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Abstract

Dispersal, whether in the form of a dandelion seed drifting on the breeze, or a salmon migrating upstream to breed

in a non-natal stream, transports genes between locations.At these locations, local adaptation modifies the gene

frequencies so their carriers are better suited to particular conditions, be those of newly disturbed soil or a quiet

river pool. Both dispersal and local adaptation are major drivers of population structure; however, in general, their

respective roles are not independent and the two may often beat odds with one another evolutionarily, each one

exhibiting negative feedback on the evolution of the other.Here we investigate their joint evolution within a simple

discrete-time, metapopulation model. Depending on environmental conditions, their evolutionary interplay leads to

either a monomorphic population of highly dispersing generalists or a rarely dispersing, locally adapted, polymorphic

population, each adapted to a particular habitat type. A critical value of environmental heterogeneity divides these two

selection regimes and the nature of the transition between them is determined by the level of kin competition. When

kin competition is low, at the transition we observe discontinuities, bistability and hysteresis in the evolved strategies;

however, when high, kin competition moderates the evolutionary feedback and the transition is smooth.
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1. INTRODUCTION

Dispersal is a fundamental process in ecology that is significant over many different scales of organization. At the2

scale of the individual, it determines survival rates and offspring viability. At the meta-population scale it modulates

genetic diversity and couples the dynamics of spatially distinct populations, while at the ecosystem scale dispersal4

processes determine connectivity and nutrient transport.For these reasons there has been much theoretical and em-

pirical work in this area (Colbert et al. (2001); Johnson andGaines (1990); Levin et al. (2003); Ronce (2007)). It has6

been shown that dispersal reduces kin competition (Hamilton and May, 1977; Leturque and Rousset, 2002; Perrin and

Mazalov, 2000) and inbreeding depression (Bengtsson, 1978; Gandon, 1999; Pusey and Wolf, 1996). It is thought8

that spatial-temporal variation in the environment can select for, or against, dispersal (Duputié and Massol, 2013).

On one hand, environmental heterogeneity may reduce dispersal by increasing the risk of ending up in unsuitable10

habitat (Hastings, 1983; Holt, 1985); but on the other, increased dispersal could allow organisms to hedge bets over

environmental fluctuations (Blanquart and Gandon, 2011; Levin et al., 1984).12

Simple models have demonstrated how dispersal can be selected for in stable environments, even when the asso-

ciated risks are extremely high (Comins et al., 1980; Hamilton and May, 1977). In their classic paper, Hamilton and14

May (1977) collapsed the costs of dispersal into a single parameter. They showed that when the number of offspring

that parents produce is high at least half of all offspring should be dispersed, regardless of the potential costs. How-16

ever, it is insightful to categorize the cost of dispersal into two components: the risk associated with movement, and

the risk of landing in a habitat that is unsuitable. Hamiltonand May’s model is well suited to address the first cost,18

but for the second to fit into their framework one must assume the environment is binary, composed of regions where

the probability to survive is either 0 or 1. This scenario cannot capture the more continuous variation found in nature;20

and it neglects the possibility of explicit local adaptation to a particular habitat.

The relative quality of a habitat is a subjective measure, specific to each species or phenotype. In general, there22

are no ‘good’ or ‘bad’ habitats, only conditions that are better or worse for a specific type of organism. Much

of the biodiversity we observe, both between and within species, is due to selection acting differently in various24

environments, causing specialization for habitats with particular conditions and thus local adaptation. For reviewsof

this field see, for example, Coyne et al. (2004); Futuyma and Moreno (1988); Schluter (2000); Turelli et al. (2001).26

Both dispersal and local adaptation play fundamental rolesin shaping population structure and, in general, it is

expected that natural selection will result in a negative correlation between the traits associated with each of these fac-28

tors. Dispersal will impede diversification of local adaptation traits by inducing gene flow between different habitat

types, or by increasing the heterogeneity in the range of environments a lineage experiences over multiple genera-30

tions (Day, 2001; Doebeli and Dieckmann, 2003; North et al.,2011). Conversely, in a heterogeneous environment,
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local adaptation to a particular habitat type will raise therisk associated with dispersal by increasing the probability32

of arriving at an unsuitable habitat (Comins et al., 1980; Hastings, 1983; Massol and Cheptou, 2011). Despite their

evolutionary consequences being deeply intertwined, few studies have considered the joint evolution of dispersal and34

local adaptation, aside for a few notable and interesting exceptions: Kisdi (2002); Heinz et al. (2009) and Nurmi and

Parvinen (2011).36

In a seminal study of the joint evolution of dispersal and specialization Kisdi (2002) modeled a population that

could disperse between two patches and become specialized to either. Temporal fluctuation in habitat quality induced38

dispersal while long-term average environmental properties provided incentives for specialization. Various stableevo-

lutionary strategies emerged depending on the difference between the two patches and the initial conditions, leading40

to hysteresis in the evolved strategies for dispersal and specialization.

Later, using spatially explicit simulations, Heinz et al. (2009) found that slight environmental gradients led to42

the evolution of long range dispersal and a lack of specialization while steep environmental gradients led to reduced

dispersal and specialization to local condition. They observed a sharp boundary between these two regimes and44

posited that this transition was due to feedback between specialization and reduced dispersal.

Nurmi and Parvinen (2011) modeled the evolution of dispersal between many, non-spatially explicit, patches and46

specialization onto either of two resources available in different ratios on different patches. Local extinction events

select for dispersal while increased mortality during dispersal selected against it. Investigating the joint evolution48

of dispersal and specialization led to outcomes not predicted by the evolution of either trait singly, most notably a

co-existence of high and low dispersers.50

Billiard and Lenormand (2005) and Blanquart and Gandon (2014) used genetically explicit models to explore

the evolution of dispersal probability under the influence of local adaptation. Both models assume that dispersal and52

local adaptation are encoded by two genes on a single chromosome. Dispersal probability can evolve a continuous

range of values while specialization adopts one of two values and is under spatially variable selection in a two-54

patch (Billiard and Lenormand, 2005) or metapopulation (Blanquart and Gandon, 2014) model. Depending whether

or not a polymorphism at the local adaptation locus is protected, the evolved level of dispersal is high or low. As56

in Kisdi (2002), for certain parameter values both high and low dispersal states are stable depending on the initial

conditions.58

Together these studies demonstrate the importance of considering the joint evolution of dispersal and local adapta-

tion. In this work, we have created a spatially implicit metapopulation model in which the ecological characteristics of60

available breeding sites are drawn from a continuous distribution of site types, reflecting the continuous clines found

in nature. Individuals evolve a probability to disperse andto adapt to different site types. In line with the distribution62
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of site types, individuals can evolve a continuous and unbounded range of ecological characters, allowing for arbitrary

specialization and branching patterns to evolve. In contrast to most models described above, in our model kin compe-64

tition, rather than local extinction events or temporal variation in habitat quality, selects for dispersal. Environmental

heterogeneity selects against dispersal, by increasing the risk of landing on unsuitable habitat, but also selects forlocal66

adaptation. Within our model, we are able to continuously, and independently, vary the level of both kin competition

and environmental heterogeneity.68

Our findings demonstrate that the joint evolution of dispersal and local adaptation can lead to qualitatively distinct

stable strategies as environmental heterogeneity is varied and that the level of kin competition determines the nature70

of the transition between those population-level patterns. Analysis of our simple model illustrates how the interaction

between two traits can lead to rich phenomena such as discontinuous phase transitions and hysteresis effects, and how72

small fluctuations of environmental conditions can triggerdrastic changes in the evolutionary outcome.

