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Abstract

The application of single and multi-objective particle swarm optimisation (PSO) is widespread,

however in many-objective optimisation (problems with four or more competing objec-

tives) traditional PSO has been less well examined. Recent progress on many-objective

evolutionary optimisers has lead to the adoption of a variety of non-Pareto quality mea-

sures, it is therefore of interest to see how well PSO copes in this domain, and how

non-Pareto quality measures perform when integrated into PSO. Here we review the cur-

rent state of the art in multi- and many-objective PSO optimisation. We compare and

contract the performance of canonical PSO, using a wide range of many-objective quality

measures, on a number of di↵erent parametrised test functions for up to 30 competing

objectives. We examine quality measures as selection operators for guides when truncated

non-dominated archives of guides are maintained, and maintenance operators, for choos-

ing which solutions should be maintained as guides from one generation to the next. We

investigate in detail two Pareto strengthening methods, Controlling Dominance Area of

Solutions (CDAS) and Self-Controlling Dominance Area of Solutions (S-CDAS). We find

that CDAS and S-CDAS perform exceptionally well as a quality measures to determine

archive membership for global and local guides. However, for convergence only at the cost

of diversity and spread across the optimal front, single objective canonical PSO run using

a linear sum of objectives, has the best performance overall.
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Nomenclature

x,u,v Vectors in parameter/search/domain/design space

fi(x) ith Objective function mapping x to the ith objective

f(x) Objective functions mapping x to objective space

� Pareto dominance (for first introduction see section 2.5.1).

w Inertia of a particle.

c1 Constraints on the velocity contribution from personal best. (Cognitive learning

factor)

c2 Constraints on the velocity contribution from global/local best. (Social learning

factor)

� Overall constraint of shift in position.

p Personal guide.

g Global guide.

P The set of optimal Pareto solutions.

F The image of P through f .

s Vector of mapping coe�cients for CDAS.

d, n, p Number of search parameters.

m Number of objectives.
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Glossary of terms

PSO Particle swarm optimisation (see section 2.4).

MOPSO Multi/Many objective particles swarm optimisation (see section 2.6.8).

EA Evolutionary algorithm.

GA Genetic algorithm.

FR Favour relation (a ranking method see section 2.6.1).

AR Average ranking (a ranking method see section 2.6.4).

SR Sum of average rank (a ranking method see section 2.6.5).

RR Uniform random

KO k-optimality (a ranking method see section 2.6.2).

CDAS Controlling dominance area of solutions (a geometric remapping of the objective

space see section 2.6.6).

CDAS-R Controlling dominance area of solutions as a ranking method (a ranking method see

section 3.1.1).

CD Crowding distance (a class of ranking method see section 2.6.3).

S-CDAS Self controlling dominance area of solutions (an adaptive geometric remapping of

the objective space see section 2.6.7).

GD Generational distance (a measure of quality see section 2.8.1)

IGD Inverse generational distance (a measure of quality see section 2.8.2)

DTLZ Set of Scalable Multi-Objective Optimization Test Problems by K. Deb, L. Thiele,

M. Laumanns and E. Zitzler (see section 2.7.1 ).

WFG Set of Scalable Multi-Objective Optimization Test Problems (see section 2.7.2).
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1. Introduction

As humanity strives to develop ever more complicated systems the need for assisted design

and analysis grows. The use of computational resources to aid these processes has grown

in response to this need. With academia working in parallel with applied industry various

optimisation techniques have been developed over the past years. Here we will cover a

small selection of these focusing upon the nature inspired particle swarm optimisation

heuristic and how this method has been applied to both single and multi/many-objective

tasks.

The adaptation of models and processes observed in nature and applied to the computa-

tional domain aims to allow such a model to search/optimise/innovate over many di↵ering

problems without needing explicit problem knowledge. Providing what is known as a

‘black box’ system, earlier versions of these are now regularly used throughout industry to

solve complex scheduling, design and parameter tuning tasks. The existing applications

of these systems span the entire industrial domain with financial organisations optimising

trading algorithms to cutting-edge medical research searching human genome for potential

cures to disease (Brabazon and O’Neill, 2006; Greene et al., 2008).

Since the first of these algorithms, inspired by evolution itself, the field has expanded

into a diverse range of approaches, spanning animal behaviour to molecular and chemical

interactions. Within this study we will investigate the applications of a particular algo-

rithm known as particle swarm optimisation, this draws from the behaviour of flocking

birds and fish, to provide a searching behaviour.

The particle swarm optimisation (PSO) heuristic is a population-based approach where

the emergent intelligence of the system comes about through the communication strate-

gies used between the individual ‘dumb’ members of the swarm. The traditional PSO

heuristic, introduced in Kennedy and Eberhart (1995), considers the swarm/population

to be fully connected, where each member/particle is in communication with every other

member/particle. In addition to this, each individual member/particle holds a personal

memory of the best place it has been, then by combining its personal preference with the
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best one found throughout the swarm/population the individual is able to move towards

the combined location of these two good solutions. However, each member/particle has

an internal inertia based upon its previous last movement - as well as guides (solutions

that have been chosen from personal and swam memory) from previous iterations thereby

continue to influence the search. This has two e↵ects: firstly to allow each particle to

cover more ground (promoting a diverse search), the swarm swirls in on an optimal so-

lution instead of following a direct path. Secondly to smooth out the e↵ects of selecting

guides from di↵erent sectors of the search space from iteration to iteration without this

the swarm could resemble random (Brownian) motion when two (personal and global)

guides are selected at opposing sides of the parameter space.

What follows is a close examination of how the particle swarm optimisation heuristic can

be used to solve problems with more than one competing quality measure. Preceding the

main body of the study there will first be an analysis of the current literature surrounding

PSO and nature inspired optimisation in general. This will formally introduce the topic,

discuss the current state of the art in multi/many- objective optimisation and go into the

details of the algorithms/methods used later.

Following the literature review chapter 3 introduces a novel ranking method: Control-

ling Dominance Area of Solutions - Ranking (CDAS-R). This is applied as a guide selection

method and compared, on four test problems from 2 to 20 objectives, to 6 other commonly

used selection methods. Chapter 4 follows on with an investigation into the maintenance

of personal and global solution archives. Here the same 7 selection methods from chapter

3 are adapted for archive truncation and compared alongside a Pareto strengthening ap-

proach, Controlling Dominance Area of Solutions (CDAS), on the same set of problems

as in chapter 3.

The strong performance of CDAS in chapter 4 leads to an analysis of the front regions it

prefers. Here an additional adaptation to CDAS, self-CDAS (S-CDAS) is compared with

CDAS on multiple di↵erent front topologies. An addition to CDAS - mapped CDAS, is

proposed. Then in chapter 6 an in-depth experimental analysis on 14 test problems from

2 to 30 objectives gives a comparison between CDAS, S-CDAS and the proposed mapped

CDAS. Finally in chapter 7 the findings from each chapter are collated and future work

is discussed.
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2. Literature Review

Here we investigate how optimisation methods, in particular nature inspired algorithms,

have been applied and documented within the literature. From the general overview

of numerical optimisation, and the broader nature inspired field, we will investigate the

population-based nature inspired method known as particle swarm optimisation. Opti-

misation with multiple criteria is also introduced, and the appropriate adaptations that

need to be made to the particle swarm algorithm such that it can perform appropriately

on these multiple criteria functions are discussed.

2.1. Optimisation of non-trivial systems

There are many problems that can be represented in the pure mathematical form, ideally

a form that can be indefinitely integrated and di↵erentiated, however even these problems

can become too unwieldy to analytically find optimal solutions. When such a system

is analytically solvable we may still find ourselves struggling to find the correct optimal

solutions due to additional boundary conditions which may be in themselves di�cult to

analytically incorporate into the system.

Moving from the theoretical mathematical domain into applied engineering, real-world

applications pose many additional problems. What may initially appear to be a simple

system mathematically, a roller-coaster ride for example, can become immensely compli-

cated once one must incorporate the vast number of not fully understood external factors,

for example weathering or air resistance, making the modified mathematical model non-

analytically solvable. This gives rise to the requirements of numerical methods for solving

these complex and sometimes uncertain problems.

2.2. Numerical Optimisation

To solve the complexities that can arrive in non-trivial systems, as described above in

section 2.1, mathematicians have used algebraic methodologies to develop numerical pro-
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cesses which allow for the discovery of approximate solutions. All of these methods, with

the exception of random walks, maintain at least some memory of previous solutions and

commonly a means of determining their quality in comparison to a new solution, for ex-

ample interval bisection will maintain the solutions bounding the current search interval

bisection (Carnahan et al., 1990).

As problems became more involved, with less knowledge of the solution landscape, new

methodologies are needed. Such systems need to be able to search a space of potentially

multiple parameters to find an optimal solution. With little or no knowledge of how

these parameters may interact and connect it becomes increasingly di�cult to derive a

deterministic algorithm to optimise these problems.

The first heuristics widely applied to these problems are known as hill climbers, similar

to interval bisection but with the addition of random seeding. These systems aiming to

traverse the space defined by the quality of any given solution, try to climb to optimal

solutions. Hill climbers are still used today in many industrial applications where the

objective space is smooth with few or no local optima1. (Schwefel, 1981; Xi et al., 2004)

2.3. Nature Inspired Computation

For a long time it has been known that systems in nature e↵ectively solve problems in

a far better way than we are able, e.g ants searching for the shortest path between nest

and food sources - on longer time-scales the evolutionary process has produced a vast

variety of solutions to the problem of surviving on this planet. The field of nature inspired

computation describes algorithms which seek to emulate some attributes of these systems.

Nature inspired computation does not describe a full simulation of the processes observed

in nature but rather a simplified model which we hope provides an adequate approximation

of the behaviour within our computational limits.

From the fundamental processes of life on our planet, natural selection and evolution,

to the finer granularity of the resultant connected systems, neural pathways and cognitive

learning, nature inspired computing is a massive field (Marrow, 2000). In particular here

we are interested in those systems which can be applied for optimisation, the most obvious

being natural selection, and how these processes are manifest in algorithmic computational

terms. Among the first of these systems to be applied was the evolutionary process. Such

algorithms are known as Evolutionary Algorithms (EA) (Bäck and Schwefel, 1993).

1Local optima: solutions that with respect to their local region appear the best but globally are not.
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Evolutionary Algorithms, a subset of evolutionary computing, applying the principles

of crossover, mutation and selection as seen in nature to arbitrary genomes which could

represent any number of parameters, are used to solve many problems. By considering a

population which passes through selection, crossover and mutation at each time step EAs

are able to search across a large proportion of the space simultaneously. With crossover

operations between two ‘fit’ parents generating a new solution with some genetic material

from each parent, potentially this new solution could be in a radically di↵erent location

to its two parents. Mutation provides small and local variations similar the hill climber

heuristic. Still one of the most popular areas of nature inspired computing, EAs are used

throughout academia and industry today (Bäck and Schwefel, 1993; Zitzler et al., 2002;

Zitzler and Thiele, 1999; Zitzler et al., 2000; Fonseca and Fleming, 1995).

While evolutionary techniques are still popular, they are now in competition with a new

suite of nature inspired algorithms, many of which were originally developed for particular

problem types, and have since been adapted to a larger spectrum of problems bringing

them into competition with EAs. Among these are collection of algorithms which attempt

to simulate the behaviour of living organisms during their day-to-day activities. Particle

swarm optimisation, which is inspired by the flocking behaviours of birds and fish is the

subject of our further investigation(Kennedy and Eberhart, 1995; Yang, 2010).

2.4. Particle Swarm Optimization

Since its inception by Kennedy and Eberhart (1995) the particle swarm optimisation

(PSO) heuristic has gained rapid popularity as a technique to facilitate single objective

optimisation. Like the standard evolutionary algorithm (EA) methods of genetic algo-

rithms (GAs) and evolution strategies (ESs), PSO was inspired by nature, but instead of

evolution it was the flocking and swarming behaviour of birds and insects that motivated

its development.

A population (swarm) of individual solutions is maintained in PSO, whose representation

is typically a vector of floating point decision parameters, which are used in a solution’s

(particle’s) evaluation. During the optimisation process of PSO (following initialisation),

members of this population are flown (have their parameters adjusted) according to their

previous ‘flying experience’. This flying experience is both in terms of the particle as an

individual, and as a member of a wider group (the entire swarm, or a subset of it). The

general PSO model implements this by adjusting an individual’s decision parameters to
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make them ‘closer’ to the decision parameters of two other solutions; a neighbourhood

guide (which may be global or local), and the best evaluated position found previously

by that individual. A particle’s position also includes some temporal adjustment via a

velocity vector, which tracks the movement the particle made in the previous iteration of

the optimiser, and uses this to adjust the particle’s position in the current iteration.

Since its first inception there have been many modifications, adjustments, and improve-

ments proposed to the PSO heuristic: controlling which particles in the swarm communi-

cate with each other, adding additional swarms which communicate occasionally between

each other but are otherwise independent, and incorporating hierarchical communication

structure upon the particles (Janson and Middendorf, 2005). As the PSO heuristic has

been applied to multiple criteria problems, in particular those where the criteria (or fitness

function/objectives) compete, modifications have been made to increase the rate that PSO

finds good solutions, the rate of convergence.

2.4.1. The PSO heuristic

The PSO heuristic was first proposed for the optimisation of continuous non-linear func-

tions (Kennedy and Eberhart, 1995). A fixed population of solutions is used, where each

solution (or particle) is represented by a point in n-dimensional space. The kth parti-

cle is commonly represented as xk = (xk,1, xk,2, . . . xk,n), with its performance evaluated

on a given problem and stored. Each particle maintains knowledge of its best previous

evaluated position, represented as pk, and also has knowledge of the single best solution

found so far in some defined neighbourhood, gk, often this is a global neighbourhood

(all particles are considered), however other neighbourhood definitions are also popular.

The rate of position change of a particle then depends upon its previous personal best

position, its neighbourhood best, and its previous velocity. For particle k this velocity is

vk = (vk,1, . . . , vk,n). The general algorithm for the adjustment of these velocities is:

vk,j := wvk,j + c1r1(pk,j � xk,j) + c2r2(gk,j � xk,j), (2.1)

and the position is updated as:

xk,j := xk,j + �vk,j , j = 1, . . . , n, (2.2)
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where w, c1, c2, � � 0. w is the inertia of a particle, c1 and c2 are constraints on

the velocity toward local best and neighbourhood best - referred to as the cognitive and

social learning factors respectively, � is a constraint on the overall shift in position, and

r1, r2 ⇠ U(0, 1).
As discussed by Fieldsend (2004), in this classical form of PSO each particle xk is

flown toward pk, gk and vk. This, in e↵ect, means that a hypercuboid is generated in

solution/particle space, the bounds of which are the sum of the distances from xk to the

other three guides (weighted by the appropriate multiplier constants from (2.1) and (2.2)).

Formally, the length of the jth dimension of the containing hypercuboid of xk is:

lj = �(wvk,j + c1(pk,j � xk,j) + c2(gk,j � xk,j)). (2.3)

A particle xk can therefore e↵ectively move to any point within this hypercuboid (deter-

mined by the draws of r1 and r2), but not outside of it. Note that depending on the values

of �, c1 and c2, it is possible for one or more of vk, pk and gk to lie outside this bounded

region. This restriction on a particle’s movement means that local optima within this

bound may be found, but any global optima outside will not be found on this iteration by

xk, and may never be attainable. When there is a single global best for the entire swarm,

then gk is the same for all k.

