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Summary 

Mitochondria and peroxisomes can be fragmented by the process of fission. The fission 

machineries of both organelles share a set of proteins. GDAP1 is a tail-anchored protein of 

mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot-

Marie-Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial 

dynamics. Here, we show that GDAP1 is also targeted to peroxisomes mediated by the import 

receptor Pex19. Knockdown of GDAP1 leads to peroxisomal elongation that can be rescued 

by re-expressing GDAP1 and by missense mutated forms found in CMT patients. GDAP1-

induced peroxisomal fission is dependent on the integrity of its hydrophobic domain 1, and on 

Drp1 and Mff, as is mitochondrial fission. Thus, GDAP1 regulates mitochondrial and 

peroxisomal fission by a similar mechanism. However, our results reveal also a more critical 

role of the N-terminal GDAP1 domains, carrying most CMT-causing mutations, in the 

regulation of mitochondrial compared to peroxisomal fission. 

 

Keywords: glutathione S-transferase/ mitochondrial dynamics/ peripheral neuropathy/ tail-
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Introduction 

Peroxisomes are dynamic, single membrane-bound organelles. They are responsible for 

several metabolic processes such as fatty acid β-oxidation, biosynthesis of ether 

phospholipids, and metabolism of reactive oxygen species (ROS) [1]. Numbers, composition, 

and morphology of peroxisomes are influenced by extra- and intracellular stimuli [2]. 

Peroxisomes are generated by two different mechanisms: They can form de novo from the 

endoplasmic reticulum or by growth and division from pre-existing peroxisomes. The 

contribution of the two pathways to peroxisome biogenesis is a matter of intensive debate [3-

5]. 

Peroxisomal growth and division occurs in morphologically well defined steps: The spherical 

peroxisome first elongates in response to exogenous or endogenous stimuli mediated by 

Pex11 proteins [4]. Next, the membrane of the elongated peroxisome forms constrictions by a 

not yet clearly defined mechanism [6]. Final fragmentation requires several fission proteins, 

including the tail-anchored (TA) proteins hFis1 (Fission 1), Mff (Mitochondrial fission factor) 

and the cytosolic Drp1/DLP1 (Dynamin-related protein 1) [7-12]. These proteins are also 

essential fission factors at the mitochondrial outer membrane (MOM). Sharing of fission 

components has probably developed by similar cellular demands as peroxisomes and 

mitochondria are metabolically linked [13]. This cooperative interaction likely influences the 

functionality of both organelles in health and disease [14,15]. 

GDAP1 (ganglioside-induced differentiation associated protein 1) is also a TA-protein of the 

MOM acting as mitochondrial fission factor [16-18]. GDAP1 is the founder of a  family of 

glutathione S-transferases (GST) [19] and its expression level influences  glutathione levels in 

cultured cells [20]. Over 40 different mutations in GDAP1 lead to Charcot-Marie-Tooth 

disease (CMT), the most commonly inherited peripheral neuropathy [21,22]. Recessively 

inherited disease mutants (rmGDAP1) show reduced mitochondrial fragmentation activity, 

whereas dominantly inherited disease mutants (dmGDAP1) interfere with mitochondrial 

fusion. This impaired fusion results in a disturbed mitochondrial membrane potential and 

increased ROS levels [17]. 

The aim of this study was to investigate the possible role of the TA-protein GDAP1 as fission 

factor at peroxisomes and its relevance in disease. We show that GDAP1 is targeted to a 

subpopulation of peroxisomes in a Pex19-dependent manner. Loss of GDAP1 leads to 

peroxisomal elongation, whereas overexpression increases peroxisomal fragmentation. 

