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Abstract 

Bridge monitoring studies indicate that the quasi-static response of a bridge, while 

dependent on various input forces, is affected predominantly by variations in 

temperature. In many structures, the quasi-static response can even be 

approximated as equal to its thermal response. Consequently, interpretation of 

measurements from quasi-static monitoring requires accounting for the thermal 

response in measurements. Developing solutions to this challenge, which is 

critical to relate measurements to decision-making and thereby realize the full 

potential of SHM for bridge management, is the main focus of this research. 

This research proposes a data-driven approach referred to as temperature-based 

measurement interpretation (TB-MI) approach for structural performance 

evaluation of bridges based on continuous bridge monitoring. The approach 

characterizes and predicts thermal response of structures by exploiting the 

relationship between temperature distributions across a bridge and measured 

bridge response. The TB-MI approach has two components - (i) a regression-

based thermal response prediction (RBTRP) methodology and (ii) an anomaly 

detection methodology. The RBTRP methodology generates models to predict 

real-time structural response from distributed temperature measurements. The 

anomaly detection methodology analyses prediction error signals, which are the 

differences between predicted and real-time response to detect the onset of 

anomaly events. In order to generate realistic data-sets for evaluating the 

proposed TB-MI approach, this research has built a small-scale truss structure in 

the laboratory as a test-bed. The truss is subject to accelerated diurnal 

temperature cycles using a system of heating lamps. Various damage scenarios 

are also simulated on this structure.  

This research further investigates if the underlying concept of using distributed 

temperature measurements to predict thermal response can be implemented 

using physics-based models. The case study of Cleddau Bridge is considered. 

This research also extends the general concept of predicting bridge response 

from knowledge of input loads to predict structural response due to traffic loads. 

Starting from the TB-MI approach, it creates an integrated approach for analyzing 

measured response due to both thermal and vehicular loads.  



Abstract 

4  

The proposed approaches are evaluated on measurement time-histories from a 

number of case studies including numerical models, laboratory-scale truss and 

full-scale bridges. Results illustrate that the approaches accurately predicts 

thermal response, and that anomaly events are detectable using signal 

processing techniques such as signal subtraction method and cointegration. The 

study demonstrates that the proposed TB-MI approach is applicable for 

interpreting measurements from full-scale bridges, and can be integrated within 

a measurement interpretation platform for continuous bridge monitoring. 
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Chapter 1:  Introduction 

Humans have been building and relying on their infrastructure since the very 

beginning of civilization. Civil structures are major components of our 

infrastructures and include a range of assets such as bridges, pipe networks, 

buildings and tunnels. This thesis mainly focuses on bridge structures, which are 

vital assets in the national transport infrastructure. Their maintenance and 

management imposes a significant cost on the economy. In the UK, local 

authorities and Network Rail [1] estimated that they would require over £1.95 

billion for the repair and strengthening of their bridge stock. In the USA, the 

Federal Highway Administration (FHWA) [2] in 2011 noted that almost 24% of the 

country’s bridge stock was classified as structurally deficient or functionally 

obsolete (Figure 1.1). Moreover, the age of more than 30% of these assets 

exceeds significantly their 50-year design life [3], thus requiring more attention 

from their owners than ever before on their maintenance. 

Failure to maintain and retrofit bridges often leads to load sign-posting, and 

unplanned bridge closures (see Figure 1.2), and negatively impacts their 

structural integrity. In the extreme case, this can also lead to structural collapse. 

For example, poor management of the I35W Mississippi River bridge (Figure 

1.3 (left)), which was classified as structurally deficient since 1991, was a factor 

behind its collapse in August 2007 (Figure 1.3 (middle)). The failure happened 

just a year after a routine inspection and an in-depth fracture-critical inspection 

[4]. Traffic disruptions in the aftermath of the bridge’s collapse were estimated to 

have led to economic losses of approximately $400,000 per day. The 

replacement bridge - the I35W Saint Anthony Falls Bridge (Figure 1.3 (right)), 

which opened nearly a year after the collapse of the original bridge, cost over 

$234 million. As the importance of the transport link that was enabled by the 

original bridge to the economy and society was apparent in the aftermath of its 

failure, the new bridge was equipped with a comprehensive structural health 

monitoring (SHM) system. The system, which comprises of 323 sensors, is 

installed to enable engineers to continuously track the structure’s performance 

and enable rapid preventive maintenance. 
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Figure 1.1 A bar chart showing the number of structurally deficient bridges in 

the USA in relation to the total portfolio [2]. 

