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Abstract. Engineers often decide to measure structures upon signs of damage to determine its extent and 

its location. Measurement locations, sensor types and numbers of sensors are selected based on judgment 

and experience. Rational and systematic methods for evaluating structural performance can help make 

better decisions. This paper proposes strategies for supporting two measurement tasks related to structural 

health monitoring – (1) installing an initial measurement system and (2) enhancing measurement systems 

for subsequent measurements once data interpretation has occurred. The strategies are based on previous 

research into system identification using multiple models. A global optimization approach is used to 

design the initial measurement system. Then a greedy strategy is used to select measurement locations 

with maximum entropy among candidate model predictions. Two bridges are used to illustrate the 

proposed methodology. First, a railway truss bridge in Zangenberg, Germany is examined. For illustration 

purposes, the model space is reduced by assuming only a few types of possible damage in the truss 

bridge. The approach is then applied to the Schwandbach bridge in Switzerland, where a broad set of 

damage scenarios is evaluated. For the truss bridge, the approach correctly identifies the damage that 

represents the behaviour of the structure. For the Schwandbach bridge, the approach is able to 

significantly reduce the number of candidate models. Values of candidate model parameters are also 

useful for planning inspection and eventual repair. 
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Introduction 

Early detection of damage can prevent structural collapse and especially costly 

interventions by enabling preventive repair. To make appropriate decisions for 

maintenance, engineers need to know the type, the location and the extent of damage. 

Today many bridges and other structures are monitored using sophisticated 

measurement systems employing hundreds of sensors. For instance, the Stonecutters 

Bridge in Hong Kong with a main span of approximately 1 km has almost 1200 sensors 

[1]. Due to the lack of a systematic approach for the configuration of measurement 

systems, sensor types and locations are generally chosen based only upon engineering 

judgement. This strategy may not result in sensors that are placed at the most 

informative locations. Processing of large amounts of redundant data results in high data 

interpretation costs. Furthermore, in many cases, results from data interpretation are 

often inconclusive [2]. This paper evaluates systematic methods for measurement 

system design that maximize system performance and hence, support decisions with 

respect to the optimal number of sensors, sensor types and measurement locations.  

 

Since the goal of measurement systems is to support data interpretation, measurement 

system performance must be related to its capacity to identify the state of the structure. 

The task of interpreting measurements falls into the broad area of system identification 

[3]. Research in system identification has focused on model updating techniques [4, 5] 

using both static [6-9] and dynamic loads [10-13]. Model updating methods estimate 

values of unknown parameters of a mathematical model of the structure on the basis of 

the assumption that the model that best fits measurements is the correct model. 
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However, system identification is an inverse problem and errors are involved in 

measurement and modelling [9, 14-17]. This means that many damage scenarios [18] 

may explain the same measurements. Therefore a system identification approach that is 

based on a strategy of generation and iterative filtering of candidate models using 

measurement-interpretation cycles is more appropriate for structural management [19]. 

Sensor placement methods presented in this paper support such a strategy for system 

identification.  

 

When structures show signs of damage such as increased deflection or large vibrations, 

engineers may decide to measure to increase their knowledge of the extent of damage 

and its location. Since detection of all possible damage requires that measurements are 

taken at all locations and in all directions, it is more practical to install an initial 

measurement system and enhance this system with additional sensors once damage is 

suspected and once measurement data has been interpreted. Consequently, this paper 

presents approaches for two measurement tasks– (1) design of initial measurement 

systems and (2) the iterative placement of sensors for model filtering and damage 

identification. Researchers who have studied the problem of sensor placement have 

focused on model updating using dynamic tests [20-23]. For system identification using 

multiple models, the initial measurement system must include sensors at locations that 

maximize the separation between damage scenarios.  

 

Possible damage scenarios depend upon factors such as material, structural system, 

boundary conditions, loads and geographical location. For instance, one of the piers in a 
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bridge may not be functioning as a support after a flood or an earthquake. Combinations 

of scenarios are also possible. Optimal sensor placement is a configuration that gives 

maximum separation between predictions of the effects of damage scenarios. Therefore, 

given the set of damage scenarios and a metric to compare sensor configurations on the 

basis of their ability to discriminate between damage scenarios, a global search can be 

used to find the optimal sensor configuration for the structure. 