Disease-mutated forms of GDAP1 can still induce peroxisomal fragmentation with 

comparable efficiency unless the mutation interferes with peroxisomal targeting via its TA. 
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GDAP1-induced peroxisomal fragmentation is dependent on Drp1, Mff, and requires the 

hydrophobic domain 1 (HD1) lying N-terminally to the transmembrane domain (TMD) of 

GDAP1 [18]. We conclude that GDAP1 induces fission at the MOM and at the peroxisomes 

by overlapping mechanisms. However, the finding that N-terminal rmGDAP1 missense 

mutants retain peroxisomal fission activity, while losing this activity on mitochondria, 

revealed also mechanistic differences. 
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Results and Discussion 

GDAP1 is targeted to peroxisomes 

TA-proteins with positively charged amino acids surrounding the C-terminal TMD are 

inserted into the MOM and can be inserted into the peroxisomal membrane of mammalian 

cells [23]. As GDAP1 is a TA-protein with such features [18], we tested its co-localization 

with peroxisomal markers. GDAP1 was transiently expressed in COS7 cells stably expressing 

GFP-SKL, a GFP with a C-terminal peroxisomal targeting sequence [24]. As expected, 

GDAP1 staining predominantly co-localized with the mitochondrial marker cytochrome c 

[16]. Additionally, some peroxisomes co-localised with the GDAP1 signal (Fig.1A). We also 

analysed endogenous GDAP1 in mouse primary hippocampal cell cultures infected with 

lentivirus encoding GFP-SKL. The signal of endogenous GDAP1 protein predominantly co-

localized with cytochrome c and partially with GFP-SKL-positive peroxisomes (Fig.1B).  

Taken together, GDAP1 shows dual targeting to mitochondria and peroxisomes. 

TA-proteins are targeted to peroxisomes via the Pex19 shuttle receptor [25-28]. In an 

interaction assay, in vitro translated GFP-GDAP1 interacted with recombinant Pex19 and 

formed a trimeric complex with Pex19 and Pex3 (Fig.S1A). To confirm the functional 

relevance of this interaction we infected COS7 cells stably expressing GFP-SKL with 

lentiviruses encoding two different shRNAs targeting Pex19 or a non-silencing control 

shRNA. When reduced expression of Pex19 was significant (Fig.S2A), cells were transiently 

co-transfected with GDAP1 and mitochondrially-targeted DsRed2 (mtDsRed) expression 

constructs. After 16 h, cells were fixed, immunostained for GDAP1, and the signal intensity 

of GDAP1 was determined at peroxisomes (GFP-SKL-positive structures) and mitochondria 

(mtDsRed-positive structures) on single plane confocal images (Fig.S1B). The GDAP1-signal 

intensity at peroxisomes was significantly lower in Pex19 knockdown cells compared to 

controls. Under the same conditions, targeting of GDAP1 to mitochondria was not affected 

(Fig.1C). We conclude that GDAP1 is targeted to peroxisomes via the peroxisomal import 

receptor Pex19. 

 

Loss of GDAP1 reduces peroxisomal fragmentation 

To assess the functional relevance of GDAP1 at peroxisomes, we infected mouse 

neuroblastoma N1E-115 cells with lentiviruses encoding two different shRNAs against 

GDAP1. Knockdown of Drp1 by two different shRNAs served as positive controls, while a 

non-targeting shRNA and uninfected cells were used as negative controls. Five days after 

infection, cells were fixed and stained for Pex14 as peroxisomal marker. Sister plates were 
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analysed by immunoblotting to confirm the knockdowns (Fig.S2B,C). To quantify the 

morphologies, we distinguished three different categories: spherical peroxisomes, elongated 

peroxisomes, and tubular peroxisomes (Fig.2A). Uninfected and control-infected cells 

generally showed a spherical peroxisomal morphology. Reduced levels of GDAP1 led to 

elongated peroxisomes. This effect was even more pronounced after knockdown of Drp1, 

where most peroxisomes were tubular as described (Fig.2A) [6,8]. This experiment 

demonstrated that loss of GDAP1 alters peroxisomal morphology. Peroxisomal proliferation 

can be mediated by elongation of existing peroxisomes. Elongated peroxisomes get 

constricted and subsequently fragmented by the fission machinery [14]. Therefore, both 

reduced fission activity and enhanced elongation may shift the overall peroxisomal 

morphology towards a more tubular, less spherical phenotype. GDAP1 expression levels 

influence glutathione (GSH) levels in cultured cells [20], thereby potentially influencing 

peroxisomal biogenesis by increasing elongation due to cellular stress. Thus, we measured 

GSH and ROS levels in acute GDAP1 knockdown cells by the enzymatic recycling method 

and 2,7-dichlorofluorescin (DCF) fluorescence intensity measurements, respectively [17,29]. 