In this study, we propose semi-analytical methods to explain quantitatively the mechanisms behind the abrupt74

transition in level of dispersal and degree of specialization observed in similar models (Heinz et al., 2009). Employ-

ing multi-dimensional adaptive dynamics (Geritz et al., 1998; Leimar, 2005; Metz et al., 1992), we first show that76

branching occurs at an evolutionary singular strategy. In amultidimensional trait space, this branching leads to highly

nonlinear responses to environmental perturbations. As inIto and Dieckmann (2007), the joint evolution of multiple78

traits creates feedbacks and discontinuous transitions inevolutionarily stable strategies (ESS) (Maynard Smith and

Price, 1973). Understanding these processes requires the study of the interactions between multiple sub-populations,80

and the combinations (Cohen and Levin, 1991; Ludwig and Levin, 1991) of their traits.

We hope that our approach will be relevant in a more general setting, and will be useful when identifying and82

explaining sudden regime changes in multi-dimensional evolutionary systems. For instance, this framework may be

applicable to the joint evolution of dispersal and a wide array of other traits, including co-operation (Le Galliard84

et al., 2005; Parvinen, 2013), seed dormancy (Cohen and Levin, 1987; Olivieri, 2001; Venable and Brown, 1988),

reproductive effort (Crowley and McLetchie, 2002; Ronce et al., 2000), sex ratios (Leturque and Rousset, 2003), kin86

recognition (Lehmann and Perrin, 2003), inbreeding load (Guillaume and Perrin, 2006), mating strategy (Ravigné

et al., 2006), habitat niche width (Chaianunporn and Hovestadt, 2012) and age at death (Dytham and Travis, 2006).88

2. MODEL

We consider a population of individuals characterized by a probability to disperse,v, and an ecological type,x.90

These agents inhabit an array ofL discrete sites (L >> 1) without explicit spatial locations. Each site,i, in the array

can accommodate up toK breeding adults and is assigned an ecological character,zi , that remains fixed over time and92
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is drawn from a normal distribution,

p(z) =
1

√
2πσz

exp

[

− z2

2σ2
z

]

. (1)

Every discrete generation has two stages. During the first stage adults producem offspring, that inherit the adult’s94

ecological type,x, and probability to disperse,v, with some small mutation (see Numerical Simulations section for

details). The adult then perishes. Next each juvenile disperses to a randomly selected site with probabilityv or returns96

to its natal site with probability, 1− v. If there are greater thanK juveniles on a given site they compete for space,

and a random set ofK survive After this competition, juveniles mature into adults and become the parents of the next98

generation.

The number of offspring a parent leaves behind,m, is a function of the difference between the parent’s ecological100

type and the ecological character of the site at which it breeds. This is given by,

m(x, z) = mo exp

[

− (x− z)2

2σ2
m

]

, (2)

wheremo is the maximum number of offspring andσm determines the width of this bell-shaped function, i.e. the102

tolerance of individuals to variation in habitat. Our results are independent ofmo provided thatmo >> K, which leads

to all sites being saturated.104

In our model the heterogeneity of the environment is determined by the width of the distribution of site types

(Equation 1). The wider this distribution is, the greater will be the range of site types a dispersing individual could106

encounter. This scale matters only in relation to the width of the fecundity curve, or the plasticity of the organ-

isms, defined by Equation 2. Thus we define a rescaled environmental heterogeneity parameter asσ = σz/σm and108

nondimensionalize all ecological characteristics byσm in the results that follow.

3. NUMERICAL SIMULATIONS110

We performed evolutionary simulations of our model. Unlessnoted otherwise, all simulations were initialized

with monomorphic populations having probability to disperse,v = 1, and ecological character,x = 0. During the112

simulations, each offspring inherited the values ofv andx from its parent plus small independent mutations, consistent

with a continuum-of-alleles genetic model. However, it wasnot meant to reflect the actual evolutionary dynamics of114

any organisms, but rather to allow the dynamics to take the system to an ESS. Mutations were drawn from a normal

distribution centred at zero with a variance of 10−8 for dispersal probability and 2.5× 10−7 for ecological character.116

For the probability to disperse, if the mutation put the trait below 0 or above 1 the trait was reset to 0 or 1 respectively.

No restrictions were placed on the value ofx.118
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Figure 1 shows the evolution of dispersal and local adaptation over time. Depending on the environmental het-

erogeneity,σ, and the carrying capacity,K, the distribution of evolved ecological characters was either a narrow120

monomorphic peak centered atx = 0 (lower left panels of Figure 1), or a pattern of discrete regularly spaced peaks

in x-space (lower right panels of Figure 1). We interpret a monomorphic population havingx = 0 as a population of122

generalists, as they have evolved to the mean of the distribution of site types. Conversely, a population of discrete

x-types, many far (> σm) from the average value ofz, we interpret as a population of specialists. These populations124

have undergone evolutionary branching and are locally adapted to specific site types.

We observe a negative correlation between dispersal rate and |x| in some simulations, especially for highK and126

when environmental heterogeneity is just above the minimumσ needed for branching to occur (Appendix Figures E.3

& G.6). However, the slope of the trend is shallow, and often there is no, or even a positive, relationship betweenv and128

|x| (Appendix Figures E.1-3). In general, the range ofv across the branches is so narrow that it is well characterized

by the mean (see Appendix Figure G.6, for the distribution over a range of parameter values).130

It is interesting to note that even within an environment that will select for generalists, branching can initially occur

if dispersal probability is ‘artificially’ low. We see this in the bottom left panel of Figure 1, because the simulation is132

started withv = 0 branching initially occurs, but the generalist strategy supplants it once dispersal rises. Similarly,

in the middle right panel, even though the environmental heterogeneity is appropriate to select for specialists, this134

branching does not occur until the probability to disperse falls below this threshold. Thus from the point of view of

one trait, the state of the other trait is part of the selective environment. Overall, comparing the left and right sides of136

Figure 1 we can see that a small change in environmental heterogeneity can produce a significant quantitative change

in v and a dramatic qualitative change in the distribution ofx. This dramatic change is due to the joint evolution of the138

two traits and the feedback between them. and is mediated by the level of kin competition,K.

