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Abstract

Background: Next-generation sequencing technologies allow researchers to obtain millions of sequence reads in a
single experiment. One important use of the technology is the sequencing of small non-coding regulatory RNAs
and the identification of the genomic locales from which they originate. Currently, there is a paucity of methods
for finding small RNA generative locales.

Results: We describe and implement an algorithm that can determine small RNA generative locales from high-
throughput sequencing data. The algorithm creates a network, or graph, of the small RNAs by creating links between
them depending on their proximity on the target genome. For each of the sub-networks in the resulting graph the
clustering coefficient, a measure of the interconnectedness of the subnetwork, is used to identify the generative
locales. We test the algorithm over a wide range of parameters using RFAM sequences as positive controls and
demonstrate that the algorithm has good sensitivity and specificity in a range of Arabidopsis and mouse small RNA
sequence sets and that the locales it generates are robust to differences in the choice of parameters.

Conclusions: NiBLS is a fast, reliable and sensitive method for determining small RNA locales in high-throughput
sequence data that is generally applicable to all classes of small RNA.

Background
High-throughput sequencing technologies such as Illu-
mina’s Solexa, 454 Life Sciences’ GS-FLX and ABI’s
SOLiD platforms allow researchers to generate gigabases
of sequence data in a matter of hours [1]. As such they
are finding use in the analysis of many biological data-
sets, including the deep sequencing and cataloguing of
non-coding small regulatory RNAs (sRNAs). These
sRNAs have been described as the ‘dark matter of genet-
ics’ [2] because they are highly abundant yet difficult to
detect. They have roles in regulating gene expression via
post-transcriptional and translational mechanisms in
animals, fungi and plants. Single-stranded silencing
RNAs of 21-25 nt in length, are created from a double
stranded RNA by the protein Dicer. The RNAs are the
guide for AGO nucleases that cleave the targeted RNA
in a sequence specific manner. Cleaved RNAs are
degraded further or become template for RNA-depen-
dent polymerase to generate a dsRNA [3,4]. The known
number of classes of sRNAs is great and with the advent

of high-throughput sequencing is getting greater. With
these recent advances in sequencing technology we are
in a position to find new classes of sRNA that have not
previously been discovered. The first step in this is in
the identification of parts of the genome that generate
sRNAs. We call these regions “locales”, choosing this
word for the obvious similarity to the term locus from
the genetic literature, which defines a distinct point or
region on a genome. It is the detection of locales with
which this paper is concerned. After generating the
sequence the reads must be aligned to the genome.
Alignment is a well studied problem and is handled by a
range of programs such as SSAHA [5], MAQ [6] and
SOAP [7] (see [1] for a review and other alternatives).
Grouping the reads into locales that represent the place
of origin of potential functional sRNAs is the next step.
There has been little discussion of what constitutes a

sRNA-generating locale, with researchers sometimes
relying on restrictive and arbitrary definitions [8-10].
Many existing tools rely on the detection of specific
classes of sRNA. For example, mirCat [11] and mirDeep
[12] are micro-RNA (miRNA) detectors. Chen et al.
have created a tool for predicting trans-acting siRNA
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(ta-siRNA) [13]. Other studies have used time-series
data-mining algorithms to identify genomic locales from
which sRNAs originate with disregard to sRNA class
[14], but to date have relied on identifying only those
that were statistically more ‘unusual’ than others accord-
ing to their own measures. Such a method is not neces-
sarily useful as it would lack the sensitivity to find the
majority of locales. To avoid these problems, researchers
have previously used simple but functional tools for
generative region detection [11]. Thus there is a need
for generally applicable, sensitive methods for determin-
ing locales from sequencing data. Since the full range of
different classes of sRNA is not yet known search strate-
gies for potential functional locales must be general.
In this paper we propose and test a locale detection