Cellular GSH levels after GDAP1 knockdown by two individual shRNAs showed no 

significant difference to control cells (Fig.2B). As positive control, uninfected cells were 

treated with ethacrynic acid (EA), which led to significant GSH depletion. DCF fluorescence 

intensities were also identical between GDAP1 knockdown cells and controls, while EA-

treatment increased DCF fluorescence intensity (Fig.2C). In summary, short-term knockdown 

of GDAP1 did not affect intracellular GSH levels or cause ROS stress in cultured cells and 

cannot account for the peroxisomal elongation due to cellular stress. Thus, our results indicate 

that the observed morphological changes of peroxisomes in GDAP1 knockdown cells are 

caused by reduction in fission activity.  

To further test the impact of GDAP1 on fission, we made use of transient Pex11β-myc 

overexpression, which elongates peroxisomes independent of other stimuli [6,30,31]. In N1E-

115 cells the strongest elongation effect can be observed seven hours after transfection. 

Subsequently, the endogenous fission machinery of the cell is activated; in consequence 24 h 

after Pex11β-myc transfection cells predominantly exhibit a spherical peroxisomal 

morphology, which represents the new equilibrium of forced elongation and endogenous 

fission events (Fig.S3). Also in this paradigm, knockdown of GDAP1 resulted in less cells 

with spherical peroxisomes 24 h after Pex11β-myc transfection, as did knockdown of the 

well-established fission factor Drp1 (Fig.S4A,B), supporting that GDAP1 acts as peroxisomal 

fission factor. 
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Dominantly and recessively inherited GDAP1 missense disease mutants can promote 

peroxisomal fragmentation 

We have previously rescued mitochondrial fission after GDAP1 knockdown by re-expressing 

GDAP1 enabling us to examine also disease-linked mutants [17]. This experimental paradigm 

was adapted for the analysis of peroxisomal fragmentation. Four days after lentiviral infection 

with control or GDAP1-targeted shRNAs, N1E-115 cells were transiently co-transfected with 

Pex11β-myc and expression vectors encoding mitochondrially targeted eGFP (mtGFP) as 

control, GDAP1 wildtype, dmGDAP1, or rmGDAP1 missense mutants (Fig.3A). Mutants 

covering different domains of the protein were selected (Fig.S5A). Twenty-four hours after 

transfection, when tubulation by Pex11ß-myc-overexpression is counterbalanced by active 

fission (Fig.S3), cells were fixed and morphologically analysed. Uninfected and control 

infected mtGFP and Pex11β-myc expressing cells showed predominantly spherical 

peroxisomes. GDAP1 knockdown resulted in more cells with elongated peroxisomes as 

fission is decreased (Fig.3B,C). Re-introduction of wildtype GDAP1 into these knockdown 

cells restored the peroxisomal morphology to control levels, validating the experimental setup 

and GDAP1’s role as fission factor. Overexpression of all tested missense disease mutants in 

GDAP1 knockdown cells also reconstituted the peroxisomal morphology (Fig.3B,C). 

Wildtype GDAP1, tested dmGDAP1s or rmGDAP1s showed no significant differences in 

their ability to induce peroxisomal fragmentation. This was unexpected, as disease-causing 

mutant forms of GDAP1 influence mitochondrial dynamics (Tab.SI; [16,17]). 