 

Since measurements from the initial measurement system are seldom sufficient for 

identifying the damage, additional sensors are placed iteratively to filter incorrect 

scenarios. In such cases, engineers need to know where to measure and what to 

measure. Robert-Nicoud et al. [24] proposed an iterative greedy algorithm that places 

sensors at locations that give maximum separation between predictions of candidate 

models. Entropy among candidate model predictions was used as a criterion for 

selecting subsequent measurement locations. If measurements from potential sensor 

locations discriminate efficiently between the damage scenarios, the strategy provides 

measurement locations that enable engineers to converge to the correct model. 

 

In this paper, two optimization-based methods are presented for common measurement 

tasks in structural identification. A global search strategy is proposed for designing 

initial measurement systems. A greedy strategy is proposed for finding subsequent 

measurement locations for damage identification. Two case studies illustrate these 

methods. A truss railway bridge, derived from the specifications of the Zangenberg 

railway bridge in Germany, is the first case. The second case is the Schwandbach bridge 
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in Switzerland. In both cases, damage scenarios are generated through varying 

characteristics such as those related to the structural system and the material.  

Multiple-Model System Identification 

The multiple model strategy presented in this paper is an iterative process that suggests 

measurement locations for identification and then uses information from identification 

to improve the measurement system. This strategy [19, 25] explicitly addresses the two 

main challenges of conventional model updating – effects of compensating uncertainties 

and the presence of multiple solutions, by  

 sampling combinations of modelling assumptions and  

 evaluating several candidate models such that model predictions are below 

threshold values defined according to measurement and modelling uncertainties 

A flowchart of such a system identification process is shown in Figure 1. This flowchart 

is derived from previous research performed at EPFL. At the beginning, modelling 

assumptions and damage scenarios are provided by engineers based on their knowledge 

of structural behaviour and engineering judgement. Modelling assumptions are related 

to uncertainties that affect structural behaviour such as boundary conditions, material 

properties and rigidity of connections. These assumptions result in sets of numerical 

parameters involving quantities such as elastic modulus, moment of inertia, support 

stiffness and connection stiffness. Damage scenarios influence aspects of the structure 

such as its geometry, structural system and environment. Damage scenarios are also 

parameterized as described later in the paper. Each set of values for model parameters 

corresponds to a model of the structure. Predictions from models that represent several 

modelling assumptions and damage scenarios are used to design an initial measurement 
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system. Later, modelling assumptions are combined with measurements to identify sets 

of candidate models that explain measured behaviour. Measurements are compared with 

model predictions in a stochastic search to generate the sets of candidate models.  
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Figure 1: Flowchart of tasks in multiple-model system identification 

 

Robert-Nicoud et al. [25] defined the objective function E for stochastic search as 

follows. 
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 is the residual and is calculated as the difference between predictions pi and 

measurements mi.  is a threshold value evaluated from measurement and modelling 

errors in the identification process. The set of models for which E = 0 is the set of 
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candidate models for the structure. In this study, the objective function has been 

modified as follows. 
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i is the difference between model prediction and measurement at location i. i is a 

threshold value for location i. i is determined according to the sensor accuracy and the 

prediction uncertainty at location i. Candidate models are those for which E = 0. 

Equations (2) and (3) ensure that stochastic search finds sets of candidate models such 

that each candidate model has a prediction that is below a certain threshold value at 

each measurement location. This objective function improves upon Equation (1) by 

allowing the definition of a threshold value for each sensor location. Figure 2 

graphically illustrates the selection of candidate models. The residual (i) for each 

model is plotted with respect to the value for a model parameter. The threshold value 

(i) for candidate models is shown by a dashed line. All models with residuals below the 

dashed line are selected as candidate models.  
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Figure 2: The residual between model predictions and measurements is plotted for a given parameter 

value. Each circle is the prediction of a model. The threshold value () is shown by a dashed line. 

 

Complex structures have large numbers of candidate models. These are examined by a 

data mining and feature extraction module (Figure 1). Data mining techniques are used 

to cluster similar models and extract relationships between models. Decisions on 

subsequent measurements are taken based on entropy calculations of predictions of 

representative models from different model clusters.  