In Figure 2 we show the mean evolved value of dispersal, ˜v, and the distribution of the ecological characteristic,x.140

Both Figure 1 and Figure 2 demonstrate that there exists a threshold level of dispersal,vc, below which individuals will

tend to specialize and branching inx will occur. Above this boundary the dynamics will select fora monomorphic142

population of generalists havingx = 0 (the average of the ecological character across the environment). The top

panels of Figure 2 show this transition inv-σ space. For eachK there is a unique threshold level of environmental144

heterogeneity below which specialization is impossible.

To understand these numerical results we next examine the behaviour of a monomorphic, evolving population.146
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4. ADAPTIVE DYNAMICS AND ESS CALCULATIONS

We consider a monomorphic resident population with probability to disperse,v, and ecological character,x, and a148

rare invader characterized byv′ andx′. A required condition for this phenotype to successfully invade the population

and replace the resident is that the expected growth rate of the mutant, when initially rare, is positive. Following Metz150

and Gyllenberg (2001) and Ajar (2003) (but also see Chesson (1984)) we define the metapopulation reproduction

ratio,Rm, as the expected number of dispersers produced by a single mutant starting in the disperser pool1. Here we152

will use Rm to show that the singular strategy for local adaptation is, as one might expect, the most common (and

average) environmental type, while the value for dispersalis determined by a balance between kin competition and154

environmental heterogeneity. This technique should applyfor arbitrary distributions of site types,p(z), and is thus not

limited to the Gaussian distribution (Equation 1) we have used in this study.156

Assumingmo >> K, and thus every site holds greater thanK individuals before competition, the probability that

a dispersing mutant will survive to breed, given it has landed on a site of typez is158

1
vm̄(x) + (1− v)m(x, z)

(3)

wherem̄(x) is the expected number of offspring produced by the resident population per site, when the invader is rare,

and can be calculated as160

m̄(x) =

∫ ∞

−∞
p(z)m(x, z)dz (4)

=
mo√

1+ σ2
exp

[

−
x2

2(1+ σ2)

]

.

Given that an invader has gained a foothold on a site, its lineage will persist there for some finite time before

losing the site. Over this persistence time it will produce some total number of offspring, a fractionv′ of which will162

disperse. We will define the expected number of dispersing offspring an invader lineage will produce at a site of type

z before losing that site to beMv,x,v′,x′(z), but for convenience refer to it from here forward asM(z). This quantity164

represents the total number of offspring produced from first occupation until no descendants of the original mutant are

present. FindingM(z) involves the solution to a set ofK equations, however, following Ajar (2003) we are able to find166

to find its derivative at the singular strategy. In Appendix A, we extend the method of Ajar (2003) to heterogeneous

environments such as the one at hand.168

1Note that Ajar (2003) uses a slightly different formulation “...overall [expected] production of successful emigrants from a patch, descended
from a single mutant immigrant in this patch”, but both verbal descriptions lead to the same mathematical expression.
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The expected contribution to the mutant disperser pool by each mutant disperser when rare, is then given by the

product of the probability to capture a site (Equation 3) andthe expected number of dispersers produced during its170

lineage’s tenure on that site (M(z)), averaged over all possible site types.

Rm =

∫ ∞

−∞

p(z)M(z)
vm̄(x) + (1− v)m(x, z)

dz (5)

The logarithm of the metapopulation reproduction ratio is sign equivalent to the standard fitness measure, the172

invasion exponent; thus the derivatives ofRm with respect to the mutant variables will define the selection gradient,

S. To solve for the singular strategy, (v∗, x∗), we must find where the selection gradient is equal to zero. When174

this condition is satisfied, the resident will occupy an extremum of the fitness landscape and hence this point will

potentially be a convergence stable and/or evolutionarily stable strategy. The selection gradientis given by176

S =























∂Rm
∂v′

∂Rm
∂x′























∣

∣

∣

∣

∣

∣

∣

∣

∣v′=v
x′=x

. (6)

As we demonstrate in Appendix A, the singular strategy for the ecological character isx∗ = 0, while the singular

dispersal strategy,v∗, is given by the solution to178

Var [m(0, z)] =
∫ ∞

−∞
m(0, z)2(1− d∗(z))F∗(z)p(z)dz, (7)

whereF(z) is a measure of population structure, specifically, the probability that two individuals randomly selected

from the same site have a common ancestor at that site (see appendix, Equation A.17) andd(z) is the probability of a180

resident immigrant being selected to breed at a site of typez (see appendix, Equation A.9). The∗s indicate that they

are evaluated at the singular strategy, (v∗, 0). The solution to Equation 7 is is plotted forK = 1, 2 & 8 in Figure 2.182

The Jacobian matrix of the selection gradient,S, can be used to determine the convergence stability of this singular

strategy, while the Hessian matrix of the metapopulation reproductive ratio,Rm, can be used to determine its local184

evolutionary stability (uninvadability) (Geritz et al., 1998; Leimar, 2005) - see Appendices B & C for details. For all

values ofK andσ the Jacobian matrix evaluated at the singular strategy (v = v∗, x = 0) is negative definite (shown186

in Appendix B), indicating this strategy is convergence stable and the evolutionary dynamics will converge towards

it (Geritz et al., 1998; Leimar, 2005). If this singular strategy is also locally uninvadable (negative definite Hessian188

matrix) it is an ESS (Maynard Smith and Price, 1973). The definiteness of the Hessian matrix is dependent onK and

σ, thus the (v = v∗, x = 0) is not always an ESS (see Figure 2 and Appendix C).190
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5. DISCONTINUITIES AND HYSTERESIS IN EVOLVED STRATEGIES

5.1. Numerically observed transitions192

As the degree of environmental heterogeneity is increased from zero, the evolved dispersal strategy, ˜v, matches

the singular strategy for the monomorphic population,v∗. When the critical value of environmental heterogeneity,σc,194

is reached the convergence stable strategy is no longer evolutionarily stable and the population branches. After this

occurs, the evolutionary attractor for the level of dispersal is no longer given by the monomorphic singular strategy196

defined by Eqn. 7, i.e. ˜v , v∗.