To confirm this finding, we expressed Pex11β-myc in N1E-115 cells overexpressing GDAP1 

wildtype, dmGDAP1, or rmGDAP1 missense mutants and analysed peroxisomal morphology 

seven hours after start of transfection (Fig.S5B). In this setting, an active fission factor will 

counterbalance the Pex11ß peroxisome elongation effect, which is maximal at this time point 

in control cells (Fig.S3). All tested disease-associated missense mutants were able to induce 

fragmentation of Pex11β-myc stimulated peroxisomes with comparable efficiency as GDAP1 

wildtype, resulting in an overall spherical morphology (Fig.S5C). In summary, in both 

experimental approaches (Fig.3B,C and S5C) we found that the disease-associated missense 

mutations do not impair the peroxisomal fission capacity of GDAP1. As mitochondrial fission 

activity of rmGDAP1 missense mutants is reduced [16,17], our results further indicate that 

mutations in N-terminal domains differently affect GDAP1’s activity at mitochondria versus 

peroxisomes. 
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The hydrophobic domain 1 critically regulates GDAP1-induced peroxisomal fission 

Two domains are required for mitochondrial fission: the hydrophobic domain 1 (HD1) and 

the C-terminal TA-domain, which mediates mitochondrial targeting (Fig.S5A, Tab.SI) [18]. 

To examine whether mitochondrial and peroxisomal fission induction by GDAP1 depend on 

the integrity of the same domains, we used the experimental setting as described before in 

Fig.3A. We tested GDAP1 constructs coding for a protein with a scrambled HD1 (HD1scr), a 

deleted HD1 (ΔHD1) or C-terminal truncated GDAP1. The mutant hT288X corresponds to 

the largest GDAP1 truncation described in CMT patients lacking the HD1 and TA-domain, 

and hT318X is an artificial truncation mutant lacking only the TMD and the C-terminal 

residues [14,15]. None of these mutants was able to induce peroxisomal fragmentation 

(Fig.3D,E). These results were confirmed using the experimental settings as described in 

Fig.S5B (Fig.S5D). Thus, the TA-domain and the HD1 are essential for fission at 

peroxisomes as well as at mitochondria. Mutations in GDAP1 interfering with targeting are 

associated with more severe clinical phenotypes than point mutations leading to amino acid 

exchanges in the N-terminal part of GDAP1 [32]. Our results correlate with the different 

severities and imply that disease-associated missense mutations in the N-terminal part of 

GDAP1 affect exclusively mitochondrial dynamics, while loss or C-terminal truncation of 

GDAP1 additionally affect peroxisomal dynamics (Tab.SI). 

 

GDAP1-induced peroxisomal fission is dependent on Drp1 and Mff 

The previous data confirm that GDAP1-dependent fragmentation requires the intact HD1 and 

proper protein targeting to the peroxisomal membrane as for mitochondrial fission. Next, we 

investigated whether GDAP1-induced peroxisomal fission is dependent on Drp1, the 

executive GTPase in mitochondrial and peroxisomal fission [14,15] and on Mff, the adaptor 

protein for Drp1 at peroxisomes and mitochondria in mammalian cells [10,12]. We used Drp1 

or Mff knockdown (Fig.S2C,D) in combination with Pex11β-myc and GDAP1 

overexpression, as we did before in GDAP1 knockdown cells (Fig.3A). N1E-115 cells were 

infected with lentiviruses encoding non-targeting control shRNA, Drp1, or Mff shRNA 

constructs, followed by co-transfection with expression vectors coding for Pex11β-myc and 

mtGFP as control, or for Pex11β-myc and GDAP1. The next day, cells were fixed and 

morphologically analysed. As expected, Pex11β-myc expression together with control mtGFP 

led to highly tubular peroxisomes in Drp1 knockdown cells (Fig.4A,B). Overexpression of 

combined Pex11β-myc and GDAP1 in Drp1 knockdown cells resulted in an identical tubular 

peroxisomal morphology. Similarly, knockdown of Mff led to highly tubular peroxisomes 
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(Fig.4C,D). In the absence of Mff, GDAP1 expression could not alter the peroxisomal 

morphology, demonstrating that GDAP1 cannot substitute for Mff in peroxisomal fission. We 

also analysed the mitochondrial morphology in N1E-115 cells with Mff knockdown and 

found that GDAP1-induced mitochondrial fission is as well dependent on Mff (Fig.S6). Thus 

our data show that GDAP1-induced peroxisomal fission, like mitochondrial fission, is 

dependent on Mff and Drp1 [17]. 

