations 20 

dominating those obtained with the former.  21 

Several temporal resolutions for PRV settings have been evaluated to contrast the optimal 22 

solutions with the computational effort required. 23 
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Introduction 27 

The Battle of Background Leakage Assessment for Water Networks competition (BBLAWN) 28 

(Giustolisi et al., 2015) presents a challenge in optimizing a water network both in terms of 29 

design/expansion and also operation. The analysis requires the reinforcement through the 30 

replacement or augmentation of its components (tanks, pipes, etc.) and better management of the 31 

system operation by regulating the use of pumps and the installation of PRVs in order to minimize 32 

leakage and operational costs in terms of energy consumption.  33 

Population-based optimization techniques have emerged over the last few decades as a popular 34 

technique for application to water distribution system design, operation and rehabilitation 35 

problems.  Within this class of technique, a number of approaches have been proposed including 36 

genetic algorithms (Savić and Walters, 1997) and memetic algorithms such as the Shuffled Frog 37 

Leaping Algorithm (Eusuff and Lansey, 2003) and Ant Colony Optimization (Maier et al., 2003).  38 

A number of these have been applied to the BBLAWN problem in order to determine which might 39 

be the most effective approach (Morley and Tricarico, 2014).  The high dimensionality of the 40 

problem appeared to cause many of the techniques to struggle with the optimization – leading to 41 

the selection of the Omni-Optimizer algorithm (Deb and Tiwari, 2008) coupled with both in-42 

process and post-processing heuristics – which produced the runner-up solution in the competition.   43 

In this paper, the analysis has been refined by analysing in greater detail the optimal component 44 



 

of the system and by allocating the location of PRVs in the system by means of two different 45 

approaches, a priori with respect to the optimization runs or  a posteriori in which an initial 46 

optimization of the infrastructure with no PRVs installed is undertaken.  This latter method has 47 

demonstrated solutions characterized by a better fitness with respect to those obtained by the 48 

original methodology applied by Morley and Tricarico (2014). 49 

Methodology 50 

The software methodology employed combines a revised, pressure-driven version of EPANET 51 

(Morley and Tricarico, 2008; Rossman, 2000) with a C++ implementation of optimization 52 

algorithm to model the effect on the hydraulic network performance under the varying system 53 

parameters derived through the optimization process.  This combination is embodied in a unified, 54 

generic WDS optimization application, also developed in C++.  55 

Objectives 56 

The BBLAWN optimization has been formulated as twin-objective optimization problem to 57 

minimize: 58 

1. Total Cost – the sum of annualized infrastructure upgrade costs (pipe replacement and 59 

duplications, tank, pump and valve installation) and annual operational (pumping) costs. 60 

2. Leakage – the absolute annual volume of water lost as leakage. 61 

Hydraulic Solver 62 

The BBLAWN problem introduces a leakage model whereby leaks are calculated on a per-pipe 63 

basis and then aggregated into the demand nodes as per Giustolisi, et al. (2015).  64 

Since the leakage ascribed to a particular node is a function of the pressure both at itself and at the 65 



 

nodes at the end of each attached link, it is not possible to use the standard EPANET emitter 66 

component to model the leakage which operates on the basis of the available pressure at a single 67 

node.  One approach would be to run the EPANET model normally and then adjust the demands 68 

to account for the leakage and to rerun the model repeatedly until convergence was reached.  69 

Whilst this has the advantage of not requiring any modifications to EPANET directly, it was 70 

discounted because of the extended run-times that such a strategy would necessarily entail. 71 

Having successfully retrofitted a pressure-driven extension to EPANET previously (Morley and 72 

Tricarico, 2008) the authors have experience in adapting and extending the hydraulic solver and, 73 

accordingly, the leakage model described above has been incorporated directly into the C language 74 

source code of the EPANET toolkit.  A number of functions have been modified (detailed in Table 75 