In the lower panel of Figure 2, we plot the evolved distribution of x as a function of environmental heterogeneity,198

σ. The distribution turns from uni- to multi-modal as thev∗ curve crosses the generalist-specialist boundary. For large

K there is a discontinuity in both the variance in the distribution of x, and the stable level of dispersal, ˜v. This is200

caused by the interplay between local adaptation and dispersal. Once the critical level of environmental heterogeneity

is reached, disruptive selection causes branching in the ecological characteristic,x, and we are left with a multi-peaked202

distribution inx, with each sub-population adapted to a different environmental character (lower panels of Figure 2).

This local adaptation feeds back on the level of dispersal, selecting for lower dispersal rates, which in turn feeds back204

into the selection for further local adaptation.

Returning briefly to the top right panel of Figure 1, we can seethis feedback play out over time. Because selec-206

tion is increasingly relaxed asv approaches the singular strategy the blue curve (population starting withv = 1) is

concave-up during this time period. However, oncev falls belowvc branching occurs and this local adaptation causes208

renewed selection for lower dispersal, which is apparent inthe negative concavity of the bluev curve as the population

accelerates downward inv due to this feedback.210

5.2. A geometric explanation for discontinuous transitions

In Section 4, we studied the evolutionary gradient for a monomorphic population and used nullclines of this gradi-212

ent to identify singular strategies and their stability. Inparticular, we showed the existence of a critical valueσc above

which branching occurs, transitioning from a monomorphic (generalist) to a polymorphic (specialist) population. In214

this section, in order to explain the nature of the transition (and the observed abrupt change for large enoughK),

we consider a population that has undergone symmetric branching in the ecological character trait,x. In general we216

would have to consider a mutant arising in a dimorphic population of resident individuals of type (x1, v1) and (x2, v2).

However, to make this situation more tractable we suppose half of the population has ecological characterx, and the218

other half−x, but all have the same dispersal probability,v. We note that this is indeed what we observe in numeric

simulations, for anyK, immediately after the first branching occurs from the monomorphic singular strategy, (v∗, 0)220
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(see for example Figure 1). As we shall see, reducing the dimension of the problem (from 4 to 2) will allow us to

give a geometric interpretation of the observed discontinuity at the transition from a monomorphic (generalist) to a222

polymorphic (specialist) population, for large enoughK.

We plot the nullclines of the evolutionary gradient for eachcoordinate for the dimorphic, symmetric population224

in v-x space, as an illustrative schematic in Figure 3 and also confirm this picture using simulation data (Figure F.4).

In these figures, the red curves are the nullclines for thex-coordinate; in biological terms, this is the evolved branch226

separation of ecological character for the dimorphic population when all individuals have a fixed dispersal probability,

v. The red curve can be decomposed into two components. For a high enough value of the dispersal probability,v, the228

dimorphic equilibrium is the monomorphic (degenerate dimorphic) equilibriumx = −x = 0. If successive generations

visit many different sites, the evolutionary dynamics drive the population to a generalist strategy. When dispersal is230

lowered below a critical value ofvc, the population experiences branching and the convergencedimorphic equilibrium

is at (x,−x), with (x , 0). This point may be stable (locally uninvadable) or unstable (locally invadeable) and result232

in further branching (discussed later).

The blue curves of Figures 3 & F.4 are the nullclines for thev-coordinate; they indicate evolved dispersal prob-234

ability, v, as a function of a fixed value of the ecological character,±x, of the dimorphic population. As intuition

suggests, thev-curve attains its maximum value atx = 0 (generalist population). This is consistent with the ideathat236

dispersing is more risky when the site type one is adapted to is more rare.

Where these curves intersect are singular strategies, which may be stable (solid black circles), convergence stable238

but evolutionary unstable (dashed black circles) or convergence unstable (black triangles). The relative position ofthe

peak of the blue curve and the fork of the red curve depends on the value of the heterogeneityσ. Asσ increases the240

peak of the blue curve (v∗) descends while the fork of the red curve (vc) increases. At low environmental heterogeneity

(σ < σc), the blue curve intersects the stable, degenerate, section of the red vertical line (blue line above the red fork,242

left column of Figure 3). This intersection point coincideswith the stable, generalist, monomorphic equilibrium

described in Section 4. Conversely, forσ > σc, the peak of the blue curve intersects the unstable section of the red244

vertical line (blue curve below the red fork, right column ofFigure 3). This point coincides with the the evolutionarily

unstable singular (generalist) strategy. Finally, the critical environmental heterogeneity (σ = σc) is characterized by a246

tangency property between the peak of the blue curve and the red fork (middle column of Figure 3).

Figure 3 demonstrates how the relative curvature of thev∗(±x) and±x∗(v) curves whenσ = σc determines whether248

or not there will be a direction of instability along the plane tangent to the symmetric dimorphic manifold. Such an

instability results in a discontinuity in the ESS level of dispersal, and the variance in ecological character, as a function250

of environmental heterogeneity,σ. The top and bottom rows of panels in Figure 3 correspond to the two scenarios
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described below:252

(i) Given that we have restricted the evolutionary dynamicsto a symmetric (inx) dimorphic population, if the

concavity ofv∗(±x) (blue) is greater than that of±x∗(v) (red) atσc, as in the top row of Figure 3, then this guar-254

antees that the symmetric manifold defines a direction of stability for the system. In this case, asσ increases,

the (v∗, 0) strategy becomes unstable and creates two stable (along the symmetric sub-manifold) strategies in-256

finitesimally close and there will be a kink, but no discontinuity, in the evolved probability to disperse, ˜v, and

the variance inx will transition continuously from zero to positive values (upper right panel of Figure 3). We258

note that this two-dimensional picture does not guarantee actual stability of the symmetric dimorphism, only

its stability if the system is restricted to be symmetric, however, simulations of the full model suggest that the260

symmetric dimorphism is stable for lowK (Figure 2).

(ii) If, however, the concavities are reversed (lower row ofpanels), whenσ = σc the (v∗, 0) strategy is unstable262

(lower middle panel) and ˜v makes a discrete jump to the symmetric pair of lower intersection points, and thus

there is a discontinuity in ˜v atσc when crossing from above. This lower singular strategy may be an ESS or264

could be convergence, but not evolutionarily, stable and further branching inx could occur, in which case the

dimorphic plots in Figure 3 will no longer apply (discussed in Section 5.2.1).266

We confirmed the theoretical picture presented in Figure 3 bysimulating the dimorphic populations described

above to find the fitness gradient inx-vspace (see Appendix D for details). Numerically, we observerelative curvatures268

matching, qualitatively, the top row of Figure 3 forK = 1 & 2 and matching the bottom row forK = 8 (Figure F.4).

