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Abstract 17 

Many marine ecosystems are shaped by regimes of natural light guiding the behaviour of their 18 

constituent species.  As evidenced from terrestrial systems, the global introduction of nighttime 19 

lighting is likely influencing these behaviours, restructuring marine ecosystems, and compromising 20 

the services they provide.  Yet the extent to which marine habitats are exposed to artificial light at 21 

night is unknown.  We quantified nightime artificial light across the world’s network of Marine 22 

Protected Areas (MPAs).  Artificial light is widespread and increasing in a large percentage of MPAs.  23 

While increases are more common among MPAs associated with human activity, artificial light is 24 

encroaching into a large proportion of even those marine habitats protected with the strongest 25 

legislative designations.  Given the current lack of statutory tools, we propose that allocating ‘marine 26 

dark sky park’ status to MPAs will help incentivize responsible authorities to hold back the advance 27 

of artificial light. 28 

  29 
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Introduction 30 

The United Nations has proclaimed 2015 ‘The International Year of Light’, celebrating light science 31 

and its applications, including the global introduction of white artificial lighting.  Yet, the spread of 32 

artificial light is increasingly recognized as a threat to biodiversity, human health and scientific 33 

endeavour (Longcore &  Rich 2004, Hӧlker et al. 2010, Falchi et al. 2011, Gaston et al. 2012). 34 

Nighttime lighting can affect biological systems in a myriad of ways, although research has primarily 35 

focused on terrestrial ecosystems, where such lighting causes habitat displacement (Stone et al. 36 

2009), modulates reproductive development (Dominoni et al. 2013), disrupts navigation (Frank 37 

1988), shifts daily activity patterns (Kempenaers et al. 2010), restructures communities (Davies et al. 38 

2012), and affects ecosystem service provisioning (Lewanzik & Voigt 2014).  Despite light being 39 

intrinsic to the life history of many marine species, its impacts in marine ecosystems are less well 40 

explored.  Known examples include the disorientation and mortality of birds (Merkel 2010) and sea 41 

turtle hatchlings (Witherington & Bjorndal 1991), the aggregation and exploitation of fish and squid 42 

(Kiyofuji & Saitoh 2004, Becker et al. 2012), changing patterns of foraging by wading birds (Santos et 43 

al. 2009), and altering the composition of sessile invertebrate communities (Davies et al. 2015).  A 44 

number of additional impacts on marine ecosystems are anticipated, since they are home to a 45 

plethora of species guided by natural light cues in many behaviours (Thorson 1964, Tanner 1996, 46 

Mundy & Babcock 1998, Naylor 1999, Cohen & Forward 2009).  A number of marine invertebrate 47 

species synchronise broadcast spawning events using lunar light intensity (Naylor 1999), corals being 48 

the most notable example (Tanner 1996); zooplankton are guided by changing light intensity as they 49 

migrate towards the sea surface at night (Cohen &  Forward 2009), a behaviour that is suppressed by 50 

artificially brightened skies in freshwater systems (Moore et al. 2000); and the introduction of whiter 51 

lighting will likely affect prey location and bioluminescent communication (Davies et al. 2014). 52 

Coastal development, offshore infrastructure, shipping and fishing lights all contribute sources of 53 

artificial light to both offshore and nearshore marine ecosystems.  It has been estimated that in 54 
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2010, 22% of the world’s coastal regions (excluding Antarctica) were experiencing some degree of 55 

artificial light at night (Davies et al. 2014), a level that is increasing as the economies of developing 56 

countries grow.  Given the variety of ways in which marine species could be affected, marine 57 

ecosystems are almost certainly being shaped by anthropogenic modifications to the natural light 58 

regimes they evolved with.  Light pollution is, however, novel among global anthropogenic stressors 59 

