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Abstract 18 

Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for 19 

water supply. Some reservoirs are particularly vulnerable to climate and development 20 
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changes (e.g. population change, tourist growth, hydropower demands). Irregularities and 21 

uncertainties in the fluvial regime associated with climate change and the continuous 22 

increase in water demand by different sectors will add new challenges to the management 23 

and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be 24 

studied in detail to prepare for and mitigate potential impacts of these changes. In this 25 

paper, a reservoir balance model is developed and presented for the Pedra 'e Othoni 26 

reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The 27 

model was first calibrated and validated, then forced with extensive ensemble climate data 28 

for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with 29 

four socio-economic development scenarios. Future projections show a reduction in annual 30 

reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no 31 

scenario is reservoir resilience significantly affected, the reservoir always achieves refill. 32 

However, this occurs at the partial expenses of hydropower production with implications for 33 

the production of renewable energy. There is also the possibility of conflict between the 34 

agricultural sector and hydropower sector for diminishing water supply. Pedra 'e Othoni 35 

reservoir shows good resilience to future change mostly because of the disproportionately 36 

large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a 37 

detailed resilience assessment of all reservoirs is needed, where development plans should 38 

carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the 39 

option of physical connection between reservoirs is available, as are alternative water supply 40 

measures. Those reservoirs at risk to future change should be identified, and mitigating 41 

measures investigated.  42 

1. Introduction 43 



Reservoirs are generally built to augment water supply, for hydropower generation (World 44 

Watch Institute, 2012) and to attenuate flash flood flows. They alter hydrological regimes by 45 

attenuating flood flows and releasing accumulated volume in the summer to cope with dry 46 

season demand. In regions where water resources are scarce and summer demand is high, 47 

reservoirs play a crucial role in securing water for irrigation and domestic use. Many areas 48 

worldwide are wholly or largely reliant on reservoirs for water supply. This is particularly 49 

true for many locations in the Mediterranean where (ground) water resources are limited 50 

and inter-annual climatic variability is high. Strong dependence on reservoirs as the main 51 

water source may lead to major pressures from future changes, requiring a balance between 52 

climate change and its effects on water availability, and the development of water demand. 53 

Future pressures on reservoir operation can include: i) climate change, which can modify 54 

rainfall totals, increase evaporation losses and/or unfavourably alter the variability of supply 55 

and the hydrological regime (Arnell, 2004; Beniston et al., 2007; Christensen and 56 

Christensen, 2007; Hall et al., 2014) with implications for water resources; ii) population 57 

growth and urbanisation. Water demand increases imposed by socio-economic changes is 58 

likely to pose a significant challenge. Urbanization, population growth and life style change 59 

mean more water is needed to satisfy the domestic needs  (e.g., Vandecasteele et al., 2013; 60 

Harrison et al., 2014; McDonald et al., 2014); iii) changes to agricultural regimes, influenced 61 

by changes in climate, diets and other market forces (e.g., biofuels), often leading to  62 

increasing water demand (Gerbens-Leenes et al., 2009; Munir et al., 2010; Babel et al., 2011; 63 

Elliott et al., 2014); and iv) changes to tourism. In locations where water is scarce and with a 64 

growing trend in tourism (e.g. the Mediterranean and Sardinia (see Section 3)), strong 65 

seasonal stresses in supply may be found in places with single-source water supply, 66 

increasing vulnerability to prolonged dry climatic periods. Also, in regions largely relying on 67 



summer tourism for their economy, strong seasonal stresses to water supply and 68 

distribution networks may occur (e.g. Vandecasteele et al., 2013; Harrison et al., 2014; 69 

McDonald et al., 2014). 70 

Understanding how the resilience of reservoir-dominated systems may change in response 71 

to future changes is critical for improved mid- to long-term decision making regarding water 72 

management in these regions, especially to safeguard domestic, urban and agriculture 73 

supply. If alternative water sources (i.e., groundwater, water treatment, desalination) are 74 

not physically available or economically viable, water has to be efficiently used and 75 

intelligently allocated between sectors. This requires improved understanding of the 76 

potential changes that various forcing mechanisms, such as those described above, might 77 

have on the water balance of reservoirs.  78 

In this paper, the resilience of a reservoir-dominated supply system (Pedra e' Othoni) located 79 

on the eastern edge of Sardinia (Italy) was assessed under current and future changes 80 