Optimal Sensor Placement 

Sensor-data driven decision support systems can be the basis of proactive management 

of structural facilities [26]. For effective decision support, it is essential that sensor 

systems are configured to measure responses at locations such that the measured data 

can be meaningfully interpreted. The sensor placement methodology proposed in this 
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paper requires two key components - (1) an approach for generating damage scenarios 

and (2) a method for evaluating the performance of sensor configurations.  

Generation of Damage Scenarios 

Examples of damage scenarios are abutment settlement and stiffness loss in a truss 

element. These scenarios depend upon structural factors such as material, geometry, 

structural system characteristics and geographical location. Each of these scenarios is 

represented by one or more parameters which have values between ranges specified by 

engineers. For example, damage in a beam may be modeled as the percentage reduction 

in the flexural stiffness and it may vary between 50% and 100% reduction. Scenarios 

can later be combined using model composition [19] to generate additional damage 

scenarios. For example, the following two scenarios - damage in a beam and settlement 

of an abutment, may be combined to generate another damage scenario. Since 

generating all possible scenarios is combinatorial, a population is randomly generated 

using assumptions that are declared by the engineer. Each scenario is evaluated by finite 

element analysis. Its predictions pi at all possible sensor locations are computed and 

stored in a set M0. A sampling error may be introduced when insufficient numbers of 

models are sampled. Thus, there are N sets of predictions p in M0. 

Sensor System Performance Evaluation  

The goal of measurement-system configuration is to place sensors at locations that offer 

maximum separation between model predictions. In this paper, we specify the 

performance of a sensor configuration in terms of the maximum number of models that 

cannot be discriminated using measurements from the configuration. A model from this 

set of non-separable models is the worst-case scenario for the configuration. Given a 
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sensor configuration with s number of sensors, the worst-case scenario is evaluated as 

follows.  

 At each location i where a sensor is placed, models are grouped into sets 

according to the values of their predictions at location i. These sets may be 

evaluated by plotting a histogram for the model predictions in M0. The number 

of intervals I for the histogram is fixed according to the accuracy of the sensors 

and the model predictions in M0. An example of a histogram is shown in Figure 

3. Each bar in the histogram represents the number of models whose predictions 

lie within its interval.  

 Define model sets such that each set contains only those models whose 

predictions lie within the same interval. There are I sets for a histogram at 

location i and these are grouped into a super-set Bi. Thus, B1, B2… Bs are the sets 

obtained by evaluating histograms at sensor locations 1 to s.  

 The maximum number of non-identifiable models Umax is given as the maximum 

possible size of the set B given by 

 1 2 3
...

s
B b b b b     

bi is an element of set Bi. Thus the objective of the optimal sensor placement problem is 

to minimize the value of Umax.  



Published in Advanced Engineering Informatics, Vol. 23, pp. 424-432, 2009. 

 

 

 

Figure 3: Histogram of model predictions 

Global Search 

PGSL [27] is a direct search algorithm that employs global sampling to find the 

minimum of a user defined objective function. Gradient calculations are not needed and 

no special characteristics of the objective functions (such as convexity) are required. 

PGSL has been successfully applied to optimization problems in design configuration, 

structural control [28] and system identification [19].  

 

PGSL is used in this study for designing initial measurement systems for structures. The 

purpose is to evaluate optimal sensor configurations given the potential sensor locations 

and the required total number of sensors. Primary input to PGSL is the number of 

variables and the range of acceptable values for each variable. For the sensor placement 

problem, the number of decision variables is equal to the number of potential sensor 

locations. Minimizing Umax is the objective.  

  

Prediction range 

Number of models 

Interval width 
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The stochastic sampling nature of PGSL means that it operates best on continuous 

variables. However, the variables for the sensor placement problem are binary decision 

variables representing the presence or absence of a sensor at each sensor location. To 

overcome this problem, each variable is modeled as continuous and varying between 0 

and 1 in PGSL. Consider the case when PGSL is used to find the optimal sensor 

locations for number of sensors equal to I. Then each solution generated by PGSL is 

interpreted as having sensors only at those locations corresponding to variables with the 

I largest values.   

