- Operational resilience of reservoirs to climate change, agricultural demand, and tourism: a 1
- case study from Sardinia 2
- Simone Mereu^{1,2}, Janez Sušnik^{3,4,*}, Antonio Trabucco^{1,2}, Andre Daccache², Lydia 3
- Vamvakeridou-Lyroudia³, Stefano Renoldi⁵, Andrea Virdis⁶, Dragan Savić³, Dionysis 4
- Assimacopoulos⁷ 5
- ¹ Department of Science for Nature and Environmental Resources (DipNeT), University of 6
- 7 Sassari, Italy
- ²Euro-Mediterranean Center on Climate Changes, IAFES Division, Sassari, Italy 8
- 9 ³Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences,
- University of Exeter, Exeter, UK 10
- ⁴Now at: UNESCO-IHE Institute for Water Education, Integrated Water Systems and 11
- Governance Department, PO Box 3015, 2601DA Delft, The Netherlands 12
- ⁵Center for North South Economic Research (CRENoS), Cagliari, Italy 13
- ⁶Water Resource Planning Sardinian Regional Water Authority (ENAS), Cagliari, Italy 14
- ⁷School of Chemical Engineering, National Technical University of Athens, Greece 15
- *Corresponding author: j.susnik@unesco-ihe.org 16
- **Keywords:** hydropower; irrigation; reservoir resilience; system dynamics; water resources. 17
- **Abstract** 18
- 19 Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for
- water supply. Some reservoirs are particularly vulnerable to climate and development 20

changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra 'e Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra 'e Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures. Those reservoirs at risk to future change should be identified, and mitigating measures investigated.

1. Introduction

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Reservoirs are generally built to augment water supply, for hydropower generation (World Watch Institute, 2012) and to attenuate flash flood flows. They alter hydrological regimes by attenuating flood flows and releasing accumulated volume in the summer to cope with dry season demand. In regions where water resources are scarce and summer demand is high, reservoirs play a crucial role in securing water for irrigation and domestic use. Many areas worldwide are wholly or largely reliant on reservoirs for water supply. This is particularly true for many locations in the Mediterranean where (ground) water resources are limited and inter-annual climatic variability is high. Strong dependence on reservoirs as the main water source may lead to major pressures from future changes, requiring a balance between climate change and its effects on water availability, and the development of water demand. Future pressures on reservoir operation can include: i) climate change, which can modify rainfall totals, increase evaporation losses and/or unfavourably alter the variability of supply and the hydrological regime (Arnell, 2004; Beniston et al., 2007; Christensen and Christensen, 2007; Hall et al., 2014) with implications for water resources; ii) population growth and urbanisation. Water demand increases imposed by socio-economic changes is likely to pose a significant challenge. Urbanization, population growth and life style change mean more water is needed to satisfy the domestic needs (e.g., Vandecasteele et al., 2013; Harrison et al., 2014; McDonald et al., 2014); iii) changes to agricultural regimes, influenced by changes in climate, diets and other market forces (e.g., biofuels), often leading to increasing water demand (Gerbens-Leenes et al., 2009; Munir et al., 2010; Babel et al., 2011; Elliott et al., 2014); and iv) changes to tourism. In locations where water is scarce and with a growing trend in tourism (e.g. the Mediterranean and Sardinia (see Section 3)), strong seasonal stresses in supply may be found in places with single-source water supply, increasing vulnerability to prolonged dry climatic periods. Also, in regions largely relying on

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

summer tourism for their economy, strong seasonal stresses to water supply and distribution networks may occur (e.g. Vandecasteele et al., 2013; Harrison et al., 2014; McDonald et al., 2014).

Understanding how the resilience of reservoir-dominated systems may change in response to future changes is critical for improved mid- to long-term decision making regarding water management in these regions, especially to safeguard domestic, urban and agriculture supply. If alternative water sources (i.e., groundwater, water treatment, desalination) are not physically available or economically viable, water has to be efficiently used and intelligently allocated between sectors. This requires improved understanding of the potential changes that various forcing mechanisms, such as those described above, might have on the water balance of reservoirs.

In this paper, the resilience of a reservoir-dominated supply system (Pedra e' Othoni) located on the eastern edge of Sardinia (Italy) was assessed under current and future changes (climate, population, tourism). The reservoir (Section 3) supplies water for the tourism industry, domestic demand, agricultural sector and for hydropower generation. We introduce the general modelling approach used to simulate the potential impact of changes on a reservoir-dominated supply system also accounting for some of the uncertainty surrounding various projections (i.e., climate change, population growth, tourism). The aim is to understand how potential future changes might alter long-term water supply and which of these changes have the greatest impact on the reservoir operation. Results are presented, followed by a discussion about the potential implications for operational reservoir resilience in Sardinia and the concomitant impacts on water security and competition. This work, while focussed on a specific study site, is framed within a wider agenda to secure and use more

effectively existing and future water supplies, to serve a growing population in a changing world. The work is novel for the use of multiple climate and water-demand forecasting models, coupled with a system dynamics framework in which to assess potential future reservoir resilience to a wide range of threats to water security.