(e.g. temperature, carbon dioxide, ocean acidification), in that changes to natural light regimes are 60 

comparatively instantaneous to reverse.  Although a limited number of conservation tools are 61 

available to mitigate against its impacts, quantifying the extent of nighttime lighting in regions 62 

protected for cultural, aesthetic, biodiversity and socio-economic value is a crucial step towards 63 

identifying where preventative measures should be enforced (Davies et al. 2014).  Gaston et al. 64 

(2015) found that 7-42% of terrestrial protected areas experienced increases in artificial light 65 

between 1992-2010.  While previous studies highlighted the spatial extent of nighttime lighting 66 

across the world’s coastlines (Davies et al. 2014), and in marine regions inhabited by light sensitive 67 

species (Aubrecht et al. 2008, Kamrowski et al. 2012, 2014a, Mazor et al. 2013), its extent in and 68 

encroachment into Marine Protected Areas (MPAs) is unknown.  These regions represent the 69 

ecological marine assets most valued by humanity, hence determining the nighttime lighting they 70 

are experiencing is central to justifying future protective measures. 71 

Here we use remotely-sensed data in a broad-scale analysis to examine the extent of and trends in 72 

nighttime lighting across the global MPA network.  Our results suggest that artificial lighting should 73 

not only be considered a threat to marine ecosystems, but also to regions that humanity has 74 

declared a vested interest in protecting. 75 

Methods 76 

We followed the methods of Gaston et al. (2015), with the exception that we extracted data for 77 

marine rather than terrestrial protected areas.  All data handling and extraction were performed in 78 

R, GDAL tools (http://www.gdal.org/gdal_utilities.html) and ArcGIS 10 using a Behrmann equal-area 79 

projection.  A map of the world’s MPAs was extracted from the full World Database on Protected 80 
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Areas (WDPA) downloaded on 6/10/14 from http://www.protectedplanet.net/ (IUCN & UNEP 2014).  81 

Terrestrial protected areas adjacent to coastlines that had been classified as marine were removed 82 

by clipping out MPAs occurring within the coastal boundaries of a full resolution level 1 (global 83 

coastline) dataset downloaded from the Global Self-consistent, Hierarchical, High-resolution 84 

Geography (GSHHS) database (http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html).  This 85 

provided 11,333 MPAs that were used to generate two datasets.  First, the boundaries of adjacent 86 

MPAs were dissolved providing a map of the world’s contiguous MPAs.  This allowed estimates of 87 

the number and percentage of contiguous MPAs exposed to nighttime lighting to be derived without 88 

multiple overlapping designations over the same region.  Second, the original data were subsetted 89 

to provide a map of MPAs for which IUCN categories have been designated (3,479 MPAs).  Each 90 

IUCN category (I to VI) describes areas protected for contrasting levels of nature conservation versus 91 

human activity, hence we anticipated that areas protected as pristine natural habitats would be less 92 

exposed to artificial light at night than areas where human intervention is more prevalent, because 93 

the latter are more likely to be found in closer proximity to human population centres.  We also 94 

calculated the distance of each IUCN categorized MPA to the coast to ascertain whether trends in 95 

artificial light intensity were driven by coastal or offshore development.  For each IUCN categorized 96 

MPA, this was quantified as the average distance (in km) between the centre of each of its 97 

constituent pixels (lit and unlit) and the nearest polyline of coast. 98 

 99 

The light pollution metrics for MPAs in both datasets were extracted from 21 intercalibrated 100 

DMSP/OLS stable nighttime lights images (nominal 1km resolution) from 1992 to 2012 (Baugh et al. 101 

