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Abstract 

Peroxisomes are ubiquitous organelles which participate in a variety of essential biochemical 

pathways. An intimate interrelationship between peroxisomes and mitochondria is emerging 

in mammals, where both organelles cooperate in fatty acid β-oxidation and cellular lipid 

homeostasis. As mitochondrial fatty acid β-oxidation is lacking in yeast and plants, suitable 

genetically accessible model systems to study this interrelationship are scarce. Here, we 

propose the filamentous fungus Ustilago maydis as a suitable model for those studies. We 

combined molecular cell biology, bioinformatics and phylogenetic analyses and provide the 

first comprehensive inventory of U. maydis peroxisomal proteins and pathways. Studies with 

a peroxisome-deficient ∆pex3 mutant revealed the existence of parallel and complex, 

cooperative β-oxidation pathways in peroxisomes and mitochondria, mimicking the situation 

in mammals. Furthermore, we provide evidence that acyl-CoA dehydrogenases (ACADs) are 

bona fide peroxisomal proteins in fungi and mammals and together with acyl-CoA oxidases 

(ACOX) belong to the basic enzymatic repertoire of peroxisomes. A genome comparison with 

baker’s yeast and human gained new insights into the basic peroxisomal protein inventory 

shared by humans and fungi and revealed novel peroxisomal proteins and functions in U. 

maydis. The importance of our findings for the evolution and function of the complex 

interrelationship between peroxisomes and mitochondria in fatty acid β-oxidation is 

discussed. 
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1. Introduction 

Peroxisomes are single membrane-bound organelles which are ubiquitously found in 

eukaryotic cells. They are highly dynamic with large plasticity and display an unprecedented 

versatility in their functions [1]. Typical functions of peroxisomes are the β-oxidation of fatty 

acids and the metabolism of hydrogen peroxide. Other important reactions in humans include 

fatty acid α-oxidation, degradation of D-amino acids, catabolism of purines, and biosynthesis 

of ether lipids, polyunsaturated fatty acids and bile acids [2]. Peroxisomal dysfunctions have 

been linked to inherited disorders that are associated with multiple severe clinical symptoms 

[3], but also to ageing and age-related diseases [4]. Moreover, several novel and often 

unexpected peroxisome functions have been identified including roles in signalling by 

reactive oxygen species (ROS) and fine tuning of cellular functions or antiviral innate 

immunity in man [5, 6]. 

In this respect, a surprisingly close interrelationship between peroxisomes and 

mitochondria, the “peroxisome-mitochondrion connection” has been revealed [7-10]. The two 

organelles cooperate in β-oxidation of fatty acids (FA) in animals, whereas in plants and yeast 

this pathway is exclusively peroxisomal [11]. Both organelles contain their specific set of β-

oxidation enzymes, which catalyse similar reactions. The peroxisomal β-oxidation pathway 

starts with an acyl-CoA oxidase (ACOX) transferring electrons in the form of H- from their 

prosthetic group FADH2 to O2 thereby generating hydrogen peroxide, which is detoxified by 

catalase. In contrast, mitochondrial β-oxidation relies on acyl-CoA dehydrogenases (ACAD), 

which transfer electrons to FAD thereby generating FADH2 which is used for ATP production 

in the respiratory chain. Moreover, both pathways diverge in their substrate specificities: in 

mammals, peroxisomes preferentially oxidise saturated and unsaturated very long-, long- and 

branched-chain fatty acids, whereas mitochondria more efficiently oxidise long-, middle- and 

short-chain fatty acids. In addition, peroxisomes only chain-shorten fatty acids, which are 
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subsequently conjugated to carnitine and routed to mitochondria for complete oxidation. This 

interconnection between peroxisomal and mitochondrial fatty acid breakdown requires a 

coordinated regulation of the lipid metabolism in both organelles, as well as metabolite 

transfer among them – a process which is still poorly understood. 

Besides a metabolic cooperation in fatty acid β-oxidation, peroxisomes and mitochondria 

contribute to cellular ROS homeostasis and share a redox-sensitive relationship [12, 13]. 

Strikingly, they also share key proteins of their division machinery which is indicative of a 

coordinated biogenesis under certain conditions and requires organised targeting and 

recruitment of those proteins [14, 15]. Furthermore, the two organelles cooperate in anti-viral 

signalling and defence [6], and a vesicular trafficking pathway from mitochondria to 

peroxisomes has been described [16]. Based on these findings, we proposed the medically 

relevant concept of the “peroxisome-mitochondrion connection” suggesting that peroxisomal 

alterations in metabolism, biogenesis, dynamics and proliferation can potentially influence 

mitochondrial functions, and vice versa [7, 10]. As such inter-organelle dependencies can 

activate a cascade of cellular events with pathological consequences, there is great interest in 

improving our understanding of organelle cooperation and interplay in cell physiology and 

disease [10]. 

The use of fungal model systems such as the budding yeast Saccharomyces cerevisiae has 

contributed enormously to our understanding of fundamental cellular and disease-related 

processes in animals and humans. Studies on organelle cooperation and interplay are, 

however, limited, as certain processes found in animal cells (e.g., cooperation of peroxisomes 

and mitochondria in fatty acid degradation and microtubule-based organelle transport) do not 

exist in budding yeast. The basidiomycete Ustilago maydis has recently been introduced as a 

new model for cell biological studies [17] as it provides the technical advantages of 

unicellular organisms and shares many important processes with human cells such as long-

distance transport along microtubules, polarized growth, and open mitosis). A genome-wide 
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comparison of the predicted proteomes of U. maydis, S. cerevisiae and H. sapiens revealed 

that U. maydis and humans share a significant number of proteins that are not found in S. 

cerevisiae [18]. More importantly, several of the shared proteins have been related to serious 

human diseases and a large portion is of unknown function.  

In this study, we combined molecular cell biology, bioinformatics and phylogenetic 

analyses and provide the first comprehensive inventory of U. maydis peroxisomal proteins 

and pathways. A genomic comparison with other organisms such as S. cerevisiae and H. 

sapiens gained new insights into the basic peroxisomal protein inventory shared by humans 

and fungi and revealed novel peroxisomal proteins and functions in U. maydis. We 

demonstrate that U. maydis possesses a complex and complete enzymatic inventory for both 

peroxisomal and mitochondrial fatty acid β-oxidation, which renders U. maydis a suitable 

model system to study the metabolic cooperation and interplay of both organelles. 

Furthermore, we provide evidence that ACADs are bona fide peroxisomal proteins in fungi 

and mammals and belong to the basic enzymatic repertoire of peroxisomes. The importance 

of our findings for the evolution and function of the complex interrelationship between 

peroxisomes and mitochondria in fatty acid β-oxidation is discussed. 
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2. Materials and Methods 

2.1 Search for potential peroxisomal genes in U. maydis 

The Ustilago maydis 521 genome database 

(http://pedant.gsf.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_t237631_Ust_

maydi) was screened for proteins carrying a peroxisomal targeting signal 1 (PTS1) at the very 

C-terminus using the consensus (ASCNPHTG)-(RKHQNS)-(LMIVF) [19]. Thereafter, the 

identified proteins were further analysed by PTS1 predictor algorithms [20] and sequences 

which produced no hit with the “general” modus of the software were removed. For the 

remaining candidates a TMD prediction was performed using the TMHMM software; proteins 

with more than one predicted TMD were not considered to bear a functional PTS1. For 

further validation all remaining sequences were screened for conservation of the potential 

PTS1 using BLAST2.0. Sequences, which already lost the potential PTS1 among 

Ustilaginomycetes were rated as likely false positives and were removed from the lists. 

Additionally, mitochondrial targeting was examined using Mitoprot2 [21], and Predotar1.03 

[22]; potential targeting to the secretory pathway was screened with TargetP1.1 [23]. 

Peroxisomal targeting signal 2 (PTS2) was analysed by PTS2 prediction algorithms [24]. 

Functions were attributed to the potential peroxisomal proteins with regard to their homology 

to known proteins from other species and proteins were organised into specific metabolic 

pathways. The MIPS Ustilago maydis database (http://mips.helmholtz-

muenchen.de/genre/proj/ustilago/) was screened for peroxisomal proteins without a PTS1, 

namely peroxisomal membrane proteins and peroxins, by key word search and BLAST 

analysis. Furthermore, published data was included [25]. To validate the homology of U. 

maydis peroxisomal proteins to mammalian counterparts, phylogenetic trees were constructed. 

Related sequences for the main peroxisomal and mitochondrial β-oxidation proteins from ≥ 

30 fungal and animal species were searched via reciprocal BLAST analysis and aligned with 

http://pedant.gsf.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_t237631_Ust_maydi
http://pedant.gsf.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_t237631_Ust_maydi
http://mips.helmholtz-muenchen.de/genre/proj/ustilago/
http://mips.helmholtz-muenchen.de/genre/proj/ustilago/
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ClustalW. The multifunctional enzymes found in the second and third step of peroxisomal and 

mitochondrial β-oxidation were separated into their correspondent enoyl-CoA and dehydro-

genase domains for proper alignment. Correct alignment of all sequences was checked and if 

necessary corrected manually using the BioEdit software. Phylogenetic reconstructions were 

done with PhyML3.0 using the aLRT algorithm for branch support and including NNI and 

SPR tree searching operations. Multiple rounds of phylogenetic tree construction were used to 

identify outliers which were subsequently removed from the tree.  

