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ABSTRACT 

Measurements from load tests may lead to numerical models that better reflect structural behavior. 

This kind of system identification is not straightforward due to important uncertainties in measurement 

and models. Moreover, since system identification is an inverse engineering task, many models may 

fit measured behavior. Traditional model updating methods may not provide the correct behavioral 

model due to uncertainty and parameter compensation. In this paper, a multi-model approach that 

explicitly incorporates uncertainties and modeling assumptions is described. The approach samples 

thousands of models starting from a general parameterized finite element model. The population of 

selected candidate models may be used to understand and predict behavior, thereby improving 

structural management decision making. This approach is applied to measurements from structural 

performance monitoring of the Langensand Bridge in Lucerne, Switzerland. Predictions from the set 

of candidate models are homogenous and show an average discrepancy of 4 to 7% from the 

displacement measurements. The tests demonstrate the applicability of the multi-model approach for 

the structural identification and performance monitoring of real structures. The multi-model approach 

reveals that the Langensand Bridge has a reserve capacity of 30 % with respect to serviceability 

requirements. 
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1. INTRODUCTION 

Bridges are designed according to codes that specify conservative limits on loading and material 

properties. Behavioral models used in design, while leading to safe and serviceable structures, are not 

intended for data interpretation and long-term management. The Langensand Bridge is a good 

example of innovative structural engineering using composite design. During the design stage, 

engineers made justifiably conservative assumptions regarding behavioral aspects such as composite 

action and support conditions. Behavioral models using these assumptions often underestimate the 

load-bearing capacity of the bridge. Static load-tests may lead to numerical models that more 

accurately reflect real structural behavior. Such models enable owners to compare predictions with 

measurements of structural performance and thus take effective future management decisions. For 

example, when evaluating the effects of increased traffic loading in the future, predictions of a model 

that reflects real service behavior may indicate that no strengthening is necessary. The ability of a 

bridge to sustain exceptional loads may also be assessed with such models. Another benefit could 

involve suspected deterioration in the future. Measurements taken from a new set of static load-tests 

may be able to flag damage initiation phases when they are compared with predictions from an 

accurate behavior model. Engineers can then initiate corrective action early, thereby avoiding costly 

repairs when problems become more apparent. An extended list of potential applications is also 

reported by Brownjohn (2007).  

Static and dynamic load-tests are not new. Measurements have been used for example to update 

parameters of bridge models (Banan and Hjelmstad 1994; Brownjohn et al. 2003; Sanayei and 

Saletnik 1996). The objective is generally to tune model parameters such that predictions fit measured 

data. However, updating may not bring out trustworthy information about the behavior of a structure. 

The ASME committee for verification and validation (ASME 2006) recommends that an updated 
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model should only be used for comparison purposes. Predictions for new load cases may be 

inaccurate. An updated model is also not valuable for observing the evolution of structural properties 

(ex: creep or structural change).  

System identification (SI) is the science of inferring models from observations (Ljung 1999).  Several 

system identification approaches have been applied to full-scale civil engineering structures 

(Brownjohn et al. 2003; He et al. 2009; Morassi and Tonon 2008; Teughels and De Roeck 2004). Most 

of these methods are based on dynamic testing which have their strength and weaknesses. One of the 

main reasons for conducting these tests is their ease of use. For example, ambient vibration may be 

recorded without interrupting traffic. However, dynamic measurements are sensitive to environmental 

changes. This reduces their potential to correctly identify the behavioral model of a structure or to 

detect damage. Moreover, all significant modes may not be identifiable from ambient vibration 

measurements. He et al. (2009) notes the advantage of several system identification methods for cross 

validation purposes in order to reduce the number of missing modes. Brownjohn and Xia (2000) report 

that when performing ambient vibration monitoring, fundamental hypothesis requiring input 

nonstationarity is inevitably violated. Therefore, it is difficult to distinguish between features that are 

related to the input excitation and those that are related to structural response. Moon and Aktan (2006) 

conclude that independent approaches must be employed (i.e., comparison of static and modal 

flexibility) to ensure that identification is reliable.  

While the presence of uncertainties has been widely acknowledged in literature (Beck and 

Katafygiotis 1998; Brownjohn and Xia 2000; Catbas et al. 2008; Hadidi and Gucunski 2008; Raphael 

and Smith 1998) some approaches overlook uncertainties in the system identification process and 

focus on finding models such that predictions fit measurements. These approaches are susceptible to 

error compensation. The wrong model may be identified due to compensating measurement and 

modeling errors. Inverse tasks are also prone to parameter compensation. For example, in a composite 

girder, the effect of a large value for the Young’s modulus of steel could be compensated by a smaller 

value for Young’s modulus of concrete.   
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To address the challenges associated with errors and parameter compensation inherent to inverse tasks, 

Raphael and Smith (1998) proposed the multi-model approach. This method attempts to explicitly take 

into account all sources of uncertainties identified during the modeling and measurement process. The 

method differs from deterministic model updating approaches in that it searches for multiple candidate 

models that explain the measurements taken from a structure. Threshold values on model predictions 

determine whether or not a generated model is a candidate. Raphael and Smith (2003) used a 

stochastic search (PGSL) to identify potential behavioral models. Robert-Nicoud et al. (2005b) 

successfully applied the method on a laboratory benchmark beam. Robert-Nicoud et al. (2005b)  

determined threshold values by adding the estimated values for modeling and measuring uncertainties. 