2. Reservoir resilience modelling approach

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

System Dynamics Modelling (SDM; Forrester, 1961; Ford, 1999) was exploited in order to assess the state of the reservoir water balance and resilience in Sardinia from a range of potential future threats (see Section 4 for details on the model stucture). SDM was developed to study feedback problems in industry, however it has been successfully applied widely across a number of fields (Khan et al. 2009; Rehan et al., 2011; Sušnik et al., 2013; Sahin et al., 2014). SDM is used to study the behaviour of complex systems which may be forced by multiple, disparate external factors and where stocks and flows lie at the heart of the system. Such systems tend to be dominated by feedback and/or delay processes. During iterative development (Ford, 1999), the model structure is constantly checked in order to verify that it still performs the desired function for which it was initially set (e.g., in this case assessing long term reservoir water balance). SDMs comprise three main elements: stocks (e.g., water in a reservoir); flows (e.g., river inflows or evaporation) and converters which control flow rates (e.g., evaporation rates). If the inflows and outflows to/from a stock balance or are set to zero, then the value of the stock remains constant. Converters link the system elements and create feedback loops. Each expression between elements is evaluated at every modelling time-step (Ford, 1999). For this study, the reservoir resilience model was built using STELLA (www.iseesystems.com), specific software for SD modelling. SDM has many advantages over more conventional

modelling approaches. One may model many disparate sub-systems within the same simulation (e.g., water, agriculture and tourism). This was exploited here by combining elements from hydrology, irrigation, tourism, climate change and hydropower. SDM allows for the splitting of a large system into many dynamically interacting sub-systems. The models are necessarily not as realistic as dedicated spatially explicit physical models (e.g., GIS-based catchment hydrologic models). However, being able to 'mix' metrics and include socioeconomic factors such as the tourism climate index, split the system into simpler pieces and incorporate relevant feedbacks, are the main reasons for choosing SDM for this study. Detailed information about climate model inputs, agricultural model inputs, tourist water demand estimation and the development scenarios used in this work is presented in Section 4.

3. Study site

We use a case study on Sardinia (Figure 1) with which to assess reservoir resilience to future changes in climate, agriculture expansion and tourism. Specifically, the focus is on the Pedra e' Othoni reservoir (Figure 2). Sardinia relies largely on surface water, and a large proportion of supply is stored for summer use in reservoirs across the island.

Pedra e' Othoni reservoir (Figure 2), located in the eastern part of Sardinia, was selected to assess reservoir resilience to future changes in climate, agriculture expansion and tourism - an important economic sector for Sardinia. The reservoir is located in a water stressed region and provides water for irrigation, urban areas, tourist facilities, and hydropower generation. The reservoir also mitigates flash flooding in the catchment. Therefore the reservoir needs to be resilient to many future changes and challenges.

The Pedra e' Othoni reservoir was created by constructing a dam across in the Cedrino Valley. It was completed in 1994, and has an absolute capacity of 117 Mm³, although the utilised volume is 16-20 Mm³. This difference can be explained by the flash-flood mitigation function. This part of Sardinia is prone to extremely intense rainfall (rainfall events have exceed 400 mm per day in the past), and the reservoir was partially designed to mitigate the resulting flood events, hence the large storage volume. It serves nine villages and one small city (Nuoro). The basin feeding the reservoir is 628 km² (Figure 2). The average annual basin runoff coefficient (the proportion of upstream precipitation that ends up as surface runoff to the reservoir) was estimated by the regional water authority (ENAS) at 0.4. The reservoir receives on average 169 ± 34 Mm³ yr⁻¹, but may peak to 240 Mm³ yr⁻¹ in rainy years. 92% of the annual inflow is received in autumn, winter and spring. The inner territories of the basin contain old growth forest and archaeological sites important for tourism. These characteristics attract visitors throughout the year but mostly in spring and autumn, while a summer peak characterises coastal tourism. The high prevalence of forest and the low population in the upstream basin lead to high quality water with low quantities of pollutants and nutrients entering the reservoir. Therefore, the upper catchment can be considered well managed. Occasionally during flash floods, large volumes of sediment may be mobilised to reservoir. Sediment control through management is offered mainly during 'normal' discharges. However, these catchment management services are compensated neither by consistent shares of reservoir water distribution or subsidies (i.e. there is no incentive to carry on managing the upper catchment appropriately), implying that the maintenance of positive hydrological functions may be at risk in the future if the upstream population is not included in a proactive compensation/incentive scheme. The municipalities served by the

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

reservoir produce several traditional products, but the economy of the coastal municipalities strongly relies on tourism.