 

 

Figure 1.2 A sign indicating the collapse of a weak bridge in Westcott, 

Cullompton, UK 

 

   

Figure 1.3 The I35W Mississippi River bridge before collapse (left) NTSB, [4], 

collapsed (middle) [5] and the I35W Saint Anthony Falls Bridge (right) FHWA, 

[6], in the USA. 

 

before 1907 1920 1933 1946 1959 1972 1985 1998 2011
0

2

4

6

x 10
5

Year

T
o

ta
l 

n
u

m
b

e
r 

o
f 

b
ri

d
g

e
s

 

 

 - built

 - deficient

24%



Chapter 1: Introduction 

31 

1.1 SHM of constructed facilities  

The concept of SHM originated in the aerospace industry in the 1960s [7], [8] and 

the field has since grown rapidly over the years. The majority of mechanical, 

aerospace and electrical systems manufactured today are equipped with sensors 

and embedded firmware, which inform their users of the present condition of the 

device and its components. When a potential threat to its health, a change in its 

performance or any other pre-defined fault is detected, the user is informed and 

may even be advised of possible corrective or mitigating actions. As a simple 

example, if a car’s engine temperature rises above a pre-set threshold value, the 

driver is informed so that he or she can pursue a safe course of action. Examples 

of sophisticated fault detection systems can be found in the aerospace industry. 

For example, if an engine of an aircraft was to fail during flight, this will not only 

be detected but a solution also found to safely land the aircraft in such 

circumstances [9], [10]. 

Successful application of SHM to challenges within the mechanical engineering 

domain has inspired its evaluation for various problems in the civil engineering 

domain. Operators and owners of bridges, keen to reduce costs of structural 

management, are increasingly considering novel technologies such as SHM to 

help them in decision-making in order to ensure safe and uninterrupted operation 

of their assets. For a specific bridge, a SHM system may be designed to fulfil one 

or more of the following objectives: 

i) track deterioration or degradation of structural components; 

ii) understand the structure’s current state or behaviour; 

iii) evaluate the effect of any modifications (e.g. post-strengthening)  

iv) detect anomalies in structural behaviour. 

In general, by providing an accurate picture of structural performance, SHM 

systems can enable optimal planning and prioritizing of interventions such as 

repair and strengthening measures. In many cases, SHM can also bring major 

economic benefits by helping make the case for not having to undertake any 

maintenance intervention. Such support is valuable as they help prolong the 

service life of structures while keeping expenditures to a minimum. 

Today many iconic bridges are equipped with sophisticated sensing systems that 

enable continuous measurement collection of various structural and 
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environmental parameters often indirectly related to or affecting structural 

performance. A key enabler for the increasing uptake of SHM systems is the 

continuing reduction in their costs of installation and management especially 

when considered in relation to the importance of keeping such bridges 

operational for the functioning of the economy and society. For example, the SHM 

system designed for the new Queensferry Bridge (Figure 1.4), also referred to as 

the Forth Replacement Crossing, will be equipped with more than 1000 sensors 

[11]. The total cost budgeted for the bridge is approximately £1.4 billion [12] of 

which the cost of the SHM system is likely to be a very small percentage (< 1%). 

While SHM is now a widely recognized concept in civil engineering, its 

penetration in the built environment sector is still low in comparison to mechanical 

and aerospace sectors, where numerous safety-critical systems rely on SHM 

systems. This can be attributed to the difficulties in developing effective data 

interpretation techniques that can deal with the much greater complexities 

associated with the behaviour of civil engineering structures. Mechanical systems 

are manufactured in controlled environments, subject to well-defined loads and 

tested rigorously before mass production. As a result, numerical models that 

reliably predict the behaviour of mechanical systems are often available from 

during the design stage, and these can be further calibrated based on measured 

performance. However, most civil structures such as bridges are unique, and 

reliable models of individual structures are expensive to generate and validate. 

They also have a much larger design life, even exceeding 100 years [13], during 

which, they are exposed to highly variable environmental and operational 

conditions. Developing effective data interpretation techniques to support 

decision-making based on measurements from full-scale structures is essential 

to improve the practical uptake of SHM. 