A model is selected as a candidate model if its predictions lie below threshold values at each 

prediction location for each load case. This process usually leads to a population of candidate models 

from which further models can only be eliminated using user judgment, supplementary measurements 

and non-destructive testing.  

Saitta et al. (2008; 2009) introduced data mining techniques in order to search more effectively within 

the space of candidate models. For example, K-means was used to group similar models into more 

general behavioral classes. Saitta et al. (2008) also used results from data mining to identify 

subsequent locations for measurements such that a maximum number of models may be eliminated 

from the population of candidate models. Thus, the multi-model approach enables an iterative strategy 

of system identification where measurements are used to identify populations of candidate models and 

which is used to identify subsequent measurement locations. However, the approach has been 

illustrated using only laboratory tests and simulations. It has not been previously applied for structural 

identification tasks on full-scale structures. The uncertainties present during the various steps of 

measurement and modeling of full-scale structures have not been fully assessed.   

Building on previous work done at EPFL, this paper develops and improves the multi-model approach 

in order to make it suitable for structural performance monitoring of full-scale structures. The goals of 

this study are to investigate the applicability of the multi-model SI approach to full-scale structures 
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and to evaluate the approach for condition assessment of structures. The paper presents results from 

static load tests performed on the newly built Langensand Bridge in Switzerland. The multi-model 

approach is used to identify candidate behavioral models able to predict the reserve capacity of the 

bridge. This paper is organized in five sections. The following section describes the multi-model 

framework. Next, the testing process and the results obtained from the structural performance 

monitoring of the Langensand Bridge are discussed. Specifically, results from data interpretation using 

a multi-model structural system identification methodology are given. Results from the multi-model SI 

approach are then compared with those from a model-updating technique. Lastly, conclusions from the 

study and avenues of future work are presented. 

2. SYSTEM IDENTIFICATION USING MULTI-MODEL APPROACH 

Recent developments in the field of computing enable the use of computation-intensive approaches for 

interpreting measurements from static load-tests. Performing thousands of finite element simulations 

to identify a good set of candidate models is now feasible. The set of candidate behavioral models can 

be used to understand structural behavior and support predictions. The SI framework used in this study 

is presented in Figure 1. It is adapted from previous work done at EPFL (Raphael and Smith 1998; 

Robert-Nicoud et al. 2005a) to systematically deal with uncertainties arising in static-load tests of full-

scale structures. 

MODEL GENERATION 

The first step in the SI process is the development of a general finite element model (GM) of the 

studied structure. This model is parameterized according to behavioral assumptions. Examples of 

model parameters are material properties, partial interaction in a composite structure and damage 

location. The values of model parameters are determined by probability density functions defined 

using a priori knowledge. The Latin Hypercube sampling (LHS) method is used to generate the 

models. This method was first proposed by McKay et al. (1979) in order to improve the efficiency of 

Monte-Carlo methods when used with direct (random) sampling methods. LHS allows for sampling in 
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multi-dimensional space while avoiding clusters. In the present case the sampling approach is not used 

for probability evaluation purposes, but for sampling in the whole solution space as uniformly as 

possible, avoiding model clusters. The method start from the general model (GM) and uses LHS to 

generates several potential behavioral models (PM) that have different set of values for model 

parameters. 

LOAD TESTS 

Static-load tests are performed on the structure in order to measure its behavior. Measurements are 

recorded at many locations (i) for each load case (j). The measurement locations and load cases may 

be determined on the basis of predictions from models obtained in the previous step (Robert-Nicoud et 

al. 2005a).  

 

FIGURE 1 - CANDIDATE MODEL SELECTION PROCESS 
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UNCERTAINTIES AND THRESHOLD VALUES 

Uncertainties are present in every stage of the process that is outlined in Figure 1. They may be 

classified into two categories: measurement uncertainties and modeling uncertainties. The latter 

consists of hypothesis and modeling uncertainties. Both measurement and modeling uncertainties may 

include aleatory and epistemic. Oberkampf et al. (2002) reviewed the definition of key terms 

associated with uncertainties and errors. Uncertainty refers to the concept of an unknown which can be 

characterized upon examination. Uncertainties are divided in two part: aleatory and epistemic. 

