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Abstract

Following exposure to consistent stimulus-stop mappings, response inhibition can become 

automatized with practice. What is learned is less clear, even though this has important theoretical and 

practical implications. A recent analysis indicates that stimuli can become associated with a stop 

signal or with a stop ‘goal’. Furthermore, expectancy may play an important role. Previous studies 

that have used stop or no-go signals to manipulate stimulus-stop learning cannot distinguish between 

stimulus-signal and stimulus-goal associations, and expectancy has not been measured properly. In the 

present study, participants performed a task that combined features of the go/no-go task and the stop-

signal task in which the stop-signal rule changed at the beginning of each block. The go and stop 

signals were superimposed over forty task-irrelevant images. Our results show that participants can 

learn direct associations between images and the stop goal without mediation via the stop signal. 

Exposure to the image-stop associations influenced task performance during training, and the 

expectancies measured following task completion or measured within the task. But, despite this, we 

found an effect of stimulus-stop associations on test performance only when the task increased the 

task-relevance of the images. This could indicate that the influence of stimulus-stop learning on go 

performance is strongly influenced by attention to both task-relevant and task-irrelevant stimulus 

features. More generally, our findings suggest a strong interplay between ‘automatic’ and ‘controlled’ 

processes.
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Response inhibition is often considered to be a deliberate act of top-down cognitive control. It allows 

people to quickly stop and replace actions that are no longer relevant or that are inappropriate in the 

current task environment. Longitudinal studies have shown that response inhibition, and self-control 

more generally, in childhood and adolescence correlates with a variety of life outcomes in adulthood, 

including personal finances and engagement in healthy behaviors (Diamond, 2013; Moffitt et al., 

2011; Nigg et al., 2006). Furthermore, clinical research suggests that impairments in response 

inhibition may contribute to the development of a range of psychopathological and impulse-control 

disorders, such as attention deficit/hyperactivity disorder, obsessive-compulsive disorder, substance 

abuse, pathological gambling, and eating disorders (Bechara, Noel & Crone, 2006; Crews & 

Boettiger, 2009; de Wit, 2009; Fernie et al., 2013; Garavan & Stout, 2005; Nigg, 2001; Noël, Brevers 

& Bechara, 2013). Response inhibition efficiency also correlates with the treatment outcome in people 

with such disorders (e.g. Nederkoorn, Jansen, Mulkens & Jansen, 2007). Thus, the ability to stop 

actions seems very important for adaptive and goal-directed behavior. However, in the past few years, 

research has demonstrated that response inhibition may not always be the executive, deliberate, act of 

control that it is typically assumed to be. In the present study, we will further explore the interplay 

between ‘bottom-up’ and ‘top-down’ control processes when stopping a response. 

Popular paradigms used to study response inhibition in healthy and clinical populations are 

the go/no-go task (Donders, 1868/1969) and the stop-signal task (Logan & Cowan, 1984; Verbruggen 

& Logan, 2008c). Research using these tasks has demonstrated both short-term and long-term after-

effects of stopping (e.g. Bissett & Logan, 2011; Enticott, Bradshaw, Bellgrove, Upton & Ogloff, 

2009; Giesen & Rothermund, 2014; Rieger & Gauggel, 1999; Verbruggen, Logan, Liefooghe & 

Vandierendonck, 2008; Verbruggen & Logan, 2008a). For example, responding to a stimulus is 

typically slowed after a stop-signal trial. This slowing is more pronounced when the primary-task 

stimulus of the previous stop-signal trial is repeated, which has led to the suggestion that people can 

learn associations between specific stimuli and stopping (Rieger & Gauggel, 1999; Verbruggen et al., 

2008; Verbruggen & Logan, 2008a). The idea that a specific stimulus can become associated with 

stopping is consistent with studies that have highlighted the role of stimulus-response (S-R) bindings 

in other cognitive control paradigms, such as the negative priming paradigm  (cf. the ‘do-not-respond’ 

tag account; Neill, Valdes, Terry & Gorfein, 1992; Neill & Valdes, 1992), the task-switching paradigm 

(e.g. Koch & Allport, 2006; Waszak, Hommel & Allport, 2003, 2004, 2005), and interference control 

tasks (e.g. Anderson & Folk, 2013; Hommel, Proctor & Vu, 2004). The formation of stimulus-stop 

bindings may be the first step towards automaticity (Logan, 1990). Memory-retrieval accounts of 

automatization assume that every time people respond to a stimulus, processing episodes are stored as 
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‘instances’ (Logan, 1988) or ‘event files’ (Hommel, 1998, 2004) in memory. These instances or event 

files may contain information about the stimulus (e.g. the word), the interpretation given to the 

stimulus (e.g. ‘natural’), the task goal (e.g. ‘go’)1 and the response (e.g. ‘left key press’). These 

episodes are retrieved when a stimulus is repeated, and will influence responding. For example, the 

Instance Theory (Logan, 1988) postulates that action selection can be construed as a race between an 

algorithmic response-selection process and a memory-retrieval process; the process that finishes first 

determines which action is selected. When the memory-retrieval process wins the race, the decision is 

said to be automatic, whereas decisions based on algorithmic processing are deliberate or intentional 

(Logan, 1988). Therefore, when the stimulus-response or stimulus-stop mapping is the same 

throughout practice, multiple instances are formed and automatic processing can develop (Logan, 

1988; Shiffrin & Schneider, 1977). 

Some of us examined the idea that inhibitory control in go/no-go and stop-signal tasks can be 

triggered automatically via the retrieval of stimulus-stop associations from memory (Verbruggen & 

Logan, 2008b). For example, in a series of go/no-go experiments, a stimulus category determined if a 

participant should respond or not (e.g. living word referents = go; non-living word referents = no-go). 

After a training phase, the go/no-go mapping was reversed in a test phase. We found that responding 

to the old stop stimuli was slowed compared with new stimuli that were not previously presented 

during training (consequently, these new stimuli were not associated with going or stopping) or old 

stimuli that were associated with going. This response slowing was also found in modified versions of 

the stop-signal task in which the contingencies between specific go stimuli and stopping were 

manipulated, such that certain items were consistently presented on stop-signal trials, whereas other 

items were presented on both go and stop-signal trials. Consistent with the go/no-go results, we found 

that responding was slowed for old stop items compared with inconsistent items that were not 

particularly associated with going or stopping (Lenartowicz, Verbruggen, Logan & Poldrack, 2011; 

Verbruggen & Logan, 2008b). Furthermore, the Lenartowicz et al. (2011) study demonstrated that old 

stop items activated the neural stopping network. Thus, response inhibition may become automatized 

after sufficient practice with consistent stimulus-stop mappings (Jasinska, 2013; Lenartowicz et al., 

2011; Spierer, Chavan & Manuel, 2013; Verbruggen, Best, Bowditch, Stevens & McLaren, 2014; 

Verbruggen & Logan, 2008b). These findings may have important implications for our current 

theories of response inhibition and executive control. Furthermore, they could also have practical 

applications. Recent studies suggest that the acquisition of stimulus-stop associations could be an 

effective way to reduce engagement in impulsive behaviors, such as excessive food (e.g. Houben & 

Jansen, 2011) and alcohol (e.g. Jones & Field, 2013) consumption. These studies used paradigms in 
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which no-go or stop signals were superimposed over, or presented around, images of unhealthy foods 

or alcohol (e.g. Bowley, Faricy, Johnstone & Smith, 2013; Houben & Jansen, 2011; Houben, 

Nederkoorn, Wiers & Jansen, 2011; Houben, 2011; Jones & Field, 2013; Lawrence, Verbruggen, 

Morrison, Adams & Chambers, 2015; Veling, Aarts & Papies, 2011; Veling, Aarts & Stroebe, 2013; 

Veling, van Koningsbruggen, Aarts & Stroebe, 2014). Pairing these images with stopping reduced 

subsequent consumption of unhealthy foods and alcohol. Therefore, this research suggests that 

automatic inhibition could be useful in the treatment of a variety of impulse-control disorders (for a 

recent meta-analysis, see Jones et al., 2015).

Current research in the stop-learning literature appears to provide strong support for the 

‘automatic inhibition’ account that postulates that stimuli can become associated with the act of 

stopping. However, a recent review indicates that it is still unclear exactly what is learned in these 

tasks and how this influences performance (Verbruggen, Best et al., 2014). The present study was 

designed to address two of the main outstanding issues that we highlighted in our review (similar 

issues were also recently raised in the context of S-R bindings; Henson, Eckstein, Waszak, Frings & 

Horner, 2014): (1) are associations between stimuli and stopping direct, and (2) to what extent does 

expectancy play a role?

Are associations between stimuli and stopping direct?

The automatic inhibition account assumes that people learn direct associations between a stimulus and 

the act of stopping in go/no-go tasks and modified versions of the stop-signal task. However, the 

results of a recent experiment are inconsistent with this account (Verbruggen, Best et al., 2014). In 

that experiment, participants made speeded semantic categorizations (living/non-living) of a series of 

words. On some trials (stop-signal trials) an additional visual signal was presented below the word, 

instructing participants to withhold their planned response. Certain words were consistently presented 

on stop-signal trials, whereas other words were presented on go and stop-signal trials with equal 

probability. We found that the probability of responding on stop-signal trials was lower for the 

consistent words than for the inconsistent words in the training phase, indicating that learning had 

occurred. However, we found no go reaction time (RT) difference between the old stop words and the 

inconsistent words when the stimulus-stop mapping was subsequently reversed in the test phase. In 

other words, learning influenced stop performance on signal trials in the training phase, but it did not 

influence go performance on no-signal trials in the test phase. We proposed that this pattern of results 

indicates that participants learned stimulus-signal associations rather than stimulus-stop associations. 

Such associations between the stop words and the stop signal (i.e. the line turning bold) will prime the 
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representation of the stop signal rather than the stop goal. Signal detection plays a critical role in 

successful stopping (e.g. Verbruggen, Stevens & Chambers, 2014), and computational work suggests 

that a considerable proportion of the stopping latency is occupied by perceptual or afferent processes 

(Boucher, Palmeri, Logan & Schall, 2007; Logan, Van Zandt, Verbruggen & Wagenmakers, 2014; 

Logan, Yamaguchi, Schall, & Palmeri, 2015; Salinas & Stanford, 2013). Thus, by priming the 

representation of the stop signal, learning could lead to improvements in stopping performance on 

stop-signal trials without influencing responding on go trials in the test phase.

The idea that participants could learn stimulus-signal associations is also consistent with a 

range of research on learning and conditioning in humans and other animals that indicates that 

stimulus detection can itself become conditioned (McLaren, Wills & Graham, 2010) and, of course, 

that links between perceptual stimuli can be established. As an illustrative (and rather basic) example, 

in a classic autoshaping paradigm with pigeons, the presentation of a conditioned stimulus (e.g. a 

keylight) and an unconditioned stimulus (e.g. the delivery of food) usually co-occur. With practice, 

the presentation of the conditioned stimulus alone can come to elicit the conditioned response (e.g. 

pecking at this key). The conditioned stimulus can activate this response via two routes; either 

indirectly via the CS-US link, or more directly, via a CS-R link (Hall, 2002). Thus, it seems plausible 

that learning can also influence perception of the no-go or stop signal in response-inhibition 

paradigms. 