4. Data, scenarios, and model development

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Several climate datasets were utilised to: 1) calibrate and validate the SD model against existing dam discharge observations (2009-2011); 2) assess the dam discharge for the present climate conditions (baseline, average over the 1960-2000 period) and; 3) assess the dam discharge for an ensemble of future climate projections (2050, average over 2035-2065). Climate datasets are available on a monthly scale, the same as for the reservoir water balance model. The reservoir model (Section 4.3) was calibrated and validated for three consecutive years from 2009 to 2011 using the CRU dataset (CRU, 2013), while monthly water outflows for agriculture, urban use and hydroelectricity production data provided by the regional water management body (Ente Acque della Sardegna). This means we use globally recognised climate data coupled to regionally accurate demand and use data for model calibration and validation. Afterwards a baseline scenario was run using the WorldClim dataset (the model was run for 48 months to test the stability of the average annual water storage over four years). The future water balance scenarios were simulated for an ensemble of CIMP5 Earth System Models (ESMs) for two RCP scenarios (19 ESMs for RCP4.5 and 17 ESMs for RCP8.5). Thus, we use the latest climate projection data sets available and coherent development scenarios

4.1 Model calibration data

commonly used from the literature.

The reservoir water balance model was calibrated and validated against three years (2009-2011) of monthly discharge observations. Local meteorological data were only available from a single station located over the dam and thus do not represent the spatial variability between the reservoir basin and the area served by it. For that reason, weather parameters (2009-2011) were extracted from two adjacent pixels of the CRU TS 3.1 dataset (CRU, 2013) in order to characterize with comparable scale and adequate overlap the respective climate conditions over the basin and agricultural land served by the reservoir.

The CRU TS 3.1 dataset (CRU, 2013) is a global gridded monthly time series (1900-2012) based on the interpolation of station observations for several climate variables at half degree resolution. Variables extracted and used in this study are diurnal temperature range, precipitation, daily mean temperature, monthly average daily maximum and minimum temperature, and potential evapotranspiration.

4.2 Current and future climate data

Current and ensembles of future (2050) climate projections were extracted from the WorldClim dataset (Hijmans, 2005) which defines a high resolution (30 arc sec) interpolation of monthly climate station observations (monthly average over 1960-2000) of temperature (Tmin, Tmax and Tav) and precipitation.

A combination of Earth System Models (ESMs) of future climate provided by Phase 5 of the Coupled Model Intercomparison Project (CMIP5; Meehl and Bony, 2011) and representative concentration pathways (RCPs; Vuuren et al., 2011) have been previously downscaled (Ramirez and Jarvis, 2010), spatially resolving monthly GCM climate anomalies with the same resolution as the WorldClim data. Ensembles of downscaled GCM models and RCP scenarios include multiple climate anomaly projections for 2050 (monthly averages 2035-2065) over

WorldClim (i.e., climate model bias is excluded). It is assumed that the change in climate is similar over the catchment.

The perturbed monthly mean, minimum and maximum temperature were used to calculate reference evapotranspiration (ET_o) using the empirical formula given in Hargreaves and Samani (1985).

4.3 Reservoir storage balance model

The simulation of the reservoir water balance functioning, integrating several relevant water flows, was developed and run in STELLA (Section 2). A schematic of the developed model structure is shown in Figure 3. The model simulates the volume of water stored in the Pedra e' Othoni reservoir over time. The volume is controlled by one inflow and five outflows. The inflow to the reservoir is effective runoff from the upstream basin area. The outflows are: i) evaporation from the surface of the reservoir; ii) domestic water use; iii) water for irrigation; iv) spillway overflow that occurs when the water level exceeds the maximum storage capacity of the reservoir; and v) water discharged to maintain the environmental flow, ensure storage space to mitigate flooding and to ensure the operation of the hydropower turbines. The maximum throughput at the hydropower plant is 22 Mm³ month⁻¹. The water level in the reservoir is maintained between the maximum storage capacity of the reservoir and the minimal critical water level, in accordance with current operating rules. The simulations account for the two RCP scenarios each in combination with four development scenarios which are described in the sections below.

The following climate data were used to simulate the inflows and outflows components of the water balance and resilience model for actual conditions (WorldClim 1960-2000) and for the ensemble of projected future conditions:

- 227 Average monthly precipitation over the basin upstream of the reservoir;
- 228 Average monthly open water evaporation over the reservoir;
- Average monthly mean temperature and precipitation over the distribution area served by the reservoir to calculate the Tourism Climate Index (TCI, Mieczkowski, 1985), which was used to estimate water demand for tourism;
- Average monthly precipitation and ET_o which are used to account for the irrigation requirements of the existing crop types over the distribution area served by the reservoir.
 - 4.4 Open water evaporation

- Evaporation from open water bodies, to calculate losses by evaporation from the reservoir, is approximated by multiplying reference ET_0 by a coefficient of 1.1, which is an average between values reported in literature ranging between 1.05 and 1.15 (Allen et al. 1998; Jensen, 2010; Finch and Calver, 2008).
- 239 4.5 Domestic water requirements and the Tourism Climate Index (TCI)
 - Monthly water requirements for domestic use were calculated assuming 170 l person⁻¹ day⁻¹ by the resident population (ISTAT, 2012). While this appears high, it includes all domestic water use (e.g. car-washing, gardening, etc.). Large seasonal changes in water demand are assumed to be caused by tourist flows. Monthly data of overnight stays in the study area for the period 2009-2011 were provided from the Regional Statistics Office (Regione Autonoma della Sardegna). Average water consumption per tourist in hotels in Italy is about 40% greater than in camping accommodation (Gössling et al., 2012). The water consumption was set at 400 l person⁻¹ day⁻¹ for hotels and at 250 l person⁻¹ day⁻¹ for other facilities (camping, B&B, agri-tourism).