(climate, population, tourism). The reservoir (Section 3) supplies water for the tourism 81 

industry, domestic demand, agricultural sector and for hydropower generation. We 82 

introduce the general modelling approach used to simulate the potential impact of changes 83 

on a reservoir-dominated supply system also accounting for some of the uncertainty 84 

surrounding various projections (i.e., climate change, population growth, tourism). The aim 85 

is to understand how potential future changes might alter long-term water supply and which 86 

of these changes have the greatest impact on the reservoir operation. Results are presented, 87 

followed by a discussion about the potential implications for operational reservoir resilience 88 

in Sardinia and the concomitant impacts on water security and competition. This work, while 89 

focussed on a specific study site, is framed within a wider agenda to secure and use more 90 



effectively existing and future water supplies, to serve a growing population in a changing 91 

world. The work is novel for the use of multiple climate and water-demand forecasting 92 

models, coupled with a system dynamics framework in which to assess potential future 93 

reservoir resilience to a wide range of threats to water security. 94 

2. Reservoir resilience modelling approach 95 

System Dynamics Modelling (SDM; Forrester, 1961; Ford, 1999) was exploited in order to 96 

assess the state of the reservoir water balance and resilience in Sardinia from a range of 97 

potential future threats (see Section 4 for details on the model stucture). SDM was 98 

developed to study feedback problems in industry, however it has been successfully applied 99 

widely across a number of fields (Khan et al. 2009; Rehan et al., 2011; Sušnik et al., 2013; 100 

Sahin et al., 2014). SDM is used to study the behaviour of complex systems which may be 101 

forced by multiple, disparate external factors and where stocks and flows lie at the heart of 102 

the system. Such systems tend to be dominated by feedback and/or delay processes. During 103 

iterative development (Ford, 1999), the model structure is constantly checked in order to 104 

verify that it still performs the desired function for which it was initially set (e.g., in this case 105 

assessing long term reservoir water balance).  106 

SDMs comprise three main elements: stocks (e.g., water in a reservoir); flows (e.g., river 107 

inflows or evaporation) and converters which control flow rates (e.g., evaporation rates). If 108 

the inflows and outflows to/from a stock balance or are set to zero, then the value of the 109 

stock remains constant. Converters link the system elements and create feedback loops. 110 

Each expression between elements is evaluated at every modelling time-step (Ford, 1999).  111 

For this study, the reservoir resilience model was built using STELLA (www.iseesystems.com), 112 

specific software for SD modelling. SDM has many advantages over more conventional 113 

http://www.iseesystems.com/


modelling approaches. One may model many disparate sub-systems within the same 114 

simulation (e.g., water, agriculture and tourism). This was exploited here by combining 115 

elements from hydrology, irrigation, tourism, climate change and hydropower. SDM allows 116 

for the splitting of a large system into many dynamically interacting sub-systems. The models 117 

are necessarily not as realistic as dedicated spatially explicit physical models (e.g., GIS-based 118 

catchment hydrologic models). However, being able to 'mix' metrics and include socio-119 

economic factors such as the tourism climate index, split the system into simpler pieces and 120 

incorporate relevant feedbacks, are the main reasons for choosing SDM for this study. 121 

Detailed information about climate model inputs, agricultural model inputs, tourist water 122 

demand estimation and the development scenarios used in this work is presented in Section 123 

4.  124 

3. Study site 125 

We use a case study on Sardinia (Figure 1) with which to assess reservoir resilience to future 126 

changes in climate, agriculture expansion and tourism. Specifically, the focus is on the Pedra 127 

e’ Othoni reservoir (Figure 2). Sardinia relies largely on surface water, and a large proportion 128 

of supply is stored for summer use in reservoirs across the island.  129 

Pedra e’ Othoni reservoir (Figure 2), located in the eastern part of Sardinia, was selected to 130 

assess reservoir resilience to future changes in climate, agriculture expansion and tourism - 131 

an important economic sector for Sardinia. The reservoir is located in a water stressed 132 

region and provides water for irrigation, urban areas, tourist facilities, and hydropower 133 

generation. The reservoir also mitigates flash flooding in the catchment. Therefore the 134 

reservoir needs to be resilient to many future changes and challenges. 135 



The Pedra e’ Othoni reservoir was created by constructing a dam across in the Cedrino 136 