The potential for stimulus-signal associations has important implications for the interpretation 

of previously reported behavioral effects in the stop-learning literature. Previous studies that have 

used no-go or stop signals to manipulate stimulus-stop learning cannot distinguish between stimulus-

goal and stimulus-signal learning. It is therefore possible that previously observed RT effects and 

neural activations (Lenartowicz et al., 2011; Manuel, Bernasconi & Spierer, 2013; Manuel, Grivel, 

Bernasconi, Murray & Spierer, 2010) could be mediated by a link between the stimulus, the stop 

signal, and stopping (see Figure 1). Similarly, in go/no-go experiments in which the go/no-go rules 

are explicit (e.g. living = go, non-living is no-go), the stimulus-stop association could be mediated via 

the go/no-go category (e.g. ‘desk = non-living -> non-living = no-go’, instead of ‘desk = no-go’). In 

addition to being of theoretical interest, the idea of stimulus-stop associations also has implications 

for applied stop-training research (see above). Therefore, in the present study, we investigated 

whether there is any evidence for the original idea (i.e. as suggested by Verbruggen & Logan, 2008b) 

that direct associations can be acquired between a stimulus and the stop goal, without mediation via a 

representation of the stop signal (or no-go category). To discourage the formation of stimulus-signal 

associations, we changed the stop signal and the task rules at the beginning of each block. The 
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demonstration of response slowing for consistent stop items in the present experiment would provide 

the strongest evidence to date for the direct stimulus-stop hypothesis. 

What is the role of expectancy in stimulus-stop learning?

In the associative-learning literature, there is an on-going debate surrounding the involvement of 

explicit and implicit processes in the acquisition of stimulus-action associations (Mitchell, De Houwer 

& Lovibond, 2009). To make a broad distinction, ‘explicit’ processes are assumed to be controlled, 

intentional, effortful and rule-based; by contrast, ‘implicit’ processes are assumed to be automatic, 

effortless, and associative (e.g. McLaren, Green & Mackintosh, 1994; for a recent discussion of the 

distinction between associative and propositional processes, see McLaren et al., 2014). Expectancy 

ratings have been used to dissociate between the two processes (e.g. McLaren et al., 2014; Newell & 

Shanks, 2014). In the context of stop-learning, this dissociation between rule-based processes and 

associative (S-S or S-R) processes has important theoretical implications. After all, expectancy of a 

stop signal for old stop items could indicate that the response slowing observed for old stop items is 

due to proactive inhibitory control, rather than ‘automatic inhibition’. When a cue indicates that a stop 

signal is likely to occur on the following trial(s), participants proactively increase response thresholds 

or suppress motor activation (e.g. Jahfari et al., 2012; Ramautar, Kok & Ridderinkhof, 2004; 

Verbruggen & Logan, 2009; Zandbelt, Bloemendaal, Neggers, Kahn & Vink, 2013). Stimuli 

associated with stopping could act as such cues (e.g. ‘if stimulus X then p(stop) is high’), and 

participants would adjust their response strategies accordingly. In other words, slowing for old stop 

items could be due to proactive control (which may be conceived as another ‘algorithmic’ process; cf. 

Logan, 1988), rather than to the direct activation of the stop response via memory retrieval. The role 

of expectancy-driven processes is also relevant for the applied stop-training research. Indeed, the 

extent to which training effects like these reflect implicit or associative effects has been called into 

question. For example, Boot, Simons, Stothart and Stutts (2013) argued that many ‘control’ training 

effects could be due to changes in expectations and demand characteristics. The involvement of 

expectancies would have implications for the longevity of these inhibitory control training effects and 

the variability of training efficacy across individuals (cf. Boot et al., 2013). 

In the present study we investigated the role of expectancy in stimulus-stop learning via the 

inclusion of an additional dependent variable that was sensitive enough (Newell & Shanks, 2014) to 

detect stimulus-stop learning following task completion (Experiments 1-3) or within the task 

(Experiment 4).
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Experiment 1

In Experiment 1, we combined features of a go/no-go task and a stop-signal task. In standard go/no-

go tasks only one stimulus is presented on each trial, determining whether participants have to 

respond or not. In standard stop-signal tasks participants respond to each stimulus, unless an extra 

stop signal is presented after a variable delay. In Experiment 1, we used a go/stop task based on those 

used in studies examining the effects of no-go training effects on food and alcohol consumption (see 

above). Similar to picture-word Stroop tasks (see e.g. MacLeod, 1991), go and stop signals were 

superimposed over forty neutral images. The delay between the presentation of the images and the 

signals was zero ms. A subset of the images was consistently associated with stop signals, another 

subset was consistently associated with go signals, and the remaining images were control images 

(not particularly associated with go or stop). After twelve training blocks, the image mappings were 

reversed, and participants had to respond to the stop-associated images. Participants were not 

informed about the image mappings, but they were told at the beginning of each block what the go 

and stop signals were. To discourage the formation of stimulus-signal or stimulus-category 

associations, we varied the representation of the go and stop signals at the beginning of each block. 

We predicted that this change manipulation would encourage the formation of image-stop associations 

(cf. Verbruggen & Logan, 2008b) instead of image-signal associations (i.e. S-R rather than S-S 

learning). We indexed learning during the task via two measures. The first index was the probability 

of responding on the stop trials, p(respond|stop), which was predicted to be lower for stop-associated 

images than for the control images. The second index was RT on go trials, which was predicted to be 

longer for the stop-associated images than for the control images. To examine the role of expectancy 

in stop learning, participants were asked to rate the extent to which they expected to withhold their 

response for each of the images presented in the task at the end of the experiment.

Method 

Subjects.  Thirty-one students from the University of Exeter participated for monetary 

compensation (£5) or partial course credit (M = 19.43 years, SD = 1.70 years, 17 females, 27 right-

handed). Two participants were excluded because they incorrectly executed a response on ≥ 30% of 

the stop-signal trials (there was no delay between the presentation of the image and the stop signal; 

consequently, p(respond|stop) was expected to be low). The target sample and exclusion criteria were 

determined before data collection. The data with these participants included are available as 

Supplementary Material. 
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Apparatus and stimuli. The experiment was run on an Apple iMac using Psychtoolbox 

(Brainard, 1997). The stimuli were presented on a 20-in monitor (with a 1680 × 1050 resolution). The 

experimental paradigm consisted of a go/stop task in which the go/stop rule changed at the beginning 

of each block. The go and stop signals (a full list of the signals used appears in the Appendix A) were 

superimposed over forty task-irrelevant neutral images (size: 250 × 250 pixels), which were presented 

in the centre of the screen on a white background. Each image was presented twice per block. In each 

block, we used two go signals (e.g. the vowels 'a' or 'e') and two stop signals (e.g. the consonants 't' or 

'n'). Participants responded on go trials by pressing the spacebar on a keyboard with their right index 

finger; they were instructed to withhold their response on stop trials. The signals and the go/stop 

mapping were shown on the screen at the beginning of each block for a minimum of 5 seconds, and 

participants had to press a key to start the first trial. The order of the task rules was randomized across 

the blocks and the response-rule category was counterbalanced across participants (e.g. ‘go = vowels, 

stop = consonants’ vs. ‘go = consonants, stop = vowels’). 

Procedure. Unbeknown to the participants, there were two phases in the experimental 

paradigm that determined the image-go/stop mappings; the first 12 blocks of 80 trials comprised the 

‘training phase’ and the final two blocks of 80 trials comprised the ‘test phase’. Participants were 

verbally instructed to read the task rule screen carefully before starting each block. There was a 15 

second break between each block.

There were three image types (Table 1). First, stop-associated images were paired with a stop 

signal on 75% of presentations in the training phase; in the test phase, they were always paired with a 

go signal. Second, go-associated images were always paired (100%) with a go signal in the training 

phase, but they could occur on stop trials in the test phase (eight old go-associated images were paired 

with a stop signal on 75% of presentations; eight old go-associated images were never paired with a 

stop signal). Third, control images were paired with a stop signal on 25% of presentations in the 

training and test phases. The control images were mostly paired with a go signal during training to 

ensure that the overall probability of a stop trial [p(stop) = 0.25] was the same in the training and the 

test phases (stopping performance is sensitive to minor variations in signal probability, e.g. see Bissett 

& Logan, 2011). 

All trials began with the concurrent presentation of the image and a go/stop signal (Figure 2), 

instructing participants to execute (go) or withhold (stop) the spacebar response. After 750 ms 

(regardless RT), the images and go/stop signal were replaced by a feedback message (‘correct’, 

‘incorrect’, or ‘too slow’ in case they did not respond before the end of the trial) which remained on 
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the screen for 500 ms. The feedback message was presented to encourage fast and accurate 

responding. Following the feedback message, there was a blank screen for 250 ms, after which the 

next trial started. 

Following completion of the experimental task, each image was again presented on the 

screen. The order of the images was randomized anew for each participant. Participants were asked to 

rate ‘how much do you expect to withhold your response when this image is presented?’ on a scale 

between 1 ('I definitely do not think this image indicates that I have to withhold my response') and 9 

('I definitely think this image indicates that I have to withhold my response'). As a manipulation 

check, we also asked participants to rate how much they expected to respond (i.e. go) to each of the 

images (the order of the respond/withhold ratings was counterbalanced across participants). These go 

ratings were consistent with the stop expectancy ratings so are not reported further. 

Analyses. All data processing and analyses were completed using R (R Development Core 

Team, 2013). The training and test phase trials were analyzed separately using Analyses of Variance 

(ANOVA) with image type and block as within-subjects factors. Performance was assessed in terms 

of average RT for correct go responses, the probability of a missed go response [p(miss)] and the 

probability of responding on a stop trial [p(respond|stop)]. RTs < 1 ms were removed prior to analysis. 

We did not analyze p(miss) further as values were very low (Table 2). Table 3 provides an overview 

of the ANOVAs. For pairwise comparisons, Hedge’s gav is the reported effect size measure (Lakens, 

2013). All data files and R scripts used for the analyses are deposited in Dropbox (https://

www.dropbox.com/sh/3k1346wgvagm9ii/AACzQtru20_GX1wUnIZSycCia?dl=0). [Note: If this 

paper is accepted, the data files and R scripts will be deposited on the Open Research Exeter data 

repository]

Results

Training phase.  The main effect of image type on go RTs was reliable (p < 0.001); planned 

comparisons revealed that responding to the stop-associated images (on the relevant 25% of trials) 

was slower (414 ms) than to the go-associated images (403 ms), t(28) = -4.93, p < 0.001, gav = 0.440, 

and to the control images (406 ms), t(28) = -3.26, p = 0.002, gav = 0.327. There was a marginally 

reliable difference between the go and the control images, t(28) = -1.99, p = 0.055, gav = 0.109 (Figure 

3; Table 3). In line with our predictions, the p(respond|stop) was lower for the stop-associated images 

(0.131) than for the control images (0.151), p = 0.019 (Figure 3). Thus, performance on go and stop 

trials suggests that participants acquired the image-stop associations. The effect of block and the 

interaction between block and image type did not reach significance, suggesting that the effect of 
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image type was present in most blocks (Table 3). This is consistent with our previous work, which 

indicates that the effect of stop learning emerges after a single trial presentation, and that it then 

quickly asymptotes (Verbruggen & Logan, 2008a; Verbruggen & Logan, 2008b). The absence of an 

overall practice effect is most likely due to the introduction of a novel go/stop rule at the beginning of 

each block; consistent with this idea, a post-hoc test confirmed that participants responded faster in 

the second half of a block than in the first half, t(28) = 3.99, p < 0.001, gav = 0.324.  