2010).  Each image is composed from multiple images taken on cloud free nights throughout the 102 

year with the amount of artificial light in each pixel given by a digital number (D.N.) between 0 (no 103 

artificial light) and 63 (value at which sensors saturate).  Prior to analysis, we employed the methods 104 

of Bennie et al. (2014) to address geo-location drift of up to 3 pixels, and lack of intercalibration 105 

between images collected on different successive satellites.  Geo-location drift was rectified by 106 
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shifting images in consecutive years by + or -5 pixels in x (latitude) and y (longitude) directions and 107 

correlating the resulting pixel intensities to the median (2002) image in time.  The x and y offset of 108 

the resulting 121 combinations that provided the highest Pearson correlation coefficient was 109 

selected for analysis.  Images were intercalibrated to the 1994 image using quantile regression on 110 

the median (CRAN: quantreg).  This technique relates median pixel intensities to one another so that 111 

it is insensitive to pixels that increase or decrease in intensity between years.  Provided with a 112 

calibration region in which a minority of pixels have undergone changes in artificial lighting between 113 

time steps, quantile regression on the median gives robust estimates of parameters.  We selected 114 

the same calibration region as Gaston et al. (2015), a subset of the global map that contained most 115 

of the UK, because changes in the street lighting stock in the region are localised in extent between 116 

1992 and 2012 and affect a minority of pixels (Bennie et al. 2014).  1994 was chosen as a reference 117 

to which all other images were calibrated because it displayed the highest proportion of pixels with 118 

digital numbers of both 0 and 63, the darkest and brightest measurements at which the satellite 119 

sensors saturate.  By intercalibrating all images to this year, we ensured that estimates of trends in 120 

artificial light were calculated only from pixels that experienced a quantifiable change in intensity 121 

between years. 122 

 123 

Bennie et al. (2014) demonstrated that when using this calibration approach 94% of increases, and 124 

93% of decreases in pixel intensity by 3 digital numbers, can be attributed to changes in artificial 125 

lighting on the ground (i.e. declining industry, urban expansion).  MPAs were therefore classified as 126 

currently exposed to nighttime lighting if they contained any pixels where the intercalibrated digital 127 

number exceeded 5.5 (Davies et al. 2014, Gaston et al. 2015) in the 2012 image.  The number and 128 

percentage of MPAs exposed or not were calculated, along with the area and percentage area of the 129 

global MPA network exposed.  Temporal trends in artificial light (increasing, decreasing or neutral) 130 

were determined for each MPA using Mann Kendall tests of the monotonic trend in mean pixel 131 

intensity through time derived from DMSP images from 1992 to 2012 (Fig. 1).  MPAs for which the 132 
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direction of the trend could not be established with 95% confidence were classified as having 133 

experienced no change in artificial light (neutral). 134 

 135 

Results 136 

In 2012 4,051 (35%) of the world’s 11,442 contiguous MPAs were experiencing artificial light (at least 137 

one pixel >5.5 digital number) at night (Fig. 2A).  Of those MPAs 57% (2,293) were exposed to 138 

widespread light present in 100% of pixels, and 72% (2,901) across more than 50% of their 139 

pixels(Table 1).  Hence, not only is the presence of artificial light common in MPAs, but its extent 140 

within those MPAs exposed is typically widespread.  Regions in which a large proportion of MPAs 141 

were exposed to artificial light include the North West Atlantic and Mediterranean Sea (Fig. 2B), the 142 

Gulf of Mexico and Caribbean Sea (Fig. 2C), the eastern coast of South America (Fig. 2D), and coastal 143 

bounded MPAs of Australia (Fig. 2A).  The area of the world’s MPA network experiencing nighttime 144 

lighting in 2012 (based on total number of lit pixels across all MPAs) encompassed 60,452 km
2
, 145 

however, because a limited number of protected area designations cover vast areas of ocean with 146 

little human habitation, while the majority are small and coastal bounded (Fig. 2), this equates to 147 

0.7% of the world’s total MPA area coverage (lit pixels expressed as a proportion of total pixels 148 

across all MPAs).  Between 1992 and 2012, 1,687 (14.7%) of the world’s contiguous MPAs 149 

experienced significant increases in mean artificial light intensity, 305 (2.7%) experienced significant 150 

decreases, and 9,450 (82.6%) experienced no change (Fig. 3A) (although the above results mean that 151 

nighttime lighting is present in many no change areas). 152 

 153 

Categories with high levels of human interaction contained a higher fraction of MPAs in which mean 154 

artificial light intensity significantly increased between 1992 and 2012 (Table 2).  Category I areas 155 

encompass strict nature reserves or wilderness regions, hence it is unsurprising that these contained 156 

the lowest percentage (9%, Table 2) of MPAs experiencing increases in average light intensity.  157 