1) to accommodate the leakage model as part of the normal iterative cycle employed by EPANET 76 

to produce the hydraulic solution.  In addition, further variables were added to EPANET in order 77 

to store the leakage parameters alpha and beta for each link as well as the calculated leakage on a 78 

per-link and per-node basis.  This approach has the advantage that by directly manipulating the 79 

solution matrices employed by EPANET, it is relatively straightforward to allocate leakage to 80 

tanks (as is required according to the rules).  Ordinarily, EPANET does not allow the direct 81 

assignation of demands to tanks as would be necessary in this instance – requiring the introduction 82 

of additional dummy nodes and pipes in order to model this leakage correctly. 83 

 84 

TABLE 1 TO BE INSERTED HERE 85 

 86 

The use of EPANET with a stochastic optimization process commonly results in a large number 87 



 

of hydraulically-infeasible solutions being generated and subsequently evaluated by the hydraulic 88 

solver.  The evaluation of these infeasible solutions takes additional time as, typically, the 89 

maximum number of solver iterations is expended attempting to converge the model and, 90 

additionally, large numbers of intermediate timesteps may be introduced into the evaluation.  The 91 

algorithm used seeks to avoid the worst impacts of infeasible solutions by terminating their 92 

execution after the first timestep in which they demonstrate hydraulic infeasibility.  Instead of 93 

penalizing the solution heavily in order to hasten its departure from the population, the solution is 94 

marked as infeasible and estimates of its constraint violations are extrapolated, weighted by the 95 

proportion of the extended period simulation that had been successfully completed prior to the 96 

infeasibility.  This results in a commensurate reduction in the runtime “wasted” in evaluating 97 

infeasible solutions as well as preserving the genetic diversity of the population to the maximum 98 

extent possible. 99 

Optimization Environment 100 

The software presented in this paper also includes a distributed-processing system in order to 101 

militate against the extended runtimes that are a common issue when optimizing with evolution 102 

algorithms.  The BBLAWN optimization is characterized by a particularly high number of decision 103 

variables as seen in Table 2.  As a consequence of this, the deEPANET system (Morley et al., 104 

2006), which employs the industry standard Message Passing Interface (MPI) protocol to 105 

parallelize the hydraulic simulation computation, was incorporated into the methodology.  This 106 

system permits the concurrent evaluation of a large number of potential solutions either on local 107 

processors or to other computers on a LAN.  Owing to the relatively long runtimes of the hydraulic 108 

simulations compared to the data transfer speeds across a modern Gigabit LAN, near linear 109 



 

improvements in GA runtime are achievable as processing cores are added to the cluster.  For the 110 

purposes of this optimization the software was deployed across a cluster of three workstations, 111 

each equipped with two Intel Xeon E5645 CPUs packages which comprise six cores running at 112 

2.4 GHz. 113 

Decision Variables 114 

For the purposes of optimizing the BBLAWN problem, no attempt was made to simplify the 115 

problem.  Legitimate approaches to doing this might have included grouping adjacent pipes with 116 

similar characteristics or restricting the application of the optimization to pipes over a given length.  117 

Table 2 enumerates the configuration of the decision variables used in the optimization.  In the 118 

first instance, as in Morley and Tricarico (2014), the potential sites for the 39 possible PRV 119 

installations were determined through engineering judgment prior to starting the optimization and, 120 

naturally, this will have biased the range of potential solutions, accordingly. The resolution 121 

afforded the settings of the PRVs has been considered (Table 3) and separate optimizations have 122 

been undertaken for four different schemes: one single fixed setting for each PRV for the entire 123 

simulation; a daily variation in which it has been assumed a different setting for each day of the 124 

simulation– i.e. 7 values for each PRV in total; one value for every 6 hours of the simulation– i.e. 125 

28 values for each PRV; and one value for each hour of the simulation the maximum resolution 126 

permissible under the rules of the competition giving 168 settings for each PRV.  127 