Test phase. In the test phase, the stop-associated images were always paired with a go signal, 

the control images were paired with a stop signal on 25% of the trials (i.e. the control images 

remained the same in the training and test phases), and the go-associated images were mostly paired 

with a stop signal (Table 1). Based on the automatic inhibition hypothesis, we predicted that 

responding on go trials would be slower for the stop-associated images than for the go-associated 

images and for the control images. Furthermore, p(respond|stop) should be higher for the go-

associated images than for the control images. However, image type did not influence RT nor 

p(respond|stop) in the test phase (p’s ≥ 0.557; Table 4). It is possible that the absence of the test phase 

effect is due to differences in the overall RT (as RTs were faster in the test phase than in the training 

phase). To investigate this possibility, we plotted RT percentiles for the training and test phases. This 

revealed that the overall test phase RT cannot account for the absence of the predicted image-stop 

learning effects (see Supplementary Material).  

Expectancy ratings. Due to technical reasons, one participant in Experiment 1 did not 

complete the expectancy ratings task. The results of the test phase raise some doubts about whether 

participants learned long-term image-stop associations. However, the analysis of the expectancy 

ratings obtained following task completion revealed a main effect of image type, F(2, 54) = 10.06, p < 

0.001, gen. η2 = 0.075. Consistent with the stimulus-stop contingencies during training, participants 

expected to withhold their response more when the stop-associated images were presented (4.83) than 

when the go-associated images (3.91) and the control images (4.26) were presented; t(27) = -3.46, p = 

0.001, gav = 0.653, and t(27) = -2.74, p = 0.010, gav = 0.403, respectively. The difference between the 

control and the go-associated images was also reliable, t(27) = -2.89, p  = 0.007, gav = 0.271. Thus, 

participants could distinguish between the images on the basis of their association with the stop and 

go goals. The ‘stop minus control image’ expectancy difference correlated with the corresponding RT 

difference in the test phase, r(26) = 0.437, p = 0.019: participants who expected to withhold their 

response more during the presentation of the old stop-associated images slowed more when they had 

to respond to these images in the test phase. This suggests that expectancies generated on the basis of 

the acquired image-stop mappings may contribute to the manifestation of an ‘automatic’ inhibition 
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effect in the test phase. However, there was no reliable correlation between the ‘stop minus control’ 

expectancy difference and the corresponding RT in the training phase, r(26) =  0.010, p = 0.961. 

There was also no reliable correlation between the RT and expectancy differences for the stop- and 

the go-associated images in the training phase, r(26) = - 0.040, p = 0.841, or the test phase, r(26) = 

0.272, p = 0.161 (Note that uncorrected p’s are reported). 

Discussion

In Experiment 1, we investigated two questions highlighted in our recent review article (Verbruggen, 

Best, et al., 2014): (1) can participants learn direct associations between stimuli and stopping; and (2) 

what is the role of expectancy in stimulus-stop learning? The results provide some answers to both 

questions. Task performance during the training phase showed that participants could acquire direct 

stimulus-stop associations when the rules (and consequently, signals) constantly changed throughout 

the task. This indicates that the learning effects were not mediated via signal representations (as each 

image was only presented twice per block and there were two stop signals and two go signals per 

block). Furthermore, the expectancy data obtained following task completion showed that participants 

generated expectancies that were consistent with the stimulus-stop contingencies acquired during 

training. 

However, the results of Experiment 1 raised a new question: why did stimulus-stop 

associations not influence performance in the test phase? We found an associative effect on behavior 

that appeared early in training but then disappeared again in the later training blocks and in the test 

phase (Figure 3; for similar results in another action control paradigm, see Gaschler & Nattkemper, 

2012), even though the expectancy data measured at the end of the experiment indicated that the 

associations were not forgotten. We attribute this to an interaction between attention and learning. The 

role of attention in stimulus-stop learning has not yet been considered (and, indeed, is something we 

did not discuss in our recent review; Verbruggen, Best et al., 2014). In previous studies demonstrating 

stimulus-stop learning (e.g. Verbruggen & Logan, 2008b), the go/stop items were task-relevant as 

they determined the required response; consequently, optimal task performance in these studies 

depended on participants attending to the stop items (as opposed to the signals). In the present study, 

we adapted a paradigm frequently used in applied research (e.g. Houben & Jansen, 2011) whereby go/

stop signals were superimposed on a series of images. This was advantageous as it allowed us to vary 

the representation of the go/stop signals throughout the task whilst independently manipulating the 

image-stop contingencies. However, a consequence of this procedure is that optimal task performance 

does not depend on attending to the stop-associated images. Initially, the task-irrelevant images may 
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have captured attention because they were novel, allowing the effects of learning to emerge. But 

habituation to the images and reduced salience may have reduced attentional capture, and 

consequently, weakened or even eliminated the effects of stop-learning on behavior in later blocks.

The hypothesized role of attention in the acquisition of stimulus-stop associations is 

consistent with the associative-learning literature. For example, a review by Kruschke (2003) 

indicates that attention is crucial in explaining associative learning phenomena. Following the 

principles first enunciated by Mackintosh (1975), he argued that attending to informative cues whilst 

ignoring irrelevant cues will accelerate learning. Furthermore, the amount of attention that is paid to 

the cues will determine the influence of acquired associations on behavior. In a similar vein, Instance 

Theory assumes that attention determines what is learned and what is retrieved (Logan & Etherton, 

1994; Logan, 1988). But attention can also be influenced by learning. For example, the learned 

predictability of the outcome relative to other concurrently presented cues may influence the extent to 

which cues are considered informative or salient, and consequently, the extent to which participants 

attend to them (see Mackintosh, 1975). Consistent with this suggestion, Livesey & McLaren (2007) 

demonstrated that stimuli that were better predictors of an outcome became relatively more salient 

than stimuli that were worse predictors of the outcome over practice (see also Le Pelley & McLaren, 

2003)2. In other words, previous research indicates that attention and associative learning go hand in 

hand.

In Experiment 1, the stop-associated images could be considered relatively worse predictors 

of the stop goal when presented with a stop signal. After all, the stop-associated images were 

associated with the stop goal (i.e. the outcome in this case) on 75% of the trials, whereas any given 

stop signal (e.g. the consonants 't' or 'n') was associated with the stop goal on 100% of presentations. 

Similarly, control images could occur on both go and stop trials. Therefore, attentional accounts of 

associative learning predict that the images would decrease in salience with exposure; consequently, 

their contribution to performance would also diminish with increased image exposure (see Le Pelley, 

Suret & Beesley, 2009). The suggestion that the relative salience of the images diminished during 

training is also consistent with conflict monitoring accounts (e.g. Botvinick, Braver, Barch, Carter & 

Cohen, 2001). These accounts predict decreased attention to the images due to response conflict 

triggered by the inconsistency in the predictability of these images. For instance, Egner & Hirsch 

(2005) have demonstrated that when response conflict is detected, task-relevant information is 

amplified. Hence, conflict detection accounts predict that participants should increase their attention 

to the go/stop signals relative to the task-irrelevant images. Thus, in this regard, the main difference 

between the associative learning and conflict monitoring accounts is the detailed mechanism by which 
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the cognitive system adjusts attentional settings. The conflict account requires conflict to drive this 

change in attention whereas the associability account does not. All the latter requires is that one 

stimulus (in this case the stop signal itself) has a greater associative strength to the outcome 

(stopping) than the other stimulus present (the image). 

In sum, the findings of Experiment 1 show that participants can acquire direct associations 

between specific stimuli and the stop goal. However, despite reliable learning effects in the training 

phase and in expectancy ratings obtained following task completion, we found no evidence of 

learning in the test phase when the stimulus-stop mappings were reversed. We hypothesize that 

attention plays a role in determining the influence of stimulus-stop learning on behavior. This idea 

could put important constraints on current theories of the automaticity of control processes. Therefore, 

we conducted three more experiments to replicate and extend the findings of Experiment 1, and to 

explore the role of attention in the influence of stimulus-stop associations on behavior. 

Experiment 2

In Experiment 1, we hypothesized that habituation and the predictability of the signal-stop 

contingency relative to the image-stop contingency decreased the amount of attention that was paid to 

the stop-associated images over practice. To investigate the predictability hypothesis, in Experiment 

2, we manipulated the contingency between the images and stopping, to ensure that the stop-

associated images were paired with a stop signal and were predictive of the stop goal on 100% of 

presentations during training (cf. 75% of presentations in Experiment 1). This should prevent conflict 

driving down attention, but it would not abolish any associability effects as the stop signal would still 

tend to be the stimulus with the strongest connection to stopping. All that an associability theory 

requires for the images to lose attention is that they are worse predictors of the outcome relative to the 

stop signal(s). This will occur when the stop signal(s) always predicts the outcome whereas the 

images only predict the stop goal on the trials on which they occur. As a result, image associability 

will be driven down in a block, and will not have time to recover when the stop signal changes at the 

beginning of each block.

Method 

Subjects. Thirty students from the University of Exeter participated for monetary 

compensation (£5) or partial course credit (M = 19.97 years, SD = 2.81, 23 females, 27 right-handed). 

No participants were excluded. 
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Apparatus, stimuli, procedure, and analyses. The apparatus, stimuli and procedure were 

identical to those of Experiment 1, except for the following changes: the stop-associated images (10 

images) were paired with a stop signal on 100% of trials during the training phase, and were never 

paired with a stop signal in the test phase; the go-associated images (30 images) were never paired 

with a stop signal in the training phase, but some of these images were paired with a stop signal in the 

test phase (20 old go-associated images were never paired with a stop signal; 10 old go-associated 

images were paired with a stop signal on 100% of the trials). The analyses were identical to those of 

Experiment 1, except that the contingencies meant that, for obvious reasons, we could not examine 

the effect of image type on go RTs or p(respond|stop) in the training phase of this experiment (see 

Table 1).

Results

Training phase. In the training phase, the RT for the go-associated images reliably decreased 

as a function of block (p = 0.038). This suggests that participants acquired the stimulus-go 

associations during the training. The p(respond|stop) for the stop-associated images did not reliably 

decrease as a function of practice (Figure 4, Table 3), which could be due to a floor effect. 

Test phase. Contrary to the predictions of the automatic inhibition hypothesis, go RT was not 

influenced by image type in the test phase when the image-stop mappings were reversed (Table 4). As 

in Experiment 1, the absence of an effect in the test phase cannot be accounted for by the overall 

speeding of RTs (for RT distributions, see Supplementary Material). 

Expectancy ratings. Despite the absence of an effect of image-stop learning in the test phase, 

expectancy ratings obtained following task completion revealed a main effect of image type: 

participants expected to withhold their response more for the stop-associated images (5.99) than for 

the go-associated images (3.86), t(29) = -5.17, p < 0.001, gav = 1.436. This suggests that participants 

had learned the image-stop contingencies during training, even though these contingencies did not 

significantly influence performance in the test phase. The ‘stop minus go’ image expectancy 

difference did not significantly correlate with the RT difference in the test phase, r(28) = 0.262, p = 

0.162. Note that the ‘stop minus go’ expectancy difference was larger in Experiment 2 than in 

Experiment 1 (in which stop items could occur on 25% of go trials in the training phase), t(49) = 

-2.47, p = 0.017, Cohen’s d = 0.644. In other words, this between-experiment comparison indicates 

that the image-stop contingency (100% in Experiment 2 relative to 75% in Experiment 1) influenced 

expectancy ratings but it did not influence performance during the test phase. 
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Discussion

In Experiment 2, we investigated whether the relative predictability of the stop-associated images 

influenced the extent to which the acquired stimulus-stop associations influenced task performance 

when these mappings were reversed. Therefore, the stop-associated images were paired with stopping 

on 100% of presentations during training (cf. 75% of presentations in Experiment 1). 