 

To arrive at the best number of sensors, optimal sensor configurations are evaluated for 

different specified numbers of sensors. Engineers can then compare the costs of having 

additional sensors against the gain in overall performance. Similarly performance 

improvement upon adding sensors is evaluated by computing the difference between 

Umax,i+1 and Umax,i.. This difference is the reduction in the number of non-identifiable 

models between sensor configurations with i and (i+1) sensors respectively. A very 

small difference indicates that only limited information is acquired by having an 

additional sensor. Ideally, it is preferable to have sufficient sensors to reduce the 

number of non-identifiable models Umax to 1. However, such a situation is seldom 

feasible due to limitations in cost and sensor accuracy.  

Iterative Model Filtering 

This section introduces the greedy strategy for finding subsequent measurement 

locations during damage identification. Upon observing anomalous behavior in a bridge, 

systematic approaches help find the best locations to measure next so that the cause 



Published in Advanced Engineering Informatics, Vol. 23, pp. 424-432, 2009. 

 

 

(damage) of such behavior is identified as soon as possible. A set of candidate damage 

scenarios is generated that match the measurements from existing sensors on the bridge. 

Sufficient numbers of damage scenarios are sampled to ensure that a scenario equivalent 

to the real damage location is present in this set. Subsequent measurement locations can 

be found on the basis of the entropy [29, 30] of candidate predictions at various possible 

measurement locations. Locations with high entropy values are likely to eliminate the 

maximum number of models from the candidate set. Therefore, the method finds 

subsequent measurement locations such that the likelihood of rapidly arriving at the 

damage locations is high. 

 

Shannon's entropy function [29] is a mathematical representation for the uncertainty in a 

set. This expression comes from the field of information theory and it formulates the 

disorder within a set. For a random variable X, the entropy H(X) is given by the 

following equation.  

  2
. lo g

s j j

j

H P P      (4)  

Pj are the probabilities of the |X| different possible values of X. For practical purposes, 

0∙log(0) is taken to be 0. When a variable takes |X| discrete values, the entropy is a 

maximum when all values have the same probability log2(X). Thus entropy is a measure 

of homogeneity in a distribution.  

The entropy for a given sensor location is calculated from the histogram of model 

predictions (Figure 3). The probability Pj of an interval is the ratio of the number of 

models in the interval to the total number of models. At the best measurement locations, 

model predictions should have maximum variation. Pj is the probability of the jth 
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interval in the prediction distribution at location s. Pj is calculated as the ratio between 

the number of models that have predictions within the jth interval and the total number 

of models. If model sets have high values of entropy, more candidate models can be 

filtered. The location at which Hs is a maximum is chosen for subsequent measurement. 

If the entropy among predictions is insignificant (close to zero), then additional 

measurement locations or sensor types may be required for further eliminating models. 

Model filtering is stopped when only a single candidate model remains (model 

identification). In the following sections, we illustrate these two algorithms – global 

search and entropy-based sensor placement, for measurement system design using two 

case studies. 

Case Study One: Zangenberg Bridge 

A structure inspired from the railway bridge in Zangenberg, Germany is considered as a 

case study.  This case study illustrates (1) the design of an initial measurement system 

for the bridge and (2) damage identification using iterative placement-measurement-

interpretation cycles. The bridge is composed of two parallel trusses. A diagram of a 

single truss is shown in Figure 4. Each truss has 77 members and spans a length of 80 

m. Loads from the wagons and locomotives are transmitted to the trusses by transverse 

beams. The two parallel trusses also have wind bracings between the top and bottom 

chords. The properties of the truss members are given in Table 1. The truss members are 

made of steel having an elastic modulus of 200 GPa and a density of 7870 kg/m3. The 

truss is fixed at one end of its span and the other end is supported on a roller. Truss 

members can suffer damage due to fatigue loading and corrosion. In this example, 

damage is considered to result in a loss in member stiffness. 
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Figure 4: A truss inspired from the railway bridge in Zangenberg, Germany  

Since measurements from a real damage scenario are unavailable, simulations using 

finite element models are used. The responses (axial strains) of the finite element model 

in the different members are taken as the measurements from the field. Let us assume 

the following scenario. Engineers notice a significant increase in mid-span deflection 

and decide to test the bridge for damage identification. A load equivalent to a railway 

locomotive is used for a static load test. This is transferred to the truss in the form of 

four concentrated loads at four nodes starting from the 9th node from the left end of the 

bottom chord in Figure 4. Each concentrated load has a value of 250 kN.  