This research focuses on the challenges in interpreting measurements from 

continuous monitoring systems, and in particular, on approaches for accounting 

for thermal effects in measurements. Of all the applied loads, changes in 

environmental conditions such as temperature variations are known to dominate 

the quasi-static response of bridges [14]–[19]. Measurements from long-term 

monitoring show that time-series of response measurements often resemble 

those of measured ambient temperatures. In contrast, traffic loads are seen to 

have relatively little effect on overall structural response [15], [19]. For example, 
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Catbas et al. [19] monitored a long-span truss bridge in the USA and observed 

that the annual peak-to-peak strain differentials for the bridge were ten times 

higher than the maximum traffic-induced strains. Consequently, accounting for 

thermal response in measurements is critical to understanding long-term 

behaviour of bridges using continuous monitoring systems. 

 

Figure 1.4 An artist’s rendering of the new Queensferry Bridge in Edinburgh, 

Scotland [20]. 

1.2 Aim and research objectives 

This research focuses on techniques for characterizing and integrating thermal 

response within strategies for interpreting measurements from continuous SHM 

systems. The main aim of the project is to investigate the hypothesis that 

distributed temperature and response measurements can be employed to 

evaluate the structural performance of bridges. The project evaluates this 

hypothesis by deriving relationships between temperature distributions and 

structural response for thermal response prediction, and subsequently deploying 

these derived relationships for anomaly detection. While this research is 

concerned mostly with measurement interpretation using data-driven methods, it 

also illustrates briefly how the developed ideas can be extended for use in model-

based techniques. 

 The following objectives are formulated to fulfil the stated aim. 

 Review current literature on long-term monitoring of bridges with particular 

emphasis on available technologies and methodologies for quasi-static 

measurement collection and data interpretation;  
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 Develop a regression-based approach to capture the relationship between 

quasi-static structural response and distributed temperature 

measurements;  

 Evaluate a number of regression algorithms ranging from simple linear 

regression to artificial neural networks for their ability to predict thermal 

response from distributed temperature measurements; 

 Develop an approach for detecting anomalies in structural behaviour that 

is based on the comparison of predicted thermal response with measured 

structural response; 

 Expand the developed approach for characterizing and analysing thermal 

response of bridges to also include the response due to vehicular loads. 

 Design and build an experimental test-bed to validate the proposed 

approaches for response prediction and anomaly detection; 

 Investigate performance of developed approaches on simulated 

measurements obtained from numerical models, and on measurements 

from laboratory test-bed and full-scale bridges. 

1.3 Outline of thesis  

The thesis is organized as follows. Readers are first provided the motivation for 

this research as well as its aims and objectives. Chapter 2 presents a literature 

review that includes an overview of the following topics: 

● Current state-of-the-art and future possibilities in the continuous 

monitoring of constructed facilities; 

● Advances in sensing technologies and data handling; 

● Approaches for structural identification of bridges. 

Chapter 3 introduces the temperature-based measurement interpretation (TB-MI) 

approach that is proposed in this research. Chapters 4 and 5 describe the two 

major components of the TB-MI approach. Chapter 4 describes a novel 

methodology for predicting thermal response from knowledge of temperature 

distributions called Regression Based Thermal Response Prediction (RBTRP) 

methodology. Chapter 5 details an anomaly detection methodology, which 

operates on results from the RBTRP methodology, to detect anomalous structural 

behaviour from collected measurements. 
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Chapter 6 discusses the application of the proposed TB-MI approach to 

laboratory and full-scale structures. Measurements from the following structures 

are chosen for illustration: (i) a laboratory truss structure, (ii) a concrete 

footbridge, (iii) a multi-span continuous concrete bridge and (iv) a long-span steel 

box-girder bridge. In Chapter 7, the TB-MI approach is supplemented with a 

simplified data-driven strategy for predicting the effects of moving loads in order 

to create an integrated approach for treating both thermal and vehicular response 

in measurements.  

Chapter 8 presents a summary of the research discussed in this thesis, key 

conclusions and recommendations for future research. Lastly, an appendix is 

included to present results from a pilot study that was performed at the start of 

this research using numerical models for the purpose of evaluating the feasibility 

of the proposed methodology.  
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Chapter 2:  Literature review 

Over the last few decades, the field of SHM has grown in leaps and bounds. 

Presenting all developments within the domain is not within the scope of this 

thesis. This chapter therefore aims to broadly summarize research across the 

SHM spectrum, while giving particular emphasis to previous work on 

understanding quasi-static effects in bridges, which is the focus of this research. 

The purpose is to give a summary of the advances and successes in the field of 

SHM of bridges, and to also identify current limitations and future challenges, 

which motivate this research. The chapter begins with a section outlining the 

motivation for SHM and then provides an overview of the commonly employed 

sensing technologies. It later discusses data interpretation methodologies that 

have been developed to support decision-making based on measurements. It 

also takes a look at the future and presents a vision of how emerging 

developments are likely to fit within a context of smart infrastructures. The chapter 

concludes by summarizing the technology enablers for this research and by 

identifying the fundamental scientific challenges, which this research will seek to 

address in order to bridge the gap between research in SHM and practice. 