Consistent with Experiment 1, the decrease in go RT for the go-associated images shows that 

participants acquired the stimulus associations during training (i.e. they associated the go-associated 

images with responding), and the expectancy ratings obtained following task completion show that 

participants expected to stop their responses more for the stop-associated images than for the go-

associated images. Furthermore, these expectancy ratings were sensitive to the increased 

predictability of the stop-associated images as the expectancy difference between stop-associated and 

go-associated images was larger in Experiment 2 than in Experiment 1. However, as in Experiment 1, 

RTs were comparable for the old stop-associated images and the old go-associated images in the test 

phase, which indicates that the acquired associations did not influence performance in the test phase 

when the image-stop mappings reversed. On the face of it, these results do not support the conflict 

account of attentional modulation (e.g. Botvinick, Braver, Barch, Carter & Cohen, 2001). However, it 

is possible that participants quickly learned to ignore the images in the test phase when the mapping 

had reversed. Consistent with this idea, participants were slower to respond to the stop-associated 

images (382 ms) than to the go-associated images (376 ms) in the first half of block 13, but this was in 

the opposite direction in the second half of block 13 (stop-associated images: 374 ms, go-associated 

images: 380 ms; this reversal could be due to an increased error signal in the first half of the test 

phase). This suggests that participants may have quickly re-learnt the new mappings in the test phase. 

Note that we did not conduct any inferential statistics on this difference due to low numbers of trials 

(≤ 20 trials per cell). An alternative possibility is that participants habituated to the images and 

stopped paying attention to them because the images were less novel. We tested the habituation 

hypothesis in Experiment 3. 

Experiment 3

The aim of Experiment 2 was to investigate whether the relative predictiveness of the stop-associated 

images influenced the extent to which the stimulus-stop mappings acquired during training influenced 

task performance in the test phase. However, even though participants acquired the stimulus-stop 

mappings, these mappings did not modulate performance in the test phase. It is possible that did not 

prevent participants ‘tuning-out’ attention to these images over practice because they became less 
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novel. Therefore, in Experiment 3 we investigated whether stimulus exposure influenced the extent to 

which participants attended to the stop-associated images. To this end, we halved the number of 

stimulus presentations in the training phase, such that there were 12 presentations prior to the test 

phase (cf. 24 presentations in Experiments 1 & 2). 

Method

Subjects. Thirty-two students from the University of Exeter participated for monetary 

compensation (£5) or partial course credit (M = 19.19 years, SD = 1.49, 26 females, 29 right-handed). 

One participant was excluded because they incorrectly executed a response on ≥ 30% of stop trials. 

The data with this participant included are available as Supplementary Material. 

Apparatus, stimuli, procedure, and analyses. The apparatus, stimuli and procedure were 

identical to those of Experiments 1 and 2, except for the following changes: each image was presented 

once per block (i.e. 14 presentations in total). To ensure that the overall p(stop) was the same as in 

Experiments 1 and 2, the reduced number of image presentations meant that the stimulus-stop 

contingencies for the go and the control images in the test phase had to be altered (for the specific 

contingencies, see Table 1). As in Experiment 1, the stop-associated images were paired with a stop 

signal on 75% of presentations during the training phase to provide an index of image-stop learning 

during training. For comparison with Experiments 1 and 2, in the analyses the blocks were collapsed 

to ensure that the number of observations per cell was comparable. 

Results

Training phase. In the training phase, the main effect of image type on go RTs was 

marginally significant (p = 0.058); planned comparisons revealed marginally significant differences 

between the stop-associated images (428 ms) and the go-associated images (422 ms), t(30) = -1.99, p 

= 0.055, gav = 0.234, and between the stop-associated images and the control images (422 ms), t(30) = 

-1.92, p = 0.064, gav = 0.242.  There was no reliable difference between the control and the go-

associated images, t(30) = 0.28, p = 0.777, gav = 0.017. However, Figure 5 shows that RTs were longer 

for the stop-associated images than for the control and the go-associated images in blocks 1-3, but this 

difference disappeared from block 4 onwards. This conclusion was supported by a reliable interaction 

between image type and block (p = 0.005). The overall main effect of block was reliable, suggesting 

that participants improved as a function of task practice (p < 0.001). There were no reliable 

differences in p(respond|stop). 
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Test phase. As in Experiments 1 and 2, there was no main effect of image type on go RT in 

the test phase (p = 0.479). However, the difference in p(respond|stop) between the go-associated 

images (0.183) and the control images (0.125) was marginally significant, p = 0.062, suggesting that 

the image-go associations did influence test phase performance to some extent (Table 4).

Expectancy ratings. Consistent with the previous experiments, image type influenced 

expectancy ratings, F(2, 60) = 11.44, p < 0.001, gen. η2 = 0.136. Expectancy ratings were greater for 

the stop-associated images (5.54) than for the go-associated images (4.57), t(30) = -3.50, p = 0.001, 

gav = 0.850, and the control images (4.76), t(30) = -3.44, p = 0.001, gav = 0.687. There was no reliable 

difference between the control images and the go-associated images, t(30) = -1.84, p = 0.075, gav = 

0.199.  However, the expectancy differences did not correlate with the corresponding RT differences 

(r’s ≤ 0.136, p’s ≥ 0.464). 

Discussion

In Experiment 3, we investigated whether the amount of exposure to the stop-associated images 

influenced the extent to which the stimulus-stop mappings acquired during training affected task 

performance in the test phase when the stimulus-stop mappings were reversed. 

Consistent with Experiment 1-2, our results indicate that participants acquired the stimulus-

stop mappings during training; participants were slower to respond to the stop-associated images than 

to the go images and the control images. However, this effect appeared and then disappeared again 

throughout practice; this conclusion was supported by a significant interaction between block and 

image type. This is consistent with the (numerically) diminished learning effect observed at the end of 

the training phase in Experiment 1. Furthermore, participants were not slower to respond to the stop-

associated images than to the go-associated images and to the control images in the test phase 

(although we observed a marginally significant difference between go and control images). This 

suggests that the amount of habituation to the images cannot entirely account for the absence of the 

test phase effect. This leaves an associability mechanism controlling attention to the stimuli as the 

most plausible explanation for the results of our experiments so far. 

As in Experiments 1-2, we find clear evidence that participants acquired the stimulus-stop 

contingencies in the expectancy ratings obtained following task completion; participants expected to 

stop their response more for the stop-associated images than for the go-associated images and the 

control images. This suggests that participants did not forget the stimulus-stop contingencies, despite 

the disappearance of the learning effect on task performance towards the end of the training phase and 

during the test phase. 
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Experiment 4

In the final experiment, we presented the image before the go and stop signals, and asked participants 

to rate whether they expected to stop or not. Furthermore, we presented the go and stop signals around 

the image, at one of four possible locations (one of four corners of the image; for a similar procedure 

see Houben & Jansen, 2011). These manipulations served two purposes. First, the results of 

Experiments 1-3 suggested that participants stopped paying attention to the task-irrelevant images. 

We tried to increase attention to the images by making them perfect predictors of the outcome 

(Experiment 2) or by decreasing image habituation (Experiment 3). These manipulations were only 

moderately effective: some behavioral indices indicate that our manipulation influenced learning, but 

the effect of learning on test performance still disappeared over training. By presenting the images 

before the go and stop signals, and asking participants to rate their stop expectancy, participants were 

less likely to ignore the images in Experiment 4 (however, subjects were not explicitly instructed to 

attend to the images so as to keep the image-stop mappings implicit as in Experiments 1-3). 

Furthermore, the images initially did not have the stop signal present as a competitor driving their 

associability down. If our attentional account is correct, we should observe the effects of stop training 

in the later blocks of the training phase and in the test phase. Second, in Experiments 1-3, we found 

that participants generated expectancies based on the image-stop associations acquired during 

training. In Experiment 1, expectancy correlated with some aspects of performance in the test phase, 

but we could not replicate this finding in Experiments 2-3. It is possible that obtaining the expectancy 

ratings following task performance meant that these expectancies were contaminated by the re-

learning of the new (inconsistent) mappings in the test phase. Therefore, in Experiment 4, we further 

investigated the role of expectancy in stimulus-stop learning by obtaining expectancy ratings during 

task performance (for a similar procedure, see e.g. McAndrew, Jones, McLaren & McLaren, 2012; 

Perruchet, Cleeremans & Destrebecqz, 2006). 

Method

Subjects. Thirty-two students from the University of Exeter participated for partial course 

credit (M = 18.47 years, SD = 0.62 years, 27 females, 31 right-handed). Four participants were 

excluded because they incorrectly executed a response on ≥ 30% of stop trials. The data with these 

participants included are available as Supplementary Material.  

Apparatus, stimuli, procedure & analyses. The apparatus, stimuli and procedure were 

identical to those of Experiment 3, except for the following changes: All trials began with the 
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presentation of the image in the centre of the screen. The word ‘RATING’ was presented above and 

below the image to instruct participants to rate ‘how much do you expect to withhold your response?’. 

Participants inputted their ratings on a scale between 1 ('I definitely do not think that I will have to 

withhold my response') and 9 ('I definitely think that I will have to withhold my response') using the 

number keys of the keyboard with their right index finger (latency rating response: M = 969 ms; sd = 

681 ms). After participants made their expectancy rating, a go/stop signal appeared at one of four 

locations on the screen (top-left, bottom-left, top-right, or bottom-right corner of the image). The 

delay between the expectancy response and the presentation of the go/stop signals varied randomly 

between 500 and 1250 ms. Participants responded on go trials by pressing the spacebar on a keyboard 

with their left index finger.  To allow for the presentation of the signals at each location on the screen, 

task rules used in Experiments 1-3 that were based on signal location (e.g. ‘X on the left/right of the 

image’) or signal shape (e.g. ‘shape bigger/smaller than a fifty pence piece’) were excluded and, of 

the remaining rules, seven rules were selected on the basis of response latencies in Experiments 1-3 

using a non-parametric box and whisker method (Tukey, 1977). A full list of the signals used appears 

in Appendix A. The expectancy ratings data in the training and test phase trials were analyzed 

separately using ANOVAs with image type and block as within-subjects factors.

Results 

Training phase. In the training phase, there was a reliable interaction between image type 

and block on go RTs (p = 0.03), reflecting slower responding for the stop-associated images than for 

the go-associated images and the control images in the second half of the training phase (see Figure 

6). The p(respond|stop) was also lower for the stop-associated images (0.152) than for the control 

images (0.185) (p = 0.011). The interaction between image type and block in the p(respond|stop) was 

not reliable.