 

For illustration purposes, this paper simplifies the example to a case where the candidate 

model space is enumerable. One truss of the bridge is modelled. An initial measurement 

system is sought to detect damage scenarios in which a single member of the truss is 

assumed to be damaged. Subsequent measurement locations are then sought to filter 

incorrect models and identify the correct damage scenario. The damage is assumed to 

result in a 50% loss of axial stiffness. Strain gauges are the measurement devices chosen 

for this study as they are the most commonly used sensors for steel structures. They are 

taken to have a precision of 1 microstrain. For simplicity, other errors are assumed to be 

zero. In this case study, damage is simulated in member 8. 
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Table 1: Properties of truss members in Zangenberg bridge 

Member type Area (cm2) Ix (cm4) Iy (cm4) 

Top chord 0.0515 2.267x10-3 2.586x10-3 

Bottom chord 0.0303 1.467x10-3 1.458x10-3 

Vertical  0.0219 1.215x10-3 4.245x10-5 

Diagonal 0.0369 9.704x10-4 4.164x10-3 

Small diagonal 0.0219 1.215x10-3 4.245x10-5 

 

Several modelling assumptions have been made during design of this truss. The 

connections in the truss were assumed to be hinged for design purposes. However, the 

rivet-plated connections which are used in this bridge are known to transfer moments. 

Moreover, studies on connection behaviour have shown that truss joints typically 

behave in a semi-rigid manner. There are also uncertainties in the behaviour of the truss 

members. They could be modelled either as trusses elements which only take axial 

forces or as beam elements. These modelling assumptions can be explicitly considered 

during multiple-model system identification. For this example, two assumptions are 

explored – (1) truss elements with hinged joints and (2) beam elements with rigid joints. 

Results 

Even though this problem has been simplified by assuming that damage occurs in only 

one member and by modelling only a few assumptions, many combinations of damage 

scenarios and assumptions match the measurements. A strategy of model filtering 

through iterative measurement-interpretation cycles is used to find the correct model. As 

a first step, all models in the model space are evaluated. Since there are two modelling 

assumptions and each model can have only one damaged member, there are 154 (77x2) 

damage scenarios. All models are generated by exhaustive search. For each model, the 
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strain prediction in each member is evaluated using finite element analyses. Global 

search is used to find the optimal sensor configuration for the truss bridge.  

 

There are 77 potential sensor locations corresponding to the total number of members in 

the truss. Symmetry in sensor positions is enforced during optimization. Figure 5 shows 

the results from optimization. The number of non-identifiable models initially reduces 

rapidly with increasing number of sensors. However, it later tapers off and remains 

constant at 4 for more than 12 sensors. Thus, the gain in performance diminishes with 

increasing number of sensors. As the performance improvement is only marginal for a 

number of sensors greater than 8, an initial measurement system with 8 sensors may be 

installed on the bridge. The sensors are installed on members 5, 16, 21, 28, 43, 50, 54 

and 57. 

 

Measuring at these eight locations is not sufficient to identify the correct damage 

scenario.  After using these measurements to filter models from the set of damage 

scenarios, many damage scenarios still remain. Filtering is the process of eliminating 

models for which E as calculated using Equation (3) is unequal to 0. The initial 

measurements are able to filter 135 models. The size of the new set of candidate models 

is 19. Thus, 19 damage scenarios are possible given these 8 measurements. Further 

measurements are required to identify the correct damage scenario. The entropies of the 

predictions of the reduced set of models at the various possible measurement locations 

are computed using Equation (4). The maximum entropy among the axial strain 

predictions is at member 30. In the first iteration, a strain sensor is placed on member 
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30. The new measurement is used to again filter models using Equation (3). Measuring 

at this location filters 15 models. 4 damage scenarios still remain that are equally likely 

to explain the behaviour of the bridge. Again entropies among candidate model 

predictions are computed at the remaining potential sensor locations. The maximum 

entropy is found at member 7. In the second iteration, a strain sensor is placed on 

member 7. The new measurement filters 3 models. The remaining model exactly 

matches the damage simulated for the structure. A notable result is that the method did 

not place any sensor on the damaged member.  
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Figure 5: Plot showing the variation of maximum number of non-identifiable models with number of 

sensors for the bridge in Figure 4 

 