 

Concluding remarks 

Existing peroxisomes can elongate and are subsequently fragmented by the peroxisomal 

fission machinery to generate new peroxisomes. Here we show that the mitochondrial fission 

factor GDAP1 is also a peroxisomal fission factor. Loss of GDAP1 results in elongated 

peroxisomal morphologies, as the fission capacity is decreased, whereas overexpression 

promotes peroxisomal fragmentation. GDAP1-induced fission relies on the presence of Mff 

and Drp1, demonstrating that GDAP1 influences fission upstream of the conserved basic 

fission machinery of mitochondria and peroxisomes. GDAP1 is not ubiquitously expressed, 

however, its accessory function is essential for myelinated peripheral nerves as mutations in 

GDAP1 lead to CMT. To induce fission, the integrity of HD1 is essential in GDAP1. 

Consistently, truncations lacking this domain or the targeting tail-anchored domain have lost 

the ability to promote peroxisomal fission. All other disease mutations in the N-terminal 

cytosolic GDAP1 domain are still able to promote peroxisomal fragmentation. These findings 

stand in contrast to our previous observations at the MOM, where the fission-induction 

function of these recessively inherited missense mutants is reduced [16,17], suggesting 

different regulatory mechanisms for GDAP1-induced fission at both organelles. Furthermore, 

our results reveal a difference in the cell biology of CMT-associated N-terminal missense 

mutations and the more severe C-terminal truncation mutations of GDAP1. 
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Methods 

 
Constructs 

All constructs for transient transfections and lentiviral vectors and production of viruses have 

been described [16-18, 27, 31]. Lentiviruses expressing shRNA targeting Mff or Pex19 were 

purchased from Sigma (clone ID: NM_029409.2-484s1c1, NM_029409.2-693s1c1; 

NM_002857.2-88s1c1, NM_002857.2-90s1c1). MtDsRed and GFP-SKL were inserted into a 

modified pSicoR backbone (Addgene) containing the CMV promoter and multiple cloning 

site from the pcDNA3.1 vector (Invitrogen). 

Cell culture 

Hippocampi of P1 C57BL/6J mice (Janvier, France) were dissected, trypsinized, and 

triturated. 50.000-100.000 cells /ml were seeded on Matrigel (BD Bioscience) coated cover 

slips in Neurobasal medium (Gibco) supplemented with B27 (Gibco), 50 ng/ml NGF 

(Harlan), 2 mM L-Glutamine (Gibco), 4 mg/ml D-Glucose (Sigma). Mouse primary 

hippocampal neurons were infected with lentiviruses one day after preparation and kept in 

culture for 4-6 days. COS7 cells stably expressing GFP-SKL, HEK-293T cells, and N1E-115 

cells were maintained, transfected and infected as described previously [17].  

Immunocytochemistry 

Immunocytochemistry was described [16]. For co-staining of GDAP1 and Pex11β-myc, cells 

were permeabilized with Digitonin (2.5 µg/ml, 5 min) and stained using antibodies against 

myc, followed by a permeabilization with 0.2 % Triton X-100 for 10 min and subsequently 

stained for GDAP1. Antibodies: anti-GDAP1 [16], anti-human GDAP1 [35], anti-Pex14 

(Proteintech Europe), anti-cytochrome c (Pharmingen), anti-myc (clone 9E10). 