algorithm that we call NiBLS (for Network Based Locale
Search) which takes a graph-theoretic approach to iden-
tifying locales. A graph is a mathematical abstraction
that is particularly suited to the description of relation-
ships between entities (see [15] for a discussion). Here a
graph consists of vertices and edges that are links
between the vertices. In our graphs the vertices are the
sRNAs and the edges link sRNAs on the basis of proxi-
mity (Figure 1A and 1B). We use proximity within an
absolute cut-off to create edges between the sRNA ver-
tices. Once the edge is created the information about
the distance is discarded. Many graphs are composed of
isolated vertex-islands, termed components, that have
edges between vertices within themselves, but not with
other vertex-islands. The clustering coefficient [16] of a
component is a measure of the degree of inter-connec-
tivity within it (Figure 1C). Each vertex has a certain
number of neighbours, and the clustering coefficient is a
function of the number of edges between the neighbours
and the maximum possible number of edges between
them and high levels of interconnectivity equate to large
clustering coefficients (Figure 1D). Our algorithm uses
clustering coefficients in the graph of sRNAs to detect
locales as individual highly clustered components, not as
it may seem at first glance the density of sRNAs on the
reference.

Results and Discussion
Algorithm
Definition and detection of locales
A locale is defined as a component of a graph G = (V, E)
with vertices V and edges E that has clustering coefficient
g above a user-defined cutoff C. To create the graph we
align sRNAs to the target genome such that s is a sRNA
on chromosome c with start i and end j.
The vertices of G are the set of sRNAs,

V scij= { }. (1)

An edge e exists between two sRNAs if the overlap (or
distance between) is less than the minimum inclusion
distance M, that is

e s sc i j c i j= { , }
1 1 1 2 2 2

(2)

is an edge if

| | .i j M c c2 1 1 2− < = and (3)

For each connected set of sRNAs (i.e. each component
l of G) the clustering coefficient g as defined by Watts
and Strogatz [16] is the average of the ratio of the num-
ber of edges that exist between the neighbours of each
vertex in the component and the number that could
possibly exist. The final set of locales L comprises all
components with more than one sRNA and g > C. That
is,

l L C l is in  if  and  > >| | .1 (4)

The extent of each locale is from the lowest start (i) to
the highest end (j) for each sRNA in the component l.

Testing
Sensitivity and specificity of the algorithm
To test whether our algorithm is capable of detecting
biologically meaningful locales from sRNA data, we
examined its sensitivity and specificity on publicly avail-
able high-throughput sRNA pyrosequencing of sRNAs
extracted from the flowers, rosettes or entire seedlings
of the higher plant Arabidopsis thaliana [8] and mouse
embryonic stem (ES) cells [17]. Typically, sensitivity of
an algorithm is assessed by comparison of some output
against a pre-known result. However, there is no organ-
ism or tissue in which the full set of expressed sRNA
and generative locales is known; thus it is difficult to
establish a comprehensive set of true positive locales for
comparison.
To address this issue the set of RFAM sequences [18]