2.4.2. Variations of PSO

Within the general PSO heuristic there are many aspects which can be varied and tweaked

depending on the problem specific attributes. One addition to the standard heuristic is,

for example, the introduction of turbulence, known as craziness in the original paper

(Kennedy and Eberhart, 1995), which applies a small perturbation to the location of the

particle before or after movement (Fieldsend and Singh, 2002a). Other variations include

altering the concept of global memory replacing it with a network where each particle

only communicates with the adjacent particles on this communication graph (Peer et al.,

2003).

Turbulence

As proposed in the original paper (Kennedy and Eberhart, 1995), craziness now more

commonly known as turbulence is PSO’s implementation of the mutation operation seen in

EAs. Typically the turbulence is applied using values drawn from the normal distribution
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centred about the particles location (Fieldsend and Singh, 2002b). This however is not the

only way in which turbulence could be applied to PSO, for example adaptive turbulence

operations when the turbulence can be computed as a function of the velocity (Liu et al.,

2007).

Turbulence-based PSO variations have now become popular as they provide the addi-

tional level of local search and extra protection against early convergence, where the entire

population collapses on one local region (Abraham and Liu, 2009).

Communication within the swarm

The originally proposed PSO heuristic allowed all particles to communicate with each other

equally however this can lead to the entire population collapsing down to one location

prematurely, as all the particles may see that one location as the best and if on their

journey to this location they do not find any better locations all the particles may end up

sitting in the same local area. To overcome this a variety of modifications to how particles

communicate have been proposed, these typically aim to increase diversity and discourage

premature convergence. The most popular are ring/wheel, star and tree topologies. (Li,

2010; Krink et al., 2002; Settles, 2005)

Ring topology orders the particles such that each particle communicates with its two

neighbours, forming a ring of particles. Thus for any particle to receive information about

a better location its immediate neighbours must have found that location. Altering this

such that all particles communicate only with a shared parent particle, known as star

topology, in middle ground can be found between ring extremes and the traditional PSO.

Taking star topology further the development of hierarchical structures within the commu-

nication system such that children only receive communication from their parents forming

a directed tree of communication has been shown to perform well on some problems.

(Janson and Middendorf, 2005; Miyagawa and Saito, 2009)

Within this study we are limiting scope to the investigation of the original PSO algo-

rithm, a fully connected topology.

Velocity Limiting

It is been found to be beneficial in many applications of PSO to limit the maximum

velocity of any given particle. This is independent of � which alters the influence of

movement. By constricting the maximum velocity, either absolutely or through some
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saturating function, unwanted rapid movement of particles can be avoided which increases

the chance of searching more of the space since an unrestricted movement may jump over

interesting sectors especially early on in the search process (Wilke et al., 2007).

Handling boundary conditions

With the ability of a particle to move outside of the boundaries of the problem it is

important to consider how such common occurrences are handled. There are various

methods, most of which are independent of PSO and applied across many evolutionary

such processes, each of which influences search in its own unique way.

Re-sampling, while not always possible, is considered to provide the least additional

influence to the search. This is where the movement calculation is recomputed with a new

r1 and r2 when a particle is projected to a location outside the boundary. This process

is however only possible if there exist values for which the solution will not end up out

of bounds, this is due to the momentum of the particle. Truncation is another popular

approach, this is where a particle that is found to be out of bounds is corrected and placed

at its intersection point on the boundary. This however does increase the probability of

particles finding themselves on the edge of a given domain. Rebound is where the particle

is bounced back in the direction it came from proportional to the amount it overstepped

the boundary (Xu and Rahmat-Samii, 2007).

2.5. Many- and Multi Objective Optimisation

In a large number of design applications there are multiple competing quantitative mea-

sures that define the quality of a solution. For instance, in designing the ubiquitous widget,

a company may wish to minimise its production cost, but also maximise/minimise one or

more widget performance properties. These objectives cannot be typically met by a single

solution, so, by adjusting the various design parameters, the firm may seek to discover

what possible combinations of these objectives are available, given a set of constraints (for

instance legal requirements and size limits of the product).

2.5.1. Pareto Dominance

With more than one objective it is no longer possible to clearly identify an absolute

ordering of the quality of solutions. While it is impossible to always compute a complete

ordering it is possible to maintain a transitive ordering (i.e. if a > b and b > c then
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a > c) this makes the order of computation irrelevant. The curve (for two objectives)

or surface (more than two objectives) that describes the optimal trade-o↵ possibilities

between objectives is known as the Pareto front, F . A feasible solution lying on the

Pareto front cannot improve any objective without degrading at least one of the others,

and, given the constraints of the model, no solutions exist beyond the Pareto front. The

goal, therefore, of multi-objective algorithms (MOAs) is to locate the Pareto front of these

non-dominated solutions. More formally, amulti-objective problem can be defined, without

loss of generality, as:

min
x2X⇢<n

fi(x) 8i = 1, . . . ,m (2.4)

subject to any non-negative and equality constraints:

e(x) ⌘ (e1(x), . . . ea(x) � 0), (2.5)

and

b(x) ⌘ (b1(x), . . . bd(x) = 0). (2.6)

If there are m di↵erent objectives, then the image of the feasible search space, X, through

f() can be denoted by Y ⇢ <m. Elements of Y are commonly referred to as objective

vectors (or criteria vectors). As often the objectives being optimised are in competition,

there is typically no single global optimum to multi-objective problems, rather a set of

globally optimal solutions exist (potentially infinite in cardinality), referred to as the

Pareto set, containing Pareto optimal solutions. A decision vector x is said to be Pareto

optimal (x 2 P) i↵ @u 2 X,u � x, where the � (dominance) relationship is defined as:

u � x if (fi(u)  fi(x), 8i) ^ (9i | fi(u) < fi(x)). (2.7)

Via dominance a partial order can be placed on pairs of decision vectors; either vector

x dominates u (in which case we can say that x is better than u), u dominates x (u

is better), or neither dominate each other (they are mutually non-dominating), in which

case, without additional preference information about the objectives, we are indi↵erent

between the solutions. This relationship can be seen geometrically in Figure 2.1 where the

shaped region depicts the area dominated under minimisation.

As the number of objectives increases, so does the relative proportion of objective space

which is mutually non-dominating with a solution (1 � 1
2m�1 ). Because of this, Pareto
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Figure 2.1.: Pareto dominance, regions dominated under minimisation by ‘X’ and ‘+’ are
shaded. Both ’X’ and ’+’ are mutually non-dominating and ‘X’ dominates ‘O’

quality measures on solutions rapidly lose their discriminating capabilities as m increases,

as the probability that any other point in space is incomparable with another point fast

approaches 1. Additionally, as the overwhelming likelihood is that any solution evaluated

when m is large is mutually non-dominating with the set of solutions found so far, any

archive of mutually non-dominating solutions stored rapidly reaches capacity (if limited

by size), or grows at such a rate as to impede algorithm convergence (by spreading out

solutions in a region which is not close to the optimal front F).

2.6. Ranking methods

The PSO heuristic (and most other optimisers) require multiple iterations/generations to

complete the optimisation. With PSO each particle is updated/flown once per generation

using the best solutions from the previous generations. Selectional of a solution from a

mutually non-dominating set to use in the next generation of an algorithm becomes a

non-trivial task as the mutually non-dominating set of grows larger than the number of

solutions used in the subsequent generation.

In light of this a number of other quality measures have recently been devised in the

literature, which aim to provide a degree of di↵erentiation between solutions which would
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be viewed as otherwise equivalent when using a Pareto comparison.

Here we will investigate a selection of ranking methods that have been used for multi-

and many-objective optimisation. In chapters 3 and 4 we see an empirical study comparing

their e↵ectiveness on many objective problems.

2.6.1. Favour relation

Adapting the concept of dominance the favour relation (FR) (Drechsler et al., 2001) com-

parator and ranking method considers the proportion of dominance of one solution over

another. With this proportional-dominance a directed graph is produced connecting the

solution to each other, with a direct edge from any solution proportionally dominated to

its proportionally dominating counterpart. This graph inevitably results in many cycles

which can be collapsed into single nodes containing multiple solutions. The resultant

graph is a directed tree upon which an ordering can be computed providing a ranking to

the solutions within the nodes of the tree.

fav(u,v) =

8

>

>

>

>

<

>

>

>

>

:

u �fav v if | {i | fi(u) < fi(v)} | > | {i | fi(v) < fi(u)} |
v �fav u if | {i | fi(u) < fi(v)} | < | {i | fi(v) < fi(u)} |
u ⌘fav v otherwise

(2.8)

As can be seen from (2.8), if u � v then u �fav v, however if u and v are mutually

non-dominating (incomparable under Pareto comparison) u will still dominate under the

favour relation if is it better on more objectives. When u �fav v a directed edge from v

to u is constructed in the relations graph.
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Data: G = graph of all solutions with no edges

Data: P = set of all solutions

for i 2 {i|0 < i < |P|} do

for j 2 {j|i < j  |P|} do

if Pi �fav Pj then
G = G+ directed edge from Pj to Pi

else if Pj �fav Pi then
G = G+ directed edge from Pi to Pj

end

end

end

Algorithm 1: Favour relation (FR) ranking algorithm

There have been many adaptations to the concept of partial dominance, some take on

a more basic version of the Favour relation algorithm, ranking each solution by the mean

number of objectives that it dominates all other solutions. (Moritz et al., 2013)

2.6.2. k-optimality

k-optimality (KO) proposed in Di Pierro et al. (2007) ranks solutions by dominance on

subsets of objects.

rankKO
u

= max
⇣n

k|u 2 FO, 8O, |O| = m� k
o⌘

(2.9)

where O ⇢ {f1(x), f2(x), . . . , fi(x), . . . , fm(x)} is a subset of objective functions and FO

is the non-dominated set defined given the set of objective functions defined by O. 2

As each combination of objectives (with removal) is computed for each solution, com-

plexity grows rapidly with the number of objectives (Algorithm 2). However when com-

paring solutions with missing data on one or more objectives this approach holds some

promise in comparison to others.

2Note: the computation cost of calculating this for a set of solutions makes it unusable beyond 20
objectives for all but expensive optimisation problems, as it tends to swamp the objective evaluation
time cost.
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P = set of all solutions

R = {m|8x 2 P}
D = {False|8x 2 P}
for k 2 {k|1 < k < m} do

found = False

C = the set of combinations of indices
�

m
m�k+1

�

for i 2 {i|0 < i  |P|,Di 6= True} do

for j 2 {j|0 < j  |P|, j 6= i} do

for l 2 {l|0 < l  |C|} do

V = {v|v 2 Cl}
flag = False

for s 2 {s|0 < s  |V|} do
p = Vs

if fp(Pi) < fp(Pj) then
flag = True

break

end

end

if flag ⌘ True then
Di = True

break

end

end

if Di ⌘ True then
break

end

end

if Di 6⌘ True then
Ri = Ri � 1

found = True

end

end

if found ⌘ False then
k = k � 1

break

end

end

Algorithm 2: k-optimality ranking algorithm
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2.6.3. Crowding Distance

There have been many ranking methodologies that aim to provide a preference based upon

the distribution of solutions across the approaching front. Generally these methodologies

are used for archiving constraints as they provide a method for removing solutions that

hopefully has a minimal e↵ect on the coverage.

One of the most popular methodologies is crowding distance as used in the NSGA-II

algorithm. This computes a ranking based upon the relative volumes of the hyper-cube

surrounding each solution with the provision that solutions on the edge have an infinite

hypercube therefore giving them an infinite rank. (When applied, a high rank is preferred

as this indicates solutions that are further from others.)

Like many other ranking systems it is di�cult to identify subsets of the population that

are independent, therefore when used for removal typically the entire populations ranking

must be recomputed after each individual solution is removed.

We implement the crowding distance (CD) as used in NSGA-II, which computes the

size of the hypercube around each u 2 F (Deb et al., 2000).

With increasing number of dimensions finding a uniform spread of points on the true

Pareto front becomes very di�cult. CD attempts to maximise the even spread of solu-

tions on the front (and has recently been used inmany-objective archive maintenance, e.g.

de Carvalho and Pozo (2011)).
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Data: P = set of all solutions

Data: ranks = 0, 8s 2 P

Data: m = number of objectives

for i 2 {i|1 < i  m} do

S = sort(P, i) sorted set of solution sorted upon the ith objective in ascending

order

ranksmin = 1, smin = S1 first solution in the sorted set.

ranksmax = 1, smax = S|S| last solution in sorted set. range = smaxi � smini

if range > 0 then

for j 2 {j|2 < j  |S� 1} do
sprevious = Sj�1

scurrent = Sj

snext = Sj+1

rankscurrent = rankscurrent +
snexti�spreviousi

range

end

end

end

Algorithm 3: Crowding Distance (CD) algorithm

2.6.4. Average Ranking

Since it is di�cult and sometimes impossible to know the scaling for each objective some

methods attempt to not use the location but rather the relative location with respect

to the population. These systems employ the ordering of solutions for each objective

allowing them this independence. However there is no knowledge of whether or not the

entire populations has collapsed upon a small region of objective space.

Average Ranking (AR) maps the fitness values fi(x) to a single value which is used

directly to rank solutions. AR is equivalent to Average Weighted Ranking (Bentley and

Wakefield, 1997) with a weight of 1 for all objectives.

rankAR
u

=
8i
X

Si
u

(2.10)

Where Si is the sorted set of objective values for the ith objective and Si
u

is the location

of the objective vector corresponding to u in the sorted set.
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2.6.5. Sum of Ratios

Sum of Ratios (SR) is similar to AR but attempts to incorporate some information of the

distribution, normalising by the range on values upon each objective. Similar to average

ranking this provides a form of ordering however weights its objectives influence by the

range of solutions upon that objective.

rankSR
u

=
8i
X fi(u)�min(Si)

max(Si)�min(Si)
(2.11)

Where Si is the sorted set of objective values for the ith objective and Si
u

is the location

of the objective vector corresponding to u in the sorted set. SR is equivalent to Sum of

Weighted Ratios (Bentley and Wakefield, 1997) with a weight of 1 for all objectives.

2.6.6. Controlling Dominance Area of solutions

Sato et al. (2007a) proposes altering the area dominated by a solution by adjusting the

angles that meet the axis bounding this area, as depicted in Figure 2.2. Controlling

Dominance Area of solutions (CDAS), originally proposed for multi objective problems,

has in resent years gained popularity in many-objective algorithms. (Sato et al., 2007b,c;

Ishibuchi et al., 2008; de Carvalho and Pozo, 2010).
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(a) Pareto Dominance, with ‘x’
dominating ‘o’.
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(b) CDAS Dominance, ↵ shows
the new angle used to define
the new dominating region
for one solution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
f1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f 2

(c) CDAS Dominance, shown
on all solutions, here ‘x’
dominates ‘+’ which also
dominates ‘o’

Figure 2.2.: Dominance modification, shaded region shows the region that is dominated
by the solution at its apex (under minimisation on all objectives).