Categories II, IV and VI (national parks, habitat/species management areas, and regions where 158 
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sustainable resource use occurs) may be accessed for recreation, are managed using human 159 

intervention or associated with previous human land use.  A higher proportion (18% for II, 17% for IV 160 

and 16% for VI, Table 2) of these MPAs experienced an increase in mean artificial light intensity over 161 

the period.  Landmarks protected for their monument status (category III) and protected seascapes 162 

(category V) represent areas protected specifically for their associated cultural or aesthetic value, 163 

and in the last case have been created through human-landscape interaction.  It is unsurprising then 164 

that the fraction of MPAs experiencing increases in mean artificial light intensity was highest (20% 165 

for III and 25% for V, Table 2), since many of them are located close to human population centres.  166 

Indeed, MPAs experiencing positive or negative trends in artificial light intensity were generally 167 

closer (<3km) to the coast than those where light intensity did not change (Table 2) suggesting that 168 

the observed trends were driven by coastal development. 169 

Discussion 170 

A large fraction of the world’s MPAs are experiencing nighttime lighting, the amount of which is also 171 

increasing in many of these areas.  Of those MPAs designated even with the highest status of 172 

protection (IUCN Category I), 9% are experiencing increases in mean artificial light intensity. 173 

2.7% of contiguous MPAs experienced decreases in artificial light.  Declines have also been observed 174 

in some European nations and attributed to changes in prevailing lighting technologies, legislation, 175 

and declining economic/industrial activity (Bennie et al. 2014).  It seems plausible that these drivers 176 

are equally likely to be the cause of decreasing artificial light in coastal and offshore regions.  For 177 

example, changes in rig lighting are expected as oil and gas prices fluctuate, wells run dry, and new 178 

wells become established. 179 

Given the importance of light in guiding the behaviours of many marine species (Thorson 1964, 180 

Tanner 1996, Mundy & Babcock 1998, Naylor 1999, Cohen & Forward 2009), these results suggest 181 

that nighttime lighting may influence the ecology of many of the most valued regions of the ocean.  182 
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Rising human population densities within coastal regions (Small & Nicholls, 2003), coupled with 183 

improving per capita income in developing countries, will inevitably see further encroachment of 184 

nighttime artificial light into near-shore marine environments.  Artificial lighting from offshore 185 

infrastructure is also set to rise, with oil and gas supplies increasingly reliant on offshore extraction, 186 

and continued growth of offshore wind power generation.  New technologies are increasingly 187 

allowing such developments to take place in deeper waters, raising the prospect of further 188 

introducing nighttime lighting into regions that have remained unexposed, and in some cases (e.g. 189 

Arctic Ocean) are home to species known to be vulnerable to bright lights (Merkel, 2010). 190 

 191 

There has been great emphasis on managing fisheries, pollution, offshore development, and mineral 192 

extraction in our oceans (Halpern & Warner 2002, Lester et al. 2009), and MPAs have proven a 193 

useful tool for achieving these goals.  Our work has shown that nighttime lighting is common in 194 

these regions, and its effects warrant investigation both compared to and in combination with 195 

previously recognized disturbances so that proportionate mitigation measures can be sought.   196 

Reducing levels of artificial light in marine environments is challenging as it is often perceived as 197 

beneficial for economic growth, security, operational safety and aesthetics in marine developments.  198 

Marinas use artificial light for security and aesthetic purposes, while curbing its use in dockyards or 199 

on ships and oil platforms could violate standards set for operational safety.  Legal frameworks to 200 

curtail use of artificial light in marine environments are yet to be developed because understanding 201 

of how nighttime lighting affects marine ecosystems is limited, and has not warranted compromising 202 

continued use for these activities.  Despite light being recognized as a pollutant under the European 203 