2.1 Continuous monitoring of bridges 

Rising expenditure on bridge maintenance has led to significant interest in the 

development of sensing technologies and their potential to lower life-cycle costs 

of bridge management. Current assessment procedures rely primarily on visual 

inspections, which have the following drawbacks: 

 They often fail to detect early-stage damage [21]. Repairs undertaken at 

an advanced stage of deterioration are generally expensive and cause 

significant traffic disruption. 

 They seldom provide sufficient data for accurately characterizing structural 

behaviour [21]. Consequently, evaluations of structural performance tend 

to be conservative resulting in unplanned bridge closures and 

unnecessary expenditure for strengthening or repair. 
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SHM systems can overcome these limitations by enabling early detection of the 

onset of damage, and accurate evaluation of asset condition and behaviour. 

Current SHM systems greatly simplify the collection, storage and transmission of 

measurements [21]–[23]. They have the potential to support the development of 

fundamentally new bridge management approaches that rely on the measured 

performance of full-scale structures. Consequently they are increasingly installed 

on important bridges around the world with the objective of tracking their real-

time performance [15], [24]–[28]. For example, three long-span bridges – Tsing 

Ma Bridge, Kap Shui Mun Bridge and Ting Kau Bridge, are monitored 

continuously using over 800 permanently-installed sensors as part of the Wind 

and Structural Health Monitoring System (WASHMS) by the highways 

department in Hong Kong [29]. The purpose of the WASHMS is to provide real-

time information on structural performance that can enable better management 

of the three bridges, whose operation at full capacity is crucial for the national 

economy.  

A useful analogy to the design and operation of a SHM system is the nervous 

system of the human body [30]. In the nervous system, nerves carry signals 

indicating changes in the body and surroundings to the brain, which processes 

this information to enable corrective actions. Similarly, the objective of having 

SHM systems on bridges is to support an environment for bridge management, 

wherein collected measurements enable undertaking timely and appropriate 

interventions in order to ensure optimal service within the transport network. The 

performance of a SHM system therefore depends to a large extent on the sensors 

deployed on the structure and the approaches for data interpretation. This 

chapter hence reviews research in these topics in the following sections. 

2.2 Sensing systems for SHM of civil infrastructure 

2.2.1 Sensing technologies 

Developments in sensing technologies continue to lead to new viable solutions 

for measurement collection tasks, which were once considered challenging and 

even infeasible. Costs for sensing hardware and their installation have decreased 

dramatically since the turn of the century. The robustness and accuracy of 

sensors for long-term monitoring have also improved significantly, as illustrated 

through their successful deployment in numerous SHM projects in the last decade 
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[15], [29], [31]–[34]. This section offers a brief description of the pros and cons of 

various sensing technologies that are widely used today or are considered 

promising for application in continuous monitoring projects. 

Fibre optic sensors (FOS) 

In FOS systems, light signals [35] transmitted through optical fibres embedded 

inside or attached to a structural element are interrogated to determine changes 

in fibre properties, which are then related to structural response parameters such 

as strain and displacement. Technological advances have led to robust, 

multifunctional, and precise FOS systems, and practical applications abound in 

various fields [36]–[41].  

FOS systems have many characteristics that make them appropriate for long-

term monitoring of civil structures.  

 Optical fibres are resistant to many corrosive chemicals that can often be 

present in civil engineering environments.  

 Fibres are small in size and hence easy to embed within a structural 

element. Their diameters typically range between 125μm and 500μm.  

 FOS systems are immune to interference from electromagnetic fields, 

radio frequencies and microwaves. 

 Optical fibres can be multiplexed together for ease of measurement [42]. 

 FOS systems show very little thermal drift with time. 

The leading drawback of FOS is that they are much more expensive than other 

measurement technologies. Research is however underway to address this 

drawback [43], and developments such as plastic optical fibre sensors are 

predicted to reduce significantly the cost of future FOS systems [44]. 