 

2.2 Plasmids and strains generated for studies in U. maydis 

To visualise peroxisomes in U. maydis, a mCherry-SKL fusion construct was generated. 

The gfp and the carboxin resistance cassette of plasmid poGFP-SKL [26] were replaced with 

mCherry and a hygromycin resistance cassette resulting in plasmid pomChSKL. The plasmid 

was linearised with EcoRV and integrated ectopically into the strain FB1 resulting in 

FB1mChSKL. To visualize acyl-CoA oxidase (ACOX, um02208), acyl-CoA dehydrogenase 

11n (ACAD11n, um06400), acyl-CoA dehydrogenase medium-chain (ACADM, um01049), 

acyl-CoA dehydrogenase short-branched (ACDSB, um06185), acyl-CoA dehydrogenase 11c 

(ACAD11c, um06422), lactamase beta 2 (LACTB, um11901) and catalase (CAT, um11067) 

in U. maydis, correspondent poGFP- or mCH-constructs were generated through in vivo 

recombination in the Saccharomyces cerevisiae strain DS94 (MATα, ura3-52, trp1-1, leu2-3, 

his3-111, and lys2-801 [27] following published procedures [28]. For all the recombination 

events, the fragments were amplified with 30 bp homologous sequences upstream and 

downstream of the sequences of interest and cloned individually into vector pNEBhyg-yeast 

[29] along with 878 bp Otef promoter, 717 bp gfp or 711 bp mCherry and 307 bp Tnos 

terminator. ACOX and ACAD11n plasmids were digested with NdeI and integrated 

ectopically into the peroxisomal marker strain FB1mChSKL resulting in 

FB1mChSKL_GFPACOX and FB1mChSKL_GFPACAD11n, respectively. ACADM and 



9 
 

ACDSB plasmids were digested with XmnI and integrated ectopically into the mitochondrial 

marker strain FB2LgaGFP [26] resulting in FB2LgaGFP_ACADMmCh and 

FB2LgaGFP_ACDSBmCh, respectively. ACAD11c and LACTB plasmids were digested 

with DraI and integrated ectopically into the mitochondrial marker strain FB2LgaGFP [26] 

and peroxisomal marker strain AB33GFPSKL resulting in FB2LgaGFP_mChACAD11, 

FB2LgaGFP_mChLACTB, AB33GSKL_mChACAD11, and AB33GSKL_mChLACTB, 

respectively. CAT plasmid was digested with DraI and integrated ectopically into the 

peroxisomal marker strain AB33GFPSKL resulting in AB33GSKL_mChCAT. For deletion of 

pex3 in U. maydis, plasmid p∆pex3 was generated through in vivo recombination (see above). 

The 1847 bp pex3 (um06200) gene was amplified with 30 bp overhangs by PCR and cloned 

into cloning vector pNEBhyg-yeast [29] along with 1030 bp NudE promoter and 1158 bp 

pex3 terminator resulting in p∆pex3.The plasmid pΔpex3 was digested with DraI and 

integrated homologously into the pex3 locus of the strain Sg200, resulting in Sg200 Δpex3. 

For a list of strains and primers see Suppl. Tables S1 and S2. 

 

2.3 Laser-based epifluorescence microscopy 

Microscopy of U. maydis was performed as previously described[29]. Briefly, cells were 

placed on a thin layer of 2% agarose, covered with a cover slip, and immediately observed 

using a IX81 motorized inverted microscope (Olympus, Hamburg, Germany) and a VS-LMS4 

Laser-Merge-System equipped with 488 and 561 nm, 75mW solid-state lasers using Dual-

View Microimager (Optical Insights, Tucson, USA) and appropriate filters. LgaGFP, GFP-

SKL, GFP-ACOX and GFP-ACAD11n were visualised at 150ms exposure time at 10% of the 

488 nm laser; ACADM-mCh, ACDSB-mCh, mCh-ACAD11c, mCh-LACTB, and mCh-CAT 

were visualised at 150ms exposure time at 50% of the 561 nm laser. Images were captured 

using a charged-coupled device camera (Photometric CoolSNAP HQ2, Roper Scientific, 
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Germany). All parts of the system were under the control of the software package MetaMorph 

(Molecular Devices, Downingtown), which was also used for image processing and overlay.  

 

2.4 Scanning electron microscopy 

For scanning electron microscopy, the wild type (Sg200) and the deletion strain 

(Sg200Δpex3) were grown overnight in complete medium (CM) [30] containing 1% glucose 

at 28ºC and 200 rpm until an OD of 0.6-0.8. Cells were then plated on CM-glucose-charcoal 

plates and incubated for 2-3 days at 28ºC. Subsequently, the samples were attached to a cryo-

sledge and rapidly frozen in liquid nitrogen, followed by water sublimation at 295uC for 3 

min using the Alto 2100 chamber (Gatan Ltd., Oxfordshire,UK). This was followed by gold 

sputtering and observation in a JeolJSM-6390LV scanning electron microscope (JEOL, Ltd., 

WelwynGarden City, UK) 

 

2.5 Induction of peroxisome proliferation by oleic acid 

FB2 GFP-SKL cells were grown overnight in CM containing 1% (w/v) glucose at 28°C 

and 200 rpm, until an OD600 of 0.8. Cells were centrifuged at 3000 rpm for 10 min and 

washed twice with nitrogen minimal medium (NM) to remove all carbon sources. The pellet 

was resuspended in NM medium and equal volumes were transferred into flasks with NM 

medium containing 1% (w/v) glucose (control) or 0.2% (v/v) oleic acid (Merck) (final 

concentration) and incubated for 1hr at 28ºC and 200 rpm. Peroxisome numbers were 

determined by laser-based epifluorescence microscopy. Z-stacks were taken at 300 nm step 

size with 150 ms exposure time using a Piezo drive (Piezosystem Jena GmbH, Jena, 

Germany) and analysed as maximum projection using MetaMorph. 

To determine induction of ACOX, total RNA was extracted according to [31], and DNAse 

treated (DNA free kit, Ambion). cDNA was synthesised by reverse transcriptase PCR using 

the Superscript III First-Strand Synthesis Super mix kit (Invitrogen). Parts of the coding 
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sequences of ACOX (um02208), ACADM (um01049), ACDSB (um06185), Elongation 

Factor 1 (EF1; um00924) and peptidyl-prolyl cis–trans isomerase (PPI, um03726) (the latter 

two used as internal control), were subsequently amplified by PCR using gene-specific 

primers (Suppl. Table S2). Samples were separated on 1% agarose gels and analysed using 

the Alpha Imager HP (Alpha Innotech, San Leandro, USA). 

 

2.6 Growth assays on fatty acids 

To examine growth on different fatty acids, wild type cells (SG200) and those lacking 

peroxisomes (SG200Δpex3) were grown overnight in CM containing 1% glucose at 28ºC and 

200 rpm until an OD of 0.6-0.8. Cells were washed 3 times and resuspended in 5 ml of sterile 

NM. A 5% dilution was plated on NM-Agar plates supplemented with different fatty acids, 

acetate or glucose. The following fatty acids (from Sigma-Aldrich, St. Louis, MO if not stated 

otherwise) (0.001%) were used: butyric acid (4:0), valeric acid (5:0), hexanoic acid (6:0), 

decanoic acid (10:0), myristic acid (14:0), myristoleic acid (14:1(n-5)), palmitic acid (16:0), 

palmitoleic acid (16:1(n-7)), oleic acid (18:1(n-9)) (Merck, Darmstadt, Germany), pristanic 

acid (2,6,10,14-tetramethyl 15:0), phytanic acid (3,7,11,15-tetramethyl 16:0), erucic acid 

(22:1(n-9)) and lignoceric acid (24:0). Fatty acids were dissolved in ethanol (100 mg/mL 

stock solutions, final ethanol concentration: 0.01%). Glucose and acetate were used at 1%. 

Plates were incubated for 3 days at 28ºC and images acquired using stereomicroscope Nikon 

SM2 800, camera control pro 2.7.1 (Nikon®). The assays were repeated at least 3 times. 

 

2.7 cDNAs and antibodies for studies in mammalian cells 

N-terminally Myc-tagged expression constructs for human ACAD11 (Myc-HsACAD11) 

and U. maydis ACAD11n (Myc-UmACAD11n) were created as follows: human ACAD11 

(NM_032169.4) was amplified from HepG2 cDNA, and U. maydis ACAD11n from U. 

maydis 521 genomic DNA (Suppl. Table S2). Rat β-Lactamase (β-Lactb2; 
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NM_001024247.1) was amplified from a TOPOII construct [32]. All three PCR products 

were inserted into pCMV-TAG3A vectors (Agilent Technologies, La Jolla, CA, USA). The 

Myc-tagged expression construct for rat ACAD11 (Myc-RnACAD11) is described elsewhere 

[32]. C-terminally tagged constructs for rat (RnACAD11-Myc), U. maydis (UmACAD11n-

Myc) and human (HsACAD11-Myc) ACAD11 were generated from the previous plasmids 

(Suppl. Table S2). PCR products were inserted into vector pCMV-TAG5b. In-frame 

insertion of all constructs was verified by sequencing (Eurofins MWG, Ebersberg, Germany). 