CDAS has one adjustable vector of parameters s. The modified Pareto comparison is

easy to compute by transforming the objective space so that standard Pareto comparison in

this space is analogous to the modification of the dominated regions. The area dominated

can be increased or reduced setting si, {si}mi=1 either smaller or larger than 0.5 respectively.
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The transformed objective values f 0(s,x) are computed in equation 2.12:

f 0
i(s,x) =

r(x) · sin (!i(x) + si⇡)

sin (si⇡)
(2.12)

Where: r(x) =||f(x)||2 (2.13)

!i(x) = arccos

✓

fi(x)

r(x)

◆

(2.14)

Here we will use the same si value for all objectives, therefore henceforth it will simply be

denoted as s.

It has recently been applied to many objective PSO (de Carvalho and Pozo, 2011) with

promising results upon the DTLZ test problems (Deb et al., 2002).

The nature of the transform when si < 0.5 increases selection pressure upon the edges

and centre of a convex front (see Figure 3.1) to varying degrees, depending upon the shape

of the non-dominated front being transformed. A full investigation of this will follow in

chapter 5.

2.6.7. Self Controlling Dominance Area of Solutions

Self Controlling Dominance Area of Solutions (S-CDAS), which has been proposed as an

improvement to CDAS (Sato et al., 2010), appears insensitive to parameter choices on the

range of problem landscapes and wider algorithm configurations with which it has been

tested. As opposed to CDAS, which was originally developed withmulti-objective problems

with 2-3 objectives only, S-CDAS was from its inception developed with awareness of

many-objective problems - so there is little surprise in how it has supplanted CDAS in the

recent many-objective literature (Junior et al., 2012; Sato et al., 2010). However there has

been very little comparison between CDAS and S-CDAS outside of the original papers.

S-CDAS requires an additional parameter to be set, �. This is less dependent upon the

problem than the s parameter in CDAS, here we have chosen to use � = 0.001. Notably

there is no suggested specification in the literature of a good � value to use. Unlike CDAS

it is not clear that the resultant weightings provided are a finer grain subset of traditional

Pareto sorting - it is possible for solutions that are not within the first mutually non-
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dominating front to share the same rank with those inside.

a =[1, 2, 3] (2.15)

b =[0, 1, 2] (2.16)

c =[2, 0, 4] (2.17)

Here solution b dominates a. With b, c mutually non-dominating and a, c mutually non-

dominating. However the ranks are:

Solution Rank

a [1, 2, 3] 1

b [0, 1, 2] 0

c [2, 0, 4] 1

S-CDAS provides an adaptive s parameter for CDAS, this adaptation is linked to the

relative location of each solution within the population. To attain this firstly all locations

are translated such that the minimum values on each objective is � and a matrix of

min/max values is constructed:

Li,j =

2

6

6

6

6

6

6

6

4

fmax
1 fmin

2 . . . fmin
m

fmin
1 fmax

2 . . . fmin
m

... fmax
i

...

fmin
1 fmin

2 . . . fmax
m

3

7

7

7

7

7

7

7

5

� �Im⇥m (2.18)

O =
�

fmin
1 , fmin

2 , . . . fmin
i , . . . , fmin

m

�� �1 (2.19)

With Li,j ' is computed for each solution x.

'i(x) = arcsin

✓

r(x) sin (!i(x))

||Li � f(x)||2

◆

(2.20)

Where: r(x) =||f(x)�O||2 (2.21)

!i(x) = arccos

✓

fi(x)�Oi

r(x)

◆

(2.22)

then each other solution y has its position updated with respect to the solution x:
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f 0
i(y,x) =

r(y) sin (!i(y) + 'i(x))

sin ('i(x))
(2.23)

if f 0(y,x) is dominated by f(x)�O then the rank of y is increased.

From this we can see that computationally S-CDAS stands at a disadvantage to CDAS as

it requires upto O �

n2 � n
�

domination checks for each generation opposed to O (n log(n))

for CDAS, n as the number of solutions to be compared. Also the magnitude, r(x)

and !i(x), 8i must be computed afresh once for each new population3. This is in stark

comparison to CDAS where all the transformed locations can be computed once and used

across multiple generations and populations.

Unlike CDAS which gives a ternary label to solutions (mutationally non-dominating or

dominating/dominated), S-CDAS provides an integer rank for each solution, with lower

ranks considered to be better (Junior et al., 2012; Sato et al., 2010). Therefore there are

many ways to incorporate it into an algorithm.

2.6.8. Many and Multi Objective PSO (MOPSO)

A decade ago (circa 2002), researchers began publishing multi-objective (MO) variants of

Particle Swarm Optimisation (PSO) Coello Coello and Lechunga (2002); Fieldsend and

Singh (2002a); Hu and Eberhart (2002); Parsopoulos and Vrahatis (2002) (although an

unpublished paper on the area exists from 1999 Moore and Chapman (1999)), typically

referred to as MOPSO algorithms. Since these works there has been a large growth

in the number and range of MOPSO algorithms published in the literature, which has

largely tracked the growth of, and range of, general multi-objective evolutionary algorithms

(MOEAs), with comparison/selection/variation operators popularised in the MOEA field

rapidly being converted into aspects of MOPSOs when direct analogies could be drawn

(e.g. the use of dominance, hypervolume indicator, clustering, archive maintenance, muta-

tion/turbulence operators, etc.). As the number of distinct MOPSOs has grown, a number

of papers have provided overviews of the range of approaches that can be taken, along

with some empirical comparisons (e.g. Fieldsend (2004); Padhye (2009); Padhye et al.

(2009); Reyes-Sierra and Coello Coello (2006)). However there has been relatively little

3r(x) and !(x) are functions of O so must be recomputed if the range of objective values on any objects
changes.
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work thus far examining many-objective PSO performance (i.e., on problems with four

or more objectives) Wickramasinghe and Li (2009); de Carvalho and Pozo (2011). de

Carvalho & Poze found crowding distance to be e↵ective for archive maintenance when

combined with CDAS and Average Ranking (AR) for selection in many objective PSO

(de Carvalho and Pozo, 2011).

Within the scientific literature there have been a multitude of di↵erent MOPSO variants

proposed, most recently the consideration of intercommunicating sub swarms, each with

its own goal or search algorithm has been hailed as an e↵ective approach on some problem

domains.

Multi Swarm PSO

Even with the inherent diversity provide by the PSO heuristic there are still many problems

where using a single variation of PSO (even with complex intercommunication topologies)

the main problem being one is unable to e↵ectively converge and stay diverse. Recently

(Voglis et al., 2013) a multi swarm was proposed that allowed each sub-swarm to use

di↵erent variations of the PSO algorithm (e.g. di↵erent selection/archiving criteria) while

maintaining an inter swarm communication of best locations. This allowed each sub-swarm

to utilise di↵erent domain/objective properties of the problems simultaneously.

2.7. Test problems

When developing algorithms and comparing the performance we need ways of e�ciently

providing problems upon which these algorithms can be tested. Typically real-world ap-

plications are not the best problems for initially comparing the performance, as many

of these problems are costly for each fitness function evaluation. Additionally real-world

problems are often unsolved, commonly no perfect set of solutions have been found or

can be proven to have been found. To overcome this there have been various synthetic

problems developed for which we do have a perfect mathematical set of solutions, and yet

when solved in numerical manner aim to replicate the types of conditions that algorithms

applied to real world problems must face.

Test problems fall into two categories continuous, and non-continuous. These are defined

by whether or not the domain parameters are continuous or non-continuous. Examples

of discreet problems are those of sequencing problems, such as shortest Euclidean path

(Martello and Toth, 1990). Some problems have a mix of continuous and non-continuous
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parameters, e.g scheduling problems where each event can be taken in multiple (distinct

locations) but the time is a continuous parameter, these problems are commonly de-

composed into fully discrete problems by pre-defining possible start and end time sockets

(Taillard, 1993).

Considering the scope we limit ourselves here to continuous problems only, the two

major collections of problems we consider are the DTLZ and walking fish group (WFG)

problems. Both of which provide us problems which can be parametrised both in objective

and in search space, this aims to give a degree of control to the di�culty of the search for

each problem.

2.7.1. DTLZ

DTLZ, is considered the first fully scalable multi-objective test suit. Scalable here is the

ability to freely select the number of objective and parameters for each problem. Only

requiring that the number of parameters is greater than objectives. This provides a degree

of freedom when testing algorithms, importantly it lets the user separate the performance

on di↵erent problem types and objective/parameter number. This means that unlike its

predecessors, such as the ZDT collection (Zitzler et al., 2000), DTLZ is both a multi-and

many objective suite. The ability to scale the problem over objectives and parameters is

achieved by separating into two characteristic components, a function is used to compute

the distance from the optimal front, with the first m � 1, (m = number of objectives)

parameters. Another set of functions is used to define the shape of the optimal front,

this uses the remaining components of the parameter vector deciding the location on the

surface. To correctly analyse results we must understand the properties of each of these

problems. Here we will discuss DTLZ problems 1 to 6, the properties and shortcomings.

See figure 2.3.

The DTLZ1 problem which combines the linear simplex front shape with many decep-

tive fronts. A deceptive front is a non-optimal set of solutions which sit in a local optimal,

where moving a small amount in any direction in objective space will result in a worse

solution. Additionally, the encoding of the distance function which produces theses decep-

tive fronts results in regions of the objective space having no solutions. These regions form

bangs completely separating each deceptive front, taking the shape of the optimal front

i.e. a simplex. The frequency of these deceptive fronts increases as we approach the opti-

mal front. DTLZ2 is the easiest of these problems consisting of a monotonic minimising
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Problem Separability Bias Geometry Derived Shape

DTLZ 1 S NB Linear, Descriptive Fronts Simplex

DTLZ 2 S NB Convex
Hypersphere

Centered on the
origin

DTLZ 3 S NB Convex, Descriptive Fronts
Hypersphere

Centered on the
origin

DTLZ 4 S B Convex Hypersphere

DTLZ 5 * * Degraded Convex Hypersphere

DTLZ 6 S B Discontinues, Mixed
Distributed on
the surface of a

Hypersphere

Figure 2.3.: Comparisons of the DTLZ. With S = Separable, (Optimal solution can be
found by optimising one parameter at a time in a single pass), NS = Not
Separable. B = Biased, there is a high probability of finding solutions is
some regions of the objective space & across the optimal front than others
(In these problems the degree of this is parametrised). NB = Not Biased.
The Geometry/Shape of the optimal front is described looking down onto the
surface from the positive sector. (i.e a hypersphere is describe as a convex
shape)
* (Huband et al., 2006) identified that the optimal set of DTLZ5 is not fully
defined.

gradient towards the optimal front. It therefore is commonly used to compare the ability

of an algorithm to fully cover the front, unlike other problems where it is common to not

have a single solution close/on the optimal front. With DTLZ2 even in high numbers of

objectives a random sample will find a solution close to the optimal front (Huband et al.,

2006).

DTLZ3 is a combination of DTLZ1 and DTLZ2, taking the convex hyper-spherical shape

from DTLZ2 and the deceptive fronts function as DTLZ1. DTLZ4 takes on the same shape

as DTLZ2, but with a non-uniform mapping from search space, such that sampling the

optimal region of the search space uniformly will give a strongly non-uniform distribution

across the optimal front in objective space. DTLZ5 is, unlike the above problems, in that

it collapses down to a lower dimensional surface/line (Huband et al., 2006).

The major flaw in DTLZ is the location of the optimal set in parameter space. (Huband

et al., 2006) Any vector x, see equation 2.24, is on the optimal front. This makes the

problems unrepresentative of real-world applications.
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xi = 0.5 8i < m (2.24)

xi 2 [0, 1] 8i � m (2.25)

However, there has been work applying a transforms to parameter space prior to com-

putation of the DTLZ test problems, aiming to overcome this shortfall. (Deb et al., 2006a)

2.7.2. Walking Fish Group

Here we describe the more recent addition to the multi- many objective test problems,

the walking fish group toolkit, introduced in Huband et al. (2006), was designed to give

the ability to develop test problems by combining a set of multiple functions. Much like

the DTLZ problems the walking fish group toolkit provides a collection of shape functions

which can be can combined with transforms to add features to the problem. Unlike its

predecessors the di�culty can be controlled directly by the test designer, by a set of

combinable transforms. The original authors proposed a set of 9 combinations of these

to form a new test suit. Known as Walking Fish Group (WFG) 1-9 these problems have

become popular for the many objectives. The WFG 1-9 problems are built in such a

way as to not have the same shortfalls as DTLZ, a non-linear transform is applied to the

parameter vectors before they are passed onto the shape and distance functions. This

transform is also used to control the problems complexity, by changing the density of

solutions through the space.
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Problem Separability Bias Geometry Derived Shape

WFG1 S B Concave/Convex (Mixed)

Step function
mapped onto the

surface of a
hypersphere

WFG2 NS NB Concave, Discontinues

Step function
mapped onto the

surface of a
hypersphere

WFG3 NS NB Linear, Degenerated

A Lower
dimensional

(line/surface) on
the center of the

simplex

WFG4 S NB Convex

Lineally Scaled
hypersphere, with
di↵erent scaling

on each objective

WFG5 S NB Convex -

WFG6 NS NB Convex -

WFG7 S B Convex -

WFG8 NS B Convex -

WFG9 NS B Convex -

Figure 2.4.: Comparisons of the Walking Fish Group Problems. With S = Separable,
(Optimal solution can be found by optimising one parameter at a time in a
single pass), NS = Not Separable. B = Biased, there is a high probability of
finding solutions is some regions of the objective space & acrosse the optimality
front than others (In these problems the degree of this is parametrised). NB
= Not Biased. The Geometry/Shape of the optimal front is described looking
down onto the surface from the positive sector.
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2.8. Performance metrics

For multi and many-objectives both the optimal mutually non-dominating solutions and

any sub-optimal sets can have a large cardinality. Compare these sets, to determine the

performance of any mutually non-dominating set, is our topic here. One way of doing this

is to measure the distance between the sets to provide a single score. Van Veldhuizen and

Lamont (1998) introduced the Generational Distance (GD) which provides the average of

the distance from each solution to its closest point upon the optimal set.

Alone however, generational distance is not a good equivalence measure as it is possible

for a very small set of solutions, which do not spread across the entire optimal front

evenly, to score better than a set of solutions which are a closer approximation in shape

to the optimal front. Therefore Van Veldhuizen and Lamont (1998) proposed a measure

to accompany GD, Inverse Generational Distance (IGD), this takes the average distance

from each solution on the optimal front to its closest solution on the approximated set.

This metric provides an indication of the distribution across the entire Pareto optimal

front, provided that this is known and an even distribution of solutions can be found upon

it with which to compute these metrics.

Since IGD is also dependent on the distance to the optimal front, it does not indepen-

dently measure the distribution. Many other spacing metrics have been proposed however,

there is little consensus within the current multi- and many-objective literature as to which

spacing metrics provide an accurate measure. This comes into play in particular for prob-

lems where the optimal front has sudden changes in its local gradient, such as the WFG1

and 2 functions (see section 2.7.2), in these cases the spacing metrics which do not in-

corporate the shape of the optimal front penalised solutions which are evenly distributed

across the front since there are regions, those sections with a greater rate of change of

gradient, for which the Euclidean distance is shorter even though the distance along the

surface of the optimal front is equal.

Here therefore we will continue our discussion considering Generational Distance and

Inverse Generational Distance only. By comparing these in tandem one is able to observe

both the convergence, closeness to the optimal set, and distribution/diversity, spread

across the optimal set.
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2.8.1. Generational Distance

As introduced above, Generational Distance is the measure of the average, across all

solutions, of the distance from a given solution on the approximated set to its closest

location on the optimal set. Here we define this in a formal manner and investigate some

anomalies that have given rise to the proposition of a modified GD, known here as GDp.