This indeed matches the presence and absence of discontinuities for those values of kin competition in Figure 2. At270

the transition (σ = σc) the concavity of both the red,x∗(v), and blue,v∗(x), curves increase as a function ofK. The

x∗(v) curve does so becauseσc decreases as a function ofK, so there is less incentive to specialize further at the272

branching point. Thev∗(x) curve is more concave at higher values ofK because with lower kin competition dispersal

is more free to fall off away fromx = 0 since it is not propped up by a drive to disperse to avoid competition with kin274

locally (Comins et al., 1980). The ranks of the concavities are able to switch because the concavity of the dispersal

curve varies much more rapidly withK than thex curve does. Thus it is the change in kin competition that determines276

whether or not there will be a discontinuity in ˜v and the generalist-specialist transition.

5.2.1. Branching Cascade.278

If the monomorphic stationary point (v∗, 0) is unstable atσ = σc (scenario (ii) from the list in the preceding

section), two possibilities arise. Either, the populationstabilizes to a dimorphic stable equilibrium (indicated bythe280

solid circles in the lower, middle panel of Figure 3), or further branching events occur. The subsequent branching in
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the lower right panels of Figure 1 demonstrate that for low kin competition (K = 8) this equilibrium is unstable in282

the x coordinate. Further we note that the monomorphic singular strategy (v∗, 0) is in the basin of attraction of this

symmetric, dimorphic, point. (See, for example, the middleright panel of Figure 1.) The population first evolves to the284

singular strategy (v∗, 0), then, ifσ > σc, this monomorphic singular strategy is unstable and disruptive selection causes

branching before directional selection drives the population to a symmetric (inx) evolutionary singular dimorphism.286

Upon reaching this point, directional selection ceases anddisruptive selection in thex-direction arises, leading to

further branching events in the evolutionary tree. This is indeed what we observe forK = 8 (shown in Figures 2 &288

G.6-9), here the population goes from being monomorphic to consisting of five sub-populations as the environmental

heterogeneity passesσc. Contrasting this sudden shift from one to many branches as environmental heterogeneity290

passes a critical level, with the more continuous shift fromone to two to three branches exhibited by a similar model

in which dispersal is fixed (Geritz et al., 1998), implicatesthe role of feedback due to the joint evolution of dispersal292

and local adaptation in the present model.

5.3. Hysteresis in the response to changing environmental variability294

Another interesting feature of Figure 3 is the presence of two alternate stable strategies in the lower left panel,

(ṽa,0) and (ṽb,±x). This suggests that for largeK, and environmental heterogeneity less than, but close enough to,296

σc we should expect alternative stable states, one of highly dispersing generalists and the other of a pair of relatively

rarely dispersing specialist lines (or the polymorphic population left after a branching cascade from this initial pair),298

depending on initial conditions. Such bistability is oftenencountered around transitions from mono to polymorphic

ESSs (Geritz et al., 1999). In Figure 4, we plot the ESS dispersal probability from Figure 3 as a function of environ-300

mental heterogeneity and carrying capacity – solid, dashedand dotted lines in right hand panels of Figure 4 correspond

to stable (solid black circles), convergence stable but evolutionary unstable (dashed black circles) or convergence un-302

stable (black triangles) intersections in Figure 3 respectively. When the concavity of the blue curves is greater than

that of the red curve, we observe a destabilization of the upper curve and thus a sudden jump to the lower curve, at the304

pointσc (bottom right panel); the fold disappears when the concavities are reversed (top right panel). The cusp-like

nature of the ˜v curve introduces two discontinuities around a region of bistability, leading to a hysteresis loop in both306

environmental parameters:σ andK.

This bistability is apparent in Figure 5, which shows results from simulations with environmental heterogeneity308

aroundσc for various initial configurations of individual trait values. In contrast to Figure 1, the left panels of Figure 5

shows a value ofσ for which the outcome of the evolutionary dynamics is dependent on the initial state of the system.310

The full range of environmental heterogeneity leading to bistability is highlighted in yellow in the right panel of

Figure 5. Note that the value ofσ at which the blue and red curves become tangent in the bottom left panel of312
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Figure F.4 corresponds to the left boundary of this region ofbistability shown in yellow. Here the blue crosses depict

simulations seeded with a population all having full dispersal and no specialization (v = 1, x = 0), as in Figure 2,314

while red circles represent simulations starting with non-dispersing, locally adapted populations (v = 0, x = z). As

predicted, the region of bistability, bounded by discontinuities in the evolved dispersal probability, ˜v, and variance of316

x creates a potential hysteresis loop for the evolutionary dynamics. ForK = 8 (shown in Figure 5), moving from high

to low environmental heterogeneity (right to left), a population of specialists will encounter an abrupt jump upwards318

in their evolved dispersal probability, ˜v, and a collapse of the variance inx aroundσ = 0.8. However, if environmental

heterogeneity were to then smoothly increase that population would not return to the specialized state untilσ was320

around 0.9.

5.4. Asymmetric environments322

Symmetric environmental distributions represent a special case, which due to their tractability are often useful

for gaining intuition. In general, the picture presented inFigure 3 can be qualitatively different. Specifically, for324

non-symmetric distributions, the evolved trait values of adimorphic population (red branches in Figure 3) do not

converge on the monomorphic singular strategy. Rather onlyone of the dimorphic branches connects continuously to326

the monomorphic strategy while the other appears some finitedistance away (Geritz et al., 1999).

The analysis in Section 5 relies on the symmetry of distribution of site types. To reveal which results are general328

and which are specific to the symmetric case we explore numerically the behaviour of our model in environments with

varying degrees of asymmetry (see Appendix E). Strictly speaking, the asymmetry inp(z) creates a discontinuity in330

the evolved values ofv andx for all values ofK. However, for moderate levels of asymmetry the discontinuities at low

K are too small to be seen and thus the results are very similar to the symmetric case (Figure F.4). For all distributions332

of z, regardless of symmetry, for highK the population transitions from one to many branches inx asσ passedσc,

while for low K the number of branches inx transitions more smoothly from 1 to 2 to 3, and so on. Preserved, even334

for highly asymmetric distributions, is the result that multiple branching inx, immediately after the singular strategy

becomes unstable (ie. whenσ = σc + ǫ), is only observed for highK.336

This is because at lowK high kin competition provides additional evolutionary force towards increased dispersal;

however, when kin competition is lower specialization has agreater relative role in shaping dispersal, so the positive338

feedback between increased specialization and decreased dispersal is more free to play out. Thus, in general disconti-

nuities and hysteresis may always be present in asymmetric environments, however, the size of the discontinuity will340

be governed by the amount of kin competition, with less kin competition (higherK) leading to larger discontinuities

and regions of hysteresis.342
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6. DISCUSSION

Dispersal and local adaptation are major drivers of ecological patterns and for that reason they have both been344

the subject of many studies. However, the interplay betweendispersal and local adaptation has the potential to shape

the evolutionary process in unforeseen ways. The purpose ofthis work is to explore their joint evolution in general346

heterogeneous environments.