Valley. It was completed in 1994, and has an absolute capacity of 117 Mm3, although the 137 

utilised volume is 16-20 Mm3. This difference can be explained by the flash-flood mitigation 138 

function. This part of Sardinia is prone to extremely intense rainfall (rainfall events have 139 

exceed 400 mm per day in the past), and the reservoir was partially designed to mitigate the 140 

resulting flood events, hence the large storage volume. It serves nine villages and one small 141 

city (Nuoro). The basin feeding the reservoir is 628 km2 (Figure 2).The average annual basin 142 

runoff coefficient (the proportion of upstream precipitation that ends up as surface runoff to 143 

the reservoir) was estimated by the regional water authority (ENAS) at 0.4. The reservoir 144 

receives on average 169 ± 34 Mm3 yr-1, but may peak to 240 Mm3 yr-1 in rainy years. 92% of 145 

the annual inflow is received in autumn, winter and spring. The inner territories of the basin 146 

contain old growth forest and archaeological sites important for tourism. These 147 

characteristics attract visitors throughout the year but mostly in spring and autumn, while a 148 

summer peak characterises coastal tourism. The high prevalence of forest and the low 149 

population in the upstream basin lead to high quality water with low quantities of pollutants 150 

and nutrients entering the reservoir. Therefore, the upper catchment can be considered well 151 

managed. Occasionally during flash floods, large volumes of sediment may be mobilised to 152 

reservoir. Sediment control through management is offered mainly during 'normal' 153 

discharges. However, these catchment management services are compensated neither by 154 

consistent shares of reservoir water distribution or subsidies (i.e. there is no incentive to 155 

carry on managing the upper catchment appropriately), implying that the maintenance of 156 

positive hydrological functions may be at risk in the future if the upstream population is not 157 

included in a proactive compensation/incentive scheme. The municipalities served by the 158 



reservoir produce several traditional products, but the economy of the coastal municipalities 159 

strongly relies on tourism.  160 

4. Data, scenarios, and model development 161 

Several climate datasets were utilised to: 1) calibrate and validate the SD model against 162 

existing dam discharge observations (2009-2011); 2) assess the dam discharge for the 163 

present climate conditions (baseline, average over the 1960-2000 period) and; 3) assess the 164 

dam discharge for an ensemble of future climate projections (2050, average over 2035-165 

2065). Climate datasets are available on a monthly scale, the same as for the reservoir water 166 

balance model. 167 

The reservoir model (Section 4.3) was calibrated and validated for three consecutive years 168 

from 2009 to 2011 using the CRU dataset (CRU, 2013), while monthly water outflows for 169 

agriculture, urban use and hydroelectricity production data provided by the regional water 170 

management body (Ente Acque della Sardegna). This means we use globally recognised 171 

climate data coupled to regionally accurate demand and use data for model calibration and 172 

validation. 173 

Afterwards a baseline scenario was run using the WorldClim dataset (the model was run for 174 

48 months to test the stability of the average annual water storage over four years). The 175 

future water balance scenarios were simulated for an ensemble of CIMP5 Earth System 176 

Models (ESMs) for two RCP scenarios (19 ESMs for RCP4.5 and 17 ESMs for RCP8.5). Thus, 177 

we use the latest climate projection data sets available and coherent development scenarios 178 

commonly used from the literature. 179 

4.1 Model calibration data 180 



The reservoir water balance model was calibrated and validated against three years (2009-181 

2011) of monthly discharge observations. Local meteorological data were only available 182 

from a single station located over the dam and thus do not represent the spatial variability 183 

between the reservoir basin and the area served by it. For that reason, weather parameters 184 

(2009-2011) were extracted from two adjacent pixels of the CRU TS 3.1 dataset (CRU, 2013) 185 

in order to characterize with comparable scale and adequate overlap the respective climate 186 

conditions over the basin and agricultural land served by the reservoir.  187 

The CRU TS 3.1 dataset (CRU, 2013) is a global gridded monthly time series (1900-2012) 188 

based on the interpolation of station observations for several climate variables at half 189 

degree resolution. Variables extracted and used in this study are diurnal temperature range, 190 

precipitation, daily mean temperature, monthly average daily maximum and minimum 191 

temperature, and potential evapotranspiration.  192 

4.2 Current and future climate data 193 

Current and ensembles of future (2050) climate projections were extracted from the 194 

WorldClim dataset (Hijmans, 2005) which defines a high resolution (30 arc sec) interpolation 195 

of monthly climate station observations (monthly average over 1960-2000) of temperature 196 

(Tmin, Tmax and Tav) and precipitation.  197 

A combination of Earth System Models (ESMs) of future climate provided by Phase 5 of the 198 

Coupled Model Intercomparison Project (CMIP5; Meehl and Bony, 2011) and representative 199 

concentration pathways (RCPs; Vuuren et al., 2011) have been previously downscaled 200 