In practice, complete enumeration of candidate model space as illustrated in this 

example is rarely possible. In such cases, a stochastic search [27] that employs the 

objective function given in Equation (3) can be used to find the candidate models. To 

illustrate such a case, the Schwandbach bridge is examined next as Case Study Two.  
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Case Study Two: Schwandbach Bridge 

A bridge that was designed by Maillart in 1933 (Figure 6) is used to illustrate the sensor 

configuration methodology. Still standing today, the Schwandbach bridge is an early 

example of a deck-stiffened open-spandrel arch and has been named by Billington [31] 

“to be one of the two or three most beautiful concrete bridges ever built”. The elliptic 

horizontal ground-plan curve that is supported by a vertical curved thin-walled arch is 

also an example of daring structural engineering that has inspired engineers for over 

seventy years. 

 

Figure 6: Plan and elevation of Schwandbach bridge in Switzerland 

The possible sensor locations on the bridge are shown in Figure 7 using node 

identification numbers. Since this is a bridge with a short span of approximately 50 m, 

the deflections of the bridge are relatively small. Displacement sensors that can measure 

with an accuracy of up to 1mm are found to be insufficient for system identification. 

However, inclinometers with fairly high accuracy (approximately 1 microradian) are 

available and this resolution is acceptable for such system identification. In the 
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following section, damage scenarios that determine the location of the inclinometers on 

the bridge are explained. 

Damage scenarios 

Incorporation of damage scenarios in the sensor placement methodology enables 

selection of measurement locations that maximize the likelihood of identifying future 

damage. The damage scenarios that are used in this case study are listed in Table 2. The 

scenarios are derived from a previous experimental study on the Z24 bridge in 

Switzerland by Maeck et al.[32]. Maeck et al. [32] created a similar damage in the 

structure and made measurements under dynamic and static loads. Table 2 also lists the 

degree of damage to be simulated under each scenario. 

Table 2: Damage scenarios considered and possible causes 

Damage Causes Damage limits 

Arch abutment settlement Settlement of subsoil, erosion 0 – 30 cm 

Arch abutment tilt ’’ 0 – 2 o 

Deck support settlement ’’ 0 – 30 cm 

Cracks on inner girder Overload, settlement of subsoil, 

erosion 

0 – 50 % reduction 

Cracks on outer girder ’’ ’’ 

Spalling of inner girder Frost thawing cycles, 

temperature shock while 

applying de-icing salt  

’’ 

Spalling of outer girder ’’ ’’ 

 

In this study, the bridge is modelled as a finite element model in ANSYS. Damage 

scenarios are simulated by changing the parameters within the finite element model. 

Arch abutment settlement and tilt as well the deck support settlement are close to the 

ends of the structure. Simulations revealed that the girder elements in the span between 

the ends and the first vertical slab experience the maximum stress and hence, cracks and 

spalling are also assumed to occur close to the ends.   
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Candidate models are generated by stochastic sampling in a model space that consists of 

all combinations of the damage scenarios listed in Table 2. The damage that causes the 

real behaviour of the bridge as measured by the sensors is a settlement of 5 cm at the 

left arch abutment. 

Results 

A set containing 5000 damage models of Schwandbach bridge is created in order to 

represent the space of possible models. The number of possible sensor locations is 20 

(see Figure 7 for details). The size of the solution space is 220 since a sensor may or may 

not be present at a given location. This space is sufficiently large to illustrate key 

aspects of how this methodology scales up to large initial solution spaces. 
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Figure 7: Potential sensor locations on Schwandbach bridge 

 

As in the previous case study, engineers decide to measure the structure for damage due 

to observed behavioural change. The purpose of the measurements is to determine the 

location and extent of damage. Since the damage scenarios listed in Table 2 have 

continuous parameters, simulation of all possible combinations is impossible. Therefore, 

5000 damage scenarios are generated through sampling. The interval size for the 

histograms depends on the sensor precision, i.e., 1 microradian for inclinometers and the 

modelling error (4 microradians). Therefore the interval size in this case study is 5 
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microradians. Global search is used to identify optimal sensor configurations for 

increasing numbers of sensors. Schwandbach bridge is nearly symmetrical with respect 

to a center line (depicted by line X-X in Figure 7) and the damage scenarios considered 

in this study are also symmetrical. Therefore, the sensor placement algorithm explicitly 

imposes symmetry. Results from global search are plotted in Figure 8.  
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Figure 8: The variation using global search of maximum number of non-identifiable models with number 

of sensors for the Schwandbach bridge, and model filtering using a greedy strategy when starting with 

measurements from an initial measurement system having 4 sensors (vertical dashed line) are shown.  