Given P = {x1, x2, . . . , xN}, the approximated Pareto set of solutions, and F = {y1, y2, . . . , yM}
an evenly distributed sample of solutions upon the optimal front. Coello et al. (2007) re-

ports the GD computed as follows:

GD (P,F) =
1

N

0

@

X

8xi2P
dist(xi,F)p

1

A

1
p

(2.26)

Here the 2-norm is used to compute the dist(xi,F), with a p value of 2:

dist(xi,F) =min (||xi � yj ||2) 8yi 2 F (2.27)

As demonstrated in Schütze et al. (2012) showing that as the number of solutions in

the approximated set increases di↵erences in the GD values occur. To mitigate this the

adoption of comparing similar archive sizes only has become the norm, however since many

evolutionary algorithms now have varying archive sizes we face di�culties in comparison

from one generation to the next. Therefore an alternation to the GD was proposed in

Schütze et al. (2012) to avoid this e↵ect by using the power mean to average the distances:

GDp (P,F) =

0

@

1

N

X

8xi2P
dist(xi,F)p

1

A

1
p

(2.28)

2.8.2. Inverse Generational Distance

Inverse generational distance, as discussed above, is best used when compared side-by-

side with GD. IGD is the measure of the average, across all solutions upon the optimal

front, of the distance from each solution on the optimal front to its closest solution in

the approximated front. For IGD to provide a good evaluation a large number of evenly

distributed solutions must be obtained upon the optimal front. The algorithm as reported
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Coello et al. (2007) in is:

IGD (P,F) =
1

M

0

@

X

8yi2F
dist(yi,P)p

1

A

1
p

(2.29)

As with the GD here we will consider only the 2-norm with p = 2, the dist(yi,P) is

analogous to equation 2.27:

dist(yi,P) =min (||yi � xj ||2) 8xi 2 P (2.30)

Schütze et al. (2012) propose the use of the power mean for the IGD as they have for GD

to similarly overcome di�culties with di↵ering population sizes:

IGDp (P,F) =

0

@

1

M

X

8yi2F
dist(yi,P)p

1

A

1
p

(2.31)

Summary

Here we have seen a introduction to the current literature surrounding many-objective

particle swarm optimisation. In the next chapter, we will investigate how altering the

selection of guides for the many objective PSO algorithm a↵ects the search. We will

investigate how the application of additional orderings upon the first Pareto front can be

used to archive this. From there a further investigation into achieving methods will follow.

41



3. The E↵ect of Selection Operators on

Many objective Search

As discussed in Section 2.6.8 the PSO algorithm fails to converge properly where there

are many objectives. Here we present an investigation into altering which solutions are

selected from the global and local archives. This therefore a↵ects the searching behaviour

of the swarm. A comparison of six ranking methodologies, along with standard random

selection, upon the first four DTLZ problems ranging from 2 to 20 objectives is provided

(see Section 2.7.1) In addition a new ranking method is proposed, Controlling Dominance

Area of Solutions for Ranking (CDAS-R).

3.1. Using ranked solutions to guide selection

As the non-dominated set tends to grow rapidly as the number of objectives increases it is

popular across many Nature Inspired optimisers to select solutions for crossover (or other

related operation) by computing an additional ordering upon themutually non-dominating

set. Most implementations of this will make use of some tournament based selection to

ensure a good degree of diversity is still evident.

A tournament selection is where some subset of the solution set is chosen at random

and among those solutions the best rank is selected. Here we will consider a tournament

size of 5 as used previously in Corne and Knowles (2007).

3.1.1. CDAS as a ranking method

De Carvalho and Pozo (2011) demonstrated how e↵ective CDAS, see Section 2.6.6, can be

when used to strengthen the Pareto comparison for MOPSO. However, CDAS can only

provide one additional degree of granularity. We propose the use of the CDAS algorithm

to compute a ranking here, known as CDAS-R, in order to generate a finer gradation on

the ranking it can provide.
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By iteratively reducing the values in s it is possible to apply a ranking on a mutually

non-dominated set F based upon the minimum values in s for which u 2 F is within the

new non-dominated front achieved by this mapping (F 0
s

).1 To our knowledge this is the

first work to investigate modifying CDAS in this fashion, so we shall now provide further

details of this approach. The rank of a solution, u is determined as:

rankCDAS�R
u

= min(
�

S|u 2 F 0
s

 

). (3.1)

As with the original CDAS algorithm since !i and r are independent of s they can be

precomputed once on the first accepted insertion into an archive (in the case of PSO, as

detailed in Section 2.4, this could be either personal or global/local). If a fixed set of d

transform vectors, S = {sj}dj=1, is considered, then f 0
i(!, s,x), 8j can also be computed

only when first required, and stored for future use (across guide archives and generations).

Since if u 62 F 0
sj

then u 62 F 0
sj+1

where sj+1  sj . Iterative construction of sets for a

particular rank can be determined sequentially as:

F 0
sj+1

=
n

u 2 F 0
sj

| 6 9 v 2 F 0
sj
,v �sj+1

CDAS u
o

. (3.2)

With �sj+1

CDAS defined as the dominance using the mapped CDAS values for sj+1 which

only need to be computed once 8v 2 F 0
sj
. Note that F = F 0

0.5 (as when sj = 0.5 the

mapping is the same as standard dominance).

Since 8u 2 F 0
si
the rank of u is independent of all solutions v 2 F 0

sj
, 8j  i it is possible

to remove the worst solutions without a↵ecting the rank of any other solution.

As we will see later, in Chapter 5, the CDAS transform can, with an appropriate s

vector set, provide a very strong selection preference in comparison CDAS-R gives more

diversity. In Figure 3.1 the solutions are ranked by the lowest s for which they are still non-

dominated, with lower number being preferred when considering as a CDAS-R ranking.

The shells are the result of a CDAS mapping on the front with decreasing values of s.

Here we chose s 2 {0.5,0.45,0.40, . . . ,0.3}. Further investigation of CDAS and CDAS-R

preferences will be investigated further in Chapter 5.

1It is simplest to have all elements of s set to the same value – in situations where the objectives are
known to live on di↵erent ranges the solutions can be normalised by the observed range in the stored
solutions before projecting to the new locations using (2.12). This approach makes considering the
order on potential s easier to consider.
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3.2. Experimental Design

Here we examine the impact of using di↵erent many-objective quality measures during

the optimisation process of a standard MOPSO algorithm. We compare across a wider

range of measures than considered in other recent work in the field (de Carvalho and Pozo,

2011), and across a wider range of test problems.

Here we look at the e↵ect of using one of the quality measures as a selector, and keep

the design of the optimisers consistent apart from this variation, allowing us to isolate its

e↵ect. In contrast to this in chapter 4 the e↵ect of using these quality measures for archive

maintenance is explored.

The MOPSO algorithm is as described in Section 2.6.8. A set of non-dominated solutions

is maintained for the swarm as the source of global bests, and also each particle has a set of

non-dominated solutions which they maintain and provide their personal bests. These sets

are bounded at 100 elements, and if this limit is breached, random removal is performed

until 100 elements is reached. This simple MOPSO is then run 30 times with seven

di↵erent selection protocols for determining the particular global best and personal best

to be chosen for each particle in each generation. The DTLZ1-4 test functions are used

with recommended parametrisation by Deb et al. (2002), see Section 2.7.1, for objectives

= {2, 3, 5, 10, 15, 20}. The protocols were: Favour Relation (FR see Section 2.6.1), K-

optimality (KO see Section 2.6.2), CDAS-R (see Section 3.1.1), Crowding Distance (CD

see Section 2.6.3), Average Ranking (AR see Section 2.6.4), Sum of Ratios (SR see Section

2.6.5), and the baseline of random selection from the non-dominated sets (i.e., Pareto-based

selection), which we denote by RR. As the first six protocols rank the non-dominated

sets, these rankings were used to select guides based on tournament selection of size 5

(as used in Corne and Knowles (2007), where a subset of the many-objective operators

considered here were compared in terms of their ability to discriminate between non-

dominated solutions, and empirically evaluated within a GA). Element-wise truncation

is used to manage boundary conditions, initial velocities are set at 0 and initial particle

locations are distributed uniformly at random within the feasible search space. The PSO

parameters are as described in Sec. 2.4, with w = 0.5, c1, c2 = 2 and � = 1. The number

of swarm members is set at 100, and the optimisers were run for 500 generations resulting

in 50,000 function evaluations.

Optimiser performance is tracked using the widely used generational distance (GD) and

inverse generational distance (IGD) measures Coello Coello et al. (2002) (see section 2.8),
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which quantify the convergence to the Pareto front, and the spread and convergence to

the Pareto front respectively.

3.3. Analysis of Results

Figures 3.2, 3.3, 3.4 & 3.5 present the results of the experiments. An algorithm which

is performing significantly better (as assessed by pairwise comparisons with all the other

methods) is highlighted via a shaded area between its median performance line and the

abscissa across the range of generations for which this is the case.2 Plots are arranged

with each page focusing upon an individual DTLZ function and objectives increasing from

the top left of each plot (with the IGD and GD plots being adjacent vertically).

From Figure 3.2 we can see that, for 10+ objectives, although the Crowding Distance

(CD) tends to be lower than the other methods on IGD, it is not often significantly

so. From examining the GD plots, we can see that the improvement in the coverage of

CD, is actually occurring simultaneously with a divergence on the GD – with SR finding

significantly better converged solutions for 10+ objectives (albeit at a cost to its IGD).

For lower numbers of objectives,  5, there is less of a clear cut pattern of performance.

For DTLZ1 we therefore see there is a clear trade-o↵ for these methods with respect to

convergence and coverage high objectives.

The results tend to trend together on the two quality measures on DTLZ2 (see Figure

3.3) with AR, CDAS-R and SR all competitive on both IGD and GD, although CDAS-R

tends to perform better in the early stages. As discuses in Section 2.6.6, this problem is

the easiest of the DTLZ collection which for convergence at least is confirmed here with

all algorithms attaining significantly better GD performance than on any other problem.

For DTLZ3, AR is seen to perform significantly better across the quality measures for

many objective tests (5+ objectives). For DTLZ4, SR generally out-performs the others,

although in the earlier stages for 5 and 10 objectives (Figures 3.2c & 3.2d), AR is better.

We postulate that the relativly poor performance of AR here, in comparison to its results

on DTLZ3, is because AR only takes into account the ordering and not the geometric

location of solutions it will then give greater and greater preference towards the edge in

comparison with SR (as it prefers solutions that are in the centre of its ordering, rather

than the geometric centre Garza-Fabre et al. (2010)). This comes into play upon the

DTLZ4 function where there is a strongly non-uniform distribution of solutions.

2In some cases the vertical axes are plotted below 0 to show this better.
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3.4. Discussion

In relation to selection approaches, SR tends to perform the best, however we note that AR

performs dramatically better on DTLZ3 for 10+ objectives (although interestingly not on

DTLZ1, which has a similar deceptive front structure, but whose front shape is di↵erent).

Corne and Knowles (2007) concluded from their experiments that AR was better than

SR (using a GA on a combinatorial problem), however the results here would indicate a

less-clear cut ordering, and a dependence on problem type, front shape and number of

objectives – with AR tending to do better on lower order many objectives problems.

Here we have seen the strong e↵ect of directly altering the selection processes. In the

upcoming chapter we will investigate how altering the solutions that are within the archive

can e↵ect the the section and thereby the swarm. For this we will keep the selection method

constant.
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4. The E↵ect of Archive Operators on

Many objective PSO

In many-objectives it becomes computationally undesirable to operate with an uncon-

strained archive. (See further discussion in Section 2.5.1.) In addition to this providing

a large number of solutions from which the guide is draw is not beneficial to encourag-

ing convergence. In this chapter we examine methods used to restrict an archive’s size,

and a method for restricting the solutions that are initially accepted into the archived by

strengthening the Pareto comparison.

Here we will look at the e↵ect of using each of the quality measures used in Chapter 3

for archive maintenance, and keep the design of the optimisers consistent apart from this

variation, allowing us to isolate its e↵ect.

4.1. Experimental Design

In this set of experiments we use the MOPSO is as described as Chapter 3 however, the

selection is performed at random from the non-dominated guide sets maintained. Entry

into the guide sets however is now determined by one of eight protocols: Favour Relation

(FR see section2.6.1), K-optimality (KO see section 2.6.2), CDAS-R ( see section 3.1.1),

Crowding Distance (CD see section 2.6.3, Average Ranking (AR see section 2.6.4), Sum of

Ratios (SR see section 2.6.5), Controlling Dominance Area of Solutions (with s = 0.3 we

denote this as CDAS0.3), and the baseline of random truncation of a non-dominated set.

For the first six measures when the non-dominated sets breach the capacity limits, their

contents are ranked by the quality measure, and the top 100 ranked solutions are kept

(the others are iteratively discarded1). For CDAS0.3 (CDAS with s = 0.3) the archive

only contains those solutions which are non-dominated under the CDAS transformation

when s = 0.3, if the set exceeds 100 elements, then it is truncated by random removal.

1Solutions must often be discarded one-by-one as for most of the quality measures described their value
is a↵ected by the set membership, and thus must be recomputed each time.
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4.2. Analysis of results

In Figures 4.1,4.2,4.3 & 4.4 results are presented in same the fashion as in chapter 3.

The analysis of the maintenance approaches is much simpler than those for selection.

CDAS0.3 is seen to perform significantly and substantially better than all seven other

approaches across DTLZ1, 3 and 4, and to rapidly converge for all problems bar DTLZ4,

where the convergence tends to take longer. For DTLZ2 although the IGD value is seen

to be significantly better for 10, 15 and 20 objectives, it loses out to CDAS-R on the GD

measure. We note that there appears to be a limiting value apparent for CDAS0.3 across

all of the problems – e.g., on DTLZ2 one can see that the IGD floors at about 1.35 across

all objective cardinalities. The reason for this, is due to the mapping, as shown in Figure

3.1a, where when solutions are found in the extremities of a convex F , those in the centre

are not non-dominated in the CDAS projection and therefore not stored when the values

in s are small. As such, there is a limit on the IGD values that can be obtained (although

not the GD). For DTLZ1, although the deceptive fronts are linear, CDAS still is seen

to converge, as once one solution is discovered on a lower front than currently stored, a

much larger number of the previous front will be discarded even if not Pareto dominated,

due to the mapping of CDAS. This is supported by Figure 4.5, which shows the median

global guide archive size as the MOPSO optimiser proceeds when using CDAS0.3 archive

maintenance. For DTLZ1, the archive size does not reach 100 at all with 5-objectives,

and still takes quite a few generations to reach when in higher dimensions. Figure 4.5 also

indicates another of the drivers of the CDAS0.3 convergence, as we can see that for all bar

DTLZ2, the archive is not truncated until later in the run, or not at all – therefore there

is a persistent convergence pressure when using CDAS0.3 from both the global selection

and the personal guide selection (that is, solutions will persist from one generation to the

next unless they are dominated under CDAS mapping, rather than removal due to storage

constraints). For the other archiving maintenance methods the maximum size is typically

reached within three generations (i.e. 400 function evaluations). CDAS-R does not do as

well as CDAS0.3 for archive maintenance, however like the other methods CDAS-R puts a

rank on the non-dominated solutions found, and limits the guide archives to the 100 best

of these, so there is not the same degree of convergence pressure as with CDAS0.3 (i.e. the

archive fills rapidly and requires truncation).
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Figure 4.5.: Median archive size (y-axis) for CDAS0.3 on di↵erent objectives (2 objective
top, down to 20 objective bottem) over time (x-axis in fittness function eval-
uations).