Antibodies used in this study were kind gifts from D. Crane, Griffith University, Brisbane, 

Australia (Pex14), T. Hashimoto, Shinshu University School of Medicine, Nagano, Japan 

(ACOX1), or purchased from Abcam, Cambridge, UK (ACAD11, ERp29, VDAC1, Ornithine 

transcarbamoylase), BD Biosciences, Franklin Lakes, USA (GRP78, ATP synthase α), Cell 

Signaling Technology, Danvers, USA (α/β tubulin) and Santa Cruz Biotechnology, Santa 

Cruz, USA (Myc epitope 9E10). Species-specific anti-IgG antibodies conjugated to the 

fluorophores TRITC, Alexa 488 or horseradish peroxidase were obtained from Jackson 

ImmunoResearch (West Grove, USA) and Invitrogen (Life Technologies, Grand Island, NY, 

USA). 

 

2.8 Mammalian cell culture, transfection, microscopy and subcellular fractionation 

COS-7 (ATCC CRL-1651), HeLa (ATCC CCL-2) and HepG2 cells (ATCC HB8065) were 

maintained in DMEM supplemented with 10% FCS (PAA Laboratories GmbH, Cölbe, 

Germany) at 37ºC in a 5% CO2-humidified incubator. Cells were transfected with DNA 

constructs by incubation with polyethylenimine (25 kDa PEI, Sigma-Aldrich, St. Louis, MO, 

USA) as described [33] or with Turbofect (Fermentas) according to the manufacturer’s 

instructions. For immunofluorescence microscopy, cells grown on glass coverslips were fixed 

with 4% para-formaldehyde in PBS, pH 7.4, permeabilised with 0.2% Triton X-100, blocked 

with 1% BSA and incubated with primary and secondary antibodies as described [34]. 
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Microscopy analysis was performed using an Olympus IX81 microscope (Olympus Optical, 

Hamburg, Germany) equipped with a PlanApo 100x/1.40 oil objective and filter sets 41020 

and 41004 (Chroma, Bellows Falls, USA). Images were acquired with an F-view II CCD 

camera (Soft Imaging System, Munster, Germany) driven by Soft Imaging software. Confocal 

images were obtained using a Zeiss LSM 510 Meta confocal setup (Carl Zeiss, Oberkochen, 

Germany) equipped with Plan-Apochromat 100x/1.4 oil objectives. Images were processed 

using LSM 510 software (Carl Zeiss MicroImaging, Inc.). Background noise was minimal 

when optimal gain/offset settings for the detectors were used. Peroxisome isolation from rat 

liver was performed as described [35]. 

 

3. RESULTS 

3.1 ACADs belong to the basic repertoire of peroxisomal enzymes 

Fatty acid β-oxidation is exclusively peroxisomal in yeast and plants, but is distributed 

between peroxisomes and mitochondria in animals. Mitochondrial β-oxidation relies on acyl-

CoA dehydrogenases (ACADs). Whereas humans encode 11 members of the ACAD protein 

family, they are completely absent in the yeast S. cerevisiae [36] (Fig. 1; Suppl. Fig. S1). We 

initially focused our studies on the detection and characterization of ACADs in U. maydis, as 

their presence is a prerequisite for mitochondrial fatty acid β-oxidation, and thus potential 

metabolic cooperation in peroxisomal and mitochondrial lipid metabolism. BLAST searches 

revealed that U. maydis encodes seven putative ACADs; two of which are predicted to be 

targeted to mitochondria. Surprisingly, we also identified four ACADs (um10665, um01466, 

um06400 and um00122) with a predicted PTS1 suggesting peroxisomal targeting (Table 1). 

Our phylogenetic analyses revealed that orthologues of those genes exist throughout fungi and 

even among animals (um00122), but only um06400 was found across all species investigated 

(Fig. 1; Suppl. Fig. S1). U. maydis um06400 represents a homolog of the mammalian 

ACAD11 (Table 1; Suppl. Table S3). All representatives of this enzyme subfamily end with 
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a C-terminal PTS1 indicating a phylogenetically conserved contribution to peroxisomal β-

oxidation (Suppl. Fig. S1). Interestingly, the fungal version (ACAD11n) lacks the frontal 

aminoglycoside phosphotransferase (APH) domain found among animals [37] (Fig. 1). 

However, we identified individual proteins showing homology to this phosphotransferase 

domain throughout all fungi including U. maydis (um06422, named ACAD11c in this study) 

which, strikingly, share putative PTS1 sequences (Suppl. Fig. S1). This implies that in 

animals both ACAD and APH domains have been combined in one protein to fulfil proper 

ACAD11 function (Fig. 1).  

To verify the unusual peroxisomal localization of ACADs, which are generally attributed 

to mitochondrial β-oxidation, we generated a GFP-tagged variant of um06400 (ACAD11n), 

which is conserved among all opisthokont organisms. Furthermore, we generated an N-

terminal mCherry fusion of um06422 representing the putative aminoglycoside 

phosphotransferase (APH) domain typically found in animal ACAD11 (mCherry-ACAD11c). 

We used EGFP or mCherry fused to the PTS1 SKL as a peroxisomal marker in U. maydis 

[26]. Expression of GFP-ACAD11n in an U. maydis mCherry-SKL strain revealed a clear co-

localisation, thus confirming that U. maydis ACAD11n is a bona fide peroxisomal protein 

(Fig. 2A-C). In addition, mCherry-ACAD11c (APH) was properly targeted to peroxisomes in 

GFP-SKL expressing cells (Fig. 1D-F). This confirms that in U. maydis both individual 

proteins are routed to peroxisomes, where they can potentially cooperate to fulfil ACAD11 

function. 

The homologous mammalian ACAD11 was first identified in purified peroxisomes from 

rat liver in several proteomics approaches [32, 38, 39]. A peroxisomal localisation has, 

however, been questioned [40]. We thus cloned the human ACAD11 adding a Myc-tag at the 

N-terminus of the protein (Myc-HsACAD11). To investigate targeting of UmACAD11n in 

mammalian cells, an N-terminally Myc-tagged fusion of um06400 was generated. COS-7 

cells were transfected with these plasmids and with a Myc-tagged fusion of rat ACAD11 [32]. 
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After 24 hours cells were processed for immunofluorescence using antibodies directed to the 

Myc epitope and the peroxisomal membrane marker Pex14p. All three fusion proteins were 

properly targeted to peroxisomes in COS-7 cells (Fig. 3) and co-localised with endogenous 

Pex14p. Peroxisomal targeting was also observed in HeLa and HepG2 cells (not shown). In 

addition, C-terminally tagged versions of all three ACAD11 proteins were generated 

(HsACAD11-GFP, RnACAD11-Myc, UmACAD11n-Myc). However, expression in COS-7 

cells did not result in peroxisomal targeting (Suppl. Fig. S2) due to blockage of the C-

terminal PTS1 by the fused tag. The expressed proteins remained in the cytosol and no mis-

targeting, e.g. to mitochondria, was observed.  

To support these findings in vivo, the localization of ACAD11 was validated by 

immunoblotting of subcellular fractions isolated from rat liver. ACAD11 (~80 kDa) was 

strongly enriched in the peroxisome-containing fraction together with the peroxisomal marker 

proteins Pex14 and ACOX1, but of low abundance in mitochondria- or microsome-enriched 

fractions (Fig. 3M). The ACAD antibody also detected a more prominent band at ~60 kDa 

which may be indicative for an intraperoxisomal processing of ACAD11 by proteases (as 

reported for ACOX1), or the import of splice variants, which have been described recently 

[40] but may also result from degradation processes during organelle purification. 

These findings clearly demonstrate that ACADs are bona fide peroxisomal proteins in 

fungi and mammals. Their peroxisomal targeting is conserved among species, and more 

importantly, they belong to the basic enzymatic repertoire of peroxisomes. As discussed later, 

a potential dehydrogenase-based fatty acid β-oxidation system in peroxisomes would offer the 

possibility to modulate peroxisomal H2O2 production by ACOX. 

 

3.2 U. maydis has a complex enzymatic inventory for peroxisomal and mitochondrial 

fatty acid β-oxidation 



16 
 

Encouraged by our findings on ACADs, we decided to undertake a comprehensive 

characterisation of peroxisomes in U. maydis. The U. maydis genome was screened for 

proteins with a PTS1 or PTS2. As we observed non-canonical C-terminal PTS1 sequences 

(e.g., for ACADs), we initially searched with the broader consensus (ASCNPHTG)-

(RKHQNS)-(LMIVF) [19]. All candidate proteins were thereafter analysed by PTS1 predictor 

algorithms and further validated by screening for conservation of the potential PTS1, and 

prediction of mitochondrial and ER targeting as well as presence of transmembrane domains. 

Our approach revealed a total of 124 candidates bearing a PTS1 or PTS2 (Suppl. Table S3). 

Functions were attributed with regard to their homology to known proteins from other species 

and proteins were organised into specific metabolic pathways partially supported by 

phylogenetic analyses (Suppl. Table S3; Table 2). In addition, peroxisomal membrane 

proteins and peroxins were identified by key word search and BLAST analysis. 

To reveal if peroxisomes and mitochondria contribute to fatty acid β-oxidation in U. 

maydis, we first focused on key proteins and enzymes involved in fatty acid degradation. We 

identified candidate genes coding for all the enzymes required for a parallel peroxisomal and 

mitochondrial fatty acid β-oxidation in U. maydis (Table 1; Suppl. Table S3; Fig. 4) and 

performed a phylogenetic analysis to validate their conservation across species. 