The TCI is an indicator for describing the comfort sensation of tourists for outdoor activities. It has been widely used to assess the attractiveness of a destination, and through its correlation to tourism-related data, such as arrivals and overnight stays, it can be used to estimate the impact of long-term climatic changes on tourist preferences. The TCI was developed by Mieczkowski (1985), with the objective of measuring the climatic well-being of tourists.

The maximum value of the TCI is 100, with values over 80 denoting "excellent" conditions for summer tourism. Effects of climate change on the TCI were estimated to account only for the monthly temperature and precipitation anomalies. While this measure is relatively simple, it provides a reasonable proxy for tourist comfort, and has been used previously to estimate tourist fluxes (Kampragou et al. 2012).

The methodology to project future tourist water demands follows three steps (Figure 4):

- Step 1: "Tourism in relation to current climate conditions" involves the analysis of the interrelation between climate and tourism using historical data. TCI was correlated with tourism-related parameters (monthly overnight stays over 2009-2011) using an exponential curve ($R^2 = 0.92$) in order to verify that TCI can be used to predict future tourism patterns.
- Step 2: "Climate change impacts on tourism" assessed the impacts of future climate change on tourism. On the basis of climate projections, future TCI values are calculated and used to estimate changes in tourism-related parameters for local-level analysis.
- Step 3: "Integrated scenarios" focuses on future water demand for tourism and combines analysis of both climate change impacts and socio-economic scenarios with regard to tourism development and water demand.

For this work, the TCI calculated using the CRU dataset was calibrated against overnight stay statistics. After transforming tourist flows into water demand, the simulated demand was validated against measured demand for domestic use. For Step 2, the effects of climate change on overnight stays were calculated for present and future climate scenarios. The preferences of tourists for cultural, natural and other attractions were assumed not to change. No changes due to development in tourist facilities were considered. For Step 3, four socio-economic scenarios were developed for the case study:

- 1. "Business As Usual (BAU) Scenario". This applies the average value of annual variations of tourist flux calculated for the reference period 2009-2011 to the period 2010-2000; an annual increment in flux of 0.75% was used.
- 281 2. "Intensive Tourism Growth (INT) Scenario". Uses the average value of annual variations observed over the period 2005-2010 chosen as a reference period with a strong expansion of the tourist sector; an annual increment of 2.1% was used.
 - 3. "Strictly Controlled Sustainable Tourism (SOST) Scenario". An unchanged accommodation capacity has been assumed until 2050. Overnight stays are predicted to change to reach present average gross occupancy rates and the 'tourist flow patterns' are assumed to match patterns observed in 2010 in the national context for heritage destinations (namely cultural, hill and mountain locations); an annual increment of 1.2% was used.
- 4. "Balanced Competitive and Sustainable Growth (BAL) Scenario". It simulates progressive diversification in tourism facilities, attractions and products. A reduction in average annual growth rates has been assumed on the accommodation supply side. On the demand side, overnight stays are predicted to change in order to reach present average

294 gross occupancy rates for coastal and mountainous locations. An annual increment of 1% 295 was used.

The resulting overnight stays (OS_{SE}) were assumed to be equal for all months. To account for the effects of climate change, the monthly rates were corrected by the ratio of estimated overnights due to climate change (OS_{CC}) against the average value of overnight stays for the reference period 1981-2010 (OS_{RefPer}). The final estimate of future overnight stays (OS_{sc}) is calculated using:

$$OS_{SC} = OS_{SE} \cdot \frac{OS_{CC}}{OS_{RefPer}}$$
301 (1)

Results are subsequently used to assess future domestic and tourism water demand.

4.6 Irrigation requirements

296

297

298

299

300

303

309

310

311

The irrigation demand was estimated using a one-dimensional GIS-based soil water balance model that integrates monthly gridded climate data (CRU, 2013), soil, land cover maps and crop surface statistics at municipal level (ISTAT, 2012).

307 Monthly water needs (/) for each polygon was calculated using:

$$I_{i} = ETc_{i} - P_{i} + RO_{i} - \delta w_{i} - G_{i}$$

$$\tag{4}$$

where P_i is the precipitation in month i (mm); RO is the surface runoff (mm); ETc is the crop evapotranspiration (mm), and δw is the soil moisture content in the root zone (mm). Due to the deep aquifers in the region, water capillary rise term (G) was neglected.

The fraction of effective rainfall (*Peff*) available to each crop was estimated using the empirical formulae of the USDA Soil Conservation Service (USDA, 1967). This excludes the volume of water lost by runoff or intercepted by plants.