4.3. Discussion

The general results with CDAS are seen to be in keeping with other recent work in the

area (de Carvalho and Pozo, 2011), which use a CDAS-based MOPSO on DTLZ2 and

DTLZ4, and compare it to a hybrid MOPSO combining AR and CD. We find here that

CDAS as used for guide maintenance provides significantly better results across both the

test functions, and the ranges of objective numbers we have assessed. Its only apparent

weakness is manifest in DTLZ2. However, as we have discussed above, the reason for this

is due to transformation of the objective space. CDAS with low values in s promotes

convergence to the extremities of the Pareto front, but once the solutions stored are in

the vicinity of F , the centre of F is always projected to dominated locations in the new

mapping when the front is convex (which puts a floor on the IGD achievable). With

respect to the GD – we see that CDAS-R actually achieves slightly lower values than

CDAS0.3, and we conject that this may be due to it storing a greater range of guides –

and therefore when these are in a reasonably converged position, the chances of getting

58



even closer solutions anywhere across the front is improved (whereas CDAS0.3 will only

accept those on the extremity).

The results, when compared to those in chapter 3, indicate that archive maintenance has

a lesser e↵ect on the final quality of solutions returned, in terms of IGD and GD, compared

with the e↵ect of the selector choice apart from when using CDAS for archive maintenance,

where the IGD and GD values are significantly lower than any selector results (barring

DTLZ2).

Based upon the results here, we recommend those applying many-objective particle

swarm optimisers to strongly consider used CDAS-based archiving approaches. Leading

on from this in Chapters 5 & 6 we will take a more in-depth investigation into Controlling

Dominance Area of Solution and the newer parameter free derivative, Self Controlling

Dominance Area of Solution.
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5. Control of Dominance Area of

Solutions

As seen throughout the literature (Ishibuchi et al., 2008) and when considering the plain

PSO in chapters 3 & 4 many popular multi-objective optimisers are unable to e↵ectively

provide convergence on many objective problems, with the root cause often being their

use of Pareto dominance quality measures, which do not discriminate e↵ectively in high

dimensions. An approach that has seen strong results on many objective problems is

the controlling dominance area of solutions (CDAS) method and its newer adaptation

Self-CDAS.

CDAS acts by projecting the objective criteria associated with solutions into a di↵erent

space (of the same dimensionality), with Pareto quality assessments occurring in this new

mapping. By altering the parameters of this mapping, the system is able to increase and

decrease the selection pressure provided by typical Pareto ranking. Here we investigate

why controlling dominance area of solutions is so successful on many objective problems

and how it performs with a variety of di↵erent front topologies. Focusing our investigation

into the e↵ect that front shape has upon the operator. Later in chapter 6 we will examine

how CDAS performs on a larger range of problems.

5.1. Introduction

Pareto dominance has, since the conception of multi-objective optimisation, maintained a

strong position as the leading approach in most multi, and now many, objective optimi-

sation algorithms. However Pareto dominance alone has been found lacking and unable

to maintain good convergence whilst encouraging diversity when the number of objectives

increases beyond four. To assist algorithms dealing with many objectives, various finer

grained ranking based methodologies have been proposed. Some of these attempt to alter

the set of solutions available for future selection by either strengthening or weakening the
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criteria surrounding the Pareto operation.

These approaches typically alter the region which is dominated by a each solution. This

modification ranges from adding a hypercube surrounding each solution, dominating all

other solutions within, to adjusting the angle subtended from the axes to the solution

that bounds the dominated region. Controlling dominance area of solutions (CDAS) uses

the second of these, namely modifying the angles bounding the dominated region. While

originally developed for multi objective optimisation (2 to 3 objectives) CDAS has been

e↵ectively used on many objective problems. The key di↵erence in its application to many

objectives is the switch from weakening the Pareto dominance to strongly strengthening.

By strengthening Pareto dominance a subset of the Pareto mutually non-dominated

solutions are accepted. With low numbers of objectives, as those for which Pareto was

originally developed, removing solutions from the first mutually non-dominating front is

not considered to be highly beneficial. However as the number objectives increases so

does the number of mutually non-dominating solutions, especially those in the first front,

giving rise to di�culties with traditional multi-objective optimisers. With a smaller set

of solutions to select future generations from the hope is to encourage convergence which

otherwise for many objective problems has been a di�culty.

Alternatively, there have been various methods proposed which make use of a decision-

maker’s prior preference to particular regions or region in objective space (Zitzler and

Künzli, 2004; Deb et al., 2006b). The reference point method (Deb et al., 2006b) and light

beam search (Deb and Kumar, 2007) have been the most popular, with their successful ap-

plication to a range of many objective problems (Wickramasinghe and Li, 2009). However,

as these approaches are concerned with a specific region of objective space, they do not

promote coverage across the entire front, and therefore have limited use when the feasible

objective space properties are not known and/or there is no prior preference knowledge.

To provide a greater convergence, and/or even distribution of solutions, a range of

methods have been proposed which impose an additional ordering upon the Pareto mu-

tually non-dominating solutions to provide a finer degree of granularity when selecting

or removing a solution from an archive/population – that is, to provide a rank order on

solutions (the Pareto relationship only providing a partial order) see sections 2.6.4, 2.6.1.

Alternately as discussed in Ishibuchi et al. (2008) the Pareto dominance method can be

altered to reduce the number of solutions which are mutually non-dominating. Popular

among these methods are ↵-dominance (Ikeda et al., 2001), ✏-dominance (Laumanns et al.,
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2002) and Controlling Dominance Area Of Solutions (Sato et al., 2007b). Each increases

the region which a solution dominates, thereby dominating solutions which under Pareto

would be mutually non-dominating. This chapter is an investigation of how Controlling

Dominance Area Of Solutions of how the selection pressure provided is e↵ected by the

shape and spacing of the mutually non-dominating set.

5.2. Preferences of CDAS and S-CDAS

As both CDAS and S-CDAS operate upon the entire population, so that domination or

ranks are functions of the locations of all the solutions in objective space respectively,

it is of interest how these algorithms discriminate between solutions - considering di↵er-

ent distributions of solutions in objective space. The investigation will take a graphical

approach analysing the preference CDAS and S-CDAS have for solutions within di↵erent

populations in 2 and 3 dimensions. To show multiple s values for CDAS we have combined

the results together giving a rank indicating the smallest s values for which a solution is

still mutually non-dominating, this is the same rank as the CDAS-R ranking introduced

in Section 2.6.6.

Our investigation will cover three primitive Pareto mutually non-dominating front types

under minimisation. Figure 5.1 is the first of these fronts, a randomly uniform sample

of solutions1 from a simplex. In Figures 5.1a & 5.1b additional Pareto mutually non-

dominating solutions set back from the simplex have been added. The rank of solutions

for CDAS and S-CDAS is indicated by shade, for CDAS the corresponding s values can

be seen upon the legend on the right of each figure.

For S-CDAS we consider two di↵erent embeddings into optimisers: elitist restriction

(ER), keeping the n best solutions, where n is the maximum size for the population/archive;

elitist selection (ES), keeping only the best solutions. These di↵erent applications of S-

CDAS provide two perspectives for these graphs: ER e↵ectively cuts o↵ the population

to keep the n darkest solutions; ES keeps only the darkest solutions, therefore this will

normally be a much smaller set of solutions than those retained with ER (assuming a

typical population/archive size of 100 (Garza-Fabre et al., 2010; Leong and Yen, 2006)).

Considering the 2 dimensional plots, Figures 5.1a & 5.1b, the most striking feature is

how even with a medium s value CDAS ignores the additional o↵set solutions, keeping

1Down sampled to create a more evenly distributed sample using the largest bounding hypercube method
see section 2.6.3
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all the solutions from the simplex even at the lowest limit of s. While S-CDAS struggles

to distinguish between these additions solutions and those upon the simplex, here the

Euclidean distance to the origin appears to have a much greater e↵ect upon the rank of

the solutions. For ER and possibly ES some of the additional solutions will be included in

the population, whereas for CDAS with s  0.4 these solutions are excluded. In Figures

5.1c & 5.1d a 3-dimensional simplex is used, the results between S-CDAS and CDAS here

are similar.

Our second front shape is the positive sector of a hypersphere centred at the origin,

Figure 5.2. This convex hull is common, as the optimal set, among multi/many-objective

test problems (Huband et al., 2006). Here the behaviour can be seen, in Figures 5.2c &

5.2d, where CDAS general prefers the center with some extreme ‘edge’ solutions having

even greater favour - while S-CDAS likes the edge with the center having the lowest

preference. For S-CDAS with the ES implementation this means that only the solutions

upon the very edge are preserved in comparison, CDAS with a medium s value prefers

both the extreme ‘edge’ solutions and some central solutions. From both 2D and 3D plots

we can see that for CDAS to result in a small set a very strong s value must be chosen,

s  0.325.

Figure 5.3, the negative section of a hyper-sphere, shows a convex hull of solutions.

As with the other front shapes covered so far, in Figures 5.1 & 5.2, CDAS maintains a

preference for central region. In this case comparing CDAS to S-CDAS ranks shows how

given the correct choice of s CDAS could select similar solutions to ES and ER versions of

S-CDAS. However this does not include the additional Pareto solutions that are set back

from the concave section, in Figures 5.3a & 5.3b, which even with a high s value CDAS

will discard these - S-CDAS on the other hand appears to pay little attention to whether

the solutions are upon the concave section.

These first three shapes are all very primitive, considering that during an optimisation

the shape of the population in objective space can form any number of distributions (which

are free to change from generation to generation), even in cases where the optimal set lies

upon one of these primitives. So to further understand how the optimiser chooses solutions

we must consider more complicated shapes.

Combining the convex and concave shapes investigated above, Figure 5.4 shows that

for both 2 & 3 dimensions S-CDAS and CDAS di↵er - CDAS maintains a liking towards

the approaching concave section while also taking some solutions, depending on s, from
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the center of each convex section. S-CDAS however prefers the concave hull closest to the

origin over all others, and considers solutions in the convex section as worse the further

they are from the origin. For both algorithms combining the fronts together has not

significantly altered how they perform on the individual sections, convex/concave.

For CDAS and S-CDAS to be to considered for application to real work problems we

must discuss how they manage on other less primitive shapes. We will consider the previous

primitive fronts but scaled on their first objective by a factor of 2.5. For S-CDAS ' is

computed for each objective independently, and is influenced by the range of the objective

values on that objective. As S-CDAS does not need to set an s value, it would be expected

to be better at performing on fronts with di↵erent objective ranges.

The additional question we ask is how these algorithms perform upon subsets of the

above fronts, Where sections have been removed. For this we plot the di↵erence in rank

between the front will all solutions and that with some removed.

For the simplex, shown in figures 5.5, with sections removed neither of the two algorithms

result in a large di↵erence in ranking however, CDAS has some impact preferring keeping

the new edges for even stronger s values. S-CDAS has a small impact which results in

some of the solutions in the disconnected section being lost under moderate selection.

Many problems contain discontinuities, and even for those that do not during optimisa-

tion the current approximated mutually non-dominating set may have large sections of the

objective space unaccounted-for. In figures 5.6 we show how the rank of solutions changes

when sections of the front are removed. This has little a↵ect on CDAS, only strengthening

some solutions but never weakening any. (This is as expected see section 3.1.1) S-CDAS

however has a greater change, with sections both gaining and losing rankings.

5.3. Combating the di↵erences in shape and scale

In Figures 5.8 & 5.7, the same primitive front shapes are presented as before in Figures 5.1,

5.2 & 5.3 with one alteration, the scaling of the first objective by a factor of 2.5. While it is

possible within CDAS to use di↵erent si for each objective, having prior knowledge of the

ranges on each objective cannot be assumed for many real world problems. Therefore here

CDAS uses the same s values for all objectives as with the previous unscaled examples.

Here the scaling has less of an e↵ect upon S-CDAS then CDAS, however it is worth noting

that there is still a some e↵ect. This is most clearly seen when comparing the simplex

shaped fronts in Figure 5.7d to Figure 5.1d. The clear preference given by both algorithms
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to solutions closer to the origin may lead them to only converge down in one region of the

front, not maintaining good diversity.

As we have seen so far CDAS and S-CDAS are highly susceptible to the shape of the

front, both in terms of primitive and any non-uniform scaling of the front. To overcome

this we propose a normalisation and re-mapping methodology that aims to provide a wide

range of solutions, while providing strong convergence pressure. To do so first the mutually

non-dominating set is mapped to a pre-determined shape. Here the CDAS transform is

computed, using a pre-determined s value, resulting in a new set of solutions which are

mutually non-dominating in the transformed CDAS space. With this we aim to provide a

shape independent many-objective non-parametrised Pareto strengthening method.

As the range of solutions on each objective is not fixed the first step is to re-scale these

ranges similarly so that they can be e↵ectively mapped onto one of the primitive shapes.

Here we will introduce a means of re-scaling each objective independently to obtain a

better distribution when mapped to a uniformly scaled primitive.

Given a set of solutions P they are first rescaled:

f(x) =
f(x)�min (P)

max (P)�min (P) + ✏
+ ✏ (5.1)

Where min and max are vectors of the min/max objective values across all solutions in

P respectively. With ✏ set as a small o↵set value to ensure no division by zero, (e.g.

✏ = 0.001). This e↵ectively rescales on each objective such that all objective values sit in

the range [✏, 1 + ✏).

To re-map the solutions to a fixed front shape they are projected down towards the

origin onto the preferred shape. To project a population of solutions onto the positive

segment of a hyper-sphere the objective vector is normalised to have unit length 1. To

project onto a simplex the objective vector is rescaled such that the sum of the objective

values is constant for all solutions (here we rescaled to 1). In the general case a ray is drawn

from the solution to the origin the solution is then mapped to the point of intersection of

this ray and the target surface.

5.3.1. Re-scaled CDAS

Here we will investigate how re-scaling the objectives prior to computing the CDAS trans-

form can alter which regions of the objective space are preferred, we will compare how
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CDAS performs on fonts scaled on one objective to this normalised CDAS algorithm.

In Figure 5.9, we can see how normalising the objectives prior to computing the CDAS

transform results in the same distribution of preferences as with the non-scaled front

shapes seen before, see section 5.2.

The general CDAS algorithm must be adapted slightly to incorporate this normalisa-

tion, it is important that for the normalisation process only non-dominated solutions are

considered for the maximum and minimum. Therefore solutions that are being added to

the archive must be Pareto mutually non-dominating with those within the archive prior

to any normalisation process. Following this at the end of each generation, the point at

which the archive is updated for the next generation, the solution values are normalised

and transformed into CDAS space where another Pareto examination takes place, only

solutions which are non-dominated in this transformed normalised space have the chance

to continue to the next generation and be used for selection. If after the CDAS process

there are still more solutions in the archive than its maximum size then any number of

truncation methods can be used to trim the archive. This does however lead to a reduc-

tion in e�ciency in computational comparison to traditional CDAS, where all currently

accepted solutions can have their transformed location in CDAS space stored and thereby

save re-computing this for every generation.