known for each species (excluding RFAM sequences for
rRNAs and tRNAs) was considered to be the positive
control set of sRNAs against which the putative locales
generated by our algorithm would be tested. By its nat-
ure this is a somewhat problematic control standard; the
RFAM database does not comprehensively include all
sRNAs and not all RFAM RNAs are expressed in all tis-
sues. This means our algorithm could detect true posi-
tive locales that do not match RFAM sequences, thereby
appearing to be a false positive. Conversely an ncRNA
may not be expressed in the tissue of interest leading to
a true negative that appears to be a false negative. We
therefore excluded each RFAM sequence that had fewer
than 5 genomic matches aligned to it. As such, all ‘real’
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Figure 1 Creation of a graph and calculation of clustering coefficient from sRNA sequence data. A) sRNAs 1 - 5 are aligned to the target
genome. B) The graph is then created, each of the green circles is a vertex that represents a sRNA and an edge (black line) is drawn between
them if the sRNAs are close enough to each other on the genome. Each interconnected vertex-island is called a component and, for simplicity a
single vertex island is shown. C) For each vertex in each component in the graph, the clustering coefficient is calculated, ie the ratio of the
number of edges that are found between neighbours of the vertex (black lines) to the number of edges that could exist between them (red
lines are edges that could exist, but do not). For example, vertex 1 connects to vertex 2 and 3. Just one edge could exist between 2 and 3, and
one edge does exist, so the clustering coefficient for this node is 1/1, or 1. Similarly, vertex 3 has edges to vertices 1, 2 and 4. Three edges could
exist between these three vertices but only one does (between 1 and 2), thus the clustering coefficient for vertex 3 is 1/3. The clustering
coefficient of the entire component is the average of the individual clustering coefficients for each node. D) Example patterns of overlap and
their corresponding clustering coefficients (c).
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locales under consideration stood a chance of being
detected from the data. After filtering, the number of
RFAMs remaining as potential positive control locales
in each species was considerably reduced from the total
possible (Table 1). However, there was a large number
of nucleotides to which sRNAs could be aligned allow-
ing for a reasonable assessment of the number of
nucleotides grouped into putative locales.
We tested our algorithm at a range of values of the two

parameters: M the minimum inclusion distance in
nucleotides at which an edge is created between them
and C the minimum clustering coefficient at which a
component in the graph is deemed a locale. The sensitiv-
ity and specificity of the algorithm were calculated as
described in Methods. Exploratory runs with Arabidopsis
and mouse data showed that results changed little for
values of M over 100, so scan values were kept below this
threshold (Additional Files 1, 2, 3, 4). The sensitivity of
the algorithm in detecting RFAM locales expressed in
different sets of sRNA sequenced from different tissues
of Arabidopsis can be seen in Figure 2. Generally sensitiv-
ities, which could possibly fall in the range 0 to 100, are
good, with the maximum sensitivities in each parameter
scan ranging from 75.85 to 48.93, indicating that the
algorithm has good detection capability. In all the Arabi-
dopsis and mouse tissues tested here the algorithm had
greatest sensitivity at low M. For M < 20 the highest sen-
sitivities were 75.85 in the rosette, 74.7 for the seedling
tissue, 48.93 in the flower and 69.21 in mouse ES
(Figure 2A-D). Sensitivity is much lower at M > 20 with
sensitivities dropping off sharply in flowers and rosette
tissues, although somewhat less so in the seedling tissue
and mouse ES cells. Together these results suggest that
the M parameter, the minimum inclusion distance, is the
most important factor in the algorithm’s ability to discern
locales. However, the parameter C has an important
modulating role and can become substantially limiting
on sensitivity as it increases, especially at M > 20. In the
M < 20 region of greatest sensitivity the exact point at
which C becomes limiting is different in each tissue but
generally when C > 0.6 sensitivity is less than 40. A sharp
cutoff is seen in the rosette and flower tissue (Figure 2A
and 2B) and a more gradual one in the seedling and
mouse (Figure 2C and 2D). Interestingly the sensitivity

increases slightly for M > 40 in seedlings and to a lesser
extent in rosette (Figure 2B). This may be due to
the occasional appearance in the sequence set of low-
abundance sRNAs that align to regions of genome that
when transcribed are found on the complementary
strand of a hairpin structure.
The Caenorhabditis elegans sRNA complement includes
a huge number of well known and well annotated
sRNAs, such as the 21U-RNAs, a class of RNAs whose
sequence begins with uracil and have length of 21 nt
[19]. It could be argued that this provides an excellent
test case as many of the real locales are known. How-
ever, the know loci in this case are very easy to detect,
having specific mapping points on the reference gen-
ome. We added 21U-RNA to our sample and carried
out the analysis as described above in C.elegans. The
sensitivity of the algorithm in this case was very high
(Additional File 5) and never drops to be as low as that
in the other tests. At 75% of parameter values we used
over 40% of loci are recovered. In this case we believe
that the large number of 21U-RNAs (>15000) [19] is
skewing the result and giving a perhaps non-representa-
tive view of the efficacy of the algorithm for general use.
The specificity of the algorithm was high: greater than

