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Abstract

Dispersal, whether in the form of a dandelion seed driftinglee breeze, or a salmon migrating upstream to breed
in a non-natal stream, transports genes between locatidhghese locations, local adaptation modifies the gene
frequencies so their carriers are better suited to paatictdnditions, be those of newly disturbed soil or a quiet
river pool. Both dispersal and local adaptation are majaeds of population structure; however, in general, their
respective roles are not independent and the two may ofteat beds with one another evolutionarily, each one
exhibiting negative feedback on the evolution of the otlgre we investigate their joint evolution within a simple
discrete-time, metapopulation model. Depending on enmir@ntal conditions, their evolutionary interplay leads to
either a monomorphic population of highly dispersing gatists or a rarely dispersing, locally adapted, polymoephi
population, each adapted to a particular habitat type. hcativalue of environmental heterogeneity divides these t
selection regimes and the nature of the transition betweem is determined by the level of kin competition. When
kin competition is low, at the transition we observe disgauities, bistability and hysteresis in the evolved siés;

however, when high, kin competition moderates the evahatip feedback and the transition is smooth.
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1. INTRODUCTION

Dispersal is a fundamental process in ecology that is se@mfiover many dierent scales of organization. At the
scale of the individual, it determines survival rates afidmying viability. At the meta-population scale it modukate
genetic diversity and couples the dynamics of spatiallyirtis populations, while at the ecosystem scale dispersal
processes determine connectivity and nutrient transppantthese reasons there has been much theoretical and em-
pirical work in this area (Colbert et al. (2001); Johnson &aines (1990); Levin et al. (2003); Ronce (2007)). It has
been shown that dispersal reduces kin competition (Hamdtaw May, 1977; Leturque and Rousset, 2002; Perrin and
Mazalov, 2000) and inbreeding depression (Bengtsson,;10@8don, 1999; Pusey and Wolf, 1996). It is thought
that spatial-temporal variation in the environment caredelor, or against, dispersal (Duputié and Massol, 2013).
On one hand, environmental heterogeneity may reduce d&jley increasing the risk of ending up in unsuitable
habitat (Hastings, 1983; Holt, 1985); but on the other,eéased dispersal could allow organisms to hedge bets over
environmental fluctuations (Blanquart and Gandon, 201¢irLet al., 1984).

Simple models have demonstrated how dispersal can beestlectin stable environments, even when the asso-
ciated risks are extremely high (Comins et al., 1980; Hamitind May, 1977). In their classic paper, Hamilton and
May (1977) collapsed the costs of dispersal into a singlampater. They showed that when the numberftdpring
that parents produce is high at least half of d@lspring should be dispersed, regardless of the potentitd.chiow-
ever, it is insightful to categorize the cost of dispersé&b tvo components: the risk associated with movement, and
the risk of landing in a habitat that is unsuitable. Hamiltord May’s model is well suited to address the first cost,
but for the second to fit into their framework one must assumeshvironment is binary, composed of regions where
the probability to survive is either O or 1. This scenariormarcapture the more continuous variation found in nature;
and it neglects the possibility of explicit local adaptatio a particular habitat.

The relative quality of a habitat is a subjective measureci§ie to each species or phenotype. In general, there
are no ‘good’ or ‘bad’ habitats, only conditions that aretbebr worse for a specific type of organism. Much
of the biodiversity we observe, both between and within E%eds due to selection actingftiirently in various
environments, causing specialization for habitats witttipalar conditions and thus local adaptation. For reviefs
this field see, for example, Coyne et al. (2004); Futuyma andedo (1988); Schluter (2000); Turelli et al. (2001).

Both dispersal and local adaptation play fundamental riolehaping population structure and, in general, it is
expected that natural selection will result in a negativieadation between the traits associated with each of thase f
tors. Dispersal will impede diversification of local adafa traits by inducing gene flow betweerfigrent habitat
types, or by increasing the heterogeneity in the range of@mwents a lineage experiences over multiple genera-
tions (Day, 2001; Doebeli and Dieckmann, 2003; North et20111). Conversely, in a heterogeneous environment,
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local adaptation to a particular habitat type will raise tis& associated with dispersal by increasing the prolgbili
of arriving at an unsuitable habitat (Comins et al., 1980stit@s, 1983; Massol and Cheptou, 2011). Despite their
evolutionary consequences being deeply intertwined, fadiss have considered the joint evolution of dispersal and
local adaptation, aside for a few notable and interestirgjetions: Kisdi (2002); Heinz et al. (2009) and Nurmi and
Parvinen (2011).

In a seminal study of the joint evolution of dispersal andciglezation Kisdi (2002) modeled a population that
could disperse between two patches and become specialie@ti¢r. Temporal fluctuation in habitat quality induced
dispersal while long-term average environmental propegirovided incentives for specialization. Various stable
lutionary strategies emerged depending on tlikedince between the two patches and the initial conditieaslithg
to hysteresis in the evolved strategies for dispersal aadialization.

Later, using spatially explicit simulations, Heinz et &009) found that slight environmental gradients led to
the evolution of long range dispersal and a lack of speeittin while steep environmental gradients led to reduced
dispersal and specialization to local condition. They oles@ a sharp boundary between these two regimes and
posited that this transition was due to feedback betweetiapmtion and reduced dispersal.

Nurmi and Parvinen (2011) modeled the evolution of disgdreaveen many, non-spatially explicit, patches and
specialization onto either of two resources available ifedent ratios on dierent patches. Local extinction events
select for dispersal while increased mortality during displ selected against it. Investigating the joint evoluti
of dispersal and specialization led to outcomes not prediby the evolution of either trait singly, most notably a
co-existence of high and low dispersers.

Billiard and Lenormand (2005) and Blanquart and Gandon 42Q&ed genetically explicit models to explore
the evolution of dispersal probability under the influent&®oal adaptation. Both models assume that dispersal and
local adaptation are encoded by two genes on a single chmmesDispersal probability can evolve a continuous
range of values while specialization adopts one of two \sled is under spatially variable selection in a two-
patch (Billiard and Lenormand, 2005) or metapopulatiora(Bjuart and Gandon, 2014) model. Depending whether
or not a polymorphism at the local adaptation locus is pteticthe evolved level of dispersal is high or low. As
in Kisdi (2002), for certain parameter values both high and tlispersal states are stable depending on the initial
conditions.