5.4. Summary

Here we have seen how the e↵ect of CDAS & S-CDAS is highly variable across di↵erent

front shapes in 2 & 3 dimensions. S-CDAS is less a↵ected by scaling however it lacks the

ability to distinguish between mutually non-dominating solutions upon sub-optimal fronts,

e.g. DTLZ1 see section 2.7.1. In addition removing sections of the front made a much larger

impact upon the ranking of solutions for S-CDAS where solutions both strengthening and

weakening of the ranks occurred whereas for CDAS only marginal strengthening along

the edges of the removed sections was seen. This change could e↵ect how the search

progresses as some distinct regions will be favoured over others based upon there size.

(See S-SDAS equation in section 2.6.7.) CDAS however is highly substitutable to the

e↵ects of scaling, we can mitigate for this. However in non-scaled problems this may

provide undue preference to objectives with a larger range at this stage in optimisation.

In Chapter 4 we have seen how efective CDAS was on the DTLZ test problems we will

take this further in Chapter 6 where we will compare how CDAS, S-CDAS and other
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alterations on CDAS perform on a larger range of DTLZ problems and the newer Walking

Fish Group problem set.
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6. CDAS Comparison

Leading on from Chapter 5 here we will investigate how CDAS performs when applied

to a larger range of problems, and how the consideration of problem-topology a↵ects the

search. Additionally we propose a mapping approach to facilitate an application of CDAS

with fewer parameters.

6.1. Mapping to other shapes

As seen in section 5.2 and Chapter 4 the distribution of the mutually non-dominating

solutions has a large e↵ect upon the impact of CDAS. Here we propose re-mapping the

solution set to a pre-determined surface topology prior to computing the CDAS transform.

This aims to provide a problem independent application of CDAS. Some information about

the topology of the problem is inevitably lost when re-mapping, however we are able to

e↵ectively select which regions of a given front are used to propagate the search further

by altering the shape of the target surface. So the question arises which shape to choose?

In section 5.2 we have seen a range of primitive shapes compared, however only up to 3

objectives. Here we will aim to identify which will provide a good convergence pressure

even at 30 objectives.

Figure 6.1 shows the proportion of a front for each CDAS-R rank (See section 3.1.1).

This gives an indication of the e↵ect CDAS has on these pure primitive front shapes

as the number of objectives increases. Everson et al. (2013) noted how the proportion of

solutions on the edges of a given front increases with objectives - this will a↵ect the CDAS-

R ranking. To select a front shape we require some solutions to not be accepted across all

objectives. Considering the Convex case, illustrated in Figure 6.1b, it is clear that from 6

objectives onwards almost 100% of the front is maintained even for the strongest s values.

With both Concave and Mixed, Figures 6.1c & 6.1d respectively, there is more selection

pressure. However, the Simplex front in Figure 6.1a maintains some convergence pressure

for 30 objectives, when using a small s value.
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(c) Concave front
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(d) Mixed front

Figure 6.1.: Median distribution of ranks for CDAS-R: With the median taken over 30 runs
each with a uniformly random front of 1000 solutions upon the respective front.
The y-axis shows the proportion of the front associated with each minimum
s value, which is indicated by shading. The x-axis shows the number of
objectives.

6.2. Empirical examination

Here we will set out a range of experiments to gain further insight into how CDAS and

S-CDAS perform over many test problems. Our methods will be implemented into a

many-objective particle swarm optimisation algorithm (MOPSO) see section 2.6.8.

6.2.1. Experimental designs

For the experiments we take a basic MOPSO implementation with 100 particles in a fully-

connected population. Each archive, those used for personal guides and global guides, is

restricted to a maximum of 100 solutions. To better isolate the behaviour of CDAS and

S-CDAS these archives are maintained using uniformly-at-random truncation, except in

the case of where the S-CDAS ranks are used for truncation. Selection of guides from
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these archives is also uniformly-at-random. A statistical Pareto archive, to which all new

solutions are submitted, is also maintained. For computational speed this archive has a

maximum size of 1000 solutions. Each variation is run 30 times starting from a uniformly

random population. The parameters of the PSO search, using element wise truncation to

manage particles leaving the problem domain, are c1, c2 = 2 and ! = 0.4 with � = 1 (Xu

and Rahmat-Samii, 2007).

The problems tested upon were the DTLZ (1, 2, 3, 4, & 6)1 (Deb et al., 2002) and the

Walking Fish Group (WFG) (1-9) (Huband et al., 2005) using suggested parametrisation

from the original papers. All tests were run on 2, 3, 5, 10, 15, 20, 25 & 30 objectives.

Generational distance (GD) and inverse generation distance (IGD) provide a means of

comparing the convergence and coverage of these algorithms respectively. However the

originally proposed GD and IGD have been shown to poorly compare sets of solutions of

di↵erent sizes (Schütze et al., 2012). Therefore here we use the proposed power GDp and

IGDp methods (see sections 2.8.1 & 2.8.2) with p = 2 using a uniform sample of 10,000

solutions on the pareto optimal front.

To generate the sample of 10, 000 optimal solutions a larger uniformly-at-random sample

of 50, 000 was taken. Then it was reduced using the crowding distance (CD) operator (see

section 2.6.3) to select a uniformly distributed set of solutions upon the optimal surface.

The same set of optimal solutions was used across all the tests. Due to computation

constraints imposed by the complexity of IGDp the sample size was not increased for the

higher objectives. This means that as the objectives increase the sampled density reduces

rapidly. For 30 objectives we must keep in mind that we are only considering a subset of

the optimal front.

To better compare the robustness of CDAS and S-CDAS upon these problems a range

of alternative algorithms were also run:

1We are not considering the DTLZ 5 test problem due to the observations of Huband et al. (2005) where
they identified that the optimal is not fully defined, therefore we cannot rely on the GD and IGD
metrics.
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PSO

A many-objective PSO with selection uniformly at

random. This is equivalent to using CDAS with

s = 0.5.

CDASs

CDAS combined within a many-objective PSO to

limit the solutions accepted to both local and global

guide archives. The s parameter denotes the si

values used for all the objectives.

CDAS0.250
This is a special case of CDASs where the CDAS

mapping can be computed as: CDAS(u)i = ui+
P

j 6=i

u2
j

SCDAS-E

An elitist implementation of S-CDAS in PSO with

only the solutions of the minimum rank preserved

onto the next iteration. The rank is computed upon

a Pareot mutually non-dominating set of solutions.

SCDAS-T

S-CDAS ranks used when truncating the archives to

100 solutions, elitist truncations, keeping the best

100 solutions of the mutually non-dominating set.

|CDASsShape|
CDAS computed on solutions that have been

rescaled and mapped to a Convex or Simplex front

shape respectively. As discussed in section 5.3.

PSO
P Single objective PSO, summing the objective values

using equal weights for all objectives.

Random Walk

A uniform random sampling of parameter space,

committing 100 solutions to the archive at each

generation.
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6.3. Empirical Results

In figures 6.2, 6.3 & 6.4 a subset of the algorithms are compared. After 50,000 fitness

function evaluations the final GD and IGD scores are plotted for PSO
P

, CDAS0.275,

SCDAS-E & SCDAS-T. Lower GD and IGD scores are considered better (see sections

2.8.1 & 2.8.2). Each small symbol indicates an individual execution of an algorithm. The

larger and darker symbols indicate the median value for that respective algorithm. The

statical archive is used to compute the GD and IGD.

For the DTLZ test problems, figure 6.22, there is a substantial positive linear correlation

between GD and IGD. This correlation forms a lower bound for GD as a function of IGD.

It can also be seen on lower objectives (see Figure 6.5). We may attribute this to the

nature of the DTLZ problems as the distance to the optimal front is separable from the

dimensions that determine the position upon the front (see section 2.7.1).

Problem Objective Where IGD / GD

DTLZ 1 2, 3, 5, 10, 15, 20, 25, 30

DTLZ 3 2, 3, 5, 10, 15, 20, 25, 30

DTLZ 4 2, 3, 5, 10, 15, 20, 25, 30

DTLZ 6 10, 15, 20, 25, 30

Figure 6.5.: Objectives for DTLZ problems where IGD / GD.
For DTLZ2 the correlation is less pronounced (especially as the objectives
increase 20+). This may be due to the solutions being comparatively closer
to the optimal front.

In contrast, the WFG problems (figures 6.3 & 6.4) produce a Pareto trade-o↵ between

the metrics. This can be most clearly seen for WFG1, 7, 8 & 9 where even the individual

runs of each algorithm form a competing trade-o↵ front. PSO
P

constantly performs well

with respect to convergence, but is unable to spread across the front. SCDAS-T in general

provides better coverage across the front in comparison to SCDAS-E on all problems

except for WFG7.

A large number of individual runs on WFG3 (figure 6.3c) achieve solutions close to the

optimal set, with comparatively low GD scores. All the algorithms apart from CDAS0.275

show this behaviour. SCDAS-E and SCDAS-T both have median GD score that is a long

way from this extrema. We postulate this may be due to the degraded nature of the WFG3

2To maintain readability on figure 6.2a SCDAS-T is excluded from the graph as all of its runs are
significantly worse on both metrics.
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problem.

Unlike DTLZ for the WFG problems the relative performance of algorithms changes

with the number of objectives. To highlight this see figure 6.6, where the development of

WFG4 from 3 to 10 objective is shown. PSO
P

stands out in this figure as its GD score

is largely unchanged across all objectives. The competition between GD and IGD can be

seen from 10 objectives onwards.

CDAS0.275 PSO
X
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(c) WFG4 for 10 objectives

Figure 6.6.: Development of WFG4 from 3 to 10 objectives. Each small symbol indicates
an individual execution of the algorithms. The larger and darker symbols
indicate the median value. Each sample is taken from the statistical archive
at the end of the optimisation.

The investigation over all the algorithms will now be considered. Only a subset of the

results will be graphically shown here, the full set can be seen in appendix A. Figures 6.7 to

6.13 show the median state of the statical archive over time as the optimization progresses.

Each algorithm is identified by a row on the y-axis. Fitness function evaluations are shown

on the x-axis (with the GD and IGD plots being adjacent horizontally). The GD and

IGD score is shown by the shading, the color gradient uses a log scale to emphasise the

di↵erences between the algorithms.

We observe from Figure 6.7, and appendix A.1 that there is very little variation in the

relative performance between algorithms from 2 to 30 objectives. The exception to this is

|CDAS0.400
convex| and |CDAS0.275

convex|, both of these algorithms fail to maintain their position

for high objectives.

The strong performance of PSO
P

on DTLZ1 for both GD and IGD is somewhat of

a surprise. This algorithm provides a very strong selection pressure by only maintaining

in each personal and global archive the best solutions after summing over all objectives.

We hypothesize that this is due to a combination of the nature of DTLZ, as discussed

above, and the front topology of DTLZ1. All solutions on the leading simplex front have
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(d) DTLZ1 Median IGD on 30 objectives

Figure 6.7.: Results for DTLZ1 with 2 & 30 objectives. With the di↵erent algorithms
on the y-axis and fitness function evaluations on the x-axis. The shading
indicates the score of the respective metric. GD and IGD are computed upon
the statistical archive of 1000 solutions. All metrics are taking the median
over 30 runs.

the same fitness value for PSO
P

- given a distribution of solutions on multiple di↵erent

simplexes, PSO
P

is able to always select the best simplex. The investigation in Chapter 5

and figure 6.1a shows us that both CDAS and SCDAS have high selection pressure on the

simplex fronts. With the multiple deceptive front in by DTLZ1 a strong selection pressure

allows these optimisers to drive down to better fronts, this confirms the earlier findings in

Chapter 5.

For DTLZ3 the performance is similar to that on DTLZ1, see appendix A.3. PSO
P

,

SCDAS-E & strong CDAS take the lead, however they do not manage to achieve as good

GD or IGD scores. Even after 50,000 fitness function evaluations the best median GD

is > 23 in comparison to DTLZ1 where the best GD score is 0.72 (on 2 objectives).

Additionally weaker CDAS is less competitive on DTLZ3 compared to DTLZ1. The

di↵erence in GD and IGD score highlights the importance of front shape. Both problems

share the same deceptive fronts in objective space however DTLZ3 has the convex shape
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taken from DTLZ2, the positive sector of a hyper-sphere. On DTLZ3 PSO
P

will favor the

extreme points on the corners of the hyper-spherical section. This provides a very strong

selection pressure to both drill down - since the dimensions responsible for positions on

the front in DTLZ are independent of the distance to the optimal front it is then easy for

particles in the swarm to migrate across the front, filling the statical archive, with many

solutions upon the same deceptive front.

In Figure 6.8 the results of our experiments on DTLZ2 are presented. This is the only

DTLZ test problem where we do not see GD and IGD hand in hand on higher objectives

(also seen in chapters 4 & 3). We see a clear di↵erence between the 2 and 3+ objectives for

CDAS, SCDAS-E, |CDASsconvex| and PSO
P

. CDAS with s 2 [0.275, 0.350] performs well

on both GD and IGD for 2 objectives, however for 3+ objectives its IGD score diverges

as the GD score improves. SCDAS-E provides the same good GD & IGD for 2 objectives,

on 3+ objectives the IGD score is very poor.

The scaled and mapped |CDAS0.275
convex| likewise has good GD and IGD scores on 2 ob-

jectives, but is unable to perform on 3+ on either GD or IGD. We postulate the mapping

of all solutions onto the convex surface that forms the same shape as the optimal front

reduces the ability to e↵ectively distinguish between distant and close solutions for DTLZ2

on higher objectives. Since all solutions for DTLZ2 fall within the unit hyper-cube close to

the front. On 2 objectives the mapping and re-scaling therefore have little e↵ect3, there-

fore |CDASsconvex| behaves very similar to plain CDAS. PSO
P

while e↵ective at providing

good GD values is completely unable to maintain a distribution selection across the front,

as discussed above this may be due to its selection only of solutions in the extreme corners

of the optimal front.

Overall for DTLZ2 we consider the trade-o↵ between GD and IGD most likely due to

the proximity to the optimal front obtained by all tests: unlike DTLZ3 or 4, which both

share the same front shape, DTLZ2 is widely considered the easiest test in the DTLZ test

suits. With so many solutions extremely close to the optimal set it is di�cult to maintain

diversity, since once found many solutions will never be dominated. If the selection achieves

used for personal and global best solutions except very few new solutions the same guides

are used over and over again, this can result in a collapsing population.

The latter development in IGD, from 15+ objective, of |CDAS0.275
simplex| we consider to be

another identification of the nature of the objective space for DTLZ2. With all solutions

3For DTLZ2 on 2 objectives a set of 100 mutually non-dominating random solutions mapped to the front
is enough to e↵ectively describe the full surface.
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(a) DTLZ2 Median GD on 2 objectives
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(b) DTLZ2 Median IGD on 2 objectives
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(c) DTLZ2 Median GD on 3 objectives
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(d) DTLZ2 Median IGD on 3 objectives
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(e) DTLZ2 Median GD on 30 objectives
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(f) DTLZ2 Median IGD on 30 objectives

Figure 6.8.: Results for DTLZ2 with 2, 3 & 30 objectives. With the di↵erent algorithms
on the y-axis and fitness function evaluations on the x-axis. The shading
indicates the score of the respective metric. GD and IGD are computed upon
the statistical archive of 1000 solutions. All metrics are taking the median
over 30 runs.

in the unit hyper-cube, the perimeter of the front is naturally easier to sample than the

center. The mapping to a simplex results in strong selection preference to the center of

the front enabling the statical archive to be filled not only with perimeter points.