Aleatory uncertainties are referred as the irreducible ones. They describe the inherent variation 

associated with physical systems (ex: uncertainty in: material properties, element size and geometry or 

variation between subsequent measurements of the same quantity. Epistemic uncertainties are 

attributed to a lack of knowledge. This one is considered to be reducible (ex: uncertainty in: the weight 

of a truck, finite element modelling or temperature effect occurring during a load test. Up to now, in 

most cases, only aleatory uncertainties are addressed. Epistemic ones are usually assumed to be zero 

which for real engineering tasks is seldom true. However, upper bounds of epistemic uncertainties 

may usually be quantified by performing appropriate observations (ex: uncertainty on the weight of a 

truck). 

In this study, uncertainties are generally expressed as percentages. The measurement uncertainty at a 

given location for a given load case is evaluated as the product of the measured value and the 

percentage uncertainty. Similarly, modeling uncertainties are evaluated as the product of the 

percentage uncertainty and predicted values. The main sources of uncertainties are identified below. 

The label (A) or (E) identify whether the uncertainty is due to aleatory or a epistemic source.  

MEASUREMENT UNCERTAINTIES (UMEAS(IJ)  ) 

- Sensor accuracy (A) 

- Site conditions, cable and contact losses (A) 

- Structure and sensor movement from ambient vibrations (A) 

- Repeatability of measurements and truck positioning (A) 

- Uncertainty over the truck weight (E) 
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- Temperature effects (E) 

HYPOTHESIS AND MODELING UNCERTAINTIES (UMOD(IJ), UHYP(IJ)) 

- Finite element method (FEM) approximation (E) 

- Mesh discretization  (E) 

- Uncertainties in geometry (E) 

- Assumption of linear elastic structural behavior (E) 

- Assumption that bearing devices and loads are acting as point loads (E) 

 

Specific threshold bounds (TBij) are computed for each combination of location (i) and load case (j) by 

adding the upper bounds of uncertainty terms umod(ij), uhyp(ij) and umeas(ij). Candidate behavioral models 

are selected by comparing the difference between predicted (Pij) and measured values (Mij) to the 

associated threshold value (TBij).  

CANDIDATE MODELS 

Each model in PM is analyzed for all load cases (j) and the predictions (Pij) at locations i are recorded. 

Candidate models are those models which are able to predict the measured values to within a threshold 

value (TBij) at each measurement location (i) and load case (¸j). The selection process is schematically 

illustrated in Figure 1.  

If the absolute value of the difference (Pij-Mij) is smaller than the threshold value (TBij) at every 

location and for every load case, the model is considered as a candidate behavioral model (CM). Each 

CM thus represents a possible behavioral model of the bridge which may explain the measurements 

taken on site. The set of candidate models includes the correct behavioral model for the structure and 

those that have uncertainty compensation since all these models give predictions lower than the 

threshold value. Models presenting obvious parameter compensation may be rejected using 

engineering judgment and experience. Lower and higher values for each parameter must be sampled in 

the initial model set in order to search over the full space of possible solutions. However a candidate 

model having parameter values such as abnormally low Young’s modulus for concrete combined with 

an abnormally high value for say steel Young’s modulus is highly improbable. Even if unlikely, these 

combinations of low or high parameters must be tested in case they would result to be the only 
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selected candidate models. They would therefore raise a flag indicating that more candidate models 

must be evaluated or a more detailed evaluation of the structure is required. 

3. PERFORMANCE MONITORING OF LANGENSAND BRIDGE 

This section describes results from structural system identification using a multi-model approach of 

the Langensand bridge in Switzerland. 

3.1. DESCRIPTION OF BRIDGE AND STATIC-LOAD-TESTS 

The new Langensand Bridge in Lucerne (Switzerland) is a single span 80m long structure. Its 

slenderness ratio (L/h) varies from approximately 60 at the abutment to 33 at mid-span. Figure 2 

shows the main girder profile and its boundary conditions.  

 

FIGURE 2 - LANGENSAND BRIDGE: MAIN GIRDER PROFILE 

The structure is being built in two phases to avoid traffic interruption on the existing bridge. Load tests 

were performed after the completion of the first phase when only a half of the bridge was completed 

(see Figure 3). 

 

FIGURE 3 – CONSTRUCTION PHASES OF LANGENSAND BRIDGE 
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Understanding the structural behavior of this bridge is not straightforward due to the following 

aspects. First, the structure has an unusually high slenderness ratio (>L/30). Moreover, the cross 

section of the bridge is non-uniform, and the geometry of the structure is also slightly arched in 

elevation along its length. This particular geometry makes the free end of the structure move farther 

from the fixed end when subject to loading. Furthermore, this structure has a skew of seventeen 

degrees at abutments.  