To investigate the specific case of joint evolution at hand, we have modified one of the simplest models of disper-348

sal, that of Hamilton and May (1977), by adding the potentialfor individuals to adapt to a general, permanent and

heterogeneous feature of the landscape and by increasing the local carrying capacity of a patch beyond one, to allow350

us to investigate the role of variable kin competition. In this simple model, increased environmental heterogeneity

increases local adaptation, while local carrying capacitydictates the level of kin competition, and thus modulates the352

pressure to disperse.

We found the evolutionary gradient in monomorphic strategyspace by considering the reproductive success of a354

lineage during its persistence time at a single site (Ajar, 2003; Metz and Gyllenberg, 2001). Using nullclines in this

gradient allowed us to calculate the singular strategy for dispersal as a function of environmental heterogeneity and356

carrying capacity, as well as predict whether natural selection would favor a homogeneous generalist population, or

lead to evolutionary branching and locally adapted specialists. Next, we studied the evolutionary dynamics in a larger358

strategy space (i.e., the space of symmetric and dimorphic populations), and we showed how the geometry of the null-

clines in the evolutionary gradient could partially predict the nature of the transition between these population-level360

states of the system. Certain relative concavities of the nullclines can lead to discontinuities in evolutionary outcomes,

branching cascades, bistability and hysteresis. This analysis relied on the symmetric environmental distribution of362

site types, however, this special symmetric case provides insight and guides intuition for more general cases, which

we have shown exhibit similar dynamics.364

For a given value of environmental heterogeneity and carrying capacity, a threshold value of dispersal,vc, marked

the boundary between two selection regimes. When environmental heterogeneity was low, such that the singular366

strategy for dispersal,v∗, was greater thanvc, selection was for generalists andv∗ was the ESS (ie. ˜v = v∗). How-

ever, above a critical value of environmental heterogeneity v∗ fell below vc and the dynamics shifted to selection for368

specialization (Svardal et al., 2015). Varying the level ofkin competition,K, had several effects on the evolutionary

outcome. As kin competition was reduced (K is increased) the critical level of environmental heterogeneity, above370

which branching occurs, decreased. If kin competition was too high (smallK) we did not see a discontinuity in the

ESS level of dispersal, ˜v, as the threshold level of environmental heterogeneity wascrossed.372

By examining the dynamics close to the transition, we can understand the nature of the discontinuity in the evolu-
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tionary stable strategies. Increased pressure to specialize due to an effective increase in environmental heterogeneity374

makes dispersal less favorable. The associated reduction of dispersal then leads to selection for further local adap-

tation, creating a positive feedback loop between reduced dispersal and increased specialization (Heinz et al., 2009).376

When kin competition is low (highK) there is little additional pressure to disperse to avoid competing with kin and

thus this feedback loop is relatively unconstrained. In this scenario, the positive feedback induces a discontinuity in the378

ESS level of dispersal which creates the spontaneous transition from selection for generalists to selection for special-

ists. Close to this transition the evolutionary dynamics exhibit hysteresis, and the population can evolve to the highly380

dispersing generalist, or the rarely dispersing specialist state depending on initial conditions. On the other hand, when

kin competition is high (lowK) the additional pressure to reduce dispersal due to the introduction of specialization is382

counteracted by the drive to disperse to avoid competition with kin. Thus the feedback loop is mediated by the level

of kin competition, and in this lowK case, the drop in dispersal and increase in variance of localadaptation will be384

much smaller. This result also holds for asymmetrical environments, which we have explored numerically.

In our model, the distribution of site types is smooth, with asingle peak, however if branching in ecological char-386

acter has occurred, the distribution ofx is banded, with multiple, evenly spaced, peaks. Thus competitive exclusion,

though not explicitly included in our model, emerges from the dynamics and there is a limit to the similarity between388

co-existing branches (Meszéna et al., 2006), which depends on the level of population structure. We do not have a

satisfactory explanation for the mechanisms behind the observed competitive exclusion or why the apparent niche390

overlap (May, 1974) decreases with decreased kin competition (increasedK). This is an area for further analytic

work.392

The present model is similar in spirit to that of Nurmi and Parvinen (2011) who also modeled the joint evolution of

dispersal and specialization in a metapopulation context;however, the details of specialization and the pressures con-394

trolling the level of dispersal were quite different. Unlike Nurmi and Parvinen (2011) we did not see the co-existence

of high and low dispersers (except in a small region, just aboveσc). However, they observed this evolutionary out-396

come when they had three distinct patch types, rather than a continuum as we had. If we had three, evenly spaced,

patch types in our model, such that a specialist on the rightmost would be viable only on the right and middle type398

patches, and the specialist on the leftmost only viable on the left and middle, then we would expect a generalist type,

which would be viable all three, to have a higher dispersal that the two specialist. Thus our continuum-based approach400

suggests that the dimorphism in dispersal may be due to the discrete site types they used. Kisdi (2002) also observed

this coexistence, but again using a model with two discrete patch types.402

Our results are consistent with the comparable case (asexual reproduction and wide competition amongst indi-

viduals with different ecological types) of Heinz et al. (2009) who used a similar, but spatially explicit model. Our404
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analysis matches the sharp transition they found between regions of selection for highly dispersing generalists and

more sedentary specialists, and shows how it is mediated by environmental heterogeneity and local kin competition.406

When sexual reproduction is introduced into their model this boundary is smoother, and there is an intermediate zone

of short range dispersal but no specialization. Thus it would be interesting to know if sexual reproduction would408

eliminate such a transition in general. Potentially the discrete spacial structure of our model would prevent this as

would the addition of assortative mating.410

Potentially shedding light on that question, Billiard and Lenormand (2005) and Blanquart and Gandon (2014)

indeed observed a sharp cut-off between regions of high and low dispersal in genetically explicit models with sexual412

reproduction. In these models dispersal probability couldevolve continuously, but the gene controlling it was on

the same chromosome as a local adaptation gene, which did notevolve, but was under differential spatial selection.414