As a second stage, as reported below, the problem has been reformulated as a two-stage 128 

optimization in which PRV locations have again been placed according to engineering judgment 129 

but following an initial optimization without considering PRVs which determines the optimal 130 

infrastructure arrangement a priori.  With the network so optimized, the valves have been located 131 



 

using two criteria: (1) available head for pressure reduction (i.e. making zones out of nodes that 132 

have significant excess pressure for the majority of the simulation); (2) Analysis of the maximum 133 

quantity of downstream leakage that can be reduced in order to save money. This is achieved by 134 

assuming that the each node in the network can be reduced to a theoretical minimum pressure of 135 

20m – the minimum permissible.  This allows the quantification of a maximum amount of leakage 136 

that can be saved for each pipe.  With this further analysis the number of PRVs to be located in 137 

the network have been reduced to 33. The pressure-setting for each PRV has been considered as 138 

detailed previously (i.e. fixed, daily, every 6h and every 1h).  139 

 140 

TABLE 2 TO BE INSERTED HERE 141 

TABLE 3 TO BE INSERTED HERE 142 

Constraints 143 

During the evaluation of potential solutions a number of “hard” constraints are employed to 144 

ensure that the solution under consideration meets the minimum criteria to be considered as a 145 

solution.  The constraints are divided into those general constraints which are applicable to all such 146 

optimizations such as hydraulic feasibility and avoiding negative pressures, disconnected nodes 147 

and pumps operating outside their normal flow regime.  In addition there are a number of problem-148 

specific constraints for the BBLAWN optimization, comprising: all demand nodes with a demand 149 

meeting a minimum pressure requirement of 20m; tanks not being permitted to empty at any time 150 

through the simulated time horizon and the final levels of tanks being at least as high as their initial 151 

levels to ensure that a solution is repeatable over successive weeks. Differential constraint 152 

weightings are used to signify the relative importance of meeting the optimization constraints.  The 153 



 

EPANET Error and EPANET Warning constraints are given the highest priority in order to 154 

prioritise the generation of feasible solutions by the optimization.  Solutions which violate hard 155 

constraints are considered unfeasible by the optimization algorithms and as such are unlikely to 156 

play a significant role in the evolution of the population once more favourable, feasible solutions 157 

have been identified. 158 

Inline heuristics 159 

The formulation of the BBLAWN problem includes a pricing differential between the cost of 160 

replacing the pipe and the installation of a duplicate, parallel pipe.  This is realised as a premium 161 

of 20% or the parallel pipe, ostensibly to cover the additional costs of installing an entirely new 162 

pipe.  As detailed above, the optimization has complete freedom to select either replacement 163 

(including closure) and/or duplication options for each existing pipe.  Accordingly, a number of 164 

heuristics were added to the objective function to ensure that the most cost-effective option is 165 

selected in each instance.  These heuristics include: 166 

• If a pipe is to be closed and also duplicated, then the selected duplicate pipe diameter is 167 

chosen as a replacement pipe – given that this will necessarily be 20% cheaper to install. 168 

• If a pipe is to be duplicated as well as replaced, and the selected duplicate pipe diameter is 169 

larger than the replacement (and is therefore more expensive), the pipe diameters are reversed so 170 

that it is the cheaper pipe that attracts the 20% premium. 171 

• If a pipe is to be duplicated and the existing pipe is not to be closed, a test is made to see if 172 

it is more cost-effective to install a single pipe with the same or greater cross-sectional area to the 173 

two pipes combined. 174 



 

Post-processing heuristics 175 

Owing to the very high dimensionality of the problem as formulated, it was considered likely 176 

that there would be scope to further improve the quality of the solutions obtained during the 177 

evolutionary algorithm phase of the optimization.  To that end two heuristics are applied to the 178 

resulting solutions in order to identify feasible, incremental improvements can be applied to a 179 

given solution.  The two heuristics operate in a mutually exclusive fashion and can be repeated a 180 

number of times. 181 

In order to reduce the installation cost of the pipe infrastructure, at the expense of available 182 

pressure, the first heuristic attempts to reduce, sequentially, the pipe diameters in the network.  The 183 

heuristic operates recursively from the extremities of the network, inward, and can be seen to work 184 

well for purely dendritic networks.  In the event of the recursion encountering a loop, each branch 185 

of the loop is evaluated separately in turn and the most cost-effective combination implemented. 186 