Together these studies demonstrate the importance ofd=rirgj the joint evolution of dispersal and local adapta-
tion. In this work, we have created a spatially implicit nggpulation model in which the ecological characteristics o
available breeding sites are drawn from a continuous Higidn of site types, reflecting the continuous clines found

in nature. Individuals evolve a probability to disperse smddapt to dierent site types. In line with the distribution
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of site types, individuals can evolve a continuous and unded range of ecological characters, allowing for arbjtrar
specialization and branching patterns to evolve. In cehttamost models described above, in our model kin compe-
tition, rather than local extinction events or temporalaion in habitat quality, selects for dispersal. Enviramtal
heterogeneity selects against dispersal, by increasmggk of landing on unsuitable habitat, but also selectoical
adaptation. Within our model, we are able to continuouslig, iadependently, vary the level of both kin competition
and environmental heterogeneity.

Our findings demonstrate that the joint evolution of dispeasid local adaptation can lead to qualitatively distinct
stable strategies as environmental heterogeneity isdvarid that the level of kin competition determines the nature
of the transition between those population-level patteAmalysis of our simple model illustrates how the interauti
between two traits can lead to rich phenomena such as disaoons phase transitions and hysterefiisas, and how
small fluctuations of environmental conditions can triggeastic changes in the evolutionary outcome.

In this study, we propose semi-analytical methods to erpdaiantitatively the mechanisms behind the abrupt
transition in level of dispersal and degree of specialaratibserved in similar models (Heinz et al., 2009). Employ-
ing multi-dimensional adaptive dynamics (Geritz et al.989Leimar, 2005; Metz et al., 1992), we first show that
branching occurs at an evolutionary singular strategy.rmuliidimensional trait space, this branching leads to lyigh
nonlinear responses to environmental perturbations. A®iand Dieckmann (2007), the joint evolution of multiple
traits creates feedbacks and discontinuous transitioesatutionarily stable strategies (ESS) (Maynard Smith and
Price, 1973). Understanding these processes requiretuthedf the interactions between multiple sub-populations
and the combinations (Cohen and Levin, 1991; Ludwig andri,ed®91) of their traits.

We hope that our approach will be relevant in a more genettihgeand will be useful when identifying and
explaining sudden regime changes in multi-dimensiondugiemary systems. For instance, this framework may be
applicable to the joint evolution of dispersal and a wideagrof other traits, including co-operation (Le Galliard
et al., 2005; Parvinen, 2013), seed dormancy (Cohen anah] 2987; Olivieri, 2001; Venable and Brown, 1988),
reproductive &ort (Crowley and McLetchie, 2002; Ronce et al., 2000), s¢wsgLeturque and Rousset, 2003), kin
recognition (Lehmann and Perrin, 2003), inbreeding loadil{@me and Perrin, 2006), mating strategy (Ravigné

et al., 2006), habitat niche width (Chaianunporn and HadisP012) and age at death (Dytham and Travis, 2006).

2. MODEL

We consider a population of individuals characterized byabability to dispersey, and an ecological type,
These agents inhabit an arraylofliscrete sitesl( >> 1) without explicit spatial locations. Each sitgjn the array

can accommodate up 0 breeding adults and is assigned an ecological charagtdrat remains fixed over time and
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is drawn from a normal distribution,
1

V2ro,

Every discrete generation has two stages. During the fagiesadults producen offspring, that inherit the adult’s

oD = z ] 1)

exp[— 202
ecological typex, and probability to disperse, with some small mutation (see Numerical Simulations sechbr
details). The adult then perishes. Next each juvenile dégsgto a randomly selected site with probabilityr returns
to its natal site with probability, & v. If there are greater thaK juveniles on a given site they compete for space,
and a random set &€ survive After this competition, juveniles mature into adwnd become the parents of the next
generation.

The number of Gispring a parent leaves behimd, is a function of the dference between the parent’s ecological

type and the ecological character of the site at which itdseghis is given by,

(x— 2)2]’ @

m(X,2) = my exp[— 252
m

wheremy is the maximum number offtspring ando,, determines the width of this bell-shaped function, i.e. the
tolerance of individuals to variation in habitat. Our resdre independent ofi, provided thatm, >> K, which leads
to all sites being saturated.

In our model the heterogeneity of the environment is deteechiby the width of the distribution of site types
(Equation 1). The wider this distribution is, the greatell e the range of site types a dispersing individual could
encounter. This scale matters only in relation to the widtlthe fecundity curve, or the plasticity of the organ-
isms, defined by Equation 2. Thus we define a rescaled enventahheterogeneity parameter@as= o/om, and

nondimensionalize all ecological characteristicsiyin the results that follow.

3. NUMERICAL SIMULATIONS

We performed evolutionary simulations of our model. Unlested otherwise, all simulations were initialized
with monomorphic populations having probability to disgew = 1, and ecological character,= 0. During the
simulations, eachfspring inherited the values sfandx from its parent plus small independent mutations, consiste
with a continuum-of-alleles genetic model. However, it was meant to reflect the actual evolutionary dynamics of
any organisms, but rather to allow the dynamics to take tetesyto an ESS. Mutations were drawn from a normal
distribution centred at zero with a variance of 4@or dispersal probability and.2 x 10~/ for ecological character.
For the probability to disperse, if the mutation put thettb@low 0 or above 1 the trait was reset to 0 or 1 respectively.

No restrictions were placed on the valuexof
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Figure 1 shows the evolution of dispersal and local adaptaiver time. Depending on the environmental het-
erogeneityo, and the carrying capacit¥, the distribution of evolved ecological characters wakegita narrow
monomorphic peak centeredyat= 0 (lower left panels of Figure 1), or a pattern of discreteutady spaced peaks
in x-space (lower right panels of Figure 1). We interpret a mooguhic population having = 0 as a population of
generalists, as they have evolved to the mean of the distribof site types. Conversely, a population of discrete
x-types, many farf o) from the average value af we interpret as a population of specialists. These pojpuigt
have undergone evolutionary branching and are locallyteddp specific site types.