 

For values of number of sensors greater than 12, there is no decrease in the number of 

non-identifiable models. This means that placing more than 12 sensors will not benefit 

the damage identification process. In fact, the gain in performance decreases rapidly 

after placing 4 sensors on the bridge. Therefore, an initial measurement system with 4 

sensors is installed on the structure. The inclinometers are placed at locations 1, 2, 9 and 

10 (see Figure 7). The sensor positions suggested are close to the elements that have 

been modified to represent damage.  
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From the set of 5000 damage scenarios, measurements from these 4 locations eliminate 

4855 scenarios. Therefore, there are still 145 scenarios that are equally likely to explain 

the behaviour of the bridge. This set of 145 scenarios is the initial set of candidate 

scenarios for the greedy strategy and is indicated by the first data point of the greedy 

strategy curve in Figure 8. The global search curve in Figure 8 is an upper-bound to the 

performance of the greedy strategy since it evaluates the worst-case performance of 

measurement systems with a specified number of sensors. The greedy strategy is used 

after filtering models using a set of measurements. During each iteration the greedy 

strategy identifies the best location for the next sensor based on entropy among 

candidate model predictions. In the first iteration, the algorithm finds the maximum 

entropy at sensor location 19. Measuring at location 19 eliminates 38 scenarios. There 

are 107 candidate damage scenarios after filtering models. In the next step, the greedy 

strategy evaluates maximum entropy at sensor location 12. Measuring at this location 

eliminates 4 scenarios. Thus there are 103 candidate scenarios after measuring at 

locations 19 and 12. However, at this step, the entropies among model predictions at all 

potential measurement locations are small. Measuring at any of these locations is 

unlikely to further reduce the set of candidate damage scenarios. Further improvement 

is possible by including new sensor types in the sensor placement strategy.  

 

At this stage, engineers may use data mining methodologies, which have been presented 

in another paper [33], to analyze the set of damage scenarios. Data mining can reveal 

the number of model classes [34] and determine the most important parameters among 

the candidate models . An example of the type of results that may be obtained using 



Published in Advanced Engineering Informatics, Vol. 23, pp. 424-432, 2009. 

 

 

data mining is given in Figure 9. Data mining techniques are used for the visualization 

of a complex multi-dimensional space of candidate models. In Figure 9, candidate 

models involving five parameters are presented in terms of their values for only two 

parameters (p1, p2). Data mining techniques are applied in two steps. First, parameter 

values are transformed using principal component analysis and next, K-means 

clustering is employed to find clusters in the transformed data. Figure 9 shows three 

clusters that are obtained after data mining. Only the first two principal components are 

plotted in the figure. Representative models from the clusters can provide useful support 

for engineers during inspection and repair. The potential of such techniques to improve 

model filtering is currently under study. 

 

Figure 9: Application of data mining techniques to system identification. On the left is a 2-D projection of 

a five-dimensional space of candidate models. On the right, three clusters identified by data mining are 

shown. 

Conclusions 

The following conclusions are drawn from this research. 

 Global search can be used for designing initial measurement systems that 

maximize the likelihood of identifying damage scenarios. 
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 The maximum number of non-identifiable models gives a good estimate of the 

performance of a sensor configuration. This is a metric to compare different 

sensor configurations and choose an optimal number of sensors. 

 An entropy-based greedy strategy for sensor placement provides a systematic 

iterative methodology for detecting damage using the least amount of sensors. 

 If the entropies among model predictions are small at all possible sensor 

locations, then measuring at these locations will not provide additional 

information. Determining whether or not to install a new sensor is supported 

using a greedy strategy. 

Future work involves experimental error quantification using full scale studies. 

Experiments in controlled environments are required to estimate probability density 

functions for measurement and modelling uncertainties. Other important tasks in 

multiple-model system identification include extending multiple model approach for 

dynamic measurements and improving engineer-computer interaction for better 

information visualization. 
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