The second heuristic varies (downward) the pressure settings of each of the PRVs in the network 187 

for each timestep in the simulation in an attempt to further reduce available pressure and thus 188 

reduce the pressure-dependent leakage accordingly.  PRVs are considered for this reduction in the 189 

order of the highest differential from upstream to downstream, for each timestep. 190 

Discussion of Results 191 

Issues 192 

In contrast to the previous Battle problem (Marchi et al., 2014; Morley et al., 2012), the outputs 193 

of the hydraulic solver do not need to be directly compared with a reference version of the 194 

EPANET solver.  As a consequence, minor variations in the computation are no longer as critical 195 



 

for assessing the suitability of the proposed solution.  However, the scale of the unconstrained 196 

problem as described above has introduced further challenges related to memory capacity. 32-bit 197 

computers are limited to accessing 4GB of memory whilst 32-bit operating systems may introduce 198 

further constraints – in the case of Microsoft Windows, each process may access a maximum of 199 

around 1.6GB.  The unconstrained problem, as outlined above, requires a greater amount of 200 

memory, particularly when considering the large population sizes that the algorithms under 201 

consideration require when contemplating such large decision spaces. In order to consider a full 202 

evaluation of the unconstrained problem, using all of the decision variables, it proved necessary to 203 

move to a 64-bit implementation of the software to avoid this process limit.  As has been seen 204 

previously with variations between single and double-precision versions of EPANET, the move to 205 

a 64-bit version revealed appreciable differences between the numeric solutions achieved with the 206 

32-bit version.  It is thought that these numerically minor variations are present as a consequence 207 

of differing standard libraries being employed by the 32-bit and 64-bit varieties of C++ being 208 

employed.  For the purposes of the analysis herein, all results were evaluated using a 64-bit, double 209 

precision version of the EPANET solver. 210 

Accurately establishing pump energy consumption is somewhat problematic using the EPANET 211 

toolkit API.  Instead of returning an average consumption (or total consumption) over the reporting 212 

timestep, the EN_ENERGY result returns an instantaneous value for energy consumption.  As a 213 

consequence of this, retrieving the total energy consumption for a network which has many state 214 

changes (introducing intermediate timesteps) is a somewhat contrived process.  Therefore, it is 215 

necessary to recalculate both energy consumption and leakage at all intermediate timesteps in a 216 

simulation in order to obtain accurate values for both. 217 



 

Result overview and comparison 218 

For the most part, it can be seen that the optimal solutions preferred for the BBLAWN problem 219 

using this methodology are characterized by the replacement of most or all of the pipes in the 220 

network and a very small number of, or no, pipe duplications.  This is a sensible outcome given 221 

the 20% cost penalty associated with pipe duplications.  A more surprising and common feature 222 

in the results is the absence of any supplementary tank storage.  All of the optimization techniques 223 

tested in this study employed enlarged tanks in the early stages of their evolution but later were 224 

seen to remove these from later solutions as the optimizations progressed. 225 

 226 

A priori PRV optimization 227 

By considering the a priori allocation of PRVs in the system for 39 PRVs, the Pareto Fronts 228 

obtained by varying the PRVs setting are illustrated in Figure 1.  Table 4 reports the summary of 229 

the results obtained for each optimization, considering the solution with minimum total cost and 230 

minimum leakages (the solutions circled on each pareto front in Figure 1). Given the absence of 231 

any reliability criterion, it is not surprising that the GA opted for dendritic network forms, 232 

removing all but one loop from each of the candidate solutions in the resultant populations. It is 233 

interesting also to note that, in contrast to the results obtained in Morley and Tricarico (2014) these 234 

optimizations have not preferred not to isolate the tank T6. 235 

FIGURE 1 TO BE INSERTED HERE 236 

 TABLE 4 TO BE INSERTED HERE 237 

 238 

From the results reported the lowest total cost solution is that of the single fixed value for each 239 