315
$$Peff_{(i)} = \left(\frac{P_{(i)}}{125}\right) * (125 - 0.2 P_{(i)})$$
 for $P_{(i)} < 250 \text{ mm}$ (5)

316
$$Peff_{(i)} = 125 + 0.1P_{(i)}$$
 for $P_{(i)} > 250 \text{ mm}$ (6)

- Crop evapotranspiration (ET_c) was calculated by adjusting the reference evapotranspiration using the well-known crop coefficient (K_c) method described by Allen et al. (1998). This method assume that plants are growing under optimal nutrient and water conditions. This does not necessarily reflect the actual farming practices where plants are deliberately (i.e., for quality reasons) or unintentionally (i.e. bad irrigation management) exposed to water stress or over-irrigation.
- In this work, the total volumetric irrigation need was calibrated with the measured volume for irrigation over the period 2009-2011. The water balance model was then applied for the baseline and 2050's period using the following four crop development scenarios (Table 1):
- 326 1. Business-As-Usual (BAU): irrigated areas are unchanged.
- Intensive growth scenario (INT): 40% expansion of irrigated areas only for high value,water demanding crops.
- 329 3. Strictly controlled sustainable growth scenario (SOST): irrigated areas increase for fruit trees, vegetables and traditional crops but not for high demanding crops (e.g. maize and pasture).

- 4. Balanced Competitive and Sustainable Growth (BAL) Scenario: Irrigated areas increase for all crops but proportionally less for high water demanding crops.
- These scenarios are used together with the TCI scenarios described above to alter water demands in the reservoir balance model.

336 4.7 Hydropower generation

Hydropower generation follows a complex seasonal pattern which depends on power demand and the amount of water stored in the reservoir which must always guarantee water for irrigation and domestic use. The hydropower plant produces approximately 0.09 kWh m⁻³ of water, and annually produces about 8 GWh (ENEL, 2013).

5. Results

5.1 Changes to temperature and precipitation

Climate scenarios for the basin predict average change in annual precipitation ranging from -173 to +31 mm compared to 1960-2000. However, increases in precipitation are unlikely to occur, and average values indicate decreases of 40 [-66/-8] and 56 [-111/-2] mm for RCP 4.5 and 8.5 respectively (values in square brackets represent the 15th and 85th percentile respectively and do so through the rest of the paper). Assuming no change in the basin runoff coefficient these reductions correspond to average change of inflow in the reservoir of -10 and -14 Mm³, respectively. ESM models show much less uncertainty for annual mean temperatures which increase on average by 1.96 [1.3/2.6] and 2.46 [1.7/3.1] °C for the 4.5 and 8.5 RCPs respectively (Figure 5). The absolute values and the effects of climate change on the direct evaporation from the reservoir surface are minor.

5.2 Model validation

The models for irrigation and domestic water demand were fairly accurate with a normalized root mean squared error (RMSE) of 0.13 and 0.14 respectively (Figure 6). Both models capture both the intra- and the inter-annual variability observed in the period 2009-2011. The model outputs for hydropower production are not as satisfactory (RMSE=0.28). This poor correlation is due to the complexity of the human decisions and of the power grid performance (power demand) that is not accounted for in the model. Annual modelled fluxes for the three sectors are in good agreement with measured volumes. The modelled reservoir volume follows the measured annual fluctuations but with some delays or anticipations due to the uncertainty of timing for the hydropower energy production (RMSE=0.22).

5.3 Changes to water demands and reservoir water balance under future scenarios

Irrigation under the BAU scenario implemented no change in crop distribution, therefore climate change alone determines the slight increase in crop water requirements of 1.35 [0.9/1.8] and 1.63 [1.1/2.1] Mm³ under the RCP 4.5 and RCP 8.5 respectively due to the combined effect of higher temperature and lower precipitation (Figure 7). The SOST and Bal scenarios have water demand slightly higher than BAU since both avoid or limit the expansion of irrigated area for high water demanding crops. The irrigation requirements for the intensive growth scenario, with a 40% expansion of irrigated area, increase by 5.22 Mm³ [4.6/5.9] in the RCP 4.5 and by 5.6 [4.9/6.3] under the RCP 8.5 scenario.

Changes in domestic use (Figure 8) are minor compared to other uses in terms of water volume. However, the distribution of this water is expensive due to the requisite infrastructure. This cost was not modelled for this work, but presents an opportunity for future research. Both the RCP 4.5 and 8.5 scenarios predict an increase in TCI in April/May

and October/November that is reflected in an increase in domestic water requirement during these months. In the summer months, TCI either remains the same or it decreases slightly. High temperatures will negatively affect tourism during this period of time, therefore the increase in domestic water requirements in these months is mostly due to the development scenarios.

Note that the INT scenarios predict the highest increase in water requirements. However, this scenario addresses mostly coastal tourism with a high water demand per person and also requires the construction of an extensive distribution network. The SOST and BAL scenarios address internal (mainland) tourism with a lower water requirement per person and minor changes to the distribution network.