Prior to their degradation, fatty acids must be conjugated to coenzyme A and subsequently 

imported into peroxisomes by ABC class D transporters [41]. In U. maydis two transporters 

homologous to the yeast ABC half transporters PXA1 (um03945) and PXA2 (um01105) were 

identified (Table 1, Suppl. Table S3; Fig. 4). Both membrane proteins are related to the 

mammalian peroxisomal transporters ABCD1 and ABCD2; a putative orthologue of 

mammalian ABCD3 was not detected in U. maydis but was found in the more basal 

Mucormycotina (Suppl. Fig. S3). 

For the first step in peroxisomal β-oxidation catalysed by acyl-CoA oxidase (ACOX) four 

candidate genes were found: um01966, um02028, um02208 and um04324 (Table 1, Suppl. 
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Table S3; Fig. 4). All except um04324, the homologue of ScPOX1, possess a PTS1. 

Remarkably, after phylogenetic reconstruction we observed that this lack of a PTS is 

conserved among all fungi analysed (Suppl. Fig. S1) suggesting PTS-independent targeting 

mechanisms. ScPOX1 lacks a PTS1 but is still imported into peroxisomes in a Pex5-

dependent manner without interacting with the PTS1-binding domain of Pex5 [42]. Similarly, 

in the yeast Y. lipolytica ACOX is imported into peroxisomes in a Pex5-dependent way in the 

form of a fully assembled heteropentamer, despite the absence of a PTS on any peptide chain 

[43]. It is likely, that besides POX1/um04324, more peroxisomal proteins exist, which follow 

a conserved Pex5-dependent but PTS1-independent import mechanism. Potential candidates 

identified in this study are the peroxisomal D-BP (um10038) which also lacks a PTS1 in 

several basidiomycetes and ascomycetes, and um02990 - a hydroxysteroid dehydrogenase-

like protein which exhibits a conserved PTS1 among animals and other fungi (Suppl. Table 

S3, Table 2). 

The second and third steps of peroxisomal β-oxidation are catalysed by two 

phylogenetically unrelated “multifunctional enzymes”, the L- (L-BP) and the D-bifunctional 

protein (D-BP) [2] (Fig. 4): Unlike mammals, U. maydis (and all fungi investigated), harbours 

only a D-BP (um10038) whereas the L-BP was exclusively found in animals and the 

choanoflagellate M. brevicolis (Table 1, Suppl. Table S3, Suppl. Figs. S4, S5). Likewise, the 

L-BPs’ close relative, the mitochondrial trifunctional enzyme subunit ECHA, is confined to 

the same eukaryote classes (Suppl. Fig. S4). However, other putative peroxisomal proteins 

were found in U. maydis which likely fulfil enzymatic reactions associated to the function of 

the multifunctional enzymes (Table 1, Suppl. Table S3). These include several enoyl-CoA 

hydratases (um01747, um02097, um11001) and a 3-hydroxyacyl-CoA dehydrogenase of the 

SDR-family (um10825) which all possess a putative PTS1 (Table 1, Suppl. Table S3). The 

fourth and last enzymatic reaction in β-oxidation is catalyzed by a 3-ketoacyl-CoA thiolase 

(Fig. 4). Two homologous genes were identified in U. maydis: um01090 with a predicted 
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PTS2, and um02715 without a PTS (Table 1, Suppl. Table S3). Additionally, in mammals 

the peroxisomal isoform of the sterol carrier protein (SCP-X) is an alternative thiolase 

contributing to peroxisomal β-oxidation; two corresponding genes exist in U. maydis 

(um11938 with -AKL as PTS1, and um01986 without a PTS) but lack the name-giving SCP 

domain. As a consequence, we identified individual SCPs bearing a PTS1 in fungi including 

U. maydis (um11938, um01850) (Table 1, Suppl. Table S3). 

The mitochondrial fatty acid β-oxidation pathway starts with a dehydrogenation reaction 

catalysed by acyl-CoA dehydrogenases. Seven ACAD candidate genes were identified: 

um00694, um01049, um06185, um10665, um01466, um06400 and um00122 (Table 1, 

Suppl. Table S3; Fig. 4). The genes um01049 and um06185 correspond to the mammalian 

enzymes ACADM and ACDSB, whereas um00694 was only found in a few species in a 

patch-like pattern and resembles the prokaryotic FadE12 ACAD class (Suppl. Fig. S1). As 

outlined above, the latter four candidates possess a predicted C-terminal PTS1 suggesting 

peroxisomal localisation (Table 1; Suppl. Table S3; Suppl. Fig. S1), whereas two of the 

former three are predicted to be targeted to mitochondria. 

For the second step in mitochondrial β-oxidation, commonly performed by the enoyl-CoA 

hydratase, three candidate genes (um01433, um02762, um11556) were identified, which were 

not predicted to be targeted to peroxisomes (Table 1, Suppl. Table S3; Fig. 4). Um11556 

represents a homolog of human medium-chain enoyl-CoA hydratase; a deletion of its 

homolog in Magnaporthe oryzae has been shown to seriously affect mitochondrial β-

oxidation [44]. For the third and fourth reaction of mitochondrial β-oxidation catalyzed by 3-

hydroxyacyl-CoA dehydrogenase and 3-ketoacyl-CoA thiolase two candidate genes were 

identified, respectively (um01099, um02105 and um03571, um03298) (Table 1; Suppl. 

Table S3; Suppl. Fig. S6; Fig. 4).  

To experimentally confirm the existence of parallel fatty acid β-oxidation systems in 

peroxisomes and mitochondria in U. maydis, we determined the subcellular localization of 
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selected ACOX and ACADs by expression of fluorescent fusion proteins. An N-terminal GFP 

fusion of um02208, encoding for a putative ACOX, colocalised with mCherry-SKL thus 

confirming peroxisomal targeting in U. maydis (Fig. 2G-I). Likewise, an N-terminal mCherry 

fusion of the catalase homolog um11067, as a classic marker for the organelle, colocalized 

with GFP-SKL (Fig. 2P-R). In both cases, peroxisomes appear as spherical or rod-shaped 

organelles in U. maydis, which is reminiscent of their morphology in mammalian cells (see 

Figs. 3, 5).We further studied the localisation of the potential medium-chain acyl-CoA 

dehydrogenase (um01049, ACADM) and the short-branched chain acyl-CoA dehydrogenase 

(um06185, ACDSB). Both candidate enzymes for the first step in mitochondrial β-oxidation 

(Table 1; Fig. 4) were fused to mCherry at their C-termini and ectopically integrated into an 

U. maydis strain with GFP-labelled mitochondria (FB2 Lga-GFP). ACADM and ACDSB 

both co-localized with the U. maydis-specific mitochondrial matrix protein Lga2 (Fig. 2J-O), 

confirming targeting to mitochondria, which exhibited a tubular morphology. Thus, U. maydis 

shows the typical distribution of peroxisomal ACOX and mitochondrial ACADS found also 

in animals.  

Our findings demonstrate that U. maydis possesses a complete and complex set of 

appropriate enzymes to carry out cooperative peroxisomal and mitochondrial fatty acid β-

oxidation which resembles the situation in humans and animals. 

 

3.3 Peroxisomes from U. maydis are responsive to fatty acid treatment 

Mammals and yeast species respond to dietary fatty acids with a pronounced proliferation 

of peroxisomes and an induction of β-oxidation enzymes in order to elevate their capacity for 

lipid degradation [15]. To examine if and to what extend U. maydis responds to fatty acid 

treatment with a proliferation of peroxisomes, the strain FB2 GFP-SKL was incubated in 

minimal medium containing 0.2 % oleic acid as the sole carbon source as well as under 

glucose-containing control conditions. Peroxisome numbers per cell were determined by 
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fluorescence microscopy (Fig. 5A, B). In contrast to S. cerevisiae, but similar to the situation 

in mammalian cells many peroxisomes constitutively exist in U. maydis under non-induced 

growth conditions on glucose. Peroxisomes were observed to almost double already after 1 

hour of oleic acid treatment (65.9±19.8, n=41) when compared to the appropriate controls 

(40.2±11.6, n=44) revealing a considerably sensitive response to fatty acids. Interestingly, 

oleic acid treatment induced the formation of elongated, rod-shaped peroxisomes and 

constricted, “bead on a string”-like morphologies which are reminiscent of processes of 

peroxisomal growth and division also observed in mammalian cells (Fig. 5) [45]. 

Peroxisomes in U. maydis are uniformly distributed over the cell and show dynamic, 

microtubule-based movements [26]. 