The analysis of the online expectancy ratings also revealed a reliable image type by block 

interaction (p = 0.005), reflecting higher stopping expectancies for the stop-associated images in the 

second half of the training phase (blocks 4-6; see Figure 6C). There was also a reliable main effect of 

block on the expectancy ratings (p = 0.012): overall mean expectancy ratings decreased with task 

practice, which is consistent with the overall p(stop) of 0.25 (note, the increase in expectancy ratings 

across block for the stop-associated images was not reliable, p = 0.261). Combined, these findings 

indicate that participants were generating appropriate expectancies during the acquisition of the 

stimulus-stop mappings. Importantly, the overall ‘stop minus go’ expectancy ratings difference 

reliably correlated with the corresponding RT difference in the training phase, r(26) = 0.575, p = 
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0.001; the overall ‘stop minus control’ expectancy ratings difference also correlated with the 

corresponding RT difference, r(26) = 0.498, p = 0.006. 

Test phase. Unlike in Experiments 1-3, we found a main effect of image type on go RTs in 

the test phase (p = 0.004). Planned comparisons revealed that responding to the old stop-associated 

images was slower (443 ms) than to the go-associated images (422 ms), t(27) = -2.84, p = 0.008, gav = 

0.517, and to the control images (424 ms), t(27) = -2.87, p = 0.007, gav = 0.542. There was no reliable 

difference between the go and control images, t(27) = -0.31, p = 0.756, gav = 0.040, (Figure 6; Table 

3). Image type did not reliably influence p(respond|stop) in the test phase (however, the means were in 

the predicted direction, see Figure 6; Table 4).

There was also a reliable main effect of image type on test phase expectancies (p = 0.002); 

planned comparisons revealed that participants expected to stop more for the old stop-associated 

images (4.80) than for the go-associated images (3.86), t(27) = -2.65, p = 0.013, gav =  0.807, and the 

control images (4.01), t(27) = -2.83, p = 0.008,  gav =  0.719. There was no reliable difference between 

the go-associated and the control images, t(27) = -1.37, p = 0.181, gav =  0.143. As in the training 

phase, we found that the ‘stop minus go’ expectancy ratings difference reliably correlated with the 

corresponding RT difference, r(26) = 0.624, p < 0.001; the ‘stop minus control’ expectancy ratings 

difference also correlated with the corresponding RT difference, r(26) = 0.653, p < 0.001. Hence, 

participants who had a stronger expectancy to stop their response when the stop-associated images 

were presented displayed greater response slowing for these images than for the go-associated images 

and for the control images upon signal presentation. 

To further investigate to what extent the expectancy to stop determined response slowing for 

the stop-associated images, we conducted a median-split analysis on the expectancy ratings of the test 

phase (we could not perform a similar analysis in the training phase because there were not enough 

trials in each block). We calculated the median for each image type and participant separately. Ratings 

greater than the median were classified as a ‘stop’ expectancy whereas ratings less than or equal to the 

median were classified as a ‘go’ expectancy. Four participants were excluded from these analyses as 

they always entered the same expectancy rating for one or more of the image types (consequently, we 

could not perform a median split). We analyzed the data with a 2 (expectancy: stop vs. go) by 3 

(image type) ANOVA. Consistent with previous work on proactive control (see e.g. Verbruggen & 

Logan, 2009), responding was slower for trials on which participants expected a stop signal (445 ms) 

compared with trials on which participants expected a go signal (420 ms), F(1, 23) = 13.96, p = .001, 

gen. η2 = .088. As discussed above, image type also had a reliable main effect on performance. 

Importantly, the effects of stimulus-stop learning and expectancy were additive; i.e. the two-way 
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interaction between expectancy and image-type was not reliable, F(2, 46) = .08, p = .915, gen. η2 < .

001 (for descriptive statistics, see Table 5). Thus, the slowing for the stop-associated images is 

unlikely to reflect an entirely strategic, expectancy-driven effect.

Discussion

Consistent with the results of Experiments 1-3, we find evidence that participants acquired the 

stimulus-stop associations. In the training phase, responding became slower for the stop-associated 

images than for the go-associated images and the control images with task practice, and the p(respond|

stop) was lower for the stop-associated images than for the control images. In addition, the 

expectancy ratings showed that participants generated expectancies that were consistent with the 

trained stimulus-stop contingencies in the second half of the training phase. These expectancies 

correlated with task performance in the training phase: participants who expected to withhold their 

response more to the stop-associated images responded more slowly to these images than to the go-

associated images and to the control images during training. Unlike in Experiments 1-3, we find that 

learning also influenced performance in the test phase: participants were slower to respond to the 

stop-associated images than to the go-associated images and the control images during the test phase. 

Our results suggest that presenting the images before the go/stop signals and asking 

participants to rate their expectancy on each trial increased the extent to which participants attended to 

these images. In order to ensure that attention to the task-irrelevant images was maximized, we 

combined these manipulations in the same procedure. As a consequence, we cannot determine the 

relative contributions of these manipulations to the observed slowing for the stop-associated images in 

the test phase. One could speculate that the observed slowing reflects an entirely strategic, 

expectancy-driven effect, rather than the implicit retrieval of the acquired stimulus-stop associations 

(as predicted by the automatic inhibition account). We argue that this explanation is unlikely for 

several reasons. First, our median split analysis on expectancy ratings in the test phase shows that the 

slowing for the stop-associated images occurred even when stop signal expectancy was relatively low. 

This result suggests that expectancy ratings cannot account for the whole data pattern3. Second, 

previous studies have demonstrated stop-learning effects using procedures in which the stop-

associated stimuli are presented prior to stop-signal onset but, unlike the present experiment, without 

expectancy ratings on each trial. For example, in a recent study we presented the stop-associated 

stimuli as ‘warning cues’ for a variable duration prior to the presentation of the stop signal, and 

observed stop learning effects during the training and test phases (Bowditch, Verbruggen & McLaren, 

2015). Similarly, Veling and colleagues have conducted two experiments using go/no-go designs in 
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which food images were presented 100 ms (Veling, van Koningsbruggen, Aarts & Stroebe, 2014) or 

500 ms (Veling, Aarts & Stoebe, 2013) prior to the onset of the go/no-go signal. They found that when 

the food images were consistently presented on no-go trials, subsequent choice of the food items was 

reduced (Veling, Aarts & Stroebe, 2013) and weight loss was facilitated (Veling et al., 2014). Finally, 

research in the wider action control literature is consistent with the pattern of findings in the present 

study. For example, Frings and Moeller (2012) found that associations between old distractor stimuli 

and the previously required target response only interfered with responding when the distractors were 

presented prior to the target stimuli. Combined, these studies suggest that presenting the task-

irrelevant image before the go or no-go signal increases attention to the images, and consequently, the 

probability that the image-stop association are retrieved. However, future research is required to 

determine the relative contributions of increased attention and expectancies (see e.g. Best, Stevens, et 

al., 2015; Footnote 3).  

To conclude, the presence of a learning effect in the test phase is consistent with our 

hypothesis that attention to the images determines whether acquired stimulus-stop associations 

influence behavior in the test phase. Now that the images are task-relevant and associability is no 

longer driven down for the images by virtue of their competition for attention with the stop signal, we 

see a strong effect on test phase go RTs. Furthermore, the test-phase expectancy ratings show that 

participants continued to generate expectancies consistent with the image-stop mappings acquired 

during training, despite the reversal of these mappings. As in the training phase, these expectancies 

reliably correlated with task performance: participants who expected to withhold their response more 

for the stop-associated images responded more slowly to these images than to the go-associated 

images and to the control images in the test phase. However, the median split also suggested a 

contribution of implicit (non-expectancy related) processes.  

General Discussion

In the present study, we investigated three outstanding issues relating to the mechanisms of stimulus-

stop learning. The first two issues were highlighted in our recent review on stimulus-stop learning 

(Verbruggen, Best, et al., 2014): (1) are associations between stimuli and stopping direct, and (2) what 

is the role of expectancy in stimulus-stop learning? Based on the results of Experiment 1, 

Experiments 2-4 also investigated a third issue: (3) does attention to the stop items affect the extent to 

which stimulus-stop learning influences behavior? Based on our findings, we can answer each of these 

questions.
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Are associations between stimuli and stopping direct?

Across four experiments where the specific stop signals and rules were always changing, we provide 

strong evidence for the idea that participants can learn direct stimulus-stop associations (Verbruggen 

& Logan, 2008b). During training, we found that responding was slower (Experiments 1, 3, and 4; in 

Experiment 2, we could not compare stop and go-associated images in the training phase) and the 

p(respond|stop) was lower (Experiment 1 & Experiment 4) for images that were consistently 

associated with stopping than for images associated with going and for control images that were not 

particularly associated with stopping or going.

In recent experiments, we have observed that learning can influence the p(respond|stop) but 

not response latencies on go trials (see e.g. Experiment 2 in Verbruggen, Best, et al., 2014). Based on 

previous findings in the conditioning literature (for a review, see Hall, 2002), we hypothesized that 

participants in these experiments learned an association between an item and a representation of a no-

go or stop signal. Hence, when the item was repeated, it primed the signal so that it was detected 

sooner on stop-signal trials, resulting in improved response inhibition and, consequently, a lower 

p(respond|stop). The signal priming idea explains why it can be that learning influences the 

probability of stopping on signal trials without influencing response latencies on go trials. In the 

present study, both RTs and p(respond|stop) were influenced even though the go/stop signals and task 

rules constantly changed (and there were two go signals and two stop signals in each block). This 

indicates that learning was not (solely) mediated via image-signal associations. The most 

parsimonious account is that the effects in the present study reflect the direct association of the stop-

associated images with a stop goal, rather than the association of the stop-associated images with the 

representation of a single stop signal. Therefore, the present study provides the strongest evidence to 

date for the original automatic inhibition hypothesis of stimulus-stop (goal) learning. In situations 

where the task rules do not constantly change, it is likely that individuals will acquire both stimulus-

goal and stimulus-signal associations (indeed, research in the conditioning literature suggests that the 

acquisition of multiple associations is the norm; Hall, 2002). It is possible that experimental factors, 

such as the perceptual properties of the stop signal, will influence which association dominates 

behavior. 

It is important to note that the learning effects demonstrated in the present study are assumed 

to reflect the acquisition of stimulus-stop associations rather than the absence of stimulus-go learning 

on stop trials. Whilst the ‘absence of go learning’ explanation may initially seem parsimonious, it 

cannot account for several findings previously reported in the stop-learning literature. First, we have 

previously demonstrated that responding to old stop items is slowed compared with novel items that 



25

were not presented during training (hence, these items were not associated with going or stopping; 

Verbruggen & Logan, 2008b, Exp 1). Second, neuroimaging work has shown that the presentation of 

old stop items activates the neural inhibitory control network (Lenartowicz et al., 2011; but see also 

below). Third, brain stimulation studies have shown that even when the probability of go and no-go 

signals is equal (i.e. 50/50), motor-evoked potentials are below baseline 200-300 ms following no-go 

stimulus presentation (indicating that responding is suppressed; Leocani, Cohen & Wassermann, 

2000). In other words, successful performance on a no-go trial requires the activation of a no-go or 

stop response, and not just the absence of a go response. Fourth, short-term after-effects of stopping 

further support the idea that participants can learn stimulus-stop associations that can have a (global) 

inhibitory effect on responding (Giesen & Rothermund, 2014). Finally, in the present experiments, 

response latencies decrease for go and control images but we observe an initial increase in response 

latencies for stop-associated images over practice (Experiment 1). In Experiments 3 and 4, this 

conclusion is further supported by a reliable interaction between image type and block. Finally, the 

comparison of expectancy ratings in Experiments 1 and 2 revealed that expectancy ratings were 

altered when the image-stop consistencies had changed (even though the image-go contingencies did 

not change). Therefore, previous results and the findings reported in the present study are consistent 

with the idea that participants can learn go associations on go trials and stop associations on stop trials 

(which interfere with responding).