Both Billiard and Lenormand (2005) (using a two patch model)and Blanquart and Gandon (2014) (using a metapop-

ulation model) found three distinct parameter regions: oneselecting for a highly dispersing population, which was416

monomophic in the specialization trait, another selectingfor a rarely dispersing population with a protected polymor-

phism in the specialization trait, and finally a region between the other two regions where either of the preceding two418

populations could be selected for, depending on the initialconditions. This is analogous to the right panel of our

Figure 5 and led to hysteresis in their models. This suggeststhat the sharp boundary and discontinuities could be420

preserved under sexual reproduction. However, there was nofeedback in these models because specialization could

not evolve, only be maintained or lost. Thus the discontinuities in dispersal were likely due to the binary nature of the422

specialization trait and the question of joint evolution ofdispersal and local adaptation leading to sharp transitions as

in Heinz et al. (2009) and the present study, under sexual reproduction, is still open.424

Day (2001) investigated the role of dispersal and population structure on the evolution of local adaptation using

a similar metapopulation model with some key differences. While both studies characterize environmental variation426

using a normal distribution, Day’s model has within site variance of habitat type but zero variance between sites, while

we have zero variance within a site but variance between sites. This difference leads to an opposite trend between428

dispersal and local adaptation. In Day’s scenario, low dispersal means that mutants that vary in their ecological

character come back and compete (less) with one another, thus selecting for branching in the ecological trait, while430

in our model, low dispersal means a lineage will experience less variation in habitat trait and thus can more easily

specialize.432

More recently, Svardal et al. (2015) explored how dispersaland temporal environmental heterogeneity drive adap-

tive radiation in a local adaptation parameter. Their analytic results are in qualitative agreement with our generalist-434

specialist boundary (vc), however, dispersal is fixed in their model so there is no feedback between dispersal and
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local-adaptation. Concentrating on temporal heterogeneity in the environment they are able to show how changing436

the sign of the auto-correlation (positive or negative) in the environmental condition at a site switches the trend in the

threshold value of dispersal, below which one would expect branching to occur.438

The existence of critical thresholds in evolutionary outcomes is important for our ecological understanding but

may also have ramifications for conservation. Many anthropogenic changes such as development, urbanization or440

agriculture tend to homogenize environments and ecosystems. Climate change is another factor that could alter

environmental heterogeneity in either direction. The eco-evolutionary implications of our results show that such442

changes can shift a population of low-dispersing specialists to highly dispersing generalists, or vice versa. Further,

habitat degradation or the introduction of an invasive species that increases predation or competition may reduce the444

effective carrying capacity of an environment which could shift populations in an analogous way. Likewise, changes

in harvesting or management regimes, such as a reduction in the escapement of spawning salmon, could trigger a446

similar transition and have non-linear effects on several ecosystem variables that would be unexpected based on a

traditional stock management model. Further, because our model exhibits hysteresis between the two regimes, once448

a system is perturbed beyond this threshold in any of these ways, it may not return to its original state even after the

perturbation has subsided.450

Since our model is very general it may be applicable (in a qualitative sense) to many scenarios in nature. Our

evolution of a probability to disperse, or not, is analogousto the evolution of a characteristic dispersal distance greater452

than, or less than, the correlation length of the ecologicaltrait in the environment in a spatial model. We assume

no energetic or morphological cost of dispersal (only the risk of ending up on ill-suiting habitat). This assumption454

is fitting for many species of migratory breeders, in taxa as diverse as fish, birds, ungulates and insects, where all

breeding adults must pay the energetic cost to migrate to breeding grounds (Schtickzelle and Quinn, 2007). For456

example, adult pacific salmon migrate from the sea to discrete freshwater breeding streams but may either home

to their natal stream or stray to a novel site, making them well suited to a metapopulation approach (Schtickzelle458

and Quinn, 2007). Further, these fish are known to be stronglylocally adapted to streams with specific continuous

conditions such as temperature, water depth or substrate size (Fraser et al., 2011; Hendry et al., 2000; Peterson et al.,460

2014; Westley et al., 2013).

The simplicity of our model makes it well suited for expansion and adaptation. Possible extensions include a462

cost of (or probability to perish during) dispersal, stochastic local extinctions, and other functional forms for the

distribution of site types,p(x), all of which should fit into our analytical framework. Additionally, for adaptation464

to certain environmental features, competition between individuals could be stronger when their ecological traits are

more similar, and this could be incorporated as in Heinz et al. (2009). Relaxing the assumption of a constant carrying466
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capacity across sites may lead to interesting results (Massol et al., 2011), as would modifying the order of events in the

model life-cycle to reflect alternate life histories and selection regimes (Débarre and Gandon, 2011; Johst and Brandl,468

1997; Massol, 2013; Ravigné et al., 2004). Further, our model is asexual and phenotype-based. This approach may

be directly relevant to competition between different species, but can also have analogues for populations of a single470

sexually reproducing species. However, modelling a similar situation with sexual reproduction and explicit genetic

architecture and dynamics (Billiard and Lenormand, 2005; Blanquart and Gandon, 2014; North et al., 2011) may well472

lead to further interesting results. Finally, dispersal can be the result of errors in navigation during breeding migrations,

leading errant individuals to breed at non-natal sites. Navigational ability can be socially facilitated (Mueller et al.,474

2013), or density dependent (Berdahl et al., 2013, 2014), thus incorporating collective effects such as herding, flocking

or schooling, which are common in many migratory species, into models of dispersal is an exciting avenue for further476

work in this area.
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Table 1: Overview of notation.

Label Description

v Probability to disperse, prime denotes rare invader
Evolvable, restricted to 0≤ v ≤ 1

x Ecological character, prime denotes rare invader
Evolvable, unrestricted

x∗, v∗ Evolutionary singular strategies calculated
for monomorphic populations

ṽ Evolutionary and convergence stable dispersal rate
for monomorphic or polymorphic populations

z Ecological type of a site
p(z) Distribution of ecological site types (equation 1)
L Number of sites in metapopulation

(set to 8192/K for simulations)
K Carrying capacity at each site
σ Environmental heterogeneity:σz/σm

σz Width of site type distribution,p(z)
σm Width of fecundity curve (set to 1 for simulations)
m0 Maximum fecundity (set to 128 for simulations)
m(x, z) Fecundity of individual with ecological characterx

on site of typez (equation 2)
m̄(x) Average number of offspring produced, per site,

by a resident of typex, over all sites
M(z) Expected number of offspring a mutant lineage

will produce before losing a site of typez
Rm Metapopulation reproduction ratio
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Figure 1: Evolutionary trajectories of dispersal probability and ecological character over time. The left and right columns are for environmental

heterogeneity of 0.75 and 0.90 respectively. Top row of panels: Evolution of the mean probability to disperse as a function of time (generation).