(Ramirez and Jarvis, 2010), spatially resolving monthly GCM climate anomalies with the same 201 

resolution as the WorldClim data. Ensembles of downscaled GCM models and RCP scenarios 202 

include multiple climate anomaly projections for 2050 (monthly averages 2035-2065) over 203 



WorldClim (i.e., climate model bias is excluded). It is assumed that the change in climate is 204 

similar over the catchment.  205 

The perturbed monthly mean, minimum and maximum temperature were used to calculate 206 

reference evapotranspiration (ETo) using the empirical formula given in Hargreaves and 207 

Samani (1985).  208 

4.3 Reservoir storage balance model 209 

The simulation of the reservoir water balance functioning, integrating several relevant water 210 

flows, was developed and run in STELLA (Section 2). A schematic of the developed model 211 

structure is shown in Figure 3. The model simulates the volume of water stored in the Pedra 212 

e’ Othoni reservoir over time. The volume is controlled by one inflow and five outflows. The 213 

inflow to the reservoir is effective runoff from the upstream basin area. The outflows are: i) 214 

evaporation from the surface of the reservoir; ii) domestic water use; iii) water for irrigation; 215 

iv) spillway overflow that occurs when the water level exceeds the maximum storage 216 

capacity of the reservoir; and v) water discharged to maintain the environmental flow, 217 

ensure storage space to mitigate flooding and to ensure the operation of the hydropower 218 

turbines. The maximum throughput at the hydropower plant is 22 Mm3 month-1. The water 219 

level in the reservoir is maintained between the maximum storage capacity of the reservoir 220 

and the minimal critical water level, in accordance with current operating rules. The 221 

simulations account for the two RCP scenarios each in combination with four development 222 

scenarios which are described in the sections below. 223 

The following climate data were used to simulate the inflows and outflows components of 224 

the water balance and resilience model for actual conditions (WorldClim 1960-2000) and for 225 

the ensemble of projected future conditions: 226 



- Average monthly precipitation over the basin upstream of the reservoir;  227 

- Average monthly open water evaporation over the reservoir; 228 

- Average monthly mean temperature and precipitation over the distribution area 229 

served by the reservoir to calculate the Tourism Climate Index (TCI, Mieczkowski, 1985), 230 

which was used to estimate water demand for tourism; 231 

- Average monthly precipitation and ETo which are used to account for the irrigation 232 

requirements of the existing crop types over the distribution area served by the reservoir.   233 

4.4 Open water evaporation 234 

Evaporation from open water bodies, to calculate losses by evaporation from the reservoir, 235 

is approximated by multiplying reference ETo by a coefficient of 1.1, which is an average 236 

between values reported in literature ranging between 1.05 and 1.15 (Allen et al. 1998; 237 

Jensen, 2010; Finch and Calver, 2008). 238 

4.5 Domestic water requirements and the Tourism Climate Index (TCI) 239 

Monthly water requirements for domestic use were calculated assuming 170 l person-1 day-1 240 

by the resident population (ISTAT, 2012). While this appears high, it includes all domestic 241 

water use (e.g. car-washing, gardening, etc.). Large seasonal changes in water demand are 242 

assumed to be caused by tourist flows. Monthly data of overnight stays in the study area for 243 

the period 2009-2011 were provided from the Regional Statistics Office (Regione Autonoma 244 

della Sardegna). Average water consumption per tourist in hotels in Italy is about 40% 245 

greater than in camping accommodation (Gössling et al., 2012). The water consumption was 246 

set at 400 l person-1 day-1 for hotels and at 250 l person-1 day-1 for other facilities (camping, 247 

B&B, agri-tourism). 248 



The TCI is an indicator for describing the comfort sensation of tourists for outdoor activities. 249 

It has been widely used to assess the attractiveness of a destination, and through its 250 

correlation to tourism-related data, such as arrivals and overnight stays, it can be used to 251 

estimate the impact of long-term climatic changes on tourist preferences. The TCI was 252 

developed by Mieczkowski (1985), with the objective of measuring the climatic well-being of 253 

tourists. 254 

The maximum value of the TCI is 100, with values over 80 denoting “excellent” conditions for 255 

summer tourism. Effects of climate change on the TCI were estimated to account only for 256 

the monthly temperature and precipitation anomalies. While this measure is relatively 257 

simple, it provides a reasonable proxy for tourist comfort, and has been used previously to 258 

estimate tourist fluxes (Kampragou et al. 2012). 259 

The methodology to project future tourist water demands follows three steps (Figure 4): 260 