We observe a negative correlation between dispersal ratgdgin some simulations, especially for highand
when environmental heterogeneity is just above the minimmumeeded for branching to occur (Appendix Figures E.3
& G.6). However, the slope of the trend is shallow, and ofteré¢ is no, or even a positive, relationship betweand
[X (Appendix Figures E.1-3). In general, the rangey @fcross the branches is so narrow that it is well characterize
by the mean (see Appendix Figure G.6, for the distributioer@range of parameter values).

Itis interesting to note that even within an environment thidl select for generalists, branching can initially occu
if dispersal probability is ‘artificially’ low. We see thisiithe bottom left panel of Figure 1, because the simulation is
started withv = 0 branching initially occurs, but the generalist strateggpgants it once dispersal rises. Similarly,
in the middle right panel, even though the environmentatifogfeneity is appropriate to select for specialists, this
branching does not occur until the probability to dispegdks foelow this threshold. Thus from the point of view of
one trait, the state of the other trait is part of the seleatinvironment. Overall, comparing the left and right sides o
Figure 1 we can see that a small change in environmentaldggteeity can produce a significant quantitative change
in vand a dramatic qualitative change in the distributior.of his dramatic change is due to the joint evolution of the
two traits and the feedback between them. and is mediateuddgvel of kin competitionk.

In Figure 2 we show the mean evolved value of dispersalnd the distribution of the ecological characteristic,
Both Figure 1 and Figure 2 demonstrate that there exist®atbid level of dispersalg, below which individuals will
tend to specialize and branching»rwill occur. Above this boundary the dynamics will select éiomonomorphic
population of generalists having= 0 (the average of the ecological character across the emagnt). The top
panels of Figure 2 show this transitionwro- space. For eacK there is a unique threshold level of environmental
heterogeneity below which specialization is impossible.

To understand these numerical results we next examine trevimeir of a monomorphic, evolving population.
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4. ADAPTIVE DYNAMICSAND ESS CALCULATIONS

We consider a monomorphic resident population with prdiigid dispersey, and ecological charactet, and a
rare invader characterized byandx'. A required condition for this phenotype to successfullyaihe the population
and replace the resident is that the expected growth rateeahtitant, when initially rare, is positive. Following Metz
and Gyllenberg (2001) and Ajar (2003) (but also see Chesk884)) we define the metapopulation reproduction
ratio, Ry, as the expected number of dispersers produced by a singétstarting in the disperser péoHere we
will use Ry, to show that the singular strategy for local adaptation ssprme might expect, the most common (and
average) environmental type, while the value for dispessdktermined by a balance between kin competition and
environmental heterogeneity. This technique should afgplgrbitrary distributions of site typep(z), and is thus not
limited to the Gaussian distribution (Equation 1) we havedls this study.

Assumingm, >> K, and thus every site holds greater th@mdividuals before competition, the probability that

a dispersing mutant will survive to breed, given it has lahde a site of type is

1
vm(x) + (1 - v)m(X, 2)

(3)

wherem(x) is the expected number offspring produced by the resident population per site, wheirirader is rare,

and can be calculated as

m(x)

I ) p(2m(x, 2dz 4)

My
V1 + o2

2
2(1+ 0?)

exp[—

Given that an invader has gained a foothold on a site, itatjeewill persist there for some finite time before
losing the site. Over this persistence time it will producms total number of fiispring, a fraction/ of which will
disperse. We will define the expected number of dispersffgpong an invader lineage will produce at a site of type
z before losing that site to b, xv x(2), but for convenience refer to it from here forward M$2). This quantity
represents the total number dfspring produced from first occupation until no descendaiittssooriginal mutant are
present. Findingv(2) involves the solution to a set &f equations, however, following Ajar (2003) we are able to find
to find its derivative at the singular strategy. In Appendixwe extend the method of Ajar (2003) to heterogeneous

environments such as the one at hand.

INote that Ajar (2003) uses a slightlyfiirent formulation “...overall [expected] production otsassful emigrants from a patch, descended
from a single mutant immigrant in this patch”, but both verdbescriptions lead to the same mathematical expression.
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The expected contribution to the mutant disperser pool loh eautant disperser when rare, is then given by the
product of the probability to capture a site (Equation 3) #melexpected number of dispersers produced during its
lineage’s tenure on that sitd/(2)), averaged over all possible site types.

. f’ POM@ )

vm(x) + (1 — v)m(X, 2)

The logarithm of the metapopulation reproduction ratioigg1sequivalent to the standard fithess measure, the
invasion exponent; thus the derivativesRyf with respect to the mutant variables will define the selectoadient,
S. To solve for the singular strategw*(x*), we must find where the selection gradient is equal to zerdieW
this condition is satisfied, the resident will occupy an extum of the fitness landscape and hence this point will

potentially be a convergence stable gmevolutionarily stable strategy. The selection gradiegiven by

ORn

S— v ) 6
- (6)

ox llv=v
X' =X

As we demonstrate in Appendix A, the singular strategy fergbological character is = 0, while the singular

dispersal strategyy, is given by the solution to

Var[m(0, 2)] = f i m(0,2*(1 - d"(2)F*(29p(2)dz (7)

—00

whereF(2) is a measure of population structure, specifically, thévabdlity that two individuals randomly selected
from the same site have a common ancestor at that site (seadigpEquation A.17) and(2) is the probability of a
resident immigrant being selected to breed at a site of fsee appendix, Equation A.9). Theindicate that they
are evaluated at the singular strategy, 0). The solution to Equation 7 is is plotted fiir= 1,2 & 8 in Figure 2.