To investigate whether peroxisomal β-oxidation enzymes were induced in parallel to 

peroxisome proliferation, the expression level of peroxisomal ACOX (um02208) as a key 

enzyme in peroxisomal β-oxidation, was determined by a semi-quantitative RT-PCR 

approach using RNA from oleic acid and glucose-grown cells. Compared to controls, a 

significant increase in ACOX mRNA expression was observed after treatment with oleic acid 

(Fig. 5C, D). In contrast, expression of Elongation Factor 1 (EF1) or peptidyl-prolyl cis–trans 

isomerase (PPI), two non-peroxisomal house-keeping proteins, remained unaltered. As in 

animals, the induction of peroxisomal β-oxidation was accompanied by an increased 

expression of mitochondrial ACADM and ACDSB, pointing to cooperative function of both 

organelles in fungal lipid metabolism (Fig. 5). These findings demonstrate that treatment with 

oleic acid induces a fast and pronounced peroxisome proliferation in U. maydis which is 

accompanied by up-regulation of ACOX. Its transcription is modulated by the carbon source, 

as predicted from its key function in peroxisomal β-oxidation. In yeast species, the 

transcription factors Oaf1p and Pip2p are known to regulate the fatty acid-induced elevation 

of β-oxidation enzymes during peroxisome proliferation. Other ascomycota, which do not 

possess homologues of these transcription factors, instead make use of the fungal transcription 
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factors farA/CTF1 and farB/CTF2 (see [15] for review). However, in basidiomycota our 

genome and phylogenetic analyses did not reveal the existence of either homologues and 

rather suggest a parallel evolution of a yet unidentified system of alternative transcription 

factors (data not shown).  

 

3.4 U. maydis peroxisomes sequester a spectrum of fatty acids overlapping with 

mitochondrial β-oxidation 

To investigate the contribution of peroxisomes and mitochondria to fatty acid metabolism 

in U. maydis, we generated a SG200 Δpex3 knockout strain. Deletion of PEX3, a peroxisomal 

membrane biogenesis factor, results in a complete loss of mature peroxisomes in all species 

investigated so far [46]. Hence, peroxisomal enzymes mislocalize to the cytosol and all 

associated enzymatic activities are profoundly reduced. A Δpex3 strain will thus 

predominantly rely on mitochondrial fatty acid β-oxidation when grown on fatty acids as sole 

carbon source. A complete loss of punctuate peroxisomal structures with a faint cytoplasmic 

accumulation of GFP-SKL was confirmed in the deletion strain by fluorescence microscopy 

(Fig. 6A), whereas reintroduction of PEX3 resulted in the re-appearance of peroxisomes (not 

shown). When cultivated on glucose the colony morphology of the ∆pex3 strain was largely 

indistinguishable from the wild-type (Fig. 6B). However, the ∆pex3 strain grows with slightly 

reduced rates when compared to the wild-type strain of U. maydis (Fig. 6C). 

To analyze the spectrum of fatty acids degraded in peroxisomes, both the wild-type and 

∆pex3 strains were cultivated in glucose-free growth media supplemented with a broad 

spectrum of fatty acids in a concentration of 0.001% (Fig. 6D). The density and size of the 

individual colonies were taken as a measure for the ability to grow on the different carbon 

sources tested. To discriminate if growth reductions depend solely on the loss of peroxisomes, 

and thus the inability to break down fatty acids for energy generation, or if accumulating fatty 
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acids exert toxic effects on fungal growth, controls were performed in which the fatty acid 

media were supplemented with 1% glucose. As shown in Fig. 6D (- glucose), the ∆pex3 

mutant cells form less densely grown colonies on all lipid nutrients tested, whereas growth on 

acetate was not compromised. However, on saturated short- to medium-chain fatty acids (C4-

C10), significant growth was still observed implying that breakdown of these fatty acids 

occurs also and maybe primarily in mitochondria and does not depend on peroxisomal β-

oxidation. Growth on saturated long-chain fatty acids (myristic, palmitic acid) was found to 

be profoundly reduced in the ∆pex3 mutant, while loss of peroxisomal β-oxidation vastly 

suppressed growth on very long-chain (lignoceric acid) and most unsaturated fatty acids (e.g., 

myristoleic, palmitoleic, oleic acid). Moreover, the latter fatty acids, when accumulating due 

to loss of peroxisomal function, exhibited significant toxicity (Fig. 6D). Even 

supplementation with glucose as an alternative energy source did not restore growth if 

compared to the wild-type strain (Fig. 6D, + glucose). Remarkably, palmitoleic acid exhibited 

the most severe toxicity. Interestingly, this fatty acid was recently described as a potent 

inducer of liponecrosis in the yeast S. cerevisiae [47]. These findings indicate that unsaturated 

fatty acids such as myristoleic, palmitoleic or oleic acid can only be degraded in significant 

amounts in peroxisomes in U. maydis. According to our genomic screen, U. maydis 

peroxisomes possess an incomplete enzyme inventory required for α-oxidation of C3-

branched-chain fatty acids (Table 2, Suppl. Table S3). Nevertheless, peroxisome-deficient 

cells showed a near to zero growth rate, when phytanic acid was offered as sole carbon source 

while wild-type cells grew well. As an alternative to the α-oxidation pathway mammals are 

able to degrade 3-methyl branched-chain fatty acids in the ER via ω-oxidation using 

cytochrome P450 enzymes [48]. The resulting pristanic acid is subsequently degraded in 

peroxisomes via β-oxidation. Thus, U. maydis could utilize a similar combined 

ER/peroxisomal degradation system for 3-methyl branched-chain fatty acids, since the Δ-

Pex3 strain was also unable to grow on pristanic acid. As U. maydis, in parallel to the 
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situation in mammals, houses a whole set of potential acyl-CoA oxidases and also a 

significant number of potential peroxisomal ACADs, individual enzymes have likely 

developed specialized substrate preferences, explaining the broad spectrum of fatty acids 

apparently sequestered in peroxisomes. In summary, our data demonstrate that U. maydis – 

similar to the situation in mammalian cells – utilizes both a peroxisomal and a mitochondrial 

β-oxidation pathway for fatty acid breakdown. Comparable to humans, U. maydis 

peroxisomes process preferentially longer chain and unsaturated fatty acids as well as 

branched-chain fatty acids, whereas short- and medium-chain fatty acids are (also) degraded 

in mitochondria. According to the growth experiments, however, the fungal peroxisomal β-

oxidation pathway appears to handle a somewhat wider variety of fatty acids, resulting in a 

higher degree of overlap between mitochondrial and peroxisomal fatty acid specificity which 

may explain the total reduction of mitochondrial fatty acid β-oxidation in yeast species. 

 

3.5 Comparison of the basic peroxisomal protein inventory shared by humans and 

fungi 

Our comprehensive analysis revealed candidate proteins for several other important 

metabolic pathways in U. maydis peroxisomes (Table 2). Interestingly, a significantly larger 

overlap between the known mammalian peroxisomal proteome and homologous genes from 

U. maydis was observed when compared to the yeast S. cerevisiae (Table 2): several putative 

hydrogen-peroxide generating, flavin-linked oxidases (including many acyl CoA oxidases, 

urate oxidase, pipecolic acid oxidase, D-amino acid oxidase, polyamine oxidase) are shared 

but are absent in S. cerevisiae (Table 2). Furthermore, U. maydis orthologues for human 

proteins were identified which contribute to peroxisomal metabolism of ROS, amino acids, 

and purines (Table 2, Suppl. Table S3). Ether lipid synthesis (e.g. the synthesis of myelin 

sheath lipids and plasmalogens) is a characteristic feature of peroxisomes in animals, which 

requires metabolic cooperation with the ER. It is supposed to be absent in plants and yeast. 
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Interestingly, except for ADHAP, the key enzyme of peroxisomal ether lipid synthesis (which 

may not exist in fungi), we found homologs of all remaining proteins of the peroxisomal part 

of this pathway in U. maydis but not in S. cerevisiae (Table 2). The lack of an obvious 

ADHAP implies that the remaining enzymes may be involved in other lipid metabolic 

pathways such as the synthesis of glycerolipids and fatty alcohols, respectively. Thus only a 

single enzyme (ADAHPS) had to emerge in animal ancestors to complete this peroxisomal 

pathway. Furthermore, homologues of the human peroxisomal membrane proteins PXMP4, 

MOSC2/mARC, and ACBD5 appear to be present in U. maydis (Table 2). MOSC2/mARC 

and ACBD5 have been identified in recent proteomics studies of mammalian peroxisomes 

[32, 39, 49]. The former is involved in the reduction of N-hydroxylated drugs in mitochondria 

[50], but its peroxisomal function is unknown. A potential homologue of ACBD5, Atg37, has 

recently been linked to pexophagy in the yeast P. pastoris [51]. U. maydis encodes 21 of the 

34 peroxisome biogenesis factors (peroxins, PEX) [52], which have been described in yeast, 

plants and animals (Suppl. Tables S3, S4). Among them are PEX16 (peroxisomal membrane 

biogenesis) and PEX26 (import receptor recycling), which are shared by U. maydis and H. 

sapiens but are absent in S. cerevisiae. Furthermore, two isoforms of PEX11 (um04294, 

um00440), which is associated with growth, division and proliferation of peroxisomes, were 

identified (Suppl. Table S3, S4). Multiple PEX11 genes are, in contrast to S. cerevisiae, 

typically found in plants and animals suggesting that a functional complementation by more 

than one PEX11 is a common strategy among most eukaryotes.  

Our analysis also contributed to the identification of novel predicted peroxisomal proteins 

restricted to fungi. In addition to a couple of proteins with no predicted function, we identified 

an U. maydis protein (um01197) related to 8-amino-7-oxononanoate synthase, an enzyme 

involved in biotin synthesis with a canonical PTS1 (Table 2, Suppl. Table S3) – a pathway 

recently associated with peroxisomes in filamentous fungi [53]. Interestingly, metabolic 

coupling between peroxisomes and mitochondria appears to be required for biotin 
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biosynthesis. Furthermore, U. maydis gulonolactone oxidase (um10013), which is involved in 

ascorbate synthesis, and several enzymes with a function in carbohydrate metabolism 

(um00555, um10167, um11593) or mannosylerythritol lipid (MEL) biosynthesis (um03116, 

um10636) bear potential PTS1 sequences (Table 2; Suppl. Table S3). Peroxisomal targeting 

of the latter two acyltransferases Mac1 and Mac2 and involvement of peroxisomes in MEL 

biosynthesis in U. maydis has very recently been confirmed [54]. 