• Step 1: “Tourism in relation to current climate conditions” involves the analysis of the 261 

interrelation between climate and tourism using historical data. TCI was correlated with 262 

tourism-related parameters (monthly overnight stays over 2009-2011) using an exponential 263 

curve (R2 = 0.92) in order to verify that TCI can be used to predict future tourism patterns. 264 

• Step 2: “Climate change impacts on tourism” assessed the impacts of future climate 265 

change on tourism. On the basis of climate projections, future TCI values are calculated and 266 

used to estimate changes in tourism-related parameters for local-level analysis. 267 

• Step 3: “Integrated scenarios” focuses on future water demand for tourism and 268 

combines analysis of both climate change impacts and socio-economic scenarios with regard 269 

to tourism development and water demand. 270 



For this work, the TCI calculated using the CRU dataset was calibrated against overnight stay 271 

statistics. After transforming tourist flows into water demand, the simulated demand was 272 

validated against measured demand for domestic use. For Step 2, the effects of climate 273 

change on overnight stays were calculated for present and future climate scenarios. The 274 

preferences of tourists for cultural, natural and other attractions were assumed not to 275 

change. No changes due to development in tourist facilities were considered. For Step 3, 276 

four socio-economic scenarios were developed for the case study:  277 

1. “Business As Usual (BAU) Scenario”. This applies the average value of annual 278 

variations of tourist flux calculated for the reference period 2009-2011 to the period 2010-279 

2050; an annual increment in flux of 0.75% was used. 280 

2. “Intensive Tourism Growth (INT) Scenario”. Uses the average value of annual 281 

variations observed over the period 2005-2010 chosen as a reference period with a strong 282 

expansion of the tourist sector; an annual increment of 2.1% was used. 283 

3. “Strictly Controlled Sustainable Tourism (SOST) Scenario”. An unchanged 284 

accommodation capacity has been assumed until 2050. Overnight stays are predicted to 285 

change to reach present average gross occupancy rates and the 'tourist flow patterns' are 286 

assumed to match patterns observed in 2010 in the national context for heritage 287 

destinations (namely cultural, hill and mountain locations); an annual increment of 1.2% was 288 

used. 289 

4. “Balanced Competitive and Sustainable Growth (BAL) Scenario”. It simulates 290 

progressive diversification in tourism facilities, attractions and products. A reduction in 291 

average annual growth rates has been assumed on the accommodation supply side. On the 292 

demand side, overnight stays are predicted to change in order to reach present average 293 



gross occupancy rates for coastal and mountainous locations. An annual increment of 1% 294 

was used. 295 

The resulting overnight stays (OSSE) were assumed to be equal for all months. To account for 296 

the effects of climate change, the monthly rates were corrected by the ratio of estimated 297 

overnights due to climate change (OSCC) against the average value of overnight stays for the 298 

reference period 1981-2010 (OSRefPer). The final estimate of future overnight stays (OSsc) is 299 

calculated using: 300 

         (1) 301 

Results are subsequently used to assess future domestic and tourism water demand. 302 

4.6 Irrigation requirements 303 

The irrigation demand was estimated using a one-dimensional GIS-based soil water balance 304 

model that integrates monthly gridded climate data (CRU, 2013), soil, land cover maps and 305 

crop surface statistics at municipal level (ISTAT, 2012).  306 

Monthly water needs (I) for each polygon was calculated using: 307 

       (4) 308 

where Pi is the precipitation in month i (mm); RO is the surface runoff (mm); ETc is the crop 309 

evapotranspiration (mm), and δw is the soil moisture content in the root zone (mm). Due to 310 

the deep aquifers in the region, water capillary rise term (G) was neglected. 311 
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The fraction of effective rainfall (Peff) available to each crop was estimated using the 312 

empirical formulae of the USDA Soil Conservation Service (USDA, 1967). This excludes the 313 

volume of water lost by runoff or  intercepted by plants. 314 

 for P(i)< 250 mm     (5) 315 

   for P(i)> 250 mm    (6)  316 

Crop evapotranspiration (ETc) was calculated by adjusting the reference evapotranspiration 317 

using the well-known crop coefficient (Kc) method described by Allen et al. (1998). This 318 

method assume that plants are growing under optimal nutrient and water conditions. This 319 

does not necessarily reflect the actual farming practices where plants are deliberately (i.e., 320 

for quality reasons) or unintentionally (i.e. bad irrigation management) exposed to water 321 

stress or over-irrigation. 322 

In this work, the total volumetric irrigation need was calibrated with the measured volume 323 

for irrigation over the period 2009-2011. The water balance model was then applied for the 324 

baseline and 2050's period using the following four crop development scenarios (Table 1): 325 