The Jacobian matrix of the selection gradi&)tan be used to determine the convergence stability of ithgsigr
strategy, while the Hessian matrix of the metapopulatigma@uctive ratioR,, can be used to determine its local
evolutionary stability (uninvadability) (Geritz et al.998; Leimar, 2005) - see Appendices B & C for details. For all
values ofK ando the Jacobian matrix evaluated at the singular strategy ¢, x = 0) is negative definite (shown
in Appendix B), indicating this strategy is convergencdkand the evolutionary dynamics will converge towards
it (Geritz et al., 1998; Leimar, 2005). If this singular $&gy is also locally uninvadable (negative definite Hessian
matrix) it is an ESS (Maynard Smith and Price, 1973). The defiess of the Hessian matrix is dependenkKoend

o, thus the ¢ = v*, x = 0) is not always an ESS (see Figure 2 and Appendix C).
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5. DISCONTINUITIESAND HYSTERESISIN EVOLVED STRATEGIES

5.1. Numerically observed transitions

As the degree of environmental heterogeneity is increased fero, the evolved dispersal strategyiriatches
the singular strategy for the monomorphic populatin\When the critical value of environmental heterogeneity,
is reached the convergence stable strategy is no longeutenwdrily stable and the population branches. After this
occurs, the evolutionary attractor for the level of dispérs no longer given by the monomorphic singular strategy
defined by Eqn. 7, i.ev # v*.

In the lower panel of Figure 2, we plot the evolved distribatdf x as a function of environmental heterogeneity,
o. The distribution turns from uni- to multi-modal as thiecurve crosses the generalist-specialist boundary. Fge lar
K there is a discontinuity in both the variance in the distithu of x, and the stable level of dispersal, This is
caused by the interplay between local adaptation and diap&dnce the critical level of environmental heteroggneit
is reached, disruptive selection causes branching in thlegical characteristics, and we are left with a multi-peaked
distribution inx, with each sub-population adapted to &efient environmental character (lower panels of Figure 2).
This local adaptation feeds back on the level of disperstgcting for lower dispersal rates, which in turn feeds back
into the selection for further local adaptation.

Returning briefly to the top right panel of Figure 1, we can thée feedback play out over time. Because selec-
tion is increasingly relaxed asapproaches the singular strategy the blue curve (popuolatarting withv = 1) is
concave-up during this time period. However, ordalls belowv,; branching occurs and this local adaptation causes
renewed selection for lower dispersal, which is apparetitémegative concavity of the blweurve as the population

accelerates downward indue to this feedback.

5.2. A geometric explanation for discontinuous transision

In Section 4, we studied the evolutionary gradient for a rmaphic population and used nullclines of this gradi-
ent to identify singular strategies and their stabilityphrticular, we showed the existence of a critical valdabove
which branching occurs, transitioning from a monomorphienieralist) to a polymorphic (specialist) population. In
this section, in order to explain the nature of the transifiand the observed abrupt change for large endtigh
we consider a population that has undergone symmetric birag@n the ecological character trai, In general we
would have to consider a mutant arising in a dimorphic pajrnieof resident individuals of typex(, v1) and (2, V).
However, to make this situation more tractable we suppo@htine population has ecological characteland the
other half-x, but all have the same dispersal probability\We note that this is indeed what we observe in numeric

simulations, for anyK, immediately after the first branching occurs from the moagghic singular strategyy{(, 0)

10
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(see for example Figure 1). As we shall see, reducing theriine of the problem (from 4 to 2) will allow us to
give a geometric interpretation of the observed discoitrat the transition from a monomorphic (generalist) to a
polymorphic (specialist) population, for large enough

We plot the nuliclines of the evolutionary gradient for eadordinate for the dimorphic, symmetric population
in v-x space, as an illustrative schematic in Figure 3 and alsoroottifis picture using simulation data (Figure F.4).
In these figures, the red curves are the nullclines foixtheordinate; in biological terms, this is the evolved bitanc
separation of ecological character for the dimorphic pafoh when all individuals have a fixed dispersal probapilit
v. The red curve can be decomposed into two components. Fghahough value of the dispersal probabihtythe
dimorphic equilibrium is the monomorphic (degenerate diphéc) equilibriumx = —x = 0. If successive generations
visit many diferent sites, the evolutionary dynamics drive the popufatiioa generalist strategy. When dispersal is
lowered below a critical value of, the population experiences branching and the convergBmmephic equilibrium
is at (x, —x), with (x # 0). This point may be stable (locally uninvadable) or unigtglocally invadeable) and result
in further branching (discussed later).

The blue curves of Figures 3 & F.4 are the nuliclines forwmordinate; they indicate evolved dispersal prob-
ability, v, as a function of a fixed value of the ecological character, of the dimorphic population. As intuition
suggests, the-curve attains its maximum value at= 0 (generalist population). This is consistent with the ithest
dispersing is more risky when the site type one is adaptesiriwore rare.

Where these curves intersect are singular strategieshwtgy be stable (solid black circles), convergence stable
but evolutionary unstable (dashed black circles) or caymece unstable (black triangles). The relative positicinef
peak of the blue curve and the fork of the red curve depends@raiue of the heterogeneity As o increases the
peak of the blue curve/{) descends while the fork of the red curwg)(increases. At low environmental heterogeneity
(o < o¢), the blue curve intersects the stable, degenerate, sagftibe red vertical line (blue line above the red fork,
left column of Figure 3). This intersection point coincideih the stable, generalist, monomorphic equilibrium
described in Section 4. Conversely, tor> o, the peak of the blue curve intersects the unstable sectitireaed
vertical line (blue curve below the red fork, right columnFa§ure 3). This point coincides with the the evolutionarily
unstable singular (generalist) strategy. Finally, théaai environmental heterogeneity & o) is characterized by a
tangency property between the peak of the blue curve anethiork (middle column of Figure 3).

Figure 3 demonstrates how the relative curvature oftfiex) and+x*(v) curves whemwr = o determines whether
or not there will be a direction of instability along the péatangent to the symmetric dimorphic manifold. Such an
instability results in a discontinuity in the ESS level afpiersal, and the variance in ecological character, as &duanc

of environmental heterogeneity, The top and bottom rows of panels in Figure 3 correspondddwlo scenarios

11
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described below:

(i) Given that we have restricted the evolutionary dynantica symmetric (inx) dimorphic population, if the
concavity ofv*(£X) (blue) is greater than that afx*(v) (red) ato, as in the top row of Figure 3, then this guar-
antees that the symmetric manifold defines a direction diilgtafor the system. In this case, asincreases,
the (¢, 0) strategy becomes unstable and creates two stable (dlergymmetric sub-manifold) strategies in-
finitesimally close and there will be a kink, but no discontty, in the evolved probability to disperse,and
the variance ik will transition continuously from zero to positive valuagper right panel of Figure 3). We
note that this two-dimensional picture does not guarantaehstability of the symmetric dimorphism, only
its stability if the system is restricted to be symmetricwiwer, simulations of the full model suggest that the
symmetric dimorphism is stable for lo (Figure 2).