The Pedra e' Othoni reservoir was built to secure downstream areas from floods. The dam collects water from a large basin but continuously discharges the large quantities of water collected in order to preserve storage volume and buffer flash floods. It is not surprising that despite the increase in water requirements for irrigation and domestic use, under all scenarios, the initial water volume is always restored by the end of the year (Figure 9). That is, under no scenario is long-term, chronic depletion of the reservoir water resource expected. However, under the intensive (INT) growth scenario, the reservoir undergoes higher fluctuations in summer compared to the other development scenarios, with potential implications for water quality and competition between sectors. Additionally, the increased demand for water by the agricultural sector and the decreased precipitation (i.e., reduction in reservoir inflow) are largely compensated by a decrease in the available annual water for energy production in the range of -14.5 [-22.4/-6.3] Mm³ in the best case scenario (BAU RCP

4.5) up to -21 [-31/-11.4] Mm³ in the INT and RCP 8.5 case (i.e., reduction in hydropower generation).

In order to examine what increases in demand would be required to seriously deplete the reservoir, a series of additional simulations were carried out. In these extreme scenarios, domestic and irrigation demand were increased by simple multiples relative to the current situation. Under a doubling of current demands, there is no substantial loss of storage capacity, and the reservoir can essentially function as normal, although hydropower production would be constrained for slightly longer periods of time through a typical year. Under a five-fold demand increase, the stored volume would not be nearly sufficient to meet summer requirements and the hydropower releases are significantly curtailed. This would have clear implications for Sardinian energy generation. Under an extreme 10-fold demand increase, the reservoir system essentially collapses. Refill is no longer possible and the reservoir is completely empty for much of the simulation. While catastrophic, a 10-fold increase to irrigation and domestic demands is considered extremely unlikely. It was used here to demonstrate the conditions required in order to inhibit refilling of the reservoir.

6. Discussion

The principle role of the reservoir of Pedra e' Othoni is to secure water supply for multiple users, to generate electricity and to protect downstream areas from flash floods similar to those that have occurred in the past. In the past 20 years, rain events up to 400 mm in less than 12 hours have occurred and with climate change these events are likely to become frequent and intense in the future. Given its main purpose and excess storage, the dam is capable of supplying water for irrigation and domestic use under all scenarios (Section 5). Under all other climate change and development scenarios, the reservoir functioning was

not considerably affected, suggesting that it is highly resilient under a range of projected climate, tourist and agricultural scenarios that might occur over the next 50 years in Sardinia. Only under unrealistic increases in demand might reservoir system failure occur. However, it is worth considering that agricultural and hydropower users may come into competition regarding the water resource for certain parts of the year. It is suggested that interactions between local and regional stakeholders are studied in an integrated assessment of Sardinian reservoir resilience, and that the effectiveness of adaptation strategies to mitigate competition for resources are assessed. The basins of other reservoirs in the island are not as disproportionately sized as that of Pedra e' Othoni, and those may have much lower resilience under similar changes in inflows (-7%) and water demands for irrigation (+8%) only due to climate change. Thus, development scenarios should be thought through carefully before being implemented in other areas, and competition and certainty of supply must be carefully studied. It should be considered that the studied reservoir could be physically connected to other reservoirs or used to serve additional areas where present water resources are stressed or insufficient to meet the demand.

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

At the studied reservoir, the water required for the additional demands for domestic and irrigation use may be taken from the hydropower sector, thus losing some potential for the production of renewable energy. This reservoir only accounts for about 2% of the hydropower generation of the island, however if similar changes would take place across the whole island this could result in a potential loss of generation of about 10% under the BAU scenario. Since the domestic use only requires a minor portion of the water resource, potential competition may be between the agricultural and energy sectors. The industrial sector has declined recently and is projected to decline further. Thus, the request for energy and water from industry may be reduced, leaving some 'slack' for agricultural expansion.

Clean energy facilities (wind turbines and solar power) have been implemented in Sardinia in the past ten years. On the other hand, land abandonment is increasing dramatically in Sardinia suggesting a possible reduction in irrigation requirements and also having possible implications for hydrological risks. Land abandonment and urbanization are considered the two major causes of the flood related damages that occurred in 2013. The agricultural sector has partially failed to compete effectively in the market with little implementation of new technologies (e.g., irrigation scheduling, sub-surface drip irrigation). However, crops for high quality products (wine and olive oil) have been maintained, while interest for environmentally friendly production systems (e.g., organic, permaculture, recovery of genetic biodiversity) is increasing. More efficient agriculture means that demand from the reservoir may be reduced, freeing up additional water for other users in the basin.

The increased demand for water by the domestic sector is not quantitatively important for the water budget in terms of volume. However it should be noted that the model made no assumptions on the population growth rates under the different development scenarios. It is likely that under the INT scenario, the population will grow in the coastal municipalities, albeit seasonally, while in the SOST scenario population could remain stable or even increase in the inner land municipalities where the population is presently declining. Additionally, the INT has a high financial cost in infrastructure for urban water distribution networks not accounted for in this analysis. Because mass tourism is mostly oriented to summer, the hotel sector has been experiencing a growing spread among supply and demand growth rates. This results, on one side, in large facilities near the coast mostly managed by major national and international operators and, on the other, in small size family-run hotels (with 24 rooms or less) concerned by strategic and operational isolation and, therefore, a low propensity for integrated solutions.