1. Business-As-Usual (BAU): irrigated areas are unchanged. 326 

2. Intensive growth scenario (INT): 40% expansion of irrigated areas only for high value, 327 

water demanding crops. 328 

3. Strictly controlled sustainable growth scenario (SOST): irrigated areas increase for 329 

fruit trees, vegetables and traditional crops but not for high demanding crops (e.g. maize and 330 

pasture). 331 
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4. Balanced Competitive and Sustainable Growth (BAL) Scenario: Irrigated areas 332 

increase for all crops but proportionally less for high water demanding crops. 333 

These scenarios are used together with the TCI scenarios described above to alter water 334 

demands in the reservoir balance model. 335 

4.7 Hydropower generation 336 

Hydropower generation follows a complex seasonal pattern which depends on power 337 

demand and the amount of water stored in the reservoir which must always guarantee 338 

water for irrigation and domestic use. The hydropower plant produces approximately 0.09 339 

kWh m-3 of water, and annually produces about 8 GWh (ENEL, 2013).   340 

5. Results  341 

5.1 Changes to temperature and precipitation 342 

Climate scenarios for the basin predict average change in annual precipitation ranging from -343 

173 to +31 mm compared to 1960-2000. However, increases in precipitation are unlikely to 344 

occur, and average values indicate decreases of 40 [-66/-8] and 56 [-111/-2] mm for RCP 4.5 345 

and 8.5 respectively (values in square brackets represent the 15th and 85th percentile 346 

respectively and do so through the rest of the paper). Assuming no change in the basin 347 

runoff coefficient these reductions correspond to average change of inflow in the reservoir 348 

of -10 and -14 Mm3, respectively. ESM models show much less uncertainty for annual mean 349 

temperatures which increase on average by 1.96 [1.3/2.6] and 2.46 [1.7/3.1] ˚C for the 4.5 350 

and 8.5 RCPs respectively (Figure 5). The absolute values and the effects of climate change 351 

on the direct evaporation from the reservoir surface are minor.  352 

5.2 Model validation 353 



The models for irrigation and domestic water demand were fairly accurate with a normalized 354 

root mean squared error (RMSE) of 0.13 and 0.14 respectively (Figure 6). Both models 355 

capture both the intra- and the inter-annual variability observed in the period 2009-2011. 356 

The model outputs for hydropower production are not as satisfactory (RMSE=0.28). This 357 

poor correlation is due to the complexity of the human decisions and of the power grid 358 

performance (power demand) that is not accounted for in the model. Annual modelled 359 

fluxes for the three sectors are in good agreement with measured volumes. The modelled 360 

reservoir volume follows the measured annual fluctuations but with some delays or 361 

anticipations due to the uncertainty of timing for the hydropower energy production 362 

(RMSE=0.22).  363 

5.3 Changes to water demands and reservoir water balance under future scenarios 364 

Irrigation under the BAU scenario implemented no change in crop distribution, therefore 365 

climate change alone determines the slight increase in crop water requirements of 1.35 366 

[0.9/1.8] and 1.63 [1.1/2.1] Mm3 under the RCP 4.5 and RCP 8.5 respectively due to the 367 

combined effect of higher temperature and lower precipitation (Figure 7). The SOST and Bal 368 

scenarios have water demand slightly higher than BAU since both avoid or limit the 369 

expansion of irrigated area for high water demanding crops. The irrigation requirements for 370 

the intensive growth scenario, with a 40% expansion of irrigated area, increase by 5.22 Mm3 371 

[4.6/5.9] in the RCP 4.5 and by 5.6 [4.9/6.3] under the RCP 8.5 scenario.   372 

Changes in domestic use (Figure 8) are minor compared to other uses in terms of water 373 

volume. However, the distribution of this water is expensive due to the requisite 374 

infrastructure. This cost was not modelled for this work, but presents an opportunity for 375 

future research. Both the RCP 4.5 and 8.5 scenarios predict an increase in TCI in April/May 376 



and October/November that is reflected in an increase in domestic water requirement 377 

during these months. In the summer months, TCI either remains the same or it decreases 378 

slightly. High temperatures will negatively affect tourism during this period of time, 379 

therefore the increase in domestic water requirements in these months is mostly due to the 380 