90 in all tissues at all parameters (see Additional Files 6,
7). In part this is because it is not possible for the algo-
rithm to detect locales where there are no sRNAs
aligned and so it cannot spontaneously generate false
positives. Furthermore, for a locale to exist the defini-
tion requires that a component l of the graph should
have at least two vertices. This removes all sRNAs sepa-
rated by more than M from others, since, in redundant
sequence sets, the real locales would be expected to be
represented by more than one sequence. Such a factor
has the effect of greatly reducing the ‘junk’ that could
be considered for inclusion in locales. Together these
results show clearly that the algorithm can sensitively
and specifically identify sRNA locales in sRNA sequence
data from evolutionarily distantly related species. In the
Arabidopsis and mouse sequence data tested here it
seems that parameter settings for optimal sensitivity fall
in the range 0 <M < 20 and 0 <C < 0.6.
It is important to note the necessary differences in

interpretation of the value of the clustering coefficient

Table 1 Number of RFAMs in each tissue

Species Total number of RFAMs Tissue RFAMs > 5 hits nt

Arabidopsis 84 Flower 22 3686

- - Rosette 18 2850

- - Seedling 37 5638

Mouse 492 Embryonic Stem Cells 16 2237

Table describes the total number of RFAMs for each species, the number of RFAMs with more than 5 sRNAs that align to them in each tissue and the total
number of nt that these comprise.
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in the context of co-overlapping sRNAs and the inter-
pretation used in the network literature, in particular
the primary article of Watts and Strogatz [16]. Graphs
created by randomly assigning edges between nodes
typically have a lower clustering coefficient than real-
world networks, biological networks such as the Caenor-
habditis elegans neuronal network have clustering coef-
ficients on the order of 0.3, random networks of around
0.05 [16]. The high clustering coefficient implies that

the nodes in the real-world networks share many neigh-
bours with their neighbours and suggests the structure
of the network is modular. In our algorithm we use
the clustering coefficient simply as a measure of
the co-overlapping of the sRNAs and if we find a suffi-
ciently high co-overlapping pattern we have a candidate
locale. The effective values are in the range 0 <C < 0.6
which shows that the reads from sequencing experi-
ments and different types of sRNA co-overlap in a wide

Figure 2 Sensitivity of the algorithm for various values of C and M. Heatmaps showing the sensitivity of the algorithm in detecting RFAM
locales from sRNA sequence sets derived from different tissues in Arabidopsis thaliana. For each value of the parameters C - the clustering
coefficient and M - the minimum inclusion distance, the sensitivity of the algorithm was calculated. x axis = minimum inclusion distance in nt,
y axis = clustering coefficient. Colour scale indicates the degree of sensitivity for the tissue. A) sensitivity analysis on sRNAs sequenced from
flowers, B) from rosette tissue, C) from seedling tissue and D) from mouse ES cell.
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variety of patterns, thus the clustering co-efficient
reflects the structure of the potential locale. Locales in
which the sRNA reads overlap in a serial manner on the
reference one after the other in a ‘fallen domino’ sort of
pattern will have lower clustering coefficients, whereas
locales in which sRNA reads are piled high on the refer-
ence, each overlapping many other sRNA reads more
akin to the bricks in a wall will have higher clustering
coefficients. The exact value of the clustering coefficient
cut-off could conceivably be manipulated to narrow
ranges to find locales with specific sRNA alignment pat-
terns, although in this paper the aim is to retain as wide
a selection as possible.
Reproducibility of results at different parameter settings
In order to assess the extent to which the algorithm
could generate similar results from different parameter
settings for each tissue we examined the overlap on the
reference genome of the sets of locales generated by the
algorithm for all values of M and C used in the para-
meter scans. Locale sets were examined in a pairwise
fashion and the proportion of locales with an overlap in
genomic position with a locale in the corresponding set
calculated. In a situation where the total number of
locales in set A is different to the total number of
locales in set B the percentage of locales present in both
will vary depending on which set you consider to be the
reference set. Consider set A contains 50 locales and set
B contains 100 locales. If set B is used as a reference set
and all 50 of set A are present in set B we will have
found 50% of our reference locales. Conversely if we use
set A as the reference set we will find 100% of our refer-
ence locales. Rather than causing a discrepancy in the
analysis, this difference can tell us about the relative
numbers of locales generated by different settings, so in
our pairwise comparisons we used each locales set as
the reference set in turn. Differences in proportion of
genomic position overlapping locales caused by different
numbers of locales are easily identified as asymetrical
regions about the top-left to bottom-right diagonal in
Figure 3. Similar parameter values generate very similar
sets of locales; this is seen as the bright yellow area
around the top left to bottom right diagonal in Figure
3A. The algorithm shows the same reproducibility char-
acteristics in the three different Arabidopsis sRNA sets.
The pattern is repeated in each of the large outlined
boxes along the diagonal in Figure 3A indicating that
the characteristics of reproducibility are the same in
each tissue. Within each tissue, close parameter values
generate very similar sets of locales. This is seen as the
bright yellow colour around the top left to bottom right
diagonal in each box. For M < 10, reproducibilty is
high then drops when 30 <M < 75 and increases again
when M > 75, possibly reflecting the inclusion of multi-
ple smaller locales into larger ones by virtue of the