Among the U. maydis proteins with a predicted PTS1, we also revealed several proteins 

with unknown function (Table 2, Suppl. Table S3). Our sequence comparison to humans 

allowed us to identify some of them as potential homologues of known peroxisomal proteins 

(e.g., um10331 as peroxiredoxin V, um12269 as hydroxyl acid oxidase 1 or um06422 as the 

ACAD11 n-terminal APH domain) (Suppl. Table S3). Others are, however, confined to fungi 

or even Ustilaginomycetes and are likely to fulfil more species-specific functions. These 

species-specific proteins might reveal novel targets to combat pathogenicity of U. maydis. 

Our studies revealed peroxisomal candidate proteins with unusual, non-canonical PTS1 

sequences such as tripeptides PKL/PRL, SNL/SHL and GKL/GRL. Those were commonly 

identified among predicted U. maydis peroxisomal proteins and were often found on proteins 

associated with classical metabolic pathways of peroxisomes indicating functionality. In line 

with this, we demonstrated efficient peroxisomal targeting for the PTS1 –SHL (um06400, 

ACAD11n) (see Fig. 2). To investigate peroxisomal targeting of a predicted candidate protein 

with a weak PTS1, we choose Um11901. It is related to β-Lactamase-like protein 2 

(LACTB2), a predicted zinc-binding hydrolase, which has been identified in recent 

proteomics studies of rat and human liver peroxisomes [32, 49]. Both the U. maydis and the 

rat homologue possess a predicted weak PTS1 (-SAL and –ASL, respectively). We thus 

investigated if the weak signal would be sufficient for targeting of LACTB2 to peroxisomes 

in U. maydis and mammalian cells. An N-terminal mCherry fusion of um11901 (mCherry-

LACTB) did, however, not colocalise with GFP-SKL (or Lga-GFP) in U. maydis and resulted 
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in a cytosolic localisation (Fig. 2S-U). Thus, the predicted weak PTS1 sequences on 

uncharacterised candidate proteins (Suppl. Table S3) should be interpreted with care as they 

may not be functional. Interestingly, similar observations were made for Myc-RnLACTB2 

when expressed in COS-7 cells (Fig. 3J-L) and indicate that both proteins are either not 

peroxisomal or not efficiently targeted in our experimental setup. It should be noted that for 

the mouse homologue a mitochondrial localisation has been suggested [55]; however, proteins 

with both a peroxisomal and mitochondrial localisation are known [9].  

 

4. Discussion 

A primary role of peroxisomes is their contribution to cellular (and organismal) lipid 

homeostasis. Concordantly, fatty acid β-oxidation is a major metabolic pathway found in 

peroxisomes across species. Several genetic defects affecting the function of this pathway 

result in metabolic diseases [56]. In animals, peroxisomes cooperate with mitochondria which 

exhibit an alternative, more energy efficient β-oxidation system. In contrast, a mitochondrial 

β-oxidation pathway is absent in yeast and plants, which solely rely on peroxisomes for 

degradation of fatty acids.  

Our comparative genetic analyses and localisation studies prove that U. maydis possesses a 

complex and complete enzymatic inventory for both peroxisomal and mitochondrial fatty acid 

β-oxidation, which resembles the situation in humans and animals. Notably, several other 

fungal species display only an incomplete set of mitochondrial β-oxidation enzymes [37], 

which renders U. maydis a suitable model system to study metabolic cooperation between 

peroxisomes and mitochondria. To unravel the overall peroxisomal contribution to fatty acid 

β-oxidation in U. maydis, we generated a mutant incapable of forming any peroxisomes by 

deletion of Pex3. According to the results obtained with the ΔPex3 deletion strain, 

mitochondrial β-oxidation in U. maydis is specific for saturated short to medium chain fatty 



27 
 

acids whereas peroxisomes sequester saturated and unsaturated fatty acids of a wide spectrum 

ranging from short to very long chain fatty acids. Previous studies using deletions of 

individual β-oxidation enzymes led to comparable results [58, 59]. Thus, the total deletion of 

peroxisomes proves that peroxisomal β-oxidation in U. maydis relies on the same set of 

enzymes as in animal cells. Since the Pex3-knockout shows a comparable inhibition of fatty 

acid β-oxidation as the single enzyme deletion strains mentioned above, it is unlikely that the 

additional proteins with homologies to β-oxidation enzymes found in our bioinformatics 

screen (um11001, um02097) contribute to this metabolic pathway. Rather, they are associated 

with other and potentially unknown peroxisomal functions.  

The value of peroxisomal β-oxidation in U. maydis does not solely lie in energy 

production, but also serves detoxification purposes. We showed that the Δpex3 mutant only 

grew poorly on unsaturated fatty acid media supplemented with glucose as an energy source. 

Such toxicity was also reported for U. maydis mutants with deletions in the Pex6 or D-PBE 

gene [59, 60]. The observed toxicity is likely caused by a disturbance of the ratio between 

saturated and unsaturated fatty acids in cellular membranes, thus compromising the 

biophysical properties of the endomembrane system [61]. 

Compared to animals, yeast species favour glucose, alcohol or organic acids for energy 

production, which could explain why fatty acid β-oxidation is entirely located to the less 

energy efficient peroxisomes and is only activated under conditions of acute shortage of other 

metabolites [62]. Indeed, in glucose-containing media, S. cerevisiae houses only around 1-2 

peroxisomes per cell, whereas a change to fatty acids induces peroxisome numbers 

considerably. In U. maydis – similar to mammalian cells – many peroxisomes (40.2±11.6, 

n=44) are constitutively present suggesting that peroxisomes fulfil a more fundamental role in 

the fungus. In line with this, growth rates on glucose are slightly reduced for the ∆pex3 strain. 

These findings indicate that similar to the situation in animals, peroxisomes of U. maydis are 
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required for additional important metabolic pathways, e.g., glycolysis [60] (see also our 

bioinformatics survey, Suppl. Table S3). 

We demonstrated, that the U. maydis peroxisomal β-oxidation system responds to fatty 

acids by a coupled induction of the respective enzymatic inventory (e.g., ACOX) and an 

overall proliferation of the peroxisomal compartment. Like in mammals, peroxisome 

proliferation is accompanied by induction of the mitochondrial β-oxidation system, 

highlighting the alliance of both organelles in fatty acids metabolism. Apparently, even 

distantly related organisms such as basidiomycetes and humans retained ostensibly redundant 

enzyme inventories for a single metabolic β-oxidation pathway. Moreover, this scenario 

demands an associated regulation system between the two cooperating organelles. Thus, it is 

quite tempting to ask why such an - in terms of energetic efficiency - luxurious bimodal β-

oxidation system was established?  

The classic peroxisomal β-oxidation system consists of an ACOX which shows close 

homologies to acyl-CoA oxidases from δ-proteobacteria and high-GC Gram+ bacteria [63]. 

Subsequent steps in both animals and fungi are, however, performed by the bifunctional 

proteins (2nd, 3rd step) and 3-ketothiolase, which are more closely related to versions from α-

proteobacteria suggesting a mitochondrial origin. Thus, the peroxisomal β-oxidation pathway 

appears to represent a hybrid of an ACOX derived from a primitive eukaryote and enzymes of 

mitochondrial origin, which were re-targeted to peroxisomes. Recently, Speijer [64] 

hypothesized, that the mitochondrial β-oxidation pathway for long chain fatty acids was 

transferred to peroxisomes to quench the formation of highly reactive oxygen species 

generated by the transfer of electrons from FADH through the OXPHOS complexes. In this 

regard the cooperation of mitochondria and peroxisomes in fatty acid β-oxidations mirrors a 

balance between energy effectiveness and toxicity of the by-products generated. Indeed, our 

phylogenetic analyses revealed a perpetual trend in U. maydis and in animals to relocate 

mitochondrial β-oxidation enzymes to peroxisomes. 
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In this respect, the identification of ACADs (ACAD11) as bona fide peroxisomal proteins 

in fungi and mammals is an important finding of this study. We clearly demonstrated that 

ACAD11 proteins from rat, H. sapiens and U. maydis are exclusively targeted to 

peroxisomes. In line with this, ACAD11 is highly enriched in peroxisome fractions isolated 

from rat liver. Our findings are further supported by recent proteomics studies of rodent and 

human peroxisomes [32, 39, 49] and the observation that human ACAD11 can interact with 

the peroxisomal PTS1 receptor Pex5 in vitro [65]. Our phylogenetic analyses revealed that 

ACAD11 proteins with peroxisomal targeting sequences exist in all eukaryotic phyla and 

belong to the basic enzyme repertoire of peroxisomes. This further indicates that peroxisomes 

and mitochondria in fungi and animals (with the exception of arthropods, where ACAD11 

was apparently lost) both harbour enzymes of the acyl-CoA dehydrogenase family. 