Biochemical Methods 

Expression and purification of recombinant proteins and native polyacrylamide gel 

electrophoresis was performed as described [27]. The measurement of GSH levels and DCF 

fluorescence in cells has been performed according to [17,29]. Western blotting, detection and 

quantification was performed as described [16]. Antibodies: anti-GDAP1 [16], anti-Dlp1 (BD 

Bioscience), anti-Pex19 (Sigma), anti-Mff (A. van der Bliek), anti-GAPDH (HyTest), and 

anti-β-actin (Sigma). 
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Figure legends 
 
Figure 1 
GDAP1 is targeted to peroxisomes. (A) COS7 cells stably expressing GFP-SKL were 

transfected with GDAP1 expression constructs and stained for GDAP1 and cytochrome c. 

GDAP1 is mainly localised to mitochondria. Higher magnification (zoom box) shows GFP-

SKL-positive structures that are positive for GDAP1 but negative for cytochrome c (arrows). 

A neighbouring, untransfected cell (light yellow broken line). (B) Endogenously GDAP1-

expressing primary hippocampal cell cultures were infected with lentivirus encoding GFP-

SKL, and stained for GDAP1 and cytochrome c. Higher magnification (zoom box) shows that 

endogenous GDAP1 predominantly co-localizes with the cytochrome c, and also with GFP-

SKL-positive structures, which are negative for cytochrome c (arrows).  (C) Measured 

GDAP1 fluorescence intensity in the peroxisomal population was decreased in Pex19 

knockdown cells but unaffected in the mitochondrial population. Values represent means and 

s.e.m. of three independent experiments. Fluorescence intensity of the 

peroxisomal/mitochondrial population was analysed for 6 to 9 cells per condition per 

experiment: * p<0.05, two-tailed unpaired t-test. Bars, 10 µm. 

 
Figure 2 

Loss of GDAP1 leads to peroxisomal elongation. (A) N1E-115 cells were infected with 

lentiviruses encoding shRNA against GDAP1, Drp1 or a non-targeting control (ctrl) shRNA, 

or were left uninfected. Five days after infection, peroxisomal morphologies were assessed 

after immunostaining for Pex14 according to the three categories spherical, elongated or 

tubular and were quantified in blinded countings. (B) Measurements of cellular GSH levels 

and (C) ROS levels show no significant alterations at day five of the GDAP1 knockdown 

compared to control cells. Ethacrynic acid (EA) treated cells served as positive control (50 

µg/ml for 2 h). Values represent means and s.e.m. of three independent experiments. For 

morphology analysis, 100 cells were counted per condition per experiment: * p<0.05, ** 

p<0.01, two-tailed unpaired t-test. Bars, 2.5 μm. 

 
Figure 3 

Peroxisomal fission is dependent on the GDAP1 targeting domain and the HD1, but 

unaffected by CMT-disease associated N-terminal missense mutations. (A) N1E-115 cells 

were infected with lentiviruses encoding shRNA against GDAP1 or a non-targeting control 

(ctrl) shRNA or left uninfected (d0). After four days (d4), cells were co-transfected with 

Pex11β-myc and GDAP1 wildtype, mutant forms of GDAP1, or mtGFP. 24 h later (d5), cells 
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were fixed and stained (C,E). Peroxisomal morphology of double-positive cells was 

quantified in a blinded counting (B,D). (GDAP1 with scrambled HD1 (HD1 scr), GDAP1 

with deleted HD1 (∆HD1), C-terminal truncated human GDAP1 (hT288X, hT318X)). Values 

represent means and s.e.m. of at least three independent experiments, 100 cells were counted 

per condition per experiment: * p<0.05, ** p<0.01, two-tailed unpaired t-test. Bars, 10 μm. 

 

Figure 4 

GDAP1-induced peroxisomal fragmentation depends on Drp1 and Mff. The experiment 

was performed as illustrated in Fig.3A. Knockdown of Drp1 (A,B) or Mff (C,D) in 

combination with co-expression of Pex11β-myc and GDAP1 or mtGFP result in tubular 

peroxisomes. Values represent means and s.e.m. of three independent experiments, 100 cells 

were counted per condition per experiment: ** p<0.01, two-tailed unpaired t-test. Bars, 10 

μm. 
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