PRV.  The results for the optimizations with greater degrees of freedom for the PRV settings 240 



 

compare unfavorably.  In particular, the optimization with hourly settings for the PRVs struggled 241 

to match the objective values of the other runs – likely owing to the significantly larger search 242 

space associated with this configuration. 243 

A posteriori PRV optimization 244 

Along with the single stage optimizations, outlined above, a two stage optimization was also 245 

formulated in which location of the PRVs is determined through expert judgment following an 246 

initial optimization to determine the optimal infrastructure.  A solution has been selected from the 247 

resulting Pareto front, representing the lowest overall cost solution (€1,314,874).  A number of 248 

thematic maps (for example, Figure 2) were generated to assist in the placement of the PRVs, 249 

including quantification of total leakage from each pipe and the mean surplus pressure experienced 250 

at each node.  Prior to PRV installation, this network configuration experiences annual leakage, 251 

by value, of €609,520.  By considering a theoretical scenario in which the pressure can be reduced 252 

to the minimum required of 20m at each node, it is possible to place a lower bound on the leakage 253 

for this particular network configuration, amounting to €240,823/year.  Expert analysis yielded 33 254 

pressure zones for installation – reduced from the 39 potential pressure zones identified at the 255 

outset and employed in the other optimization strategy.  This reduction can be attributed to the 256 

simplification of the network into a dendritic form and a better understanding of the distribution 257 

of surplus pressure within the network. The dendritic form, whilst cheaper to implement, may be 258 

considered a less reliable topology – an objective not considered by the BBLAWN optimization. 259 

 260 

FIG. 2 TO BE INSERTED HERE 261 



 

The Pareto Fronts resulting from the a posteriori analysis undertaken (Figure 1) demonstrate 262 

lower total costs than those obtained previously with the a priori PRV allocation, employing at 263 

the same time a reduced number of decision variables, reducing the computational effort required.  264 

The Summary of the optimal results obtained have been reported in Table 5 in which at the “no 265 

PRVs”  solution have been compared the optimal solutions obtained by letting fixed or vary the 266 

pressure settings of the PRV as before. 267 

 268 

TABLE 5 TO BE INSERTED HERE 269 

Conclusions 270 

A novel methodology for the expansion and operation optimization problem for the BBLAWN 271 

case study has been applied and solved by means of a population-based algorithm incorporating 272 

heuristics both within the optimization process and in post processing. The problem has been 273 

considered has a two objectives one in which it was necessary to minimize both operational/design 274 

costs and leakages. The BBLAWN leakage model has been directly incorporated into a pressure 275 

driven extension of EPANET hydraulic solver to maximize the efficiency of the leakage 276 

evaluation. Evaluation of the problem has been distributed on a local cluster computing resource 277 

using the deEPANET software for parallelizing the hydraulic simulations associated with each 278 

individual solution generated by the optimization. The analysis of the problem in order to respect 279 

the “battle” criteria has been solved by means of a methodology based on engineering judgment 280 

supported by the optimization algorithm. The problem has been solved by means of two different 281 

approaches in which the PRVs location have been located a priori respect to the optimization or a 282 

posteriori following an initial optimization of the infrastructure alone. The latter analysis has 283 

demonstrated better solutions for both of the objectives under consideration. In addition, different 284 



 

pressure-setting schemes for the PRVs have been considered although the results demonstrate that 285 

there is an insignificant difference in terms of objective values achieved if a fixed pressure setting 286 

is assumed compared to those schemes which required greater computational effort. 287 

As a recommendation for future work, a better cost model would consider the cost and reliability 288 

implications of pump status/valve setting switches and would allow the optimization to attempt to 289 

minimize this type of cost. 290 
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