What is the role of expectancy in stimulus-stop learning?

In the present study, we show that participants generated expectancies that were consistent with the 

stimulus-stop mappings acquired during training: participants expected to withhold their responses 

more when stop-associated images were presented than when go and control images were presented. 

Furthermore, these expectancy ratings were sensitive to the specific contingencies in play: participants 

expected to withhold their responses more for the stop-associated images that were reinforced on 

100% of presentations (Experiment 2) than for the stop-associated images that were reinforced on 

75% of presentations (Experiment 1). Finally, we found that these expectancies correlated with task 

performance both during the acquisition of the stimulus-stop mappings in the training phase 

(Experiment 4) and following the reversal of these mappings in the test phase (Experiment 1 & 

Experiment 4). 

The role of expectancies in stimulus-stop learning has not been previously investigated. 

Therefore, the present study provides the first evidence that stimulus-stop learning is partly mediated 

via explicit knowledge of the stimulus-stop contingencies in play (although the median split analysis 

and the absence of significant correlations in some of the experiments indicate that implicit processes 
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must play a role as well). This could indicate that the response slowing observed for the stop-

associated images is caused by top-down control processes. First, the slowing could be partly due to 

proactive control. According to this proactive control account of stimulus-stop learning, stop items 

could become predictive cues (e.g. if image X then p(stop) is high) that indicate that participants 

should adjust their response strategies accordingly. If this were the case, this would suggest that 

earlier findings that have demonstrated response slowing and neural activation of the inhibitory 

control network by old stop items (Lenartowicz et al., 2011) could be due to proactive control (i.e. 

another algorithmic process), rather than the direct activation of the stop response via memory-

retrieval (i.e. picture X = stop). Therefore, whilst the retrieval of the stimulus-stop association may 

still be automatic, the subsequent slowing observed following the reversal of the stimulus-stop 

mapping would be due to a top-down control process (rather than a bottom-up process as is currently 

assumed). Second, stop items could effectively become a new stop signal (the direct stopping 

account). In other words, the only difference between the stop items and an external stop signal is that 

the association with stopping is acquired via learning in the case of the stop items, whereas it is 

acquired via instructions in the case of the stop signal. Thus, in both cases, response inhibition is a 

deliberate act of control. But the advantage of the former form of control is that the go and stop 

processes in stop-signal tasks could be initiated simultaneously and, therefore, start the race at the 

same time (Logan & Cowan, 1984); consequently, response inhibition is more likely to succeed. 

It is important to note, however, that the proactive control route and the direct stopping route 

are both compatible with the idea that associative learning plays a key role in response inhibition 

paradigms; indeed, both accounts still assume that stimulus-specific learning influences stop 

performance. Learning offers participants another route to control their behavior. The key difference 

between these two top-down accounts and the ‘automatic’ inhibition account is the nature of the 

process that occurs following the retrieval of the stimulus-stop association; either this association 

directly activates the stop goal via an S-R based link (in the automatic stopping account) or this 

association indirectly activates the stop goal via a top-down (algorithmic and deliberate) control 

process. Future research is required to distinguish between these accounts (see e.g. Best, Stevens, et 

al., 2015). 

Does attention to the stop items affect the extent to which stimulus-stop learning influences 

behavior? 

In Experiments 1-3, the acquired stimulus-stop associations did not influence performance in the test 

phase, despite effects of learning on task performance in the training phase and on expectancies 
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following task completion (suggesting that participants had not forgotten the stimulus-stop 

associations). 

A potential explanation for this finding is that the images used in the present study were task-

irrelevant so participants may have begun to ignore the images as they became less novel and as they 

learned that they were less predictive. In Experiments 1-3, task performance did not require 

participants to attend to the stop-associated stimuli (unlike in our previous work; see e.g. Verbruggen 

& Logan, 2008b), so participants may have started ignoring all the images over time. In line with this 

possibility, the effect of image type reliably interacted with block (in Experiment 3) and visual 

inspection of the data shows that the influence of image-stop learning on performance began to 

disappear at the end of the training phase (Experiment 1). Since there were no differences between the 

image types in the final block of the training phase, this may explain why we did not find any effect of 

image-stop learning in the test phase4. Several associative learning accounts suggest that the reduced 

predictiveness of the images relative to the go/stop signals (in Experiments 1 & 3) may have 

decreased the extent to which they were considered informative or salient and, consequently, the 

extent to which participants attended to them and the extent to which they can influence performance 

(Mackintosh, 1975). Effects that point to this conclusion have been previously observed in animals 

(see e.g. Sutherland & Mackintosh, 1971 for a review of this literature) and, importantly, also in 

humans (Le Pelley & McLaren, 2003; Livesey & McLaren, 2007; Suret & McLaren, 2005). For 

example, Le Pelley and McLaren (2003) showed that foods that were worse predictors of an outcome 

than other foods present on a trial in an allergy discrimination task became less salient, resulting in 

slower learning of a new association to these stimuli in a later training phase (cf. learned irrelevance; 

Mackintosh, 1975). Note that the majority of our results of Experiments 1-3 are also consistent with 

conflict monitoring accounts (e.g. Botvinick, Braver, Barch, Carter & Cohen, 2001), which predict 

that participants will ignore task-irrelevant information that produces response conflict or choice 

errors. However, unlike the associative learning accounts, these conflict monitoring accounts do not 

easily explain the absence of a learning effect in the test phase found in Experiment 2 when conflict 

should have been minimized by the use of 100% contingencies.

It is possible that the use of neutral images increased the extent to which participants began to 

‘tune out’ their attention. Motivationally-salient images capture attention even if they are task-

irrelevant (e.g. Anderson, Laurent & Yantis, 2011). Consequently, if task-irrelevant, but 

motivationally-salient images are used as the stop-associated stimuli, the attentional capture to the 

images would be increased, and the ‘tuning out’ of attention could be slowed. Thus, the salience of 
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task-irrelevant stop-associated stimuli could be a key consideration for applied studies examining the 

effects of no-go training effects on food and alcohol consumption. 

Importantly, we found a clear effect of stimulus-stop learning on test phase performance when 

attention to the images was increased in Experiment 4 (as a result of presenting them before the go/

stop signals and the requirement to make an online expectancy rating on each trial). This finding is 

consistent with the Instance Theory (Logan, 1988; Logan & Etherton, 1994) and other theories of 

associative learning. For example, Instance Theory suggests that processing episodes will only be 

stored and retrieved from memory when participants attend to each stimulus presentation (Logan, 

1988; Logan & Etherton, 1994). Thus, by encouraging subjects to attend to the image in Experiment 

4, the image-stop associations were more likely to be retrieved, and performance was influenced in 

the test phase. Therefore, the present study strongly indicates that the influence of image-stop learning 

on behavior is likely to be determined by the interplay of both attentional control and associative 

learning systems (see also Logan, 1988; Verbruggen, McLaren & Chambers, 2014). 

Wider implications

In addition to contributing to our theoretical understanding of stimulus-stop learning, the present 

study has implications for more applied research. First, our results indicate that attentional settings 

influence learning in response inhibition tasks. Even when salient images are used as stimuli (e.g. as 

in the food studies mentioned above), participants may still adjust their attentional settings, and ignore 

the images to a certain degree. Currently, the task-relevance of the stop-associated images used in 

current stop-training studies varies. Whilst the task-relevance of the images may not influence 

engagement in impulsive behaviors (e.g. impulsive eating can be prompted by implicit processing of 

food cues in the environment), our results suggest that designs in which participants must attend to the 

images should produce ‘stronger’ stimulus-stop associations that will have a more pronounced 

influence on stop-learning. Second, the present study indicates that it is possible to learn a direct 

association between a stimulus and a stop ‘goal’ or the act of withholding a response when multiple 

signals are used. When only one signal is used, there is the possibility that participants will learn 

stimulus-signal associations (as our recent results suggest; see above). Thus, if the aim is to obtain 

‘inhibition’ training effects that transfer to real-world settings where stop signals are no longer 

present, multiple signals may be preferable. 

In order to maximize the inhibitory control training effects, it is important to consider other 

features of the stop learning task as well. In the present study, we devised a novel task that combined 

features of the go/no-go task and the stop-signal task. In Experiments 1-3, the delay between the 
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presentation of the images and the go/stop signal was zero ms; in Experiment 4, the go and stop signal 

also occurred at the same moment (i.e. there was no delay between the go and the stop signal). But to 

avoid that subjects would simply wait on all trials, we used a low overall proportion of stop trials (.

25), imposed a relatively strict response deadline (750 ms) and provided feedback if the participant 

did not respond in time. We believe that this hybrid design is optimal to investigate stop learning it 

allows us to manipulate the go/stop signal representation whilst maximizing the number of correct 

stop trials. After all, our previous work indicates that stimulus-stop associations are less likely to be 

learned when inhibition is unsuccessful (Verbruggen & Logan, 2008a, 2008b; Verbruggen et al., 

2008). The idea that the stop outcome is important is further supported by studies in the applied 

domain. Stop learning effects on task performance and on food- and alcohol consumption have been 

observed after both go/no-go and stop-signal training (see above). However, a recent meta-analysis 

indicates that go/no-go training has stronger effects on appetitive behavior than stop training (Jones et 

al., 2015). This could be due to generally higher success rates in the go/no-go task (Jones et al., 2015; 

Verbruggen & Logan, 2008b). Neuroimaging research also shows that, despite some overlap, there 

may be several differences in the neural substrates of the go/no-go and stop-signal tasks (for a 

discussion; see e.g. Eagle, Bari & Robbins, 2008; Swick, Ashlet & Turken, 2011). Thus, it is possible 

that the differences between the training protocols could be due to other factors as well. Future 

research is required to investigate the specific action control processes influenced by stop learning in 

these tasks. 

Our results indicate that expectancies also play a role in stop-learning paradigms. It is 

possible that differences in the expectancy to stop are present in applied studies, especially as the go/

stop rule is typically simpler (and remains the same throughout the task), the image-stop mappings are 

more explicit, and the stimulus set smaller than in the present study. In applied studies, expectancies 

and demand characteristics may play an important role (Boot et al, 2013). However, it is currently 

unclear the extent to which the expectancy effects observed in the present study relate to the demand 

characteristics identified by Boot and colleagues (2013) and, indeed, the behavioral findings of 

applied stop-training studies. For example, there are some procedural differences between the present 

study and stop-training studies (e.g. in Experiment 4, we obtained an expectancy rating on every 

trial). Similarly, whilst our results show a relationship between expectancy and go RT, it is unclear the 

extent to which expectancy equates to other dependent variables used in the stop-training studies, 

such as food intake or stimulus devaluation (see e.g. Wessel, O'Doherty, Berkebile, Linderman, Aron, 

2014). For example, a recent stop-training study from our lab suggests that whilst a substantial 

proportion of participants became aware of the stimulus-stop contingencies during training (in a 
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funneled debrief, 83% of participants in Experiment 1 and 74% of participants in Experiment 2 

reported knowledge that specific images were associated with stopping), the majority of participants 

did not expect these image-stop associations to influence their subsequent food intake (Lawrence et 

al., 2015). Nevertheless, we believe that future applied research should include a dependent variable 

that is sensitive enough (see Newell & Shanks, 2014), such as expectancy ratings (e.g. Stothart, 

Simons, Boot & Kramer, 2014), to examine the extent to which the behavioral effects observed both 

during and following inhibitory control training relate to the expectancy to stop. 