Commission Marine Strategy Framework Directive (Commission decision 2010/477/EU; MFSD 2010), 204 

it states that there is currently insufficient information available to define limits of good 205 

environmental status for its use.  Artificial lighting is also seen as a symbol of modernity in many 206 

developing nations, while in developed nations its use is often perceived as the norm (Lyytimaki 207 

2013).  Changing public perceptions of nighttime lighting towards avoiding its use is therefore a 208 
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major challenge.  Combined with a lack of legislative options, conservation managers are left to seek 209 

voluntary incentives to curb its use, by working with local communities to foster a healthy balance 210 

between the benefits and environmental impacts (e.g. Kamrowski et al. 2014b). 211 

 212 

Switching off, dimming or shielding lights, preserving naturally dark landscapes and limiting the use 213 

of spectra known to cause ecological impacts have all been suggested as potential approaches 214 

conservation managers can use to reduce the prevalence of artificial light (Falchi et al. 2011, Gaston 215 

et al. 2012, Davies et al. 2014).  In cases where ecologically less damaging lighting can be installed or 216 

existing installations modified without any noticeable interference with human activity, for example 217 

seaward shielding of lights illuminating piers, mitigation may be as simple as improved managerial 218 

awareness of artificial light as an environmental issue.  Reducing the ecological impacts of artificial 219 

light in marine environments via manipulation of spectral output may offer further benefits.  The 220 

deeper penetration of blue light in seawater suggests that avoiding short wavelengths could help 221 

minimize ecological impacts.  Voluntary incentives exist through programmes that seek to preserve 222 

naturally dark areas, and benefit from the touristic value this brings (Rodrigues et al. 2014), such as 223 

those through the International Dark-Sky Association (IDSA; www.darkskyparks.org).  The IDSA has 224 

certified 28 dark sky parks and reserves as of 2014, although none has been designated specifically 225 

to preserve dark skies in marine habitats and few in coastal regions.  ‘Marine Dark Sky Parks’ would 226 

be an important first step towards preventing further encroachment of artificial light into marine 227 

ecosystems that are recognized for their aesthetic, cultural, biodiversity and resource value. 228 

 229 

Artificial light is prevalent and increasing in large proportions of the global MPA network.  Given the 230 

expectedly pervasive impacts of nighttime lighting on marine ecosystems, improved understanding 231 

of its ecological effects is urgently needed to inform and justify proportionate mitigation strategies.  232 

The current paucity of information available to support legal frameworks for mitigation suggests 233 

conservation managers should seek dark sky status for their reserves as a means of effectively 234 
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stemming the advance of light pollution into regions that are currently naturally lit, if not individual 235 

MPAs in their entirety. 236 

 237 
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Table 1.  The extent of artificial light at night within lit MPAs.  The number (n) and percentage (%) of 

MPAs classified as lit that contain the percentage of lit pixels given in the left hand column.  For 2295 

(57%) of MPAs classified as lit, the proportion of pixels lit within each MPA was equal to 100. 

% of total MPA area lit n lit MPAs % lit MPAs Mean MPA area (km
2
) 

= 100 2295 57 5.6 

90 to 99 104 3 42.6 

80 to 89 106 3 48.2 

70 to 79 101 2 55.9 

60 to 69 122 3 63.3 

50 to 59 173 4 28.7 

40 to 49 123 3 153.3 

30 to 39 151 4 78.5 

20 to 29 197 5 165.8 

10 to 19 204 5 373.0 

1 to 9 386 10 3097.0 

<1 89 2 63815.8 

Total 4051 
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Table 2.  The number (n) and percentage (%) of Marine Protected Areas designated under each IUCN category that experienced significant increases, 

decreases or no significant trends (neutral) in artificial light intensity between 1992 and 2012.  The amount of artificial light within each MPA was classified 

as significantly increasing or decreasing with 95% confidence using Mann Kendall tests of the monotonic trend in mean pixel intensity (digital number). 