The behaviour of the bridge is measured when subjected to five load cases. Figure 4 shows load cases 

LP-1 and LP-2, and reference axes that are used to illustrate measurement locations. For the third load 

case LP-3, the truck T1 is placed at the same position as in LP-2 and the second truck T2 is positioned 

right behind it. For load cases LP-4 and LP-5, the two trucks are placed alone on the bridge in their 

same respective positions as in LP-2. Load cases LP-2, LP-3 and LP-5 are used to verify the 

assumption of linear structural response. 

 

FIGURE 4 – TOP VIEW OF LANGENSAND BRIDGE WITH REFERENCE AXES FOR MEASUREMENT LOCATIONS 

The following types of measurements are taken during the static-load tests:  

 displacement measurements are taken at six locations (at the intersections of the axes: S7-112, 

S7-116, S12-112, S12-116, S17-112 and S17-116) with optical devices 

 rotations about the Z-axis are measured using two inclinometers placed near the abutment (at 

the intersection of the axes: A1-112 and S7-112).  

 strains are measured at three locations on the bridge along the section S13 using SOFO 

Michelson-type fiber-optic sensors. Two sensors are placed along the X-direction over the 

centre of the main steel box girder such that one is embedded near the top of the concrete deck 
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and the other near the bottom of the concrete deck. The third sensor is placed on the top side 

of the bottom chord of the steel girder.  

Figure 5 shows a detailed cross-section of the finite element representation from which possible 

behavioral models are generated. The structure consists of a steel girder plus a concrete slab and 

barrier. Shear connectors are provided on the top chord of the steel girder in order to allow for 

composite interaction between the steel and concrete components. The whole model is implemented in 

the software ANSYS (2007). The girder elements (steel plated and composite deck) are made of 8-

nodes shells (SHELL281). The stiffeners flanges are modeled as 3-nodes beam elements (BEAM189). 

The concrete barrier is represented as tri-dimensional 20-nodes solid elements (SOLID186). The 

reinforcement is modeled by 2D smeared reinforcement (REINF265). The fixed bearing devices are 

implemented by fixing to zero displacement at the corresponding degree of freedom (DOF) in the 

required directions. A partial restriction to the free longitudinal movement of the bridge is imposed via 

one-dimensional spring elements (COMBIN14). This restriction is applied at the intersection of the 

concrete slab and barrier at right of the axis A1. The model has approximately 24K elements and 335K 

degrees of freedom requiring 1.6 Gb of RAM in order to be solved incore (ANSYS 2007). Each 

resolution of the model takes between 15 to 30 seconds depending on the CPU used. Note that the 

post-processing of the models is completely automated using ANSYS APDL programming language. 

Therefore this process is included in the solving time. 

 

FIGURE 5 - LANGENSAND BRIDGE CROSS-SECTION OF FINITE ELEMENT MODEL 
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Researchers (Broquet et al. 2004; Chung et al. 2006; Conner and Huo 2006; Eamon and Nowak 2002; 

Eamon and Nowak 2004; Hassan 1994; Mabsout et al. 1997) have already shown that sidewalks and 

barriers may significantly affect the load and stress distribution in a structure. These results are also 

corroborated by a study conducted by the authors (Goulet et al. 2009), which showed that factors such 

as deck inclination, steel reinforcement and road surface should not been neglected when conducting a 

system identification study. Therefore an attempt is made to model all elements of the bridge that may 

contribute significantly to the stiffness of the structure including secondary structural elements such as 

stiffeners, concrete reinforcement, and road surface. 

3.2. CANDIDATE MODEL SELECTION PROCESS 

MODEL GENERATION 

Several parameters are initially included in the general finite element model. However, the influence 

of uncertainties in parameters such as element thickness, rebar position and Young’s modulus of 

pavement on predicted response is observed to be very small (i.e. <1%). The values for these 

parameters cannot therefore be accurately estimated using the measurements from the load-tests. The 

main parameters of interest are found to be the Young’s modulus of steel, the Young’s modulus of 

concrete and the stiffness of the bearing device restriction. These parameters follow a Gaussian 

distribution with means and standard deviations given in Table 1. If a negative value is sampled for the 

stiffness of the bearing device movement restriction, the parameter value is taken as zero.  

TABLE 1 - PARAMETERS ENTERING IN MODEL COMPOSITION 

 

Average ()  Std. Deviation ()  

Young’s modulus of steel 206 GPa 6 GPa 

Young’s modulus of concrete 37 GPa 2 GPa 

Bearing device mvt. restriction 300 kN/mm 100 kN/mm 

 

Starting from a general finite element model as presented in previous sections, potential behavioral 

models (PM) having a range of values for parameters and representing multiple models of structural 
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behavior are generated. The Latin Hypercube sampling method (LHS) is used to generate more than 

1000 models. Each model is analyzed for the three load cases and the predictions at 11 locations for 

each case are recorded (i.e. six displacement points, two rotation and three strains). The total required 

time to obtain the initial model set is in the range of a few hours for common desk side computers.  