Conclusion

In sum, the present findings indicate that participants can learn direct associations between stimuli 

and a stop goal when the go/stop rule changes at the beginning of each block. Exposure to the image-

stop associations influenced task performance during training, and expectancies following task 

completion. However these results also suggest that attention to stimulus attributes is key for retrieval 

of processing episodes; if participants do not attend to the stop stimulus then the previously acquired 

stimulus-stop associations will not influence behavior. Our results are consistent with the Instance 

Theory and other attentional accounts of associative learning.
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Footnotes

1 In this context, a task goal refers to an abstract representation of going or stopping; in other words, it 
does not specify which specific response or motor program has to be executed. Consistent with the 
goal account, Giesen & Rothermund (2014) recently demonstrated that stop associations may have 
global effects on responding.

2  There is some evidence that suggests that inconsistent reinforcement can increase attention to, and 
motivation salience of, conditioned stimuli. For example, the Pearce-Hall (1980) model suggests that 
associability is maintained for stimuli that are followed by unpredictable outcomes. However, despite 
animal data in support of this effect (e.g. Anselme, Robinson & Berridge, 2013), there is relatively 
little data showing this effect in humans (see Hogarth, Dickinson, Austin, Brown & Duka, 2008). The 
weight of evidence using humans participants is in favour of the Mackintosh (1975) model outlined 
above (but for a combination of both algorithms in one model, see Pearce & Mackintosh, 2010).

3 This conclusion is further supported by a recent study in which we directly manipulated knowledge 
of the stimulus-stop contingencies whilst measuring attentional focus during task performance (Best, 
Stevens, McLaren & Verbruggen, 2015). The data pattern in the explicit condition was similar to the 
pattern observed in a proactive control study using the same paradigm (Verbruggen, Stevens, et al., 
2014). Importantly, the data pattern looked qualitatively different in the implicit condition, suggesting 
that the response slowing for stop-associated items was not (entirely) due to proactive control 
adjustments resulting from the expectancy to stop. 

4 We can rule out the possibility that the absence of a test phase effect in Experiments 1-3 is due to the 
use of images or the frequent rule switching. In Appendix B, we present the results of an experiment 
in which we used a word version of the go/stop task with a single rule. In this experiment, reversing 
the word-go/stop mapping in the test phase did not influence performance either. 
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Tables

Table 1: Proportion of stop-signal trials as a function of experiment, image type and 

phase. The overall p(stop-signal) both across experiments and within the experimental 

phases was 0.25.

Experiment 1
stop-associated
go-associated
control

Experiment 2
stop-associated
go-associated

Experiment 3 & Experiment 4
stop-associated
go-associated
control

# images

8
16
16

10
30

8
16
16

%  stop-signal trials 
Training phase

75%
0%
25%

100%
0%

75%
0%
25%

Test phase 

0%
8 images: 75%; 8 images: 0%

25%

0%
20 images: 0%; 10 images: 100%

0%
4 images: 0%; 12 images: 50%
8 images: 0%; 8 images: 50%
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Table 2: Probability of a missed go response [p(miss)] as a function of experiment, image 

type and experimental phase. P(miss) is the ratio of the number of omitted responses to the 

total number of no-stop-signal trials: p(miss) = missed/ (correct + missed). M = mean; sd = 

standard deviation. 

Experiment 1
stop-associated
go-associated
control

Experiment 2
stop-associated
go-associated

Experiment 3
stop-associated
go-associated
control

Experiment 4
stop-associated
go-associated
control

Training phase
M

0.020
0.015
0.016

-
0.016

0.028
0.023
0.018

0.028
0.020
0.021

sd

0.071
0.024
0.028

-
0.025

0.083
0.034
0.031

0.088
0.032
0.032

Test phase 
M

0.013
0.014
0.017

0.024
0.013

0.038
0.037
0.036

0.018
0.007
0.025

sd

0.033
0.024
0.036

0.043
0.031

0.060
0.062
0.052

0.033
0.018
0.036
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Table 3: Overview of repeated Analyses of Variance performed to compare go and stop 

training phase performance. Image type (Experiments 1, 3, & 4: stop-associated, go-

associated, control) and block (Experiments 1 & 2: 1-12; Experiments 3 & 4: 1-6) are the 

within-subjects factors. We did not analyze p(miss) because values were low. 

Experiment 1
Go Reaction Time

image type
block
image type:block

p(respond|stop)
image type
block
image type:block

Experiment 2 
Go Reaction Time

block
p(respond|stop)

block
Experiment 3

Go Reaction Time
image type
block
image type:block

p(respond|stop)
image type
block
image type:block

Experiment 4
Go Reaction Time

image type
block
image type:block

p(respond|stop)
image type
block
image type:block

df 1

2
11
22

1
11
11

11

11

2
5
10

1
5
5

1
5
5

1
5
5

df 2

56
308
616

28
308
308

319

319

60
150
300

30
150
150

27
135
135

27
135
135

SS1

21980
43427
17475

0.071
0.547
0.154

27502

0.199

5589
64257
16048

0.010
0.053
0.055

6447
51108
12088

0.087
0.109
0.180

SS2

41878
1438376
431981

0.323
7.616
3.384

405062

3.846

47836
437275
162531

0.200
2.688
1.780

70581
157194
128773

0.317
1.857
2.363

F

14.70
0.85
1.13

6.17
2.01
1.28

1.97

1.50

3.51
4.41
2.96

1.48
0.60
0.93

2.47
8.78
2.53

7.45
1.58
2.05

p 

< 0.001
0.575
0.331

0.019
0.043
0.238

0.039

0.136

0.058
< 0.001
0.005

0.232
0.703
0.461

0.128
0.000
0.037

0.011
0.173
0.077

gen. η2

0.009
0.017
0.007

0.005
0.040
0.011

0.037

0.037

0.006
0.061
0.016

0.002
0.009
0.009

0.012
0.085
0.021

0.015
0.019
0.031
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Table 4: Overview of repeated Analyses of Variance performed to compare go and stop 

test phase performance. Image type (Experiments 1, 3 & 4: stop-associated, go-associated, 

control, Experiment 2: stop-associated, go-associated) and block (Experiments 1 & 2: 

13-14; Experiments 3 & 4: 7) are the within-subjects factors. We did not analyse p(miss) 

because values were low. 

Experiment 1
Go Reaction Time

image type
block
image type:block

p(respond|stop)
image type
block
image type:block

Experiment 2 
Go Reaction Time

image type
block
image type:block

p(respond|stop)
block

Experiment 3
Go Reaction Time

image type
p(respond|stop)

image type
Experiment 4

Go Reaction Time
image type

p(respond|stop)
image type

df 1

2
1
2

1
1
1

1
1
1

1

2

1

2

1

df 2

56
28
56

28
28
28

29
29
29

29

60

30

54

27

SS1

471
2318
771

0.001
0.058
0.007

160
390
60

0.020

711

0.51

7329

0.050

SS2

22425
53598
13040

0.268
0.380
0.316

10621
47352
7087

0.337

28880

0.416

28228

0.473

F

0.59
1.21
1.66

0.16
4.24
0.64

0.44
0.24
0.25

1.73

0.74

3.73

7.01

2.83

p 

0.557
0.281
0.200

0.695
0.048
0.429

0.513
0.629
0.624

0.198

0.479

0.062

0.004

0.104

gen. η2

0.002
0.010
0.003

< 0.001
0.028
0.004

< 0.001
0.002

< 0.001

0.019

0.005

0.043

0.064

0.034
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Table 5:  Go reaction times (in ms) in the test phase as a function of expectancy (go, stop) and image 
type (stop-associated, go-associated, control) in Experiment 4. M = mean; sd = standard deviation. 

stop-associated
go-associated
control

Stop expectancy
M

453
437
440

sd
56
43
40

Go expectancy 
M

429
411
411

sd
51
36
33
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Figure captions

Figure 1: Overview of the architecture of the associative stop system (for a more detailed overview, 
see Verbruggen, Best et al., 2014). There are two associative routes to activating the stop-goal; a 
direct association between the stimulus or cue and the go/stop goal, or indirect association between 
the stimulus or cue and the go/stop goal that is mediated via a representation of the go/stop signal. 
Excitatory and inhibitory connections are represented on the diagram with arrows. 

Figure 2: Example go/stop trial sequence. The task rule changed at the beginning of each block (e.g. 
Block n: vowel = stop; consonant = go, Block n + 1: > 5 = stop; < 5 = go). In Experiments 1-3, the go/
stop signals were superimposed on top of the image (as shown). In Experiment 4, the signals were 
presented in one of the four corners of the image (top-left, bottom-left, top-right, bottom-right). 

Figure 3: go RTs (in ms; upper panel) and p(respond|stop) data (lower panel) for the three image types 
(stop; go; control) as a function of the block (blocks 1-12 = training phase; blocks 13- 14= test phase) 
in Experiment 1. Error bars are 95% confidence intervals.

Figure 4: go RTs (in ms; upper panel) and p(respond|stop) data (lower panel) for the two image types 
(stop; go) as a function of the block (blocks 1-12 = training phase; blocks 13- 14 = test phase) in 
Experiment 2. Error bars are 95% confidence intervals.

Figure 5: go RTs (in ms; upper panel) and p(respond|stop) data (lower panel) for the three image types  
(stop; go; control) as a function of the block (blocks 1-6 = training phase; block 7  = test phase) in 
Experiment 3. Error bars are 95% confidence intervals.

Figure 6: go RTs (in ms; upper panel), p(respond|stop) data (middle panel) and expectancy ratings 
(lower panel) for the three image types  (stop; go; control) as a function of the block (blocks 1-6 = 
training phase; block 7  = test phase) in Experiment 4. Error bars are 95% confidence intervals.
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Figure 1
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Figure 2
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Figure 3
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Figure 4 
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Figure 5 
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Figure 6
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Appendix A: 

A full list of the rules and the stimuli used in Experiments 1-4

In Experiments 1-3 we used fourteen go/stop rules. In Experiment 4, we used rules 1-7 

only. The signals used in rules 1-11 were presented in Arial (font size = 50). The sizes of 

the signals used in rules 12-14 are provided in pixels below (screen resolution: 1680 × 

1050).

1. Vowels ('a' or 'e') vs. consonants ('t' or 'n'). 
2. Symbols that are the same ('@@' or '&&') vs. symbols that are different ('@&' or '&@').
3. Uppercase letters ('H' or 'R') vs. lowercase letters ('h' or 'r').
4. Long symbol strings ('£%£%' or '%£%£') vs. short symbol strings ('£%' or '%£').
5. Curved letters ('S' or 'C') vs. angled letters ('K' or 'W').
6. Digits smaller than 5 ('2' or '4') vs. digits bigger than 5 ('6' or '8').
7. Curly brackets ('{' or '}') vs. square brackets ('[' or ']').
8. Words that refer to animals ('horse' or 'sheep') vs. words that refer to fruit ('lemon' or 'apple').
9. Symmetric letter strings ('UYYU' or 'YUUY') vs. asymmetric letter strings ('YYUU' or 

'UUYY').
10. Crosses on the left of image vs. crosses on the right of the image relative to the center 

(crosses appeared at the top and bottom of the image). 
11. Asterisks on the top of the image vs. asterisks on the bottom of the image relative to the 

center (asterisks appeared on the left and right of the image).
12. Horizontal lines (lines appeared across the top or bottom of the image relative to the center) 

[width: 240 pixels] vs.  vertical lines (lines appeared along the left or right of the image 
relative to the center) [height: 240 pixels].