increasing M, the minimum inclusion distance. As
M increases some locales with relatively small distances
can be merged into one another. For M > 20, the repro-
ducibility is high but there are differences in the number
of locales in each set, visible as differences in colour
above and below the diagonal in the bottom-right area
of each square in Figure 3A. This may be a consequence
of an increased inclusion distance merging locales that
are separate in one set. The number of locales in each
set is similar where M < 20, reproducibility remains
high in this range, visible as similar colour above and
below the diagonal in the top-left of each box.
To give an impression of the number of exactly identi-

cal locales that were generated at different parameter
values we selected three pairs of values for M and C
(M = 5, 10, 20, C = 0.1, 0.4, 0.5) that were in the sensi-
tive and reproducible range of parameter values for both
Arabidopsis and mouse and calculated the number of
locales with the same exact start and stop positions. The
Venn diagrams in Figure 4 show that the proportion of
shared identical locales varies from 5.78% to 26.83%.
Although each set had a large number of unique locales
these must overlap at least one other locale on the gen-
ome in the corresponding set since there is high repro-
ducibility over the same range. The number of shared
identical locales was much higher between sets from
close parameter values than the divergent ones. Overall,
the high reproducibility for similar parameter values
across the range and the general decrease in number of
locales shared as the parameter values diverge indicates
that the algorithm is robust to moderate differences in
parameter value.
Genomic features with sRNA locales
We counted the number of locales that overlapped differ-
ent classes of genomic feature in Arabidopsis. For this ana-
lysis we used a set of locales generated with M = 5,
C = 0.25. The genomic feature types most mapped over
are the transposon related elements, transposons, transpo-
sable element genes and transposable fragments (Figure 5).
Although not many sRNA features are annotated in Arabi-
dopsis locales mapping to miRNA, snoRNA, ncRNA and
snRNA were found in all tissues. For example in flower,
rosette and seedling tissue 63, 81 and 129 locales mapped
to the 176 annotated miRNAs. mRNAs and exon features
were also relatively well mapped over by locales, though
the proportion of the total number of these elements
mapped over was lower than the proportion of the trans-
poson-related elements.