UNCERTAINTIES 

Measurement and modeling uncertainties arising from the sources listed in Section 2 are 

systematically assessed as follows. 

MEASUREMENT UNCERTAINTIES 

- Sensor accuracies are partially defined by resolution specifications from the manufacturer. In 

the case of electrical devices the sensor accuracy is taken as twice the specified resolution to 

take into account cable and contact losses as well as site conditions. 

- The movement from ambient vibrations of the bridge and the sensors are filtered out by taking 

an average value over multiple samples. Since the noise recorded is assumed to be random, the 

average value tends toward the true measurand. The upper bound for uncertainty is computed 

as three times the standard deviation of the recorded samples. Moreover, in-between each 

measurement and the application or removal of loads on the bridge, there is a one minute 

period without activity on the bridge to allow for the attenuation of vibrations.   

- The upper bound for the uncertainties associated with truck positioning and repeatability of 

measurements is evaluated by repeating each load case three times. A factor of three times the 

standard deviation obtained from the measurements of a given load case provides a confidence 

level of approximately 97% (for three samples).  

- The effects of uncertainties in truck weights are evaluated according to engineering judgment. 

- Temperature effects are eliminated by taking measurements over a short period of time for 

each load case.  

HYPOTHESIS AND MODELING UNCERTAINTIES 
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- Modeling experience and judgment are used to reduce and quantify uncertainties that originate 

from using the finite element method (FEM).  

- Mesh discretization accuracy is estimated using mesh refinement studies. The values chosen 

are corroborated with those found in the literature (Topkaya et al. 2008).  

- Uncertainties in geometry are eliminated by using a numerical model that uses dimensions 

taken from the “as-built” structure. 

- A fundamental hypothesis in the simulations is that the structure behaves linearly with respect 

to the loading. This aspect implies linear material proprieties, and geometric linearity. To 

verify this hypothesis, measurements from load cases LP-4 and LP-5 are algebraically 

summed and compared with those from LP-2. The structural behavior is assumed to be linear 

if the difference between the two quantities is less than the respective measurement 

uncertainties. Otherwise, the uncertainty in model predictions is appropriately increased to 

account for the violation of this assumption. 

- Bearing devices and loads are assumed to be concentrated loads. This simplification of the real 

structure is valid if the results are used for understanding the global behavior of the bridge. 

Table 2 summarizes uncertainty sources and quantifies the extent of uncertainties from each of them 

for this structural identification task.  

TABLE 2- UNCERTAINTY SOURCES 

Uncertainty sources Quantification method 

 

PDF 

Uncertainty according to the type of measurement 

 Displacements Rotations Strains 

Measurement 

uncertainties 

Sensor accuracy 
Manufacturer specified 

resolution 

 
Uniform 

±0.1 mm ±1x10-6 rad ±2  

Sensor noise from 
ambient vibration of 

the bridge 

Average taken over multiple 
samples 

 
Gaussian 

±3 ±3 ±3 

Repeatability  
& Truck positioning 

Use value from multiple 
samples to determine a 
maximum uncertainty 

 

Gaussian 
±3 ±3 ±3 

Truck weight 
Truck weight variations 

have a linear response on 
the structure 

 
Uniform 

≈±1.5% ≈±1.5% ≈±1.5% 

Temperature effects 
Measurements for each 
load case taken over a 

short period of time 

 
Uniform 

≈0% ≈0% ≈0% 

Hypothesis and 
Finite element 

method 
Approximate value based 

on experience 
 
Uniform 

≈±5% ≈±5% ≈±5% 
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modeling 

uncertainties 

Mesh discretization 
Upper bound based on a 
mesh refinement study 

 
Uniform 

≈0% ≈0% ≈±5% 

Model exactitude Model "as built" 
 
Uniform 

≈0% ≈0% ≈0% 

Linear elastic 
behavior 

Superposition of load cases 
 
Uniform 

≈0% ≈1% ≈0%

Bearing devices 
represented 

as point loads 

Negligible effect on the 
global 

behavior of the structure 

 
Uniform 

≈0% ≈0% ≈0% 

Truck wheels 
considered 

as point loads 

Negligible effect on the 
global 

behavior of the structure 

 
Uniform 

≈0% ≈0% ≈0% 

 

The differences between results from superposition (linear) of load cases LP-4 and LP-5 and those 

from LP-2 are much lower than the corresponding measurement uncertainty in strains and 

displacements and the contrary for rotations. Thus the assumption of linear elastic behavior is verified 

from all measurements except rotations.  The discrepancy with respect to rotations is attributed to the 

additional uncertainty in rotation predictions. To account for this aspect, the uncertainty in rotation 

predictions is increased by 1%.  