IUCN category Total Increasing light Decreasing light No change 

    

n % 

Mean distance to coast 

(km)
*
 

n % 

Mean distance to coast 

(km)
*
 

n % 

Mean distance to 

coast (km)
*
 

I 560 52 9 1.7 ± 1.0 5 1 1.0 ± 0.5 503 90 5.4 ± 1.4 

II 486 89 18 1.5 ± 0.2 11 2 2.7 ± 1.3 386 79 5.4 ± 1.3 

III 66 13 20 0.8 ± 0.4 2 3 0.2 ± 0.1 51 77 1.8 ± 1.0 

IV 852 148 17 1.2 ± 0.2 39 5 0.5 ± 0.1 665 78 6.4 ± 1.8 

V 597 151 25 2.0 ± 0.7 27 5 1.0 ± 0.6 419 70 3.2 ± 1.6 

VI 918 146 16 2.1 ± 0.4 44 5 1.5 ± 0.6 728 79 19.5 ± 2.5 

Total 3479 599 17  - 128 4  - 2752 79  - 

*
Means ± standard errors calculated from the average distance of all pixels within each MPA to the nearest pixel on land. 
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Figure 1.  Terrestrial light pollution encroaching into the Taean Coast National Marine Park, South 

Korea between (A) 1992 and (B) 2012.  Inset below displays the trend in mean pixel intensity derived 

from DMSP/OLS nighttime satellite images inter-calibrated using quantile regression on the median 

(Bennie et al. 2014a). 

Figure 2.  The distribution of artificially lit (containing at least one pixel with a digital number >5.5, 

Red) and unlit (where no pixels had a digital number >5.5, blue) contiguous Marine Protected Areas 

(A) around the world, and in (B) North West Atlantic and Mediterranean, (C) Gulf of Mexico and 

Caribbean, and (D) eastern coast of South America.  Note that lit or unlit refers to any region within 

an MPA experiencing artificial light at night. 

Figure 3.  The distribution of contiguous Marine Protected Areas that experienced a significant 

increase (red), decrease (blue) or no change (purple) in artificial light at night (A) around the world, 

and in (B) North West Atlantic and Mediterranean, (C) Gulf of Mexico and Caribbean, and (D) eastern 

coast of South America.  The amount of artificial light within each MPA was classified as significantly 

increasing or decreasing with 95% confidence using Mann Kendall tests of the monotonic trend in 

mean pixel intensity (digital number). 
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Figure 1. Terrestrial light pollution encroaching into the Taean Coast National Marine Park, South Korea 
between (A) 1992 and (B) 2012.  Inset below displays the trend in mean pixel intensity derived from 

DMSP/OLS nighttime satellite images inter-calibrated using quantile regression on the median (Bennie et al. 

2014a).  
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Figure 2.  The distribution of artificially lit (containing at least one pixel with a digital number >5.5, Red) and 
unlit (where no pixels had a digital number >5.5, blue) contiguous Marine Protected Areas (A) around the 

world, and in (B) North West Atlantic and Mediterranean, (C) Gulf of Mexico and Caribbean, and (D) eastern 

coast of South America.  Note that lit or unlit refers to any region within an MPA experiencing artificial light 
at night.  
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Figure 3.  The distribution of contiguous Marine Protected Areas that experienced a significant increase 
(red), decrease (blue) or no change (purple) in artificial light at night (A) around the world, and in (B) North 

West Atlantic and Mediterranean, (C) Gulf of Mexico and Caribbean, and (D) eastern coast of South 

America.  The amount of artificial light within each MPA was classified as significantly increasing or 
decreasing with 95% confidence using Mann Kendall tests of the monotonic trend in mean pixel intensity 

(digital number).  
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