(ii) If, however, the concavities are reversed (lower rowpahels), whemr = o the {*, 0) strategy is unstable
(lower middle panel) ang fnakes a discrete jump to the symmetric pair of lower intdisegoints, and thus
there is a discontinuity i &t o when crossing from above. This lower singular strategy meagaim ESS or
could be convergence, but not evolutionarily, stable amthéw branching irnx could occur, in which case the

dimorphic plots in Figure 3 will no longer apply (discussadsection 5.2.1).

We confirmed the theoretical picture presented in Figure 3itmulating the dimorphic populations described
above to find the fitness gradientirv space (see Appendix D for details). Numerically, we obseglative curvatures
matching, qualitatively, the top row of Figure 3 fir= 1 & 2 and matching the bottom row fé¢ = 8 (Figure F.4).
This indeed matches the presence and absence of disctiesrfor those values of kin competition in Figure 2. At
the transition ¢ = o) the concavity of both the red(v), and bluey*(x), curves increase as a functionkf The
X*(v) curve does so because decreases as a function I§f so there is less incentive to specialize further at the
branching point. The*(x) curve is more concave at higher valuesobecause with lower kin competition dispersal
is more free to fall f away fromx = 0 since it is not propped up by a drive to disperse to avoid aitipn with kin
locally (Comins et al., 1980). The ranks of the concavitiesable to switch because the concavity of the dispersal
curve varies much more rapidly witkithan thex curve does. Thus it is the change in kin competition thatrdetees

whether or not there will be a discontinuitywand the generalist-specialist transition.

5.2.1. Branching Cascade.
If the monomorphic stationary point{,0) is unstable atr = o (scenario (ii) from the list in the preceding
section), two possibilities arise. Either, the populatitebilizes to a dimorphic stable equilibrium (indicatedtbg

solid circles in the lower, middle panel of Figure 3), or het branching events occur. The subsequent branching in
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the lower right panels of Figure 1 demonstrate that for low ¢@mpetition K = 8) this equilibrium is unstable in
the x coordinate. Further we note that the monomorphic singutategyy ¢, 0) is in the basin of attraction of this
symmetric, dimorphic, point. (See, for example, the midijbt panel of Figure 1.) The population first evolves to the
singular strategw(, 0), then, ifo- > o, this monomorphic singular strategy is unstable and disreipelection causes
branching before directional selection drives the poputeto a symmetric (irx) evolutionary singular dimorphism.
Upon reaching this point, directional selection ceasesdisidiptive selection in the-direction arises, leading to
further branching events in the evolutionary tree. Thisideiled what we observe fér = 8 (shown in Figures 2 &
G.6-9), here the population goes from being monomorphiotwisting of five sub-populations as the environmental
heterogeneity passes. Contrasting this sudden shift from one to many brancheswésommental heterogeneity
passes a critical level, with the more continuous shift fimme to two to three branches exhibited by a similar model
in which dispersal is fixed (Geritz et al., 1998), implicaties role of feedback due to the joint evolution of dispersal

and local adaptation in the present model.

5.3. Hysteresis in the response to changing environmeatéahility

Another interesting feature of Figure 3 is the presence ofalternate stable strategies in the lower left panel,
(V4,0) and {,+x). This suggests that for larg€, and environmental heterogeneity less than, but closegmtny
o we should expect alternative stable states, one of higklyedsing generalists and the other of a pair of relatively
rarely dispersing specialist lines (or the polymorphicyagion left after a branching cascade from this initialrpai
depending on initial conditions. Such bistability is oftemcountered around transitions from mono to polymorphic
ESSs (Geritz et al., 1999). In Figure 4, we plot the ESS d#gdqarobability from Figure 3 as a function of environ-
mental heterogeneity and carrying capacity — solid, daahddlotted lines in right hand panels of Figure 4 correspond
to stable (solid black circles), convergence stable bulugemary unstable (dashed black circles) or convergenee u
stable (black triangles) intersections in Figure 3 respelgt When the concavity of the blue curves is greater than
that of the red curve, we observe a destabilization of theupprve and thus a sudden jump to the lower curve, at the
point o (bottom right panel); the fold disappears when the consvére reversed (top right panel). The cusp-like
nature of thevcurve introduces two discontinuities around a region ofdility, leading to a hysteresis loop in both
environmental parameters:andK.

This bistability is apparent in Figure 5, which shows res@ilom simulations with environmental heterogeneity
aroundo for various initial configurations of individual trait vads. In contrast to Figure 1, the left panels of Figure 5
shows a value af- for which the outcome of the evolutionary dynamics is degendn the initial state of the system.
The full range of environmental heterogeneity leading &tahility is highlighted in yellow in the right panel of

Figure 5. Note that the value of at which the blue and red curves become tangent in the botftnpanel of
13
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Figure F.4 corresponds to the left boundary of this regiobistfbility shown in yellow. Here the blue crosses depict
simulations seeded with a population all having full disaéiand no specializatiow = 1, x = 0), as in Figure 2,
while red circles represent simulations starting with migpersing, locally adapted populations= 0, x = 7). As
predicted, the region of bistability, bounded by discouities in the evolved dispersal probability,dahd variance of

X creates a potential hysteresis loop for the evolutionanadyics. FoK = 8 (shown in Figure 5), moving from high
to low environmental heterogeneity (right to left), a pagiidn of specialists will encounter an abrupt jump upwards
in their evolved dispersal probability, &nd a collapse of the variancedmroundo = 0.8. However, if environmental
heterogeneity were to then smoothly increase that populatould not return to the specialized state uatiwas

around 09.