development scenarios. 381 

Note that the INT scenarios predict the highest increase in water requirements. However, 382 

this scenario addresses mostly coastal tourism with a high water demand per person and 383 

also requires the construction of an extensive distribution network. The SOST and BAL 384 

scenarios address internal (mainland) tourism with a lower water requirement per person 385 

and minor changes to the distribution network. 386 

The Pedra e’ Othoni reservoir was built to secure downstream areas from floods. The dam 387 

collects water from a large basin but continuously discharges the large quantities of water 388 

collected in order to preserve storage volume and buffer flash floods. It is not surprising that 389 

despite the increase in water requirements for irrigation and domestic use, under all 390 

scenarios, the initial water volume is always restored by the end of the year (Figure 9). That 391 

is, under no scenario is long-term, chronic depletion of the reservoir water resource 392 

expected. However, under the intensive (INT) growth scenario, the reservoir undergoes 393 

higher fluctuations in summer compared to the other development scenarios, with potential 394 

implications for water quality and competition between sectors. Additionally, the increased 395 

demand for water by the agricultural sector and the decreased precipitation (i.e., reduction 396 

in reservoir inflow) are largely compensated by a decrease in the available annual water for 397 

energy production in the range of -14.5 [-22.4/-6.3] Mm3 in the best case scenario (BAU RCP 398 



4.5) up to -21 [-31/-11.4] Mm3 in the INT and RCP 8.5 case (i.e., reduction in hydropower 399 

generation).  400 

In order to examine what increases in demand would be required to seriously deplete the 401 

reservoir, a series of additional simulations were carried out. In these extreme scenarios, 402 

domestic and irrigation demand were increased by simple multiples relative to the current 403 

situation. Under a doubling of current demands, there is no substantial loss of storage 404 

capacity, and the reservoir can essentially function as normal, although hydropower 405 

production would be constrained for slightly longer periods of time through a typical year. 406 

Under a five-fold demand increase, the stored volume would not be nearly sufficient to meet 407 

summer requirements and the hydropower releases are significantly curtailed. This would 408 

have clear implications for Sardinian energy generation. Under an extreme 10-fold demand 409 

increase, the reservoir system essentially collapses. Refill is no longer possible and the 410 

reservoir is completely empty for much of the simulation. While catastrophic, a 10-fold 411 

increase to irrigation and domestic demands is considered extremely unlikely. It was used 412 

here to demonstrate the conditions required in order to inhibit refilling of the reservoir. 413 

6. Discussion 414 

The principle role of the reservoir of Pedra e’ Othoni is to secure water supply for multiple 415 

users, to generate electricity and to protect downstream areas from flash floods similar to 416 

those that have occurred in the past. In the past 20 years, rain events up to 400 mm in less 417 

than 12 hours have occurred and with climate change these events are likely to become 418 

frequent and intense in the future. Given its main purpose and excess storage, the dam is 419 

capable of supplying water for irrigation and domestic use under all scenarios (Section 5). 420 

Under all other climate change and development scenarios, the reservoir functioning was 421 



not considerably affected, suggesting that it is highly resilient under a range of projected 422 

climate, tourist and agricultural scenarios that might occur over the next 50 years in Sardinia. 423 

Only under unrealistic increases in demand might reservoir system failure occur. However, it 424 

is worth considering that agricultural and hydropower users may come into competition 425 

regarding the water resource for certain parts of the year. It is suggested that interactions 426 

between local and regional stakeholders are studied in an integrated assessment of 427 

Sardinian reservoir resilience, and that the effectiveness of adaptation strategies to mitigate 428 

competition for resources are assessed. The basins of other reservoirs in the island are not 429 

as disproportionately sized as that of Pedra e’ Othoni, and those may have much lower 430 

resilience under similar changes in inflows (-7%) and water demands for irrigation (+8%) only 431 

due to climate change. Thus, development scenarios should be thought through carefully 432 

before being implemented in other areas, and competition and certainty of supply must be 433 

carefully studied. It should be considered that the studied reservoir could be physically 434 

connected to other reservoirs or used to serve additional areas where present water 435 

resources are stressed or insufficient to meet the demand.  436 

At the studied reservoir, the water required for the additional demands for domestic and 437 

irrigation use may be taken from the hydropower sector, thus losing some potential for the 438 

production of renewable energy. This reservoir only accounts for about 2% of the 439 

hydropower generation of the island, however if similar changes would take place across the 440 

whole island this could result in a potential loss of generation of about 10% under the BAU 441 

scenario. Since the domestic use only requires a minor portion of the water resource, 442 

potential competition may be between the agricultural and energy sectors. The industrial 443 

sector has declined recently and is projected to decline further. Thus, the request for energy 444 

and water from industry may be reduced, leaving some 'slack' for agricultural expansion. 445 