ACAD11/10 homologues with a potential PTS1were also reported in plants [66] implying an 

ancient peroxisomal localisation of ACAD11 which was already established in the last 

common ancestor of all eukaryotes. In contrast, ACADs are completely absent in S. cerevisiae 

(which is known for loss of genes) [67]. Unlike in mammals and plants, U. maydis ACAD11 

(and all other filamentous fungi) lacks an N-terminal APH domain. However, we identified a 

corresponding individual protein (um06422) in basidiomycetes as well as ascomycetes and 

confirmed its peroxisomal localisation. This observation does not support the hypothesis that 

the original ACAD11 in fungi was replaced by a truncated bacterial version via lateral gene 

transfer [66]. More likely, U. maydis, like most other fungi, possesses a split version of the 

mammalian ACAD11. 

A fatty acid metabolizing activity of ACAD11 with highest affinities towards long- to very 

long-chain fatty acids (C20-C26) was experimentally determined [40] and shows overlap with 

the substrate spectrum of the peroxisomal acyl-CoA oxidase ACOX1. This prompts to ask 

about the function of peroxisomal ACADs in peroxisomal fatty acid β-oxidation. 
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A BLAST comparison of the sequence similarities of the ACAD11 dehydrogenase domain 

with those of bacteria suggests that it derived from α-proteobacteria and thus mitochondria. 

With respect to their enzymatic mechanism, peroxisomal ACOXs and mitochondrial ACADs 

function significantly different: ACOXs transfer the electrons liberated during the oxidation 

of the acyl-CoA via their FADH cofactor to molecular oxygen thus generating H2O2; in 

contrast, ACADs deliver the electrons from FADH to an electron acceptor protein (in 

mitochondria the electron transfer protein 1α, which further transfers the electrons to the 

respiratory chain) and do not form H2O2 but instead produce oxygen radicals during electron 

transfer through the mitochondrial electron transport chain.  

It should be noted that our phylogenetic analyses revealed an additional potential ACAD 

with a PTS1 in fungi that possesses an N-terminal cytochrome b5-like domain (um01466). 

Similar cytochrome b5-enzyme fusions which are supposed to facilitate electron transfers 

have been described for other oxidoreductases [68, 69]. In this respect, it is remarkable that 

the ACAD11 N-terminal domain (ACADc) has a weak sequence similarity to the 

mitochondrial electron transfer flavoprotein α (ETFA). Thus, peroxisomal ACADs may be 

partially equipped with internal electron acceptor domains which in the case of the fungal 

ACAD11 are kept as individual protein entities; perhaps because there are further 

peroxisomal ACADs in fungi (um00122, um10665) which may have to interact with an 

electron acceptor protein.  

β-Oxidation via peroxisomal ACOX generates toxic H2O2 which has to be removed by 

peroxisomal scavenging enzymes such as catalase. As H2O2 can also leak into the cytosol 

[70], the production of intra-peroxisomal H2O2 has to be carefully balanced. A potential 

dehydrogenase-based β-oxidation system in peroxisomes would offer the possibility to 

interfere with intra-organellar H2O2 production by regulation of the counteracting 

ACOX/ACAD pathways. Such a system could be fundamental to maintain peroxisomal H2O2 

production at a controlled level, e.g., under conditions of enhanced fatty acid β-oxidation, or 
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to regulate the redox state inside (or in the periphery) of the organelle. H2O2 is also a potential 

signalling molecule which can catalyse the reversible formation of disulphide bridges [71]. In 

this respect, peroxisomes were reported to contribute to the H2O2-regulated control of 

neuronal activity [72] and to communicate with mitochondria modifying the redox potential 

of the latter [12, 13, 73]. Parallel ACAD/ACOX-based fatty acid β-oxidation in concert with 

catalase may build a complex regulation system for controlled release of H2O2 from 

peroxisomes in order to act as a cellular messenger. In summary, regulation of the production 

of ROS in mitochondria and peroxisomes appears to be one of the driving forces of the 

cooperative evolution of both organelles, switching enzymatic localisation and building a, still 

poorly-defined, signalling system to maintain the cellular redox potential at physiologically 

healthy levels. In this respect, U. maydis offers the potential to study such complex 

interrelationships in a model organism which is easy to cultivate and genetically accessible, 

but maintains the principle of organelle cooperation found in higher eukaryotes. 
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Figure Legends 

 

Figure 1. ACAD11 is a conserved peroxisomal protein found across all opisthokonta. 

(A) Simplified overview of the ACAD/ACOX phylogenetic distribution in opisthokont 

metazoa (original data presented in Suppl. Fig. S1). Both ACOX with peroxisomal and 

ACAD with mitochondrial targeting sequences are widely distributed in the kingdoms of 

animalia and fungi. Additional ACAD with a peroxisomal PTS1 are abundant in all 

opisthokont groups analysed (boxed). Only in Saccharomycetales, mitochondrial and 

peroxisomal ACAD were lost in a presumably step-wise process. IVD – Isovaleryl-CoA 

dehydrogenase, GCDH – Glutaryl-CoA dehydrogenase (B) The domain structure of ACAD11 

in animals and choanoflagellata implies a fusion of two originally independent peroxisomal 

enzymes still separated in fungi (ACAD11n and ACAD11c). 

 

Figure 2. Fatty acid β-oxidation enzymes localize to peroxisomes and mitochondria in U. 

maydis. Plasmids encoding GFP- or mCherry-labelled candidate fusion proteins (left column) 

were integrated ectopically into peroxisomal (AB33GFPSKL, FB1mChSKL) or 

mitochondrial (FB2LgaGFP) marker strains (middle column) and imaged live by laser-based 

epifluorescence microscopy in U. maydis yeast-like cells. Colocalisation of GFP-ACAD11n 

(um06400) (A-C) and  

GFP-ACOX (um02208) (G-I) with the peroxisomal marker mCherry-SKL. (D-F) 

Colocalisation of ACAD11c-mCherry (um06422) with the peroxisomal marker GFP-SKL. 

The signals exhibit a punctuate pattern indicating peroxisomal localisation. Note that the halos 

result from peroxisomes which are not in focus. Peroxisomes in U. maydis are uniformly 

distributed over the cell and show microtubule-based movements. Colocalisation of ACADM-

mCherry (um01049) (J-L) and ACDSB-mCherry (um06185) (M-O) with the mitochondrial 
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marker Lga2-GFP. The signals exhibit a tubular pattern indicating mitochondrial localisation. 

(P-R) Colocalisation of mCherry-CAT (um11067) with the peroxisomal marker GFP-SKL. 

(S-U) mCherry-LACTB (um11901) shows a cytosolic localization and does not colocalize 

with the peroxisomal marker GFP-SKL. Bar, 5 µm. 

 

Figure 3. ACAD11 proteins from different species localise to peroxisomes in mammalian 

cells. COS-7 cells were transfected with plasmids encoding N-terminally tagged Myc-

HsACAD11 (A), Myc-RnACAD11 (D), Myc-UmACAD11n (G), or Myc-Rnβ-Lact2 (J) and 

processed for immunofluorescence 24 h after transfection using antibodies directed to Myc 

(A, D, G, J) and the peroxisomal membrane marker Pex14 (B, E, H, K) and imaged by 

confocal microscopy. Note that ACAD11 proteins from H. sapiens, R. norvegicus and U. 

maydis are all exclusively targeted to peroxisomes. In contrast, β-Lactamase with a weak 

predicted PTS1 is not targeted to peroxisomes and remains cytosolic. Overlays are shown in 

(C, F, I, L). Nuclei are stained with DAPI. The corresponding C-terminally tagged ACAD11 

fusion proteins show a cytosolic localisation (see Suppl. Fig. S2). Bars, 10 µm. (M) 

Immunoblot of subcellular fractions isolated from rat liver (10 µg of protein per lane). An 

antibody directed against rat ACAD11 (Abcam) detects ACAD11 (~ 80 kDa) and a 60 kDa 

band (asterisks), which are mostly prominent in peroxisome fractions (PO, purity > 95%, 

Islinger et al. 2007). Antibodies against the following proteins were used as organelle 

markers: Pex14, ACOX1 – peroxisomes; ATP synthase subunit α, VDAC1, ornithine 

carbamoyltransferase – mitochondria; GRP78, ERp29 – endoplasmic reticulum; tubulin α/β – 

cytosol. PNS – post nuclear supernatant, HM – heavy mitochondrial fraction, LM – light 

mitochondrial fraction (pre-fraction to PO), CYT – cytosolic fraction, MIC – microsomal 

fraction. 
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Figure 4. Comparison of peroxisomal and mitochondrial fatty acid β-oxidation 

pathways. β-Oxidation of fatty acids is carried out in peroxisomes and mitochondria in four 

subsequent reactions (① - ④), which are preceded by an activation step coupling the free 

fatty acids to coenzyme A. As long-chain fatty acids cannot pass the organelle membranes by 

mere diffusion, this has to occur outside the organelle involving membrane-bound long-chain 

acyl-CoA synthetases. The activated long-chain fatty acids are imported into the organelles by 

specific import systems, whereas short- and medium chain fatty acids are supposed to enter 

mitochondria by diffusion prior to activation. Concerning substrate specificity peroxisomes 

degrade long- to very long-chain fatty acids (> C16) down to a chain length of 8 carbon 

atoms. Octanoic acid is subsequently exported to mitochondria, which preferentially 

metabolize long- to short chain fatty acids. Mechanistic differences in fatty acid import and 

the catabolic reactions carried out in peroxisomes and mitochondria are marked in red; for all 

other steps both organelles possess individual sets of enzymes with substrate specificity 

towards different fatty acid chain lengths. Note that peroxisomes possess two bifunctional 

enzymes (D-BP, L-BP) combining steps ② and ③ in one protein. Mitochondria, however, 

can possess both, individual enzymes for each step of the pathway as well as a trifunctional 

enzyme consisting of two polypeptide chains (HadhA, HadhB) which combine steps ② to 

④. 