5.4. Asymmetric environments

Symmetric environmental distributions represent a speeise, which due to their tractability are often useful
for gaining intuition. In general, the picture presented-igure 3 can be qualitatively fiierent. Specifically, for
non-symmetric distributions, the evolved trait values afimorphic population (red branches in Figure 3) do not
converge on the monomorphic singular strategy. Rathera@myof the dimorphic branches connects continuously to
the monomorphic strategy while the other appears some @istance away (Geritz et al., 1999).

The analysis in Section 5 relies on the symmetry of distiduof site types. To reveal which results are general
and which are specific to the symmetric case we explore neaiBrthe behaviour of our model in environments with
varying degrees of asymmetry (see Appendix E). Stricthakpey, the asymmetry ip(2) creates a discontinuity in
the evolved values ofandx for all values ofK. However, for moderate levels of asymmetry the discontiesiat low
K are too small to be seen and thus the results are very similhe tsymmetric case (Figure F.4). For all distributions
of z, regardless of symmetry, for higk the population transitions from one to many branches &so passedre,
while for low K the number of branches transitions more smoothly from 1 to 2 to 3, and so on. Presgmeen
for highly asymmetric distributions, is the result that tiple branching inx, immediately after the singular strategy
becomes unstable (ie. when= o + €), is only observed for higK.

This is because at loW high kin competition provides additional evolutionarydertowards increased dispersal;
however, when kin competition is lower specialization haseater relative role in shaping dispersal, so the positive
feedback between increased specialization and decremsgedshl is more free to play out. Thus, in general disconti-
nuities and hysteresis may always be present in asymmaetrimaments, however, the size of the discontinuity will
be governed by the amount of kin competition, with less kimpetition (highelK) leading to larger discontinuities

and regions of hysteresis.
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6. DISCUSSION

Dispersal and local adaptation are major drivers of ecoldgdatterns and for that reason they have both been
the subject of many studies. However, the interplay betvaégrersal and local adaptation has the potential to shape
the evolutionary process in unforeseen ways. The purpo#@sofvork is to explore their joint evolution in general
heterogeneous environments.

To investigate the specific case of joint evolution at hanelhave modified one of the simplest models of disper-
sal, that of Hamilton and May (1977), by adding the poterfbalindividuals to adapt to a general, permanent and
heterogeneous feature of the landscape and by increasingddl carrying capacity of a patch beyond one, to allow
us to investigate the role of variable kin competition. Iisteimple model, increased environmental heterogeneity
increases local adaptation, while local carrying capatiitiates the level of kin competition, and thus modulates th
pressure to disperse.

We found the evolutionary gradient in monomorphic stratsggce by considering the reproductive success of a
lineage during its persistence time at a single site (Aj@032 Metz and Gyllenberg, 2001). Using nullclines in this
gradient allowed us to calculate the singular strategy fepetsal as a function of environmental heterogeneity and
carrying capacity, as well as predict whether natural sieleavould favor a homogeneous generalist population, or
lead to evolutionary branching and locally adapted spistsalNext, we studied the evolutionary dynamics in a larger
strategy space (i.e., the space of symmetric and dimoripialgtions), and we showed how the geometry of the null-
clines in the evolutionary gradient could partially preadite nature of the transition between these populatioatlev
states of the system. Certain relative concavities of thielimes can lead to discontinuities in evolutionary outess,
branching cascades, bistability and hysteresis. Thisyaisalelied on the symmetric environmental distribution of
site types, however, this special symmetric case proviggght and guides intuition for more general cases, which
we have shown exhibit similar dynamics.

For a given value of environmental heterogeneity and cagrgapacity, a threshold value of dispersalmarked
the boundary between two selection regimes. When enviratahbeterogeneity was low, such that the singular
strategy for dispersalj’, was greater thaw., selection was for generalists axdwas the ESS (iev = v*). How-
ever, above a critical value of environmental heteroggnéifell below v, and the dynamics shifted to selection for
specialization (Svardal et al., 2015). Varying the levekiof competition,K, had severalféects on the evolutionary
outcome. As kin competition was reduce(l i increased) the critical level of environmental heteraity, above
which branching occurs, decreased. If kin competition washigh (smallK) we did not see a discontinuity in the
ESS level of dispersaV, as the threshold level of environmental heterogeneitycrassed.

By examining the dynamics close to the transition, we caretstend the nature of the discontinuity in the evolu-
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tionary stable strategies. Increased pressure to specilie to an féective increase in environmental heterogeneity
makes dispersal less favorable. The associated redudtidispersal then leads to selection for further local adap-
tation, creating a positive feedback loop between redutsgzbdsal and increased specialization (Heinz et al., 2009)
When kin competition is low (higkk) there is little additional pressure to disperse to avoichgeting with kin and
thus this feedback loop is relatively unconstrained. |s fitienario, the positive feedback induces a discontiruityd
ESS level of dispersal which creates the spontaneoustitanfiom selection for generalists to selection for specia
ists. Close to this transition the evolutionary dynamidsikit hysteresis, and the population can evolve to the kighl
dispersing generalist, or the rarely dispersing spetstide depending on initial conditions. On the other hardsw
kin competition is high (lowK) the additional pressure to reduce dispersal due to thednttion of specialization is
counteracted by the drive to disperse to avoid competitiitim kin. Thus the feedback loop is mediated by the level
of kin competition, and in this loviK case, the drop in dispersal and increase in variance of atagtation will be
much smaller. This result also holds for asymmetrical emuinents, which we have explored numerically.

In our model, the distribution of site types is smooth, witkiregle peak, however if branching in ecological char-
acter has occurred, the distributionyofs banded, with multiple, evenly spaced, peaks. Thus catiyge¢xclusion,
though not explicitly included in our model, emerges from ttynamics and there is a limit to the similarity between
co-existing branches (Meszéna et al., 2006), which dependhe level of population structure. We do not have a
satisfactory explanation for the mechanisms behind therebd competitive exclusion or why the apparent niche
overlap (May, 1974) decreases with decreased kin compeffincreased). This is an area for further analytic
work.