Implementation
Standalone Perl version
Our algorithm has been implemented in Perl [20] to
provide an easy to run multi-platform package that can
be incorporated easily into analysis pipelines. This
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implementation is limited only by local system
resources. To gain optimal performance from graph
analyses which can be computationally expensive, we
have used the Boost Graph Library [21], implemented in
C++ and available free to academic users under the
Boost Graph License and the Perl interface Boost-Graph
module [22], available under the GNU public license
[23]. Both of these pieces of software are pre-requisites
for running the implementation. Our implementation is
released under GPL3 [23]. The Perl implementation
requires as input a GFF format file [24] describing the
alignment of sRNAs to the reference genome. As guide

to performance, with the 213,799 mapped sRNAs in the
Arabidopsis flower data [8], our Perl implementation
ran in 37 minutes on an AMD64 IBM Intellistation
Desktop with 2 Gb of RAM.The Perl implementation
can be obtained from github [25].

Conclusions
We have created an algorithm that uses a graph theore-
tical approach to identify sRNA generative locales from
high-throughput sequencing data. Despite the huge evo-
lutionary distance between Arabidopsis and mouse the
algorithm was capable of correctly identifying locales

Figure 3 Pairwise comparisons of overlap of sRNA locales generated at all parameter scan values for all sets of Arabidopsis tissues.
Within each of the nine visible sub-squares all M values (5, 10, 20, 30, 50, 75, and 100) occur once and all C values occur once for each M
repeating a total of seven times within each sub-square. The extent of one scale of M is indicated by one large arrow, the extent of one scale of
C is indicated by one small arrow. For each comparison the proportion of overlapping locales is calculated as the number of locales in the
locales set represented on the x axis that overlap with the locales in the set represented on the y axis.
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with very high sensitivity and with similar patterns of
sensitivity for both of the species, suggesting that it
has applicability across the plant and animal kingdoms.
The sets of locales generated by the algorithm’s user-
definable parameters M and C are robust to small
changes over the possible range whereas larger differ-
ences have greater effects indicating that the algorithm
is both robust and responsive. With our stand-alone
Perl implementation it is possible for a user carry out a
parameter scan at the start of an analysis to identify the
parameter values of greatest sensitivity and specificity
for their sequence set if necessary.
One difficulty all sRNA locus finding algorithms must

deal with is the fact that not all sRNAs from high-
throughput sequencing experiments will be ‘functional’
and depending on the sequencing protocol used many
of the sRNAs could be a result of degradation processes
which a researcher may not have interest in. The litera-
ture does not yet contain a consensus on what such a
degradation locus may look like, making it difficult for
algorithms to distinguish such locales from those of
functional interest in any generally useful way at

present. Nonetheless in such situations our algorithm
can be of use in filtering out potential non-functional
locales in cases where the researcher has prior expecta-
tion of the pattern formed by degradation products. For
example in the case where degradation products have a
distinctive visual pattern, representative locales matching
the pattern can be identified visually in a genome brow-
ser and comparing an initial run of the algorithm with
positions of the pattern. The clustering coefficients of
the locales can then be used as a band-filter whereby
any locales lower or higher than this can be presumed
not to be from the same sort of degradation process.
As our algorithm uses only positional data of aligned

sRNAs and the clustering coefficient cut-off to identify
locales it is naturally sRNA class agnostic which mean it
can be used to identify locales of many different kinds
at once as well as, potentially, previously unknown
classes of locales. Typically the number of locales called
is many times greater than the number of locales known
as RFAMs for a given species, for example in the
M = 10, C = 0.4 set discussed in Figure 4 10,000 locales
are predicted. This indicates that there are a huge

Figure 4 Venn diagrams of numbers of exactly the same locales appearing in Arabidopsis and mouse tissues at 3 sets of paramater
values within the sensitive range. The number of locales with exactly the same start and stop coordinates on the same chromosomes
appearing uniquely in each parameter set or in all combinations of sets were calculated.
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number of sRNA generative locales and sRNAs not yet
known, fully justifying the description of them as the
dark matter of genetics. Undoubtedly there is much
scope for many different methods for detection of sRNA
locales. Furthermore, the identification and cataloguing
of sRNA generative locales could help the development
of methods that can predict generative locales de novo
from genomic sequence.