DTLZ4 while forming the same optimal shape as DTLZ2 & DTLZ3, DTLZ4 has a

strongly non-uniform mapping resulting in segments of the optimal su↵erance to be much
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(a) DTLZ4 Median GD on 5 objectives
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(b) DTLZ4 Median IGD on 5 objectives
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(c) DTLZ4 Median GD on 10 objectives
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(d) DTLZ4 Median IGD on 10 objectives

Figure 6.9.: Results for DTLZ4 with 5 & 10 objectives. With the di↵erent algorithms
on the y-axis and fitness function evaluations on the x-axis. The shading
indicates the score of the respective metric. GD and IGD are computed upon
the statistical archive of 1000 solutions. All metrics are taking the median
over 30 runs.

more di�cult to find. In addition unlike DTLZ2 the solutions of objective space are

not constrained to the unit hyper-cube. In chapters 3 & 4 we have seen the di�culty

optimisers had converging and spreading across the front, even with CDAS converging

slowly. In figure 6.9 we observer that CDAS, seen to perform well in chapter 4, is unable

to compete with SCDAS-E or PSO
P

for 10+ objectives. The relative ranking of S-CDAS

gives a kind of crowding distance operator (see section 2.6.3), with solutions further apart

more likely to be given equal ranks. This is important in this case as it encourages the

optimiser to search the more sparse parts of the objective space ( see chapter 5 for further

discussion of this on 2 and 3 dimensional fronts).

The results of our experiments on DTLZ 6 can be seen in Figure 6.10. Unlike on

the other DTLZ problems it appears a weak implementation of CDAS is more e↵ective

than strong CDAS. With s values ranging from 0.475 to 0.400 performing best on lower

objectives and finally on 30 objectives just s = 0.475. Since DTLZ6 is the only DTLZ
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(a) DTLZ6 Median GD on 3 objectives
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(b) DTLZ6 Median IGD on 3 objectives
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(c) DTLZ6 Median GD on 5 objectives
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(d) DTLZ6 Median IGD on 5 objectives

Figure 6.10.: Results for DTLZ6 with 3& 5 objectives. With the di↵erent algorithms on the
y-axis and fitness function evaluations on the x-axis. The shading indicates
the score of the respective metric. GD and IGD are computed upon the
statistical archive of 1000 solutions. All metrics are taking the median over
30 runs.

test problem that contains multiple unconnected optimal segments in objective space the

strong CDAS may result only selection the edges of some of these disjoint segments, see

figure 5.6c in chapter 5. A weaker CDAS will still provide some needed selection pressure

without ignoring the many disjoint segments. Weak CDAS is able to perform relatively

well in comparison to the best algorithm on DTLZ3, with GD scores on 30 objectives

around 2.

In this problem there is a clear switch of behavior between the multi- and many objec-

tive experiments. On 2 & 3 objectives the very strong limiting implementation of CDAS

with s = 0.25 shows some promise alongside SCDAS-T, plain PSO and all of the map-

ping algorithms. In comparison form 5+ objectives CDAS0.250, SCDAS-T, PSO and the

mapped functions perform badly, and SCDAS-E performs well. The increasing number

objectives rapidly grows the proportion of empty space between each disjoint front, we

believe this may e↵ect these algorithms, but further work is needed on the topic of disjoint
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fronts to give insight into the problem.

0 25 50 75 100

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
0.03

0.30

0.58

0.85

1.12

G
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(a) WFG1 Median GD on 3 objectives
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(b) WFG1 Median IGD on 3 objectives
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(c) WFG1 Median GD on 5 objectives
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(d) WFG1 Median IGD on 5 objectives

Figure 6.11.: Results for WFG1 with 3 & 5 objectives. With the di↵erent algorithms on the
y-axis and fitness function evaluations on the x-axis. The shading indicates
the score of the respective metric. GD and IGD are computed upon the
statistical archive of 1000 solutions. All metrics are taking the median over
30 runs. For all objectives see appendix A Figure A.6.

In Figure 6.11, the results on WFG1 are presented. As discussed above there is a clear

trade-o↵ between GD and IGD. The exceptions to this for WFG1 are on 2 objectives where

strong CDAS achieves good GD & IGD. And SCDAS-E up-to 15 objectives maintains good

convergence on GD without significant penalties on IGD.

Figure 6.12 shows the results for WFG2, which has many disjoint segments on the opti-

mal front. On 2 & 3 objectives PSO, week CDAS, CDAS0.250, SCDAS-T and the mapping

function show promising results. On 5+ objectives PSO, |CDASconverx| & CDAS0.250 con-

tinue to perform well on both GD & IGD. From this we can see that one can perform

well on WFG2 with an algorithm without strong selection pressure is needed: plain PSO

and |CDAS0.400
converx| both provide minimal selection pressure, in comparison to the other

algorithms. This is similar to our findings above for DTLZ6.

WFG3 to WFG9 all display the same polarity between multi- and many-objectives,
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(a) WFG2 Median GD on 15 objectives
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(b) WFG2 Median IGD on 15 objectives
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(c) WFG2 Median GD on 30 objectives
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(d) WFG2 Median IGD on 30 objectives

Figure 6.12.: Results for WFG2 with 15 & 30 objectives. With the di↵erent algorithms
on the y-axis and fitness function evaluations on the x-axis. The shading
indicates the score of the respective metric. GD and IGD are computed
upon the statistical archive of 1000 solutions. All metrics are taking the
median over 30 runs.

see figures 6.13 & A.9 – A.14. The change in IGD, on most problems, is from 15+

objectives lagging behind the shift in GD that is between 5 and 10 objectives. Across all

of these problems on low objectives algorithms with less selection pressure outperform their

counterparts on both metrics. For higher objectives GD and IGD are in compensation.

PSO
P

with its high selection pressure provides good convergence from 10+ objectives for

all of these problems. Overall the best IGD on high objectives is provided by Random

Walk. While all algorithm behave the same on these problems there are a few anomalies:

As mentioned above the degraded nature of the WFG3 front may contribute to the strong

performance of SCDAS-E from 3 to 25 objectives - further extension of chapter 5 is needed

to confirm this.
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(a) WFG3 Median GD on 3 objectives
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(b) WFG3 Median IGD on 3 objectives
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(c) WFG3 Median GD on 5 objectives
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(d) WFG3 Median IGD on 5 objectives

Figure 6.13.: Results for WFG3 with 3 & 5 objectives. With the di↵erent algorithms on the
y-axis and fitness function evaluations on the x-axis. The shading indicates
the score of the respective metric. GD and IGD are computed upon the
statistical archive of 1000 solutions. All metrics are taking the median over
30 runs.

6.4. Summary & Discussion

Across this range of experiments we can see a common divide between the multi- and

many-objective problems: In the WFG problems it is the most clear, however it can be

seen in all of the problems, as discussed by (Huband et al., 2006) & (Ishibuchi et al., 2008).

Where it is attributed to the increased dimensions of objective space resulting in more

equivalent solutions under Pareto comparison reducing the convergence rate. This causes

algorithms that perform well on 2 and 3 objectives to experience an explosive growth in

archive size at the number of objectives increases. However among the algorithms we have

observed here S-CDAS has in many cases managed to bridge this gap providing adequate

performance on both multi-and many objective problems. The counter example of this is

DTLZ2 as discussed in section 6.3.

In the experiments here, and in previous studies, we have strong evidence to suggest
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that the DTLZ test problems are significantly easier for many-objective algorithms to

solve than the WFG suite. DTLZ 1, 2, 3, 4 & 6 appear trivial in comparison to the

WFG problems: Almost all algorithms attain some convergence for DTLZ on GD and

IGD simultaneously across the full objective range. Whereas no algorithms managed this

feat for the WFG suite. This has previously been touched upon by the authors of the

WFG suite, they hypothesised that the nature and distribution of the optimal solutions

in parameter space for DTLZ allow many algorithms to easily converge and spread is out

across the optimal front, see sections 2.7.1 & 2.7.2. This trade-o↵ on WFG between GD

and IGD is clearly seen in the figures plotting GD vs IGD, where the individual runs form

a trade-o↵ surface.

S-CDAS appears from these experiments to be the best algorithm overall for the DTLZ

problems, providing good convergence and spread across the optimal set, for both low

and high objectives on the majority of test problems. Here we have examined two im-

plementations of S-CDAS: the elitist selection version, in general performed better on the

DTLZ test problems, whereas there is a less clear di↵erence for WFG problems. These two

implementations span the extremes of selection pressure providable by SCDAS. The com-

paratively better performance of the elitist implementation on DTLZ may be attributable

to the reduced need to diversify during search, since once a single solution at a given

distance from optimal front is discovered only a subset of dimensions in the search space

need to be searched to find all solutions at this distance. On the WFG problems there is

a trade-o↵ between algorithms performing well on GD and those performing well on IGD

for S-CDAS both elitist and truncation provide better IGD scores than PSO
P

but have

worse convergence.

Our overall results show S-CDAS as the leading method for providing good convergence

and spread thought the front. However this is not as clear cut as the dominance of

CDAS over selection methods in Chapter 4. Even though S-CDAS removes the need to

set a correct vector of s values we see that the use of the S-CDAS rank is the deciding

factor. In Chapter 5, the region preferred by S-CDAS is less a↵ected by the scaling of the

objective range. This may be a contributing factor to S-CDAS’s IGD performance on the

WFG problems.

The strong convergence of PSO
P

on many of the problems investigated, but not all,

is perhaps not so surprising. We postulate that while PSO
P

is an e↵ective means for

providing convergence alone it is unable to provide good distribution across the front. A
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case for this is DTLZ 2 where comparatively speaking PSO
P

is only able to provide GD

scores and not IGD. As discussed for S-CDAS PSO
P

has too high a selection pressure to

perform well on any of the WFG problems with respect IGD.

In summary we would suggest the application of S-CDAS to most problems, however

the implementation into the heuristic has a large e↵ect. We have seen that by altering

the application of S-CDAS we are able to attain good convergence and spread in the

majority of our experiments. However in cases where only a single good solution is needed

we would suggest the application of PSO
P

or single objective reduction/decomposition

methods. Finally we suggest that the DTLZ test suite be only used mainly to analyse the

performance of algorithms close to the optimal set, however harder problems are needed

for a full comparison of algorithms.
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7. Summary

In this study we have investigated how modifying the Pareto dominance calculation can be

used to encourage convergence on many objective problems with particle swarm optimi-

sation. We have proposed two new novel adaptations to existing algorithms and analysed

their application across a broad range of standard tests.

In Chapter 2 we introduced the PSO heuristic and discussed the state of the art for

many objective optimisations. Traditionally within multi-objective PSO optimisation a

range of selection operators have been applied to improve convergence and coverage. In

Chapter 3 we first looked at how altering the selection methods e↵ects the search. Here we

introduced a new method, CDAS-R, to provide a ranking on solutions used for selection.

Our findings here, on DTLZ 1-4, clearly indicated Sum of Average Rank (SR) and Average

Rank (AR) as the best selection operators.

We follow this in Chapter 4 with an initial investigation into the use of ranking methods

when controlling the archive of solutions stored. From these results here we see our first

indication of the significant improvement provided by CDAS. We see CDAS providing

both rapid initial convergence and significantly better Generational Distance (GD) and

Inverse Generational Distance (IGD) scores in comparison to the selection operators used

on the same problems in Chapter 3. Here we identified how the performance of CDAS

is not only a function of the number of objectives and the complexity of the problem,

e.g. the existence of deceptive fronts, but also the shape of the optimal front in objective

space. Chapter 5 follows this analysis further investigating a newer variant of CDAS,

namely S-CDAS. This included an in-depth investigation into the selection properties of

these 2 algorithms. Here we examined 2 and 3 objective examples in detail observing how

each algorithm preferred di↵erent subsections of each front shape. This re-confirmed our

findings from Chapter 4 that CDAS is highly dependent upon the shape of the optimal

set and current approaching Pareto front. From this we observed how S-CDAS performed

much better with respect to distribution across the front when the Pareto front is not

uniformly scaled across objectives.
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Chapter 6 continues with a deeper empirical examination of both CDAS and S-CDAS.

These are compared with a novel adaptation of CDAS were the Pareto set is first mapped

to a predefined surface shape before CDAS is applied. On almost all the higher many-

objective tests the single objective implementation of PSO (PSO
P

) provided fast, good

convergence. This is in tandem with the collapse in diversity across the front. While this

was expected, S-CDAS was shown to be an e↵ective algorithm on the majority of many-

objective problems. It was able to provide good convergence on almost all problems,

while achieving a good distribution across the front for most of the problems. In addition,

as seen in Chapters 3 & 4 we see a clear di↵erence between multi and many objective

performance, with the dominant algorithms switching roles as the objectives increase from

3 to 5. Finally our findings suggest further understanding of the DTLZ and WFG test

problems are needed. We noted DTLZ proves significantly easier than WFG for algorithms

to maintain good convergence and diversity simultaneously.

7.1. Future work

We believe MOPSO will have its place in future application in many objective problems.

Further work will be needed to develop methods that can maintain diversity and conver-

gence on di�cult problems, such as the WFG test suit. We see a split in goals emerging:

development of generic heuristics that aim to solve all/most problems with little of no

parametrisation and developing tool/insights into problems to help the correct heuristic

selection. We believe the second approach will lead to better application to industry and

use behold the academic community. Further work looking in detail into the behavior of

selection and archiving operators on higher dimensional solution sets is critical for this.

This work has been focused upon the incorporation of methods to modify the Pareto

domination calculations and their adaptation/implementation into Particle Swarm optimi-

sation. To keep our study focused we have not considered a range of important factors in

many-objective PSO. An investigation into the a↵ect of maximum archive size, including

an analysis of the computation cost that large archives may bring would be helpful. Many

EMOs use a combination of selection and archiving methods, within MOPSO we have

an additional degree of freedom since we can also control the methods used for personal

memory independently of those for global memory. Further work is needed to compare

CDAS & S-CDAS to the other dominance modification methods such as ↵-dominance &

✏-dominance.
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MOPSO with CDAS may also be used to provide a decision-maker’s prior preference

heuristic, in a similar way to light-beam search, the s vector can be manipulated to prefer

a mixture of objectives. We would like to also consider another possible impersonation

of CDAS-R where the rank is the number of di↵erent s vectors for which a solution is

dominated, vectors could be pre-determined by the decision-maker or chosen to uniformly

sample the space. This would allow the decision-maker to have multiple distinct preferred

targets within one optimisation.

Within our work we have used a single value for the s vector in CDAS, we would be

interested in an investigation to the e↵ect of randomly varying this such that each each

particle has a fixed random vector set at the beginning of the optimization. This may

result in each particle focusing on a di↵erent regions of objective space. Another possible

implementation of this could form a multi-swarm approach with each sub-swarm using a

di↵erent s, with strong selection, this is very close to decomposition methods: since CDAS

in each sub-swarm will favor di↵erent combinations of objectives. Another implementation

could take the mapping approach to a multi-swarm with each sub-swarm taking a di↵erent

mapping.