Clean energy facilities (wind turbines and solar power) have been implemented in Sardinia in 446 

the past ten years. On the other hand, land abandonment is increasing dramatically in 447 

Sardinia suggesting a possible reduction in irrigation requirements and also having possible 448 

implications for hydrological risks. Land abandonment and urbanization are considered the 449 

two major causes of the flood related damages that occurred in 2013. The agricultural sector 450 

has partially failed to compete effectively in the market with little implementation of new 451 

technologies (e.g., irrigation scheduling, sub-surface drip irrigation). However, crops for high 452 

quality products (wine and olive oil) have been maintained, while interest for 453 

environmentally friendly production systems (e.g., organic, permaculture, recovery of 454 

genetic biodiversity) is increasing. More efficient agriculture means that demand from the 455 

reservoir may be reduced, freeing up additional water for other users in the basin.  456 

The increased demand for water by the domestic sector is not quantitatively important for 457 

the water budget in terms of volume. However it should be noted that the model made no 458 

assumptions on the population growth rates under the different development scenarios. It is 459 

likely that under the INT scenario, the population will grow in the coastal municipalities, 460 

albeit seasonally, while in the SOST scenario population could remain stable or even increase 461 

in the inner land municipalities where the population is presently declining. Additionally, the 462 

INT has a high financial cost in infrastructure for urban water distribution networks not 463 

accounted for in this analysis. Because mass tourism is mostly oriented to summer, the hotel 464 

sector has been experiencing a growing spread among supply and demand growth rates. 465 

This results, on one side, in large facilities near the coast mostly managed by major national 466 

and international operators and, on the other, in small size family-run hotels (with 24 rooms 467 

or less) concerned by strategic and operational isolation and, therefore, a low propensity for 468 

integrated solutions.  469 



While our work is focussed on Sardinia, many Mediterranean locations face similar issues 470 

(climate change impacts, agricultural expansion, tourist demand fluctuations, and changes to 471 

the water balance). Islands in particular tend to rely on few water sources for supply, 472 

increasing their vulnerability to change. Although our case example is fairly robust to 473 

change, other reservoirs on Sardinia and throughout the Mediterranean may not be. It is 474 

suggested that if other reservoirs on Sardinia and throughout the Mediterranean experience 475 

change in inflows and outflows as those simulated in this work, their resilience would not be 476 

guaranteed. This may have implications for water supply for a range of sectors, and on 477 

energy generation, with knock-on impacts for economic development. Countries should 478 

carefully assess the resilience of reservoir operations to a wide variety of change factors in 479 

order to assess the future direction of water resources management in these critical 480 

locations. 481 

7. Conclusions 482 

We developed and presented a simulation model for Pedra e’ Othoni reservoir in Sardinia, 483 

Italy. The model was forced with extensive ensemble climate data for RCPs 4.5 and 8.5, crop 484 

and agricultural data, along with four socio-economic development scenarios in order to 485 

assess the resilience of the reservoir to a wide range of realistic future changes in the region. 486 

The impacts to hydropower generation were considered, and the impacts to local climatic 487 

conditions were assessed.  488 

It is expected from the climate data that the regional climate will on average get slightly 489 

drier and warmer. If nothing else changes, this would lead to probable decreases in annual 490 

reservoir inflow, while demands would be increased mainly in the agricultural sector as a 491 

result of increased crop water requirements. On top of climate change, multiple 492 



development futures in line with RCP storylines were assessed. Modelling showed that 493 

under no scenario is reservoir resilience significantly affected. That is, the reservoir always 494 

achieves complete refill. However, this occurs at the partial expenses of hydropower 495 

generation with implications for the production of clean energy.  496 

This reservoir shows resilience to future change mostly because of the large basin feeding it. 497 

It can therefore be used to augment lower resilience reservoirs on Sardinia in times of stress. 498 

However, other reservoirs and reservoir systems on Sardinia and throughout the 499 

Mediterranean may not be so robust. Under these circumstances, regional development 500 

plans should carefully account for the trade-offs and potential conflicts among sectors. It is 501 

recommended that detailed resilience assessment, as presented here, is carried out. Those 502 

reservoirs at risk to future change should be identified, and mitigating measures should be 503 

considered.  504 
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