Figure 6 shows the contributions of the main uncertainty sources for each measurement type. The 

figure identifies the factors that are the most important with respect to identifying the correct 

behavioral model. Uncertainties related to the finite element model accuracy and repeatability of the 

experiment are the most significant. Sensor accuracy is not the most significant source of uncertainty 

according to the results. Thus, choosing more accurate sensors will not necessarily help in identifying 

the correct behavioral model. However, having a FE model which better represent the real structure 

may help in identifying a smaller set of candidate models. Repeating the measurements many more 

times may also reduce standard deviations associated with repeatability and thus improve the quality 

of system identification. 

 

FIGURE 6 - UNCERTAINTY CONTRIBUTION BY SOURCE FOR EACH SENSOR TYPE 
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Figure 7 presents the percentage of uncertainties for each measurement type that are aleatory and 

epistemic (bias). In this case, aleatory uncertainties are smaller than the epistemic ones.  

 

FIGURE 7 – ALEATORY AND EPISTEMIC UNCERTAINTIES FOR EACH MEASUREMENT TYPE 

3.3. RESULTS 

The multi-model candidate selection approach described in section 2 is applied to the set of potential 

behavioral models (1’000 models). The process and the resulting set of candidate models are 

summarized in Figure 8. This figure shows that the candidate models which are representative of the 

structure’s measured behavior are not those that minimize the discrepancy between measured and 

predicted values. Moreover, it exhibits the epistemic (biaised) character of uncertainties in finite 

element simulations. 

              

 

FIGURE 8 – CANDIDATE MODEL SELECTION PROCESS USING THRESHOLD 
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IDENTIFIED BEHAVIORAL CHARACTERISTICS 

The candidate model selection methodology initially identified 152 models which may predict the 

measured behavior while considering uncertainty. An additional filter is applied in order to discard 

models showing unexpected parameters values. The main characteristics of the eleven identified 

candidate models as well as the bounds used as plausible values are presented in Table 3. These results 

indicate that the CM set is able to predict the measured displacements and rotations of the structure to 

an accuracy of 4 to 7 %. Strains are more difficult to assess. The deviations range from 15 to 23% 

compared to the measurements. The predictions from the model set provide ranges narrower than than 

the one from which the real behavior of the structure is expected. Model characteristics are discussed 

in detail in the following section. 

TABLE 3 - CANDIDATE MODEL PROPERTIES 

Model number Bearing device 
stiffness 
(kN/mm) 

Young's modulus  Averaged 
prediction/measurement ratio (GPa) 

 
Steel Concrete ROTZ & UY y

   [0-325] [200-212]  [29-45]      

1 300 210.2 36.8 1.06 1.20 

2 320 206.6 39.2 1.05 1.18 

3 300 210.7 36.5 1.07 1.22 

4 270 208.3 37.9 1.05 1.19 

5 270 211.9 35.8 1.07 1.23 

6 250 211.9 38.7 1.05 1.17 

7 260 210.5 37.9 1.05 1.19 

8 280 211.7 38.6 1.04 1.18 

9 300 211.2 41.7 1.04 1.15 

10 210 211.7 36.9 1.06 1.20 

11 310 211.5 38.4 1.05 1.18 

 

BEARING DEVICES WITH RESTRAINED DISPLACEMENT 

After interpretation of measurements from the static-load tests, many candidate models with 

constrained longitudinal movement were identified to be candidate models. Visual inspection of the 

bearing device shows no symptoms of malfunction. Additional inspections of the expansion junction 

device revealed that the extremity of the bridge where the longitudinal movement is intended to be 

free was restrained. Two wooden blocks were left in place between the abutment and the concrete 

barrier of the bridge. The location and dimension in millimeters of these blocks is shown in Figure 9. 

A closer inspection revealed that the blocks were prestressed by the weight of the structure (i.e. they 
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were impossible to remove manually) and they showed an elastic behavior under the passage of trucks 

on the bridge. From calculations using wood material proprieties (DOA 1999) the stiffness of the 

restraint is estimated to be 300kN/mm. 

      

FIGURE 9 – A) REPRESENTATION AND POSITION OF THE DISPLACEMENT RESTRICTION B) DIMENSIONS OF THE 

WOODEN BLOCKS (MM) 

Candidate models have values for bearing device stiffness between 200 and 320 kN/mm. Even if the 

nominal value of the stiffness of the restraint is large, its effect on the structure remains small (≈ 1-3% 

for displacement predictions). Therefore, identifying the exact value for this parameter is difficult.  

MATERIAL PROPRIETIES 

Candidate models having values for material proprieties that are within the plausible values are 

identified. It confirms that the behavior of the structure conforms to expectations. The values for 

Young’s modulus of steel and concrete range from 206 GPa to 212 GPa and from 36 GPa to 42 GPa 

respectively. 