An addition that the concept of sub-swarms provides is the possibility to train each sub-

swarm on a subset of objectives. It would be important for non-separable problems that

each objective is trained pairwise with each-other in at least one sub swarm. Possibly such

sub-swarms might need to propagate solutions through each-other via a tree of swarms,

such that the child swarms use subsets of objectives from the parent.
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Appendices
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A. Experimental Results

Here the results of the experiments undertaken in Chapter 6 are presented in full. Each

problem is presented in turn with objective numbers increasing down the page. With

the di↵erent algorithms on the y-axis and fitness function evaluations on the x-axis. The

shading indicates the score of the respective metric. GD and IGD are computed upon the

statistical archive of 1000 solutions. All metrics are taking the median over 30 runs.
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(a) DTLZ1 Median GD on 2 objectives
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(b) DTLZ1 Median IGD on 2 objectives
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(c) DTLZ1 Median GD on 3 objectives
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(d) DTLZ1 Median IGD on 3 objectives

0 25 50 75 100

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
1.45

44.50

87.55

130.60

173.65

G
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(e) DTLZ1 Median GD on 5 objectives
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(f) DTLZ1 Median IGD on 5 objectives
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(g) DTLZ1 Median GD on 10 objectives
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(h) DTLZ1 Median IGD on 10 objectives

Figure A.1.: DTLZ1.
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(i) DTLZ1 Median GD on 15 objectives
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(j) DTLZ1 Median IGD on 15 objectives
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(k) DTLZ1 Median GD on 20 objectives
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(l) DTLZ1 Median IGD on 20 objectives
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(m) DTLZ1 Median GD on 25 objectives

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
0.60

10.94

21.28

31.63

41.97

IG
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(n) DTLZ1 Median IGD on 25 objectives
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(o) DTLZ1 Median GD on 30 objectives
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(p) DTLZ1 Median IGD on 30 objectives

Figure A.1.: DTLZ1.
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(a) DTLZ2 Median GD on 2 objectives
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(b) DTLZ2 Median IGD on 2 objectives
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(c) DTLZ2 Median GD on 3 objectives
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(d) DTLZ2 Median IGD on 3 objectives
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(e) DTLZ2 Median GD on 5 objectives
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(f) DTLZ2 Median IGD on 5 objectives
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(g) DTLZ2 Median GD on 10 objectives
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(h) DTLZ2 Median IGD on 10 objectives

Figure A.2.: DTLZ2.
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(i) DTLZ2 Median GD on 15 objectives
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(j) DTLZ2 Median IGD on 15 objectives
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(k) DTLZ2 Median GD on 20 objectives

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
0.76

0.88

1.00

1.12

1.23

IG
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(l) DTLZ2 Median IGD on 20 objectives
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(m) DTLZ2 Median GD on 25 objectives
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(n) DTLZ2 Median IGD on 25 objectives
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(o) DTLZ2 Median GD on 30 objectives
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(p) DTLZ2 Median IGD on 30 objectives

Figure A.2.: DTLZ2.
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(a) DTLZ3 Median GD on 2 objectives
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(b) DTLZ3 Median IGD on 2 objectives
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(c) DTLZ3 Median GD on 3 objectives
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(d) DTLZ3 Median IGD on 3 objectives
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(e) DTLZ3 Median GD on 5 objectives
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(f) DTLZ3 Median IGD on 5 objectives
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(g) DTLZ3 Median GD on 10 objectives
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(h) DTLZ3 Median IGD on 10 objectives

Figure A.3.: DTLZ3.
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(i) DTLZ3 Median GD on 15 objectives
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(j) DTLZ3 Median IGD on 15 objectives
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(k) DTLZ3 Median GD on 20 objectives
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(l) DTLZ3 Median IGD on 20 objectives
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(m) DTLZ3 Median GD on 25 objectives
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(n) DTLZ3 Median IGD on 25 objectives
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(o) DTLZ3 Median GD on 30 objectives
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(p) DTLZ3 Median IGD on 30 objectives

Figure A.3.: DTLZ3.
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(a) DTLZ4 Median GD on 2 objectives
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(b) DTLZ4 Median IGD on 2 objectives
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(c) DTLZ4 Median GD on 3 objectives
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(d) DTLZ4 Median IGD on 3 objectives
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(e) DTLZ4 Median GD on 5 objectives
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(f) DTLZ4 Median IGD on 5 objectives
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(g) DTLZ4 Median GD on 10 objectives
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(h) DTLZ4 Median IGD on 10 objectives

Figure A.4.: DTLZ4.
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(i) DTLZ4 Median GD on 15 objectives
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(j) DTLZ4 Median IGD on 15 objectives
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(k) DTLZ4 Median GD on 20 objectives
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(l) DTLZ4 Median IGD on 20 objectives
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(m) DTLZ4 Median GD on 25 objectives
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(n) DTLZ4 Median IGD on 25 objectives
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(o) DTLZ4 Median GD on 30 objectives
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(p) DTLZ4 Median IGD on 30 objectives

Figure A.4.: DTLZ4.
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(a) DTLZ6 Median GD on 2 objectives
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(b) DTLZ6 Median IGD on 2 objectives
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(c) DTLZ6 Median GD on 3 objectives

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
0.38

2.24

4.10

5.96

7.81

IG
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(d) DTLZ6 Median IGD on 3 objectives
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(e) DTLZ6 Median GD on 5 objectives
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(f) DTLZ6 Median IGD on 5 objectives
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(g) DTLZ6 Median GD on 10 objectives
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(h) DTLZ6 Median IGD on 10 objectives

Figure A.5.: DTLZ6.
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(i) DTLZ6 Median GD on 15 objectives
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(j) DTLZ6 Median IGD on 15 objectives
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(k) DTLZ6 Median GD on 20 objectives
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(l) DTLZ6 Median IGD on 20 objectives
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(m) DTLZ6 Median GD on 25 objectives

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
3.70

24.92

46.13

67.35

88.57

IG
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(n) DTLZ6 Median IGD on 25 objectives
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(o) DTLZ6 Median GD on 30 objectives
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(p) DTLZ6 Median IGD on 30 objectives

Figure A.5.: DTLZ6.
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(a) WFG1 Median GD on 2 objectives
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(b) WFG1 Median IGD on 2 objectives
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(c) WFG1 Median GD on 3 objectives
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(d) WFG1 Median IGD on 3 objectives
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(e) WFG1 Median GD on 5 objectives
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(f) WFG1 Median IGD on 5 objectives
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(g) WFG1 Median GD on 10 objectives
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(h) WFG1 Median IGD on 10 objectives

Figure A.6.: WFG1.
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(i) WFG1 Median GD on 15 objectives
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(j) WFG1 Median IGD on 15 objectives
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(k) WFG1 Median GD on 20 objectives
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(l) WFG1 Median IGD on 20 objectives
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(m) WFG1 Median GD on 25 objectives
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(n) WFG1 Median IGD on 25 objectives
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(o) WFG1 Median GD on 30 objectives
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(p) WFG1 Median IGD on 30 objectives

Figure A.6.: WFG1.
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(a) WFG2 Median GD on 2 objectives
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(b) WFG2 Median IGD on 2 objectives
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(c) WFG2 Median GD on 3 objectives
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(d) WFG2 Median IGD on 3 objectives
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(e) WFG2 Median GD on 5 objectives
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(f) WFG2 Median IGD on 5 objectives

0 25 50 75 100

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
0.26

0.48

0.69

0.91

1.12

G
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(g) WFG2 Median GD on 10 objectives

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
0.72

2.39

4.05

5.72

7.39

IG
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(h) WFG2 Median IGD on 10 objectives

Figure A.7.: WFG2.
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(i) WFG2 Median GD on 15 objectives
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(j) WFG2 Median IGD on 15 objectives
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(k) WFG2 Median GD on 20 objectives
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(l) WFG2 Median IGD on 20 objectives
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(m) WFG2 Median GD on 25 objectives
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(n) WFG2 Median IGD on 25 objectives
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(o) WFG2 Median GD on 30 objectives
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(p) WFG2 Median IGD on 30 objectives

Figure A.7.: WFG2.
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(a) WFG3 Median GD on 2 objectives
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(b) WFG3 Median IGD on 2 objectives
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(c) WFG3 Median GD on 3 objectives
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(d) WFG3 Median IGD on 3 objectives
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(e) WFG3 Median GD on 5 objectives
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(f) WFG3 Median IGD on 5 objectives
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(g) WFG3 Median GD on 10 objectives
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(h) WFG3 Median IGD on 10 objectives

Figure A.8.: WFG3.
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(i) WFG3 Median GD on 15 objectives
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(j) WFG3 Median IGD on 15 objectives
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(k) WFG3 Median GD on 20 objectives
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(l) WFG3 Median IGD on 20 objectives
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(m) WFG3 Median GD on 25 objectives
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(n) WFG3 Median IGD on 25 objectives
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(o) WFG3 Median GD on 30 objectives
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(p) WFG3 Median IGD on 30 objectives

Figure A.8.: WFG3.

116



0 25 50 75 100

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
0.02

0.07

0.12

0.17

0.23

G
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(a) WFG4 Median GD on 2 objectives
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(b) WFG4 Median IGD on 2 objectives
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(c) WFG4 Median GD on 3 objectives
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(d) WFG4 Median IGD on 3 objectives
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(e) WFG4 Median GD on 5 objectives
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(f) WFG4 Median IGD on 5 objectives
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(g) WFG4 Median GD on 10 objectives
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(h) WFG4 Median IGD on 10 objectives

Figure A.9.: WFG4.
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(i) WFG4 Median GD on 15 objectives
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(j) WFG4 Median IGD on 15 objectives
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(k) WFG4 Median GD on 20 objectives
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(l) WFG4 Median IGD on 20 objectives
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(m) WFG4 Median GD on 25 objectives
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(n) WFG4 Median IGD on 25 objectives
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(o) WFG4 Median GD on 30 objectives
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(p) WFG4 Median IGD on 30 objectives

Figure A.9.: WFG4.
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(a) WFG5 Median GD on 2 objectives
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(b) WFG5 Median IGD on 2 objectives
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(c) WFG5 Median GD on 3 objectives
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(d) WFG5 Median IGD on 3 objectives
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(e) WFG5 Median GD on 5 objectives
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(f) WFG5 Median IGD on 5 objectives
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(g) WFG5 Median GD on 10 objectives
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(h) WFG5 Median IGD on 10 objectives

Figure A.10.: WFG5.
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(i) WFG5 Median GD on 15 objectives
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(j) WFG5 Median IGD on 15 objectives
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(k) WFG5 Median GD on 20 objectives

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.58

10.97

15.35

19.74

24.12

IG
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(l) WFG5 Median IGD on 20 objectives

0 25 50 75 100

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
2.00

9.74

17.48

25.21

32.95

G
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(m) WFG5 Median GD on 25 objectives
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(n) WFG5 Median IGD on 25 objectives
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(o) WFG5 Median GD on 30 objectives
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(p) WFG5 Median IGD on 30 objectives

Figure A.10.: WFG5.
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(a) WFG6 Median GD on 2 objectives
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(b) WFG6 Median IGD on 2 objectives
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(c) WFG6 Median GD on 3 objectives
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(d) WFG6 Median IGD on 3 objectives
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(e) WFG6 Median GD on 5 objectives
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(f) WFG6 Median IGD on 5 objectives
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(g) WFG6 Median GD on 10 objectives
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(h) WFG6 Median IGD on 10 objectives

Figure A.11.: WFG6.
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(i) WFG6 Median GD on 15 objectives
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(j) WFG6 Median IGD on 15 objectives
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(k) WFG6 Median GD on 20 objectives
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(l) WFG6 Median IGD on 20 objectives
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(m) WFG6 Median GD on 25 objectives
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(n) WFG6 Median IGD on 25 objectives
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(o) WFG6 Median GD on 30 objectives
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(p) WFG6 Median IGD on 30 objectives

Figure A.11.: WFG6.
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(a) WFG7 Median GD on 2 objectives

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
0.00

0.05

0.09

0.13

0.18

IG
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(b) WFG7 Median IGD on 2 objectives
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(c) WFG7 Median GD on 3 objectives
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(d) WFG7 Median IGD on 3 objectives
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(e) WFG7 Median GD on 5 objectives
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(f) WFG7 Median IGD on 5 objectives
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(g) WFG7 Median GD on 10 objectives
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(h) WFG7 Median IGD on 10 objectives

Figure A.12.: WFG7.
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(i) WFG7 Median GD on 15 objectives
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(j) WFG7 Median IGD on 15 objectives
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(k) WFG7 Median GD on 20 objectives
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(l) WFG7 Median IGD on 20 objectives
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(m) WFG7 Median GD on 25 objectives
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(n) WFG7 Median IGD on 25 objectives
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(o) WFG7 Median GD on 30 objectives
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(p) WFG7 Median IGD on 30 objectives

Figure A.12.: WFG7.
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(a) WFG8 Median GD on 2 objectives
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(b) WFG8 Median IGD on 2 objectives
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(c) WFG8 Median GD on 3 objectives
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(d) WFG8 Median IGD on 3 objectives
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(e) WFG8 Median GD on 5 objectives
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(f) WFG8 Median IGD on 5 objectives
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(g) WFG8 Median GD on 10 objectives
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(h) WFG8 Median IGD on 10 objectives

Figure A.13.: WFG8.
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(i) WFG8 Median GD on 15 objectives
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(j) WFG8 Median IGD on 15 objectives
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(k) WFG8 Median GD on 20 objectives

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
4.36

6.09

7.82

9.55

11.28

IG
D

p

0 12500 25000 37500 50000

fitness function evaluations

PSO

CDAS0.475

CDAS0.450

CDAS0.425

CDAS0.400

CDAS0.375

CDAS0.350

CDAS0.325

CDAS0.300

CDAS0.275

CDAS0.250

SCDAS-E

SCDAS-T

|CDAS0.400
Simplex|

|CDAS0.275
Simplex|

|CDAS0.400
Convex|

|CDAS0.275
Convex|
PSO

X

Random Walk
6.88

11.07

15.27

19.46

23.66

IG
D

p

(l) WFG8 Median IGD on 20 objectives
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(m) WFG8 Median GD on 25 objectives
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(n) WFG8 Median IGD on 25 objectives
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(o) WFG8 Median GD on 30 objectives
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(p) WFG8 Median IGD on 30 objectives

Figure A.13.: WFG8.
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(a) WFG9 Median GD on 2 objectives
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(b) WFG9 Median IGD on 2 objectives
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(c) WFG9 Median GD on 3 objectives
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(d) WFG9 Median IGD on 3 objectives
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(e) WFG9 Median GD on 5 objectives
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(f) WFG9 Median IGD on 5 objectives
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(g) WFG9 Median GD on 10 objectives
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(h) WFG9 Median IGD on 10 objectives

Figure A.14.: WFG9.
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(i) WFG9 Median GD on 15 objectives
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(j) WFG9 Median IGD on 15 objectives
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(k) WFG9 Median GD on 20 objectives
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(l) WFG9 Median IGD on 20 objectives
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(m) WFG9 Median GD on 25 objectives
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(n) WFG9 Median IGD on 25 objectives
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(o) WFG9 Median GD on 30 objectives
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Figure A.14.: WFG9.
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