 

Figure 5. U. maydis peroxisomes are responsive to fatty acid treatment. U. maydis strain 

FB2 GFP-SKL was incubated in NM medium containing 1% glucose (control) or 0.2% oleic 

acid as the sole carbon source to induce peroxisome proliferation. (A) U. maydis yeast-like 

cells were imaged live by laser-based epifluorescence microscopy. Note the presence of 

elongated, rod-shaped peroxisomes and constricted “bead on a string”-like morphologies in 

cells treated with oleic acid, which resemble processes of peroxisomal growth and division in 

mammalian cells. DIC images are shown on the right. (B) Quantitative analysis of peroxisome 
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number per cell after 1 hour. Data are from 3 independent experiments (n= 44 cells) and are 

presented as mean ± SD. (C) To monitor the expression level of peroxisomal ACOX 

(um02208) and mitochondrial ACADM/ACDSB (um01049, um06185), total RNA was 

isolated from control and oleic-acid treated cells and RT-PCR was performed. The transcripts 

of the housekeeping proteins Elongation Factor 1 (EF1) and peptidyl-prolyl cis–trans 

isomerase (PPI) were amplified as loading controls. Triplicates of each condition are shown. 

Data are from 3 independent experiments and are presented as mean ± SD. Note induction of 

ACOX and ACAD expression in response to oleic acid exposure. (D) Representative gel 

images for the RT-PCR experiments. 

 

Figure 6. Peroxisome deficiency and growth on fatty acids. (A) The peroxisomal marker 

GFP-SKL localizes to peroxisomes in the wild type Sg200 strain (upper panel), whereas GFP-

SKL is cytosolic in the peroxisome-deficient Sg200 ∆pex3 deletion strain. Note that exposure 

times have been increased to visualize cytosolic, non-peroxisomal GFP-SKL in the ∆pex3 

deletion mutant. DIC images are on the right. (B) Colony morphology of the wild type Sg200 

and the Sg200 ∆pex3 deletion strains on solid medium containing glucose. Light microscopy 

(left) and scanning electron microscopy (right) images. (C) Growth of the wild type Sg200 

and the Sg200 ∆pex3 deletion strains in CM liquid medium complemented with glucose. Data 

are from at least 3 independent experiments and are presented as mean ± SD. (D) The wild 

type strain Sg200 (WT) and the Sg200 ∆pex3 deletion strain (KO) were spotted on solid 

medium containing different fatty acids (0.001%) or acetate (1%) in the absence or presence 

of glucose (1%). Photographs were taken after 48h at 28°C.  
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TABLES 

Table 1. Fatty acid β-oxidation enzymes in U. maydis 

 

Table 2. Inventory of U. maydis peroxisomal proteins and metabolic pathways in 

comparison to H. sapiens and S. cerevisiae 
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Supplementary material 

 

Supplementary information 

All identified proteins with a potential peroxisomal targeting signal 1 (PTS1) were analysed 

by PTS1 predictor algorithms [20] which evaluate the probability of targeting to peroxisomes 

by taking into consideration the C-terminal dodecamer [74]. This 12-amino acid sequence 

includes the most C-terminal tripeptide which is responsible for interaction with the surface of 

the Pex5p receptor-cavity, a tetrapeptide immediately upstream, thought to interact with the 

surface of the Pex5p proteins, and a flexible hinge that provides accessibility and flexibility. 

From this tool, query sequences that generate scores larger or equal to 0 are considered 

“predicted”, sequences with scores below -10 are classified as “not predicted”, and sequences 

with scores between 0 and -10 are considered being situated in a “twilight zone”.  

 

Suppl. Table S1. Ustilago maydis strains generated/used in this study 

 

Suppl. Table S2. List of primers used in this study 

 

Suppl. Table S3. Ustilago maydis theoretical peroxisomal protein inventory 

 

Suppl. Table S4. Presence of peroxins in mammals, plants, filamentous fungi and yeast 

species 

 

Suppl. Figure S1. Phylogram of acyl-CoA oxidase (ACOX) and acyl-CoA 

dehydrogenases (ACAD) catalyzing the first step in fatty acid β-oxidation. A phylogram 

of acyl-CoA oxidase and acyl-CoA dehydrogenases from > 30 fungal and animal species was 

generated with PhyML3.0 using the aLRT algorithm for branch support and including NNI 
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and SPR tree searching operations. Branches with a SH-aLRT branch support value above 

0.75 are marked with a symbol (•). Black lines separate branches corresponding to the same 

enzyme category and are labeled to the right with the gene name of an already characterized 

member. If this was not possible, a short description of the proteins’ common properties is 

given. The presence of organelle targeting sequences (PTS1/PTS2/MTS) identified by 

bioinformatics is indicated for each protein (no, not identified; twz, twilight zone). A group of 

potential ACADs with a facultative N-terminal cytochrome b5 domain (ACAD-Cytb5) was 

identified in fungi; the existence of the domain is additionally indicated for this branch of the 

tree. 

 

Suppl. Figure S2. C-terminally tagged ACAD11 proteins from different species remain 

in the cytosol. COS-7 cells were transfected with plasmids encoding C-terminally tagged 

HsACAD11-GFP (A), RnACAD11-Myc (D), or UmACAD11n-Myc (G), processed for 

immunofluorescence 24 h after transfection using antibodies directed to Myc (D, G) and the 

peroxisomal membrane marker Pex14 (B, E, H) and imaged by confocal microscopy. Note 

that tagging at the C-terminus abolishes peroxisomal targeting (see Fig. 2) and results in a 

cytosolic localization of ACAD11 proteins from H. sapiens, R. norvegicus and U. maydis. 

Overlays are shown in (C, F, I). Nuclei are stained with DAPI. Bars, 10 µm. 

 

Suppl. Figure S3. Phylogram of ATP Binding Cassette (ABC) class D transporters. A 

phylogram of ABC class D transporters from > 40 fungal and animal species was generated 

and labeled as described in the legend to Suppl. Fig. S1. Branches with a SH-aLRT branch 

support value above 0.75 are marked with a symbol (•). Members of all families except for 

ABCD4 have been experimentally localized at peroxisomes and are supposed to import fatty-

acyl-CoA for subsequent fatty acid β-oxidation. 
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Suppl. Figure S4. Phylogram of the enoyl-CoA hydratase enzyme family. Enoyl-CoA 

hydratases catalyze the second step of peroxisomal and mitochondrial fatty acid β-oxidation. 

Corresponding domains of the organelle-specific multifunctional enzymes were analyzed 

along with related single domain enzymes of the family. The phylogram was constructed from 

sequences of > 30 fungal and animal species and labeled as described in the legend to Suppl. 

Fig. S1. Branches with a SH-aLRT branch support value above 0.75 are marked with a 

symbol (•). The presence of organelle targeting sequences (PTS1/PTS2/MTS) identified by 

bioinformatics is indicated for each protein (no, not identified; twz, twilight zone). Note the 

neighboring of the branches comprising the enoyl-CoA domains of the peroxisomal L-BP 

(EHHADH) and the mitochondrial trifunctional enzyme subunit α (ECHA). 

 

Suppl. Figure S5. Phylogram of the hydroxyacyl-CoA dehydrogenases involved in fatty 

acid β-oxidation. Hydroxyacyl-CoA dehydrogenases catalyze the third step of peroxisomal 

and mitochondrial fatty acid β-oxidation. Corresponding domains of the organelle specific 

multifunctional enzymes were analyzed along with selected single domain enzymes of the 

family. The phylogram was constructed from sequences of > 35 fungal and animal species 

and labeled as described in the legend to Suppl. Fig. S1. Branches with a SH-aLRT branch 

support value above 0.75 are marked with a symbol (•). The presence of organelle targeting 

sequences (PTS1/PTS2/MTS) identified by bioinformatics is indicated for each protein (no, 

not identified; twz, twilight zone). Note that the 17-beta-hydroxysteroid dehydrogenase 10 

(HSD17B10) originally designed as an out-group to the peroxisomal D-BP (HSD17B4) was 

found to possess a predicted PTS1 in nearly all fungi analyzed. 

 

Suppl. Figure S6. Phylogram of the 3-ketoacyl-CoA thiolases involved in fatty acid β-

oxidation. 3-Ketoacyl-CoA thiolases/dehydrogenases catalyze the last step in peroxisomal 

and mitochondrial fatty acid β-oxidation. The phylogram was constructed from sequences of 
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> 30 fungal and animal species and labeled as described in the legend to Suppl. Fig. S1. 

Branches with a SH-aLRT branch support value above 0.75 are marked with a symbol (•). 

The presence of organelle targeting sequences (PTS1/PTS2/MTS) identified by 

bioinformatics is indicated for each protein (no, not identified; twz, twilight zone). 

 
 