While our work is focussed on Sardinia, many Mediterranean locations face similar issues (climate change impacts, agricultural expansion, tourist demand fluctuations, and changes to the water balance). Islands in particular tend to rely on few water sources for supply, increasing their vulnerability to change. Although our case example is fairly robust to change, other reservoirs on Sardinia and throughout the Mediterranean may not be. It is suggested that if other reservoirs on Sardinia and throughout the Mediterranean experience change in inflows and outflows as those simulated in this work, their resilience would not be guaranteed. This may have implications for water supply for a range of sectors, and on energy generation, with knock-on impacts for economic development. Countries should carefully assess the resilience of reservoir operations to a wide variety of change factors in order to assess the future direction of water resources management in these critical locations.

7. Conclusions

We developed and presented a simulation model for Pedra e' Othoni reservoir in Sardinia, Italy. The model was forced with extensive ensemble climate data for RCPs 4.5 and 8.5, crop and agricultural data, along with four socio-economic development scenarios in order to assess the resilience of the reservoir to a wide range of realistic future changes in the region. The impacts to hydropower generation were considered, and the impacts to local climatic conditions were assessed.

It is expected from the climate data that the regional climate will on average get slightly drier and warmer. If nothing else changes, this would lead to probable decreases in annual reservoir inflow, while demands would be increased mainly in the agricultural sector as a result of increased crop water requirements. On top of climate change, multiple

development futures in line with RCP storylines were assessed. Modelling showed that under no scenario is reservoir resilience significantly affected. That is, the reservoir always achieves complete refill. However, this occurs at the partial expenses of hydropower generation with implications for the production of clean energy.

This reservoir shows resilience to future change mostly because of the large basin feeding it. It can therefore be used to augment lower resilience reservoirs on Sardinia in times of stress. However, other reservoirs and reservoir systems on Sardinia and throughout the Mediterranean may not be so robust. Under these circumstances, regional development plans should carefully account for the trade-offs and potential conflicts among sectors. It is recommended that detailed resilience assessment, as presented here, is carried out. Those reservoirs at risk to future change should be identified, and mitigating measures should be considered.

8. Acknowledgements

This work was funded by the European Commission Seventh Framework Project 'WASSERMed' (Water Availability and Security in Southern EuRope and the Mediterranean) (Project Number: 244255). We thank two anonymous reviewers for very helpful comments and suggestions that improved the manuscript.

9. References

Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper No. 56, United Nations Food and Agriculture Organization, Rome, Italy, 300 pp.

- 514 Arnell NW. 2004. Climate change and global water resources: SRES emissions and socio-
- 515 economic scenarios. Global Environmental Change. 14: 31-52. doi:
- 516 10.1016/j.gloenvcha.2003.10.006
- Babel MS, Shrestha B, Perret SR. 2011. Hydrological impact of biofuel production: a case
- 518 study of the Khlong Phlo Watershed in Thailand. Agricultural Water Management. 101: 8-26.
- 519 doi: 10.1016/j.agwat.2011.08.019
- 520 Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T,
- Jylha K, Koffi B, Palutikof J, Scholl R, Semmler T, Woth K. 2007. Future extreme events in
- 522 European climate: exploration of regional climate model projections. Climatic Change. 81:
- 523 71-95. doi: 10.1007/s10584-006-9226-z
- 524 Christensen JH, Christensen OB. 2007. A summary of PRUDENCE model projections of
- 525 changes in European climate by the end of this century. Climatic Change. 81: 7-30. doi:
- 526 10.1007/s10584-006-9210-7
- 527 Climatic Research Unit (CRU) [Phil Jones; Ian Harris]. CRU TS3.21: Climatic Research Unit
- 528 (CRU) Time-Series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-month
- 529 Variation in Climate (Jan.1901 Dec.2012). NCAS British Atmospheric Data Centre, 2013,
- 530 24th September 2013. Available from doi: 10.5285/D0E1585D-3417-485F-87AE-
- 531 4FCECF10A992
- Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y,
- Best N, Eisner S, Fekete BM, Folberth C, Foster I, Gosling SN, Haddeland I, Khabarov N,
- Ludwig F, Masaki Y, Olin S, Rosenzweig C, Ruane AC, Satoh Y, Schmid E, Stacke T, Tang Q,

- 535 Wisser D. 2014. Constraints and potentials of future irrigation water availability on
- agricultural production under climate change. PNAS. 111(9): 3239-3244.
- 537 ENEL (2013). Dichiarazione Ambientale 2013: Impianti idroelettrici Flumendosa, Coghinas e
- 538 Taloro. EMAS ITALIA, certificate: IT-V-0001 (in Italian).
- 539 Finch J, Calver A. 2008. Methods for the quantification of evaporation from lakes.
- 540 Wallingford, UK, NERC/Centre for Ecology & Hydrology, 47pp.
- Ford A. 1999 Modelling the Environment: An Introduction to System Dynamics Modeling of
- 542 Environmental Systems. Island Press, Washington, D.C., U.S.A.
- Forrester J. 1961 Industrial Dynamics. Pegasus Communications, Waltham, MA, U.S.A.
- Gerbens-Leenes W, Hoekstra AY, van der Meer TH. 2009. The water footprint of bioenergy.
- 545 PNAS. 106(25): 10219-10223. doi: 10.1073/pnas.0812619106
- 546 Giorgi F, Lionello P. 2008. Climate change projections for the Mediterranean region. Global
- 547 and Planetary Change. 63(2–3): 90-104
- Gössling S, Peetersc P, Halld M, Cerone J, Duboisf G, Lehmanng LV, Scotth D. 2012. Tourism
- 549 and water use: Supply, demand, and security. An international review. Tourism
- 550 Management. 33(1): 1-15.
- Hall JW, Grey D, Garrick D, Fung F, Brown C, Dadson SJ, Sadoff CW. 2014. Coping with the
- 552 curse of freshwater variability. Science. 346: 429-430. doi: 10.1126/science.1257890
- Hargreaves GH, Samani ZA. 1985. Reference crop evapotranspiration from
- temperature. Transactions of ASAE 1(2): 96-99.