The blue curves are for simulations starting with full dispersal (v = 1), while the red curves are for simulations starting with nodispersal (v = 0).

The dashed black line shows the threshold level ofv, below which branching inx will occur for that specific value of environmental heterogeneity

(this isvc, the generalist-specialist boundary shown in Figure 2). Middle and lower panels: The evolution of the ecological trait, x, as a function of

time; each vertical slice represents the distribution ofx in the population at that time. The middle panels correspondto the blue curves in the top

panels, that is those simulations begin withv = 1. The lower panels correspond to the red curves in the top panels; those simulations begin with

v = 0. For lower environmental heterogeneity (left panels;σ = 0.75) branching inx occurs when the population starts with no dispersal, but these

specialist branches are replaced by a monomorphic generalist population with havingx = 0 whenv crosses the threshold denoted by the dashed

black line. Conversely, for higher environmental heterogeneity (right panels;σ = 0.90), if starting with full dispersal, branching inx does not occur

until v falls below the threshold value. All data are forK = 8.
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Figure 2: Joint evolution of dispersal probability and ecological character as a function of environmental heterogeneity. Top panels: Probability to

disperse,v, as a function of environmental heterogeneity,σ. The black line shows the stationary strategy,v∗, given by the solution to Equation 7;

where it is solid the strategy is evolutionarily stable and where it is broken the strategy is not evolutionarily stable.The crosses depict the evolved

value ofv from numerical simulations averaged over the population (initial conditions: monomorphic population withv = 1, x = 0). The white

and gray areas show, for fixed values of dispersal and environmental heterogeneity, whether the evolution will select for generalists or specialist,

respectively - i.e. whether or not the singular strategy atx∗ = 0 is evolutionarily stable (negative definite Hessian). Thethin grey line separating

the white and grey regions showsvc, the threshold value of dispersal for a givenσ andK. For largeK (K = 8 shown here) a discontinuity in ˜v

occurs as thex∗ = 0 strategy becomes unstable and the population shifts from generalists to specialists. Bottom panels: Distribution ofevolved

ecological character,x, as a function of environmental heterogeneity. Each vertical slice represents the probability distribution ofx for that value of

the environmental heterogeneity. Thex∗ = 0 strategy becomes unstable at a critical value of environmental heterogeneity,σc, and branching occurs.

This threshold value corresponds to the point at which thev∗ curve passes over the boundary between selection for generalists and specialists - i.e.

whenv∗ = vc. The vertical line depicts the theoretical value ofσc. As environmental heterogeneity is increased beyond this threshold the number

of discrete specialist types increases. The vertical pairsof panels from left to right are forK = 1, K = 2 andK = 8.
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Figure 3: Schematic diagrams explaining the discontinuityand hysteresis in the evolved probability to disperse. We consider a dimorphic popula-

tion, half having ecological characterx and the other half having−x all of which have the same probability to disperse,v. The red and blue curves

correspond to the nullclines of the evolutionary gradient for this dimorphic, symmetric population inv-x space. The value ofv where the red curve,

±x(v), splits fromx = 0 is vc, the boundary that separates the generalist and specialistregions of Figure 2. The peak of the blue curve,v(x = 0), is

v∗, the solution to Equation 7 (black line in Figure 2). The evolutionary dynamics will tend, in the vertical direction, towards the blue line and, in

the horizontal direction, towards to the red curve. Arrows with the corresponding colors show the general direction of evolution in each section of

the diagram (sum in black). Intersections of solid blue and red curves correspond to singular strategies, which can be ESSs (solid black circles) or

divergent (dashed black circles) depending on the relativeslope at the intersection. If the red line is dashed the dynamics will be divergent and thus

the singular strategy is not stable. In each row environmental heterogeneity,σ, increased from left to right, which tends to increasevc and decrease

v∗. They are equal in the middle panels (σ = σc).
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Figure 4: Schematic of the ESS dispersal probability, ˜v, from the dimorphic invasion plots (Figures 3 and F.4) as a function of environmental

heterogeneity and carrying capacity. Top left panel: the joint evolution of dispersal and local adaptation leads to a bifurcation in the evolved

probability to disperse. Right panels: ˜v as a function ofσ for a fixedK (single slice of 3D plot), the top panel showsK = 2 and the bottomK = 8.

The top and bottom right panels correspond to the top and bottom row of Figure 3 respectively. Solid lines indicate ESSs and correspond to solid

circles in Figure 3. Dashed lines indicate convergence, butnot evolutionary stable strategies (the instability occurring in the other trait) – dashed

circles in Figure 3. Dotted lines represent unstable singular strategies corresponding to the triangles in Figure 3. Inthe top solid line the population

will all have x = 0 while in the lower sold line the population will be dimorphic, half with x and the other half−x. Bottom left: ṽ as a function

of carrying capacity,K. There is potential for bistability and hysteresis as a function of K for some values ofσ. Filled circles are stable, empty

unstable. These points are also shown on the 3D plot.

27



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200000  400000  600000  800000  1e+06

P
ro

b
a
b
ili

ty
 t
o
 d

is
p
e
rs

e
, 
v

Generation

-3

-2

-1

 0

 1

 2

 3

 0  200000  400000  600000  800000  1e+06

E
c
o
lo

g
ic

a
l 
c
h
a
ra

c
te

r,
 x

Generation

-3

-2

-1

 0

 1

 2

 3

 0  200000  400000  600000  800000  1e+06

E
c
o
lo

g
ic

a
l 
c
h
a
ra

c
te

r,
 x

Generation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.8  1  1.2

P
ro

b
a
b
ili

ty
 t
o
 d

is
p
e
rs

e
, 
v

Environmental heterogeneity, σ

Start with (v=1)
Start with (v=0)

Generalists

Specialists

Figure 5: Bistability and hysteresis. The left panels, details as in Figure 1, show that for values ofσ slightly belowσc (σ = 0.8 shown here) the

population can alternately exist in the highly dispersing generalist, or the rarely dispersing specialist state depending on the initial condition of the

simulation, here starting with full (middle panel) or no (bottom panel) dispersal. The right panel, details as in Figure2, shows the extent of this

region of bistability (shaded yellow region), and illustrates how the discontinuities in mean evolvedv and the variance ofx due to the evolutionary

feedback between dispersal and local adaptation lead to a hysteresis loop. Blue crosses indicate numerical runs starting with highly dispersing

generalists (v = 1, x = 0) and red circles are for runs starting with rarely dispersing specialists (v = 0, x = z). Note, some simulations in the yellow

region, starting with sedentary specialists, did reach theupper equilibrium (not shown). All data forK = 8.
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