The present model is similar in spirit to that of Nurmi and®aen (2011) who also modeled the joint evolution of
dispersal and specialization in a metapopulation conkextiever, the details of specialization and the pressunes co
trolling the level of dispersal were quiteftrent. Unlike Nurmi and Parvinen (2011) we did not see thexistence
of high and low dispersers (except in a small region, juswvalaq). However, they observed this evolutionary out-
come when they had three distinct patch types, rather tham@énaum as we had. If we had three, evenly spaced,
patch types in our model, such that a specialist on the rightwould be viable only on the right and middle type
patches, and the specialist on the leftmost only viable ereft and middle, then we would expect a generalist type,
which would be viable all three, to have a higher dispersatltifie two specialist. Thus our continuum-based approach
suggests that the dimorphism in dispersal may be due to soeatié site types they used. Kisdi (2002) also observed
this coexistence, but again using a model with two discratetptypes.

Our results are consistent with the comparable case (alsepraduction and wide competition amongst indi-

viduals with diferent ecological types) of Heinz et al. (2009) who used alairibut spatially explicit model. Our
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analysis matches the sharp transition they found betwegane of selection for highly dispersing generalists and
more sedentary specialists, and shows how it is mediated\igo@mental heterogeneity and local kin competition.
When sexual reproduction is introduced into their mode Bdundary is smoother, and there is an intermediate zone
of short range dispersal but no specialization. Thus it Wdeé interesting to know if sexual reproduction would
eliminate such a transition in general. Potentially themite spacial structure of our model would prevent this as
would the addition of assortative mating.

Potentially shedding light on that question, Billiard aneniormand (2005) and Blanquart and Gandon (2014)
indeed observed a sharp cut-between regions of high and low dispersal in geneticallyliexpnodels with sexual
reproduction. In these models dispersal probability caudlve continuously, but the gene controlling it was on
the same chromosome as a local adaptation gene, which delole, but was under fierential spatial selection.
Both Billiard and Lenormand (2005) (using a two patch model) Blanquart and Gandon (2014) (using a metapop-
ulation model) found three distinct parameter regions: sglecting for a highly dispersing population, which was
monomophic in the specialization trait, another seleclima rarely dispersing population with a protected polymor
phism in the specialization trait, and finally a region begwéhe other two regions where either of the preceding two
populations could be selected for, depending on the inttalditions. This is analogous to the right panel of our
Figure 5 and led to hysteresis in their models. This suggkatsthe sharp boundary and discontinuities could be
preserved under sexual reproduction. However, there wésattback in these models because specialization could
not evolve, only be maintained or lost. Thus the discontiesiin dispersal were likely due to the binary nature of the
specialization trait and the question of joint evolutiordifpersal and local adaptation leading to sharp transitien
in Heinz et al. (2009) and the present study, under sexuebdejgtion, is still open.

Day (2001) investigated the role of dispersal and poputegtoucture on the evolution of local adaptation using
a similar metapopulation model with some keyfeliences. While both studies characterize environmentiticn
using a normal distribution, Day’s model has within sitei@ace of habitat type but zero variance between sites, while
we have zero variance within a site but variance betwees. sif@is diference leads to an opposite trend between
dispersal and local adaptation. In Day’s scenario, low atispl means that mutants that vary in their ecological
character come back and compete (less) with one anothers#tecting for branching in the ecological trait, while
in our model, low dispersal means a lineage will experieess hariation in habitat trait and thus can more easily
specialize.

More recently, Svardal et al. (2015) explored how dispeardltemporal environmental heterogeneity drive adap-
tive radiation in a local adaptation parameter. Their amahgsults are in qualitative agreement with our genetralis

specialist boundaryg), however, dispersal is fixed in their model so there is ndlieek between dispersal and
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local-adaptation. Concentrating on temporal heteroggiireithe environment they are able to show how changing
the sign of the auto-correlation (positive or negativehia €nvironmental condition at a site switches the trenden th
threshold value of dispersal, below which one would expestthing to occur.

The existence of critical thresholds in evolutionary outes is important for our ecological understanding but
may also have ramifications for conservation. Many anthgep@ changes such as development, urbanization or
agriculture tend to homogenize environments and ecosgste@iimate change is another factor that could alter
environmental heterogeneity in either direction. The ecolutionary implications of our results show that such
changes can shift a population of low-dispersing spetsalcs highly dispersing generalists, or vice versa. Further
habitat degradation or the introduction of an invasive ssethat increases predation or competition may reduce the
effective carrying capacity of an environment which couldtghifpulations in an analogous way. Likewise, changes
in harvesting or management regimes, such as a reductidreiescapement of spawning salmon, could trigger a
similar transition and have non-lineaffects on several ecosystem variables that would be unexpbased on a
traditional stock management model. Further, because odehexhibits hysteresis between the two regimes, once
a system is perturbed beyond this threshold in any of thegs,vitamay not return to its original state even after the
perturbation has subsided.

Since our model is very general it may be applicable (in aitpiale sense) to many scenarios in nature. Our
evolution of a probability to disperse, or not, is analogtuihie evolution of a characteristic dispersal distancatgre
than, or less than, the correlation length of the ecolodieat in the environment in a spatial model. We assume
no energetic or morphological cost of dispersal (only tis& of ending up on ill-suiting habitat). This assumption
is fitting for many species of migratory breeders, in taxaigsrde as fish, birds, ungulates and insects, where all
breeding adults must pay the energetic cost to migrate tediimg grounds (Schtickzelle and Quinn, 2007). For
example, adult pacific salmon migrate from the sea to disdreshwater breeding streams but may either home
to their natal stream or stray to a novel site, making theni sigted to a metapopulation approach (Schtickzelle
and Quinn, 2007). Further, these fish are known to be strdngblly adapted to streams with specific continuous
conditions such as temperature, water depth or substrad€fiaser et al., 2011; Hendry et al., 2000; Peterson et al.,
2014; Westley et al., 2013).