- Harrison PA, Dunford R, Savin C, Rounsevell MDA, Holman IP, Kebede AS, Stuch B. 2014.
- 556 Cross-sectoral impacts of climate change and socio-economic change for multiple, European
- land- and water-based sectors. Climatic Change. doi: 10.1007/s10584-014-1239-4
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated
- climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
- 560 IPCC (Intergovernmental Panel on Climate Change). 2014. Climate Phenomena and their
- Relevance for Future Regional Climate Change: Climate Change 2013 The Physical Science
- 562 Basis. Cambridge University Press. Available at
- 563 http://dx.doi.org/10.1017/CBO9781107415324.028
- 564 ISTAT (2012) 6th Italian Agriculture Census.http://www.istat.it/it/censimento-
- agricoltura/agricoltura-2010 (accessed on July 2014)
- Jensen ME. 2010. Estimating evaporation from water surfaces. Presented at the CSU/ARS
- 567 Evapotranspiration Workshop, Fort Collins, CO, 15-Mar-2010. Parts of several sections were
- extracted from Chapter 6, ASCE Manual 70, second edition, Jul-08 draft.
- 569 Kampregou E, Lekkas D, Mereu S, Assimacopoulos D. 2012. Analysis of climate change
- 570 impacts on tourism at the case study level and relevant water demand projections.
- 571 WASSERMed Deliverable 4.3.2.
- 572 Khan S, Yufeng L, Ahmad A. 2009 Analysing complex behaviour of hydrological systems
- through a system dynamics approach. Environmental Modelling and Software. 24, 1363-72.
- 574 McDonald RI, Weber K, Padowski J, Florke M, Schneider C, Green PA, Gleeson T, Eckmann S,
- Lehner B, Balk D, Boucher T, Grill G, Montgomery M. 2014. Water on an urban planet:

- urbanization and the reach of urban water infrastructure. Global Environmental Change. 27:
- 577 96-105. doi: 10.1016/j.gloenvcha.2014.04.022
- 578 Meehl GA, Bony S, 2011. Introduction to CMIP5. Clivar Exchanges 16, 2–5.
- 579 Mieczkowski Z. 1985. The tourism climatic index: a method of evaluating world climates for
- tourism. The Canadian Geographer. 29: 220-233.
- Munir A, Hanjra M, Qureshi E. 2010. Global water crisis and future food security in an era of
- 582 climate change. Food Policy. 35(5): 365-377. doi: 10.1016/j.foodpol.2010.05.006.
- Ramirez J, Jarvis A. 2010. Downscaling global circulation model outputs. CIAT, Cali, Colombia.
- Rehan R, Knight M A, Haas C T, Unger AJA.2011. Application of system dynamics for
- 585 developing financially self-sustaining management policies for water and wastewater
- 586 systems. Water Resources. 45: 4737–4750.
- 587 Sahin O, Siems RS, Stewart RA, Porter MG. 2014. Paradigm shift to enhanced water supply
- 588 planning through augmented grids, scarcity pricing and adaptive factory water: a system
- 589 dynamics approach. Environmental Modelling and Software. doi:
- 590 10.1016.j.envsoft.2014.05.018
- 591 Sušnik J, Vamvakeridou-Lyroudia LS, Savić DA, Kapelan Z. 2013. Integrated modelling of a
- 592 coupled water-agricultural system using system dynamics. Journal of Water and Climate
- 593 Change. 4(3): 209-231. doi: 10.2166/wcc.2013.069
- 594 USDA (1967) Irrigation water requirements. Tech. Release No. 21, United States Department
- of Agriculture Soil Conservation Service (USDA-SCS), Washington, DC.

Vandecasteele I, Bianchi A, Batista e Silva F, Lavalle C, Batelaan O. 2013. Mapping current 596 and future European public water withdrawals and consumption. Hydrology and Earth 597 System Sciences Discussions. 10: 9889-9914. doi: 10.5194/hessd-10-9889-2013 598 599 Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, 600 Lamarque J.-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK. 2011. The 601 representative concentration pathways: an overview. Climatic Change 109: 5-31. 602 doi:10.1007/s10584-011-0148-z Worldwatch Institute (2012). "Use and Capacity of Global Hydropower Increases". Available 603

at: http://www.worldwatch.org/node/9527 (accessed on March 2015)