COMPOSITE INTERACTION 

The design hypothesis related to composite interaction between the concrete and steel deck is verified 

by the candidate models. Results from measurements show no sign of partial interaction between the 

concrete deck and the steel girder under service loads. Candidate models having partial composite 

interaction also have unrealistic values for material proprieties to compensate for the additional 

flexibility introduced by this feature. Therefore, if the effect is present, it is not significant enough to 

be distinguished from fully composite interaction and it would not significantly alter the in-service 

behavior of the structure.  

Location of the physical restraint 
to longitudinal movement 

Bearing device  

Barrier 

Abutment 
Free end of the bridge 

b) a) 
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4. IMPROVEMENT OVER CLASSICAL MODEL UPDATING 

A trivial model updating is performed using the measurements for the purpose of comparison with 

results from multi-model approach. The objective is to show through a simple example that aiming to 

fit predicted values to measurements is likely to lead to a biased solution if the uncertainties are not 

considered. In this case, an analytical formulation for the beam displacement is used for the model-

updating approach. This model has been choose especially because it is not an exact representation of 

the reality. Vertical displacement predictions from the design model (provided by the engineer in 

charge of the design), the model obtained by model updating and candidate models from multi-model 

approach are compared for a critical risk situation (Ed) prescribed in Swiss SIA design codes (SIA 

2003). In equation 1, Ed represent the displacement in milimeters under the combination of 75% of the 

lane load plus the concentrated forces and 40% of the sidewalk load. 

0.75 0.40d Lane SidewalkE L L   
             (1) 

This load distribution is shown in Figure 10.  

 

FIGURE 10 - LOADS FOR RISK SITUATION ED APPLIED ON THE COMPLETE MODEL 

4.1. SINGLE MODEL UPDATING 
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Bernoulli beam theory is used to determine the equivalent flexural stiffness of the bridge from the 

measurements. The relations for displacement and rotation measurements are presented in equations 2 

and 3. A representation of the updated model is presented in Figure 11.

  

  2 23 4      0
48 ( ) 2

eq

meas

Px L
EI L x x

UY
   


 (2) 

 
 

 2 24      0
16 2

eq

meas

P L
EI L x x

ROTZ
   


 (3) 

 

 

Measurements from one load case are used to compute the equivalent flexural stiffness of the bridge. 

Using the four measurements and equations (2) and (3), the average flexural stiffness is evaluated. 

One of the results are presented in Table 4.  

TABLE 4 - EQUIVALENT RIGIDITY FOUND WITH AN UPDATING METHOD 

Measurement 

EIeq  

(x1017 N.mm²) 

Displacement 

UY 

S07-112 2.74 

S12-112 2.63 

Rotation 

ROTZ 

A0-112 2.64 

A7-112 3.02 

Average 2.75 

 

P 

x 

L 

FIGURE 11- BEAM-BASED UPDATED MODEL 
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This approach evaluates an equation that implicitly includes the stiffness of every element of the 

bridge. Therefore, it is not possible to determine the capacity of the structure without the barrier or the 

capacity without the abutment restriction that was present during the load tests. In the case of the 

multi-model approach, the abutment restriction has been removed in order to obtain the response of 

the structure in service.  

The model updating approach has also been applied to the complete finite element model presented in 

Figure 10. The model has been manually calibrated to fit displacement or strain measurements. 

Possible values for Young’s modulus of steel and for concrete are 235 GPa and 43 GPa respectively 

when the model is calibrated using strain measurements and 211 GPa and 47 GPa when the model is 

calibrated using displacements. This simple example shows that using two different sets of 

measurements from the same load tests can lead to two different results which are not realistic. The 

values obtained from traditionnal model updating are questionable since parameters values may have 

compensated for epistemic uncertainties present in measurements or in the model. 

4.2. COMPARISON OF APPROACHES 

The stiffness estimated with model updating is used to predict the maximal displacement of the bridge 

under the risk situation Ed. This result using beam model (Figure 11) is shown in Table 5. The table 

includes the predictions of the model obtained by calibrating the finite element model (Figure 10) and 

the candidate models from the multi-model approach (Table 3). The table also gives the predictions 

from the model used by the designer. Note that the design model does not consider the concrete barrier 

as per the owner’s requirement. 
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TABLE 5 - VERTICAL DISPLACEMENT UNDER SIA (SIA 2003) RISK SITUATION ED 

Approach 
Maximum vertical displacement 
for risk situation Ed (mm) 

Updated 
model 

Beam model (Figure 11) 
Updated using UY&ROTZ 

73.0 

Complete model (Figure 10) 
Updated using UY 

78.1 

Complete model (Figure 10) 
Updated using strains 

76.5 

 
Multi-models 82.1 - 84.5 

 
Design-model 117.8 

 

The results in Table 5 show that traditional model updating may not reliable since it underestimates 

the vertical displacement. However, the design-model provides safe and conservative predictions as 

expected. Evaluating the real displacement of the structure for the loading Ed requires conducting an 

equivalent load test on the structure.  