The simplicity of our model makes it well suited for expams&nd adaptation. Possible extensions include a
cost of (or probability to perish during) dispersal, stastimlocal extinctions, and other functional forms for the
distribution of site typesp(x), all of which should fit into our analytical framework. Adidinally, for adaptation
to certain environmental features, competition betweedividuals could be stronger when their ecological traites ar

more similar, and this could be incorporated as in Heinz.€R&l09). Relaxing the assumption of a constant carrying
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capacity across sites may lead to interesting results (dlasal., 2011), as would modifying the order of eventsin the
model life-cycle to reflect alternate life histories andeséibn regimes (Débarre and Gandon, 2011; Johst and Brandl|
1997; Massol, 2013; Ravigné et al., 2004). Further, ourehizdasexual and phenotype-based. This approach may
be directly relevant to competition betweertdient species, but can also have analogues for populati@nsiogle
sexually reproducing species. However, modelling a sinsiiuation with sexual reproduction and explicit genetic
architecture and dynamics (Billiard and Lenormand, 200&8nBuart and Gandon, 2014; North et al., 2011) may well
lead to further interesting results. Finally, dispersalloa the result of errors in navigation during breeding niigres,
leading errant individuals to breed at non-natal sites. idNgional ability can be socially facilitated (Mueller dt,a
2013), or density dependent (Berdahl et al., 2013, 20143, iticorporating collectivefects such as herding, flocking

or schooling, which are common in many migratory specigs,imodels of dispersal is an exciting avenue for further

work in this area.
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Table 1: Overview of notation.

Label  Description

% Probability to disperse, prime denotes rare invader
Evolvable, restrictedto@ v< 1

X Ecological character, prime denotes rare invader
Evolvable, unrestricted

X5, V* Evolutionary singular strategies calculated
for monomorphic populations

v Evolutionary and convergence stable dispersal rate
for monomorphic or polymorphic populations

z Ecological type of a site

p(2) Distribution of ecological site types (equation 1)

L Number of sites in metapopulation
(setto 819X for simulations)

K Carrying capacity at each site

o Environmental heterogeneity:;/om

o2 Width of site type distributionp(2)

Om Width of fecundity curve (set to 1 for simulations)

Mo Maximum fecundity (set to 128 for simulations)

m(x,z) Fecundity of individual with ecological character
on site of typez (equation 2)

m(x) Average number offspring produced, per site,
by a resident of type, over all sites

M(2) Expected number offtspring a mutant lineage
will produce before losing a site of tyze

Rm Metapopulation reproduction ratio
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Figure 1: Evolutionary trajectories of dispersal probighiind ecological character over time. The left and rigHuoms are for environmental
heterogeneity of 0.75 and 0.90 respectively. Top row of [gartevolution of the mean probability to disperse as a fuorcof time (generation).
The blue curves are for simulations starting with full disag ¢/ = 1), while the red curves are for simulations starting withdigpersal { = 0).

The dashed black line shows the threshold level, dfelow which branching ix will occur for that specific value of environmental hetenogigy

(this isve, the generalist-specialist boundary shown in Figure 2@ and lower panels: The evolution of the ecological tsaiais a function of
time; each vertical slice represents the distributiox of the population at that time. The middle panels corresgorttie blue curves in the top
panels, that is those simulations begin wite: 1. The lower panels correspond to the red curves in the toplgatmose simulations begin with

v = 0. For lower environmental heterogeneity (left paneis: 0.75) branching irx occurs when the population starts with no dispersal, busethe
specialist branches are replaced by a monomorphic gestepalpulation with having« = 0 whenv crosses the threshold denoted by the dashed
black line. Conversely, for higher environmental heteragsy (right panelsg- = 0.90), if starting with full dispersal, branching indoes not occur

until v falls below the threshold value. All data are #r= 8.
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Figure 2: Joint evolution of dispersal probability and egital character as a function of environmental heteragen®op panels: Probability to
dispersey, as a function of environmental heterogeneity, The black line shows the stationary strategy,given by the solution to Equation 7;
where it is solid the strategy is evolutionarily stable artteve it is broken the strategy is not evolutionarily stafilee crosses depict the evolved
value ofv from numerical simulations averaged over the populatiaiti@l conditions: monomorphic population with= 1, x = 0). The white
and gray areas show, for fixed values of dispersal and emaieatal heterogeneity, whether the evolution will selectgeneralists or specialist,
respectively - i.e. whether or not the singular strategy‘at 0 is evolutionarily stable (negative definite Hessian). THie grey line separating
the white and grey regions shows the threshold value of dispersal for a giverandK. For largeK (K = 8 shown here) a discontinuity v ~
occurs as thet" = 0 strategy becomes unstable and the population shifts frmmerglists to specialists. Bottom panels: Distributiorewaslved
ecological charactex, as a function of environmental heterogeneity. Each \arsitice represents the probability distributionxdbr that value of
the environmental heterogeneity. Tkie= 0 strategy becomes unstable at a critical value of envirotmhbeterogeneityyrc, and branching occurs.
This threshold value corresponds to the point at which/thmurve passes over the boundary between selection for disteeand specialists - i.e.

whenv* = v¢. The vertical line depicts the theoretical valuesgf As environmental heterogeneity is increased beyond lineshold the number

of discrete specialist types increases. The vertical pdipanels from left to right are fak = 1, K = 2 andK = 8.
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Figure 3: Schematic diagrams explaining the discontinaiitgt hysteresis in the evolved probability to disperse. Wisicier a dimorphic popula-
tion, half having ecological charactgrand the other half havingx all of which have the same probability to dispergeThe red and blue curves
correspond to the nuliclines of the evolutionary gradientliis dimorphic, symmetric population ¥ax space. The value afwhere the red curve,
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Vv*, the solution to Equation 7 (black line in Figure 2). The emoinary dynamics will tend, in the vertical direction, taxds the blue line and, in
the horizontal direction, towards to the red curve. Arrovithwhe corresponding colors show the general directionvofution in each section of
the diagram (sum in black). Intersections of solid blue awlaurves correspond to singular strategies, which can 8s Elid black circles) or
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circles in Figure 3. Dashed lines indicate convergencenbtievolutionary stable strategies (the instability odagy in the other trait) — dashed

circles in Figure 3. Dotted lines represent unstable sargstrategies corresponding to the triangles in Figure ghdriop solid line the population

will all have x = 0 while in the lower sold line the population will be dimorphhalf with x and the other halfx. Bottom left: V'as a function

of carrying capacityK. There is potential for bistability and hysteresis as a fiancof K for some values of-. Filled circles are stable, empty

unstable. These points are also shown on the 3D plot.
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