13. Shapes bigger than a fifty pence piece (square or circle) [100 × 100 pixels] vs. shapes smaller 
than a fifty pence piece (square or circle) [40 × 40 pixels].

14. Lines thicker than a matchstick vs. lines thinner than a matchstick (lines appeared 
horizontally [width = 240 pixels] or vertically [height = 240 pixels] about the center of the 
image). 
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Appendix B: 

A word version of the go/stop task with a single rule

We also ran a word version of the go/stop task. On each trial, a colored word was 

presented. Half of the participants were instructed to respond when the ink color was green 

(in other words, green was the go signal), but to refrain from responding when the ink 

color was red (in other words, red was the stop signal). The color-go/stop mapping was 

reversed for the other participants (i.e. red=go; green=stop). In the training phase, half of 

the words always occurred on go trials; the other words always occurred on stop trials. In 

the test phase, the word-go/stop mapping was reversed. 

Method

Subjects. Twenty subjects from Vanderbilt University participated for monetary 

compensation ($12). All subjects reported normal or corrected-to-normal vision and were 

native speakers of English.

Apparatus and stimuli. The experiment was run on a PC running Tscope 

(Stevens, Lammertyn, Verbruggen & Vandierendonck, 2006) and the stimuli were 

presented on a 21-in monitor. A list of 32 words was drawn from a list of 640 words used 

by Arrington and Logan (2004): bamboo, barn, bead, blackboard, boar, buffalo, cabin

candle, cattle, cup, elephant, elm, eucalyptus, ferret, grasshopper, hammer, hamster, holly, 

leash, lemon, mushroom, paddle, rose, scissors, shamrock, shoelace, ski, slug, suitcase, 

toothbrush, tripod, trombone. For every subject, two random subsets of 16 words were 

selected. The first subset was presented on go trials in the training phase and on stop trials 

in the test phase; the second subset was presented on stop trials in the training phase and 

on go trials in the test phase. All stimuli were presented in a white lower case Courier font 

on a black background and ranged from 12 to 52 mm in width (approximately 1.1° to 5.0°) 

and 4 to 7 mm (approximately 0.4° to 0.7°) in height. 

Procedure. Subjects were seated individually in private testing rooms after 

providing informed consent. The experimenter left the room after giving instructions and 

watching the first few practice trials.

Unbeknown to the participants, there were two phases in the experiment. The 

training phase consisted of 16 blocks of 32 trials. In each training block, each word was 

presented once. The training phase was followed by a test phase in which the word-go/stop 
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mapping was reversed (e.g., for Participant 1, ‘bamboo’ always occurred on stop trials in 

the training phase, but it occurred on go trials in the test phase). The test phase consisted of 

6 blocks of 32 trials.

In both phases of both conditions, all trials started with the presentation of the 

colored word in the center of the screen. Half of the participants were instructed to press 

the space bar of a QWERTY keyboard with the index finger of the dominant hand as 

quickly as possible when the ink color was green, but to refrain from responding when the 

ink color was red. The color-go/stop mapping was reversed for the other participants. The 

word remained on the screen for 750 ms, regardless of go RT in order to equate study time 

for go and stop stimuli. A response could be given only while the stimulus was on the 

screen. The intertrial-interval was 750 ms. At the end of each block, the mean RT on go 

trials, the number of missed responses on go trials, and the number of incorrect responses 

on stop trials were displayed and subjects had to pause for 10 seconds, after which they 

could continue by pressing the space bar.

Results and Discussion

Table B1 shows that go performance in the test phase was comparable to performance in 

the last six training blocks. This was confirmed by a repeated measures ANOVA that 

examined the effect of block number (excluding blocks 1-10), F(11, 209) = 1.24, p = .26, 

gen. η2 = .016. Furthermore, we compared go RT in the last training block with go RT in 

the first test block using a Bayesian t-test (Rouder, Speckman, Sun, Morey & Iverson, 

2009), and found substantial support for the null hypothesis, B = .23. Thus, go 

performance was not influenced by the reversal of the word-go/stop mapping. Again, we 

attribute the absence of an effect of associative learning on performance to the interplay 

between attention and automaticity. In this experiment, we did not measure expectancy. 

P(respond|signal) was very low in both the training phase and the test phase (Table 

B1), so we did not analyze it further. 
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Table B1: Mean go RT (and standard deviation) and probability of responding on stop 

trials (p(R|S) for each block. The test blocks are in underlined. 

Go RT

p(R|S)

M
sd

M
sd

1

341
31

.03

.05

2

324
25

.01

.02

3

327
25

.02

.03

4

329
35

.01

.03

5

322
33

.01

.02

6

323
33

.02

.03

7

331
36

.03

.05

8

322
32

.01

.02

9

324
33

.02

.05

10

325
33

.01

.03

11

324
29

.01

.03

12

319
34

.03

.04

13

325
35

.03

.05

14

322
39

.01

.03

15

316
36

.01

.03

16

318
33

.02

.03

17

317
34

.02

.04

18

323
37

.03

.04

19

316
35

.03

.04

20

325
31

.02

.03

21

321
36

.01

.03

22

311
31

.02

.03
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Supplementary Material
Outlier Data

Subjects were excluded who incorrectly executed a response on ≥ 30% of the stop-signal trials. In 

Experiment 1, two subjects were excluded; in Experiment 3, one subject was excluded; in Experiment 

4, four subjects were excluded. No subjects were excluded from Experiment 2. Exclusion of these 

subjects did not substantially alter the overall pattern of data. The descriptive statistics with these 

subjects are presented in Tables S1 and S2. 

Table S1: Probability of a response on a stop-signal trial [p(respond|stop] and RT on go 
trials as a function of experiment, image type and experimental phase. M = mean; sd = 
standard deviation. 

Table S2: Expectancy ratings as a function of experiment and image type. M = mean; sd = 
standard deviation. 

Experiment 1
stop-associated
go-associated
control

Experiment 3
stop-associated
go-associated
control

Experiment 4
stop-associated
go-associated
control

p(respond|stop)
Training phase

M

0.149
-

0.167

0.124
-

0.134

0.177
-

0.214

sd

0.152
-

0.169

0.127
-

0.156

0.136
-

0.174

Test phase 
M

-
0.175
0.188

-
0.182
0.125

-
0.263
0.215

sd

-
0.164
0.185

-
0.153
0.119

-
0.183
0.209

Go RTs
Training phase

M

410
399
402

428
421
421

450
438
442

sd

61
48
47

54
37
39

51
40
39

Test phase
M

392
392
388

413
406
410

435
418
420

sd

43
39
45

46
40
39

50
36
31

Experiment 1
stop-associated
go-associated
control

Experiment 3
stop-associated
go-associated
control

Experiment 4
stop-associated
go-associated
control

Training phase
M

-
-
-

-
-
-

4.52
4.06
4.23

sd

-
-
-

-
-
-

1.15
1.13
1.03

Test phase 
M

-
-
-

-
-
-

4.77
3.91
4.02

sd

-
-
-

-
-
-

1.15
1.08
0.91

End of task
M

4.88
3.99
4.32

5.54
4.62
4.79

-
-
-

sd

1.47
1.27
1.25

1.31
0.94
0.93

-
-
-
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RT Percentiles 

To investigate the possibility that the absence of an effect of image type in the test phase of 

Experiments 1-3 is due to response latencies (responding was faster in the test phase than in the 

training phase) we plotted RT percentiles for the training and test phases. These RT percentiles 

revealed that the overall response latency cannot account for the absence of a learning effect in the 

test phase. 

Furthermore, in Experiments 1-3, visual inspection of the percentile plots suggests that the 

slowing for the stop-associated images emerges in the slow end of the RT distribution. This 

conclusion is supported by a reliable two-way interaction between image type (stop; go; control) and 

percentile in the training phase of Experiment 1, F(4, 112) = 8.03, p = .001, gen. η2 = .005. However, 

in Experiment 4, the slowing for the stop-associated images emerges in the fast end of the RT 

distribution. This conclusion is also supported by a reliable two-way interaction between image type 

and percentile in the training phase, F(4, 108) = 28.05, p < .001, gen. η2 = .034. 

In Experiments 1-3, processing the image could slow overall RT; but for stop-associated 

items, processing the image would also lead to retrieval of the stop associations, and consequently, 

automatic inhibition of the response. Alternatively, only on slower trials, the stimulus-stop 

associations could be retrieved in time and affect performance. In Experiment 4, attention to the 

images prior to signal presentation meant that there was more time for the acquired stimulus-stop 

associations to be retrieved and thus influence performance. 
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Figure S1: go RTs (in ms) in the training phase (blocks 1-12; upper panel) and the test phase (blocks 
13-14; lower panel) for the three image types (stop-associated; go-associated; control) as a function of 
percentile in Experiment 1. 
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Figure S2: go RTs (in ms) in the test phase (blocks 13-14) for the two image types (stop-associated; 
go-associated) as a function of percentile in Experiment 2. For obvious reasons, we could not plot RT 
percentiles for the training phase data.
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Figure S3: go RTs (in ms) in the training phase (blocks 1-6; upper panel) and the test phase (block 7; 
lower panel) for the three image types (stop-associated; go-associated; control) as a function of 
percentile in Experiment 3. 
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Figure S4: go RTs (in ms) in the training phase (blocks 1-6; upper panel) and the test phase (block 7; 
lower panel) for the three image types (stop-associated; go-associated; control) as a function of 
percentile in Experiment 4. 
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Expectancy/RT correlation plots

Figure S5:  Expectancy/RT correlations in the training phase (blocks 1-12; upper panels) and the test 
phase (blocks 13-14; lower panels) in Experiment 1. Note, ‘stop-associated minus control image’ 
expectancy difference reliably correlated with the corresponding RT difference in the test phase, r(26) 
= 0.437, p = 0.019. All other correlations were not reliable (r’s ≤ 0.272, p’s ≥ 0.161).
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Figure S6:  Expectancy/RT correlations in the test phase (blocks 13-14; lower panel) in Experiment 2. 
Due to the stimulus-stop contingencies used, we could not run these correlations on the training phase 
data.  Note, the stop-associated minus go-associated correlation was not reliable (r(28) = 0.262, p = 
0.162).
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Figure S7:  Expectancy/RT correlations in the training phase (blocks 1-6; upper panels) and the test 
phase (block 7; lower panels) in Experiment 3. Note, all correlations were not reliable (r’s ≤ 0.136, p’s 
≥ 0.464). 
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Figure S8:  Expectancy/RT correlations in the training phase (blocks 1-6; upper panels) and the test 
phase (block 7; lower panels) in Experiment 4. Note, all correlations were reliable (r’s ≥ 0.498, p’s ≤ 
0.006).
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