We may therefore see that it is possible to find a model which exactly fits measurements without being 

the right one. Even when sophisticated FEM model are used, there are always uncertainties associated 

with them (in addition to the uncertainties in the other process ex: measurements). Uncertainties 

associated with civil engineering structures cannot all be represented as aleatory and independent at 

each measured DOF. For example, the uncertainty associated to FEM is epistemic making every 

prediction biaised compared to the reality. The same reasoning is also applicable for some advanced 

model updating techniques. Whenever the goal is to fit model predictions to measured data, the result 

will be biased by the errors occurring in the process (modeling and measurement). As mentioned by 

Tarantola (2006) using observations to infer one model of the system (the ‘best model’ or the ‘mean 

model’ or whatever) is wrong. For different sets of measurements, model updating leads to different 

models. In their guide for validation in solid mechanics ASME (2006) mentioned that parametric 

model calibration (in which lies model-updating) determines only the model’s fitting ability not its 

predictive one. In the case of the multi-model approach, the uncertainties are acknowledged and 

assessed, thereby increasing the confidence in the obtained results. Results presented in Table 5 

indicate that the multi-model approach provides a more conservative solution than what is obtained 
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from model updating. Table 5 also shows that the bridge has a reserve deflection capacity of 30 % for 

service loads when compared to the value predicted by the design model. 

5. DISCUSSION 

Predictions resulting from the set of candidate models are homogenous. Even if uncertainties 

concerning material properties are present, their effects on predictions are limited. The discrepancy 

between the predictions from the set of candidate models and the measurements reflects the 

approximate nature of finite element method and the importance of epistemic uncertainties. Models 

are always an approximation of the reality. Therefore trying to minimize the discrepancy between 

predicted and measured values by adjusting parameter values would inevitably lead to a biased 

solution. The parameter sets that exactly match the measured value are not representative of the real 

structure, but only of an approximate idealization of it. The set of candidate models obtained may be 

used to assess the displacement behavior of the full bridge prior to its construction to an accuracy of 

7%. This goes along with the idea that there are multiple possible solutions for inverse tasks such as 

structural identification. 

The quantification of modeling uncertainties used in this study is based on preliminary studies or on 

experienced judgment.If the uncertainties are not adequately evaluated, the results are prone to be 

biased. Although it is important to remember than for any identification approach, one should consider 

and quantify these in a similar way as it is done in this study. In this case, if one increases the 

uncertainties because of a lack of knowledge about them, the number of candidate models found 

would also rise up, and the opposite is also true.  

Trust in the solution may be increased by quantifying these quantities on the basis of well-designed 

experiments. Comparing simples (beam-based) to advance (shell & solid based) models may only 

gives a lower bound for the uncertainties associated with these simple models. In his case, the most 

advance model which is currently possible to solve is used to represent the structure. Therefore, no 

information is available in order to quantify the uncertainty associated with the model other than 
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engineering judgment. Moreover, the quality of the results may also be improved by using a 

systematic approach for measurement system design prior to the load tests. For the case study 

presented in this paper, such an approach was not possible due to time constraints.  

6. CONCLUSION 

The conclusions of this research are: 

- The multi-model approach is applicable for structural identification and performance 

monitoring of real structures. Considering uncertainties explicitly during the identification 

process is feasible. Neglecting them may lead to a biased identification.  

- A major component of uncertainty has an epistemic nature. Therefore, assuming that 

uncertainties are exclusively aleatory and independent at each measured DOF is inappropriate 

for bridge identification tasks, such as the one presented here. 

- The set of candidate models that are identified for the Langensand Bridge improve the 

understanding of its structure behavior. These models are able to predict the response of the 

structure to within 7% of measured values.  

- The results have enabled the verification of the design hypothesis considering the bridge as 

composite. This assumption has been tested and results reveal that for the tested loads the 

bridge behaves in a fully composite manner.  

A continuation of this study is currently under way in order to further validate these results and obtain 

better evaluation of the uncertainties. Ambient vibration recording from dynamic testing of the bridge 

is used to crosscheck results. Future work will focus on assessing the uncertainties when using finite 

element analyses to model bridge behavior in order to increase confidence in results. Also, studies 

using new statistical approaches are underway to develop a systematic methodology to include 

uncertainty in the determination of the threshold value. Moreover, new developments are currently 

being implemented for measurement system design in order to increase the robustness and efficiency 
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of structural system identification tasks. Such a study also aims to reduce the cost of structural 

performance monitoring, through minimizing the number of sensors used. 
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