Methods
Alignment of sequences to reference genomes
Publicly available data from small RNA deep sequencing
experiments were downloaded from the Gene Expres-
sion Omnibus [26] with accession numbers GSM118373
(Arabidopsis thaliana) [8] and GSM314558 (Mus mus-
culus) [17]. RFAMs and sequences for each species were
obtained from RFAM [18]. Sequences were aligned to
either the TAIR 8 [27]Arabidopsis sequence or the mm9
mouse assembly build 37 hosted at UCSC [28], using
SSAHA 3.1 [5]. For sRNA alignment redundant
sequence sets were used and only sequences matching
to the reference with 100% identity over 100% of the
sequence length were retained. Sequences aligning to
more than one position on the reference genome were
not removed or normalised in any way, meaning a

sRNA that belongs to one position may appear as if it
comes from many. Parsing and collation was done with
custom Perl scripts.

Parameter Scans
To systematically determine the sensitivity and specifi-
city of the algorithm, we carried out ‘parameter scans’, a
series of runs of the algorithm on each dataset changing
the value of one of the paramaters at each run. The M
parameter (minimum inclusion distance) was tested at
values of 5, 10, 20, 30, 50, 75, and 100. Early runs with
the Arabidopsis data showed that results changed little
when M values exceeded 100. Values of C were 0.1,
0.25, 0.4, 0.5, 0.6, 0.75 and 0.9.

Calculation of Sensitivity and Specificity
For sensitivity and specificity analyses, the number of
true positives (TP) was calculated as the number of
nucleotides in the genome with an RFAM alignment
and a putative locale alignment. True negatives (TN)
were calculated as the number of nucleotides in the
reference genome with neither a filtered RFAM align-
ment nor a putative locale alignment. False positives
(FP) were calculated as a nucleotide in the genome that
aligned to a putative locale but had no RFAM aligned.

Figure 5 Arabidopsis genomic features overlapped by locales generated with parameter values M = 5 and C = 0.25. TAIR 8 genome
annotations were used as reference features and the number of locales overlapping each genomic feature was calculated. All nested features
e.g genes within transposable elements were marked with overlaps equally as appropriate.
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False negatives (FN) were calculated as nucleotides in
the genome with no putative locale aligned and an
RFAM aligned.
Sensitivity was calculated as:

sensitivity
TP

TP FN
=

+
⎛
⎝⎜

⎞
⎠⎟

100 (5)

Specificity was calculated as:

specificity
TN

TN FP
=

+
⎛
⎝⎜

⎞
⎠⎟

100 . (6)

Overlapping elements
For calculation of numbers of overlapping genomic fea-
tures in different locales sets and relative to genome
annotations Perl scripts were used. Reference annota-
tions were obtained as GFF from TAIR [27].

Visualisation of Results
Contour graphs were created by using the R package
akima [29] to carry out bivariate interpolation of the
irregularly spaced parameter scan data onto a regularly
spaced grid with the interp and filled.contour functions.
Heatmaps were generated using MeV 4 [30]

Availability and Requirements
Project name: NiBLS
Project home page: http://github.com/danmaclean/

NiBLS
Operating system(s): Platform independent
Programming language: Perl
Other requirements: Perl 5.6 or higher, Perl Boost::

Graph module, also under GPL and available from
http://search.cpan.org/~dburdick/Boost-Graph-1.2/
Graph.pm
License: GPL 3
Restrictions to use by non-academics: none

Additional file 1: Parameter scans for M > 100 in sRNA from
Arabidopsis thaliana Flower.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
93-S1.CSV ]

Additional file 2: Parameter scans for M > 100 in sRNA from
Arabidopsis thaliana Rosette.
Click here for file
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93-S2.CSV ]

Additional file 3: Parameter scans for M > 100 in sRNA from
Arabidopsis thaliana Seedling.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
93-S3.PNG ]

Additional file 4: Parameter scans for M > 100 in sRNA from mouse
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