FOS can be classified into three main categories:  

1. SOFO sensors: SOFO (derived from French: surveillance d’ouvrages par 

fibres optiques) sensors are a type of long-gauge sensors that were 

developed at the Swiss Federal Institute of Technology in Lausanne 

(EPFL) [45]. A SOFO sensor consists of a pair of optical fibres such that 

one fibre is attached to the monitored structure and the other, which is a 

reference fibre, is laid nearby [40]. SOFO sensors, which are based on low 

coherence interferometry [42], can be connected to a single reading unit 
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through parallel multiplexing. They are mainly employed to measure quasi-

static deformations over relatively long distances [46]. For example, SOFO 

sensors have been embedded inside concrete structural elements to 

measure deformations beginning from the construction stage [47], [48]. 

The reliability of these sensors for long-term monitoring has been 

demonstrated on many large construction projects such as the ten-year 

monitoring of a high-rise building in Singapore [49] and the ongoing 

monitoring of a prestressed concrete viaduct in Italy that commenced in 

2008 [50].  

2. Fibre Bragg-Grating (FBG) sensors: FBG sensors measure strain and 

temperature from the shift in Bragg wavelength produced by Bragg 

gratings written into the optical fibres [51], [52]. Up to 50 gratings can be 

incorporated in a single fibre to enable in-line multiplexing, and multiple 

optical fibres can be multiplexed in parallel to a reading unit [53]. FBG 

sensor systems have been studied extensively [54], [55] and applied to a 

number of bridges worldwide [56], [57]. For example, numerous FBG 

sensors are installed on the Tsing Ma Bridge, which is a 1377m long 

suspension bridge in Hong Kong, to collect both static and dynamic strain 

measurements.  

3. Raman and Brillouin scattering sensors: These sensors use optical time-

domain reflectometry to interpret the results of Raman or Brillouin 

scattering within optical fibres [38], [53], [58]. Such sensors are ideal for 

collecting temperatures and strains over long distances such as in 

pipelines [59]–[61]. However, due to their very expensive nature, 

applications to full-scale bridges are currently very limited. Brillouin-

scattering sensors were evaluated initially on laboratory structures [62], 

[63] and then deployed for crack detection in a few full-scale structures 

[41], [64], [65]. The Götaälvbron bridge, in Sweden, is the first long-span 

bridge to be equipped with Brillouin scattering sensors [66]. The Streicker 

Bridge at Princeton University, USA, is another structure that is currently 

being monitored using FBG and Brillouin scattering sensors [67]. 

Glisic et al. [67] showed that long-gauge FBG sensors offer higher 

accuracy in strain and temperature measurements compared to Brillouin 

scattering sensors. 
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Microelectromechanical systems (MEMS) 

Microelectromechanical systems (MEMS) are devices that integrate 

technological advances in miniaturization of electronic and mechanical systems 

[68]. MEMS devices can be coupled with wireless technology and on-board 

processing power to analyze measurements on-site before being transmitted for 

subsequent storage [69]. Such devices are also referred to as wireless sensor 

nodes or motes [70]. A comprehensive review of currently available MEMS 

devices and their applications is available in [71].  

Typically MEMS sensors are attached externally to a structure to measure 

parameters related to structural response. Embedment internally within a 

structural element, for example to monitor temperature and humidity within 

concrete, is still a challenge. Experimental research on embedding MEMS 

sensors in concrete cubes concluded that questions on durability in highly humid 

and alkaline environments still need solving [72]. However, a recent study 

illustrated progress in this direction by demonstrating its use for collecting 

temperature measurements within a concrete slab exposed to harsh winter 

environments for five months [71]. Power consumption is another major issue in 

motes. Motes currently have timers or accelerometers to trigger measurement 

collection either at regular time intervals or immediately after large vibrations [73]. 

Wireless MEMS nodes are increasingly employed for long-term monitoring of 

bridges [73]–[76]. Previous research has illustrated its application for monitoring 

railway [77], cable-stayed [78] and suspension bridges [79]. The Lambert Road 

Bridge in the USA, which is one of seven bridges included in the Long-Term 

Bridge Performance (LTBP) monitoring program run by FHWA, has MEMS 

sensors to collect static and dynamic measurements [34]. MEMS tiltmeters are 

deployed as part of a wireless sensor network (WSN) on the Ferriby Road Bridge 

to monitor quasi-static effects on its elastomeric bearing pads [80]. 

Measurements using wireless sensor networks can also be as accurate as those 

from wired sensor systems, and this was shown by a study on the Jindo Bridge 

[81] in South Korea, which has a state-of-the-art SHM system.  

Research is already underway to address existing concerns in wireless MEMS 

sensors regarding energy and durability. Future MEMS sensors are predicted to 

be durable for civil engineering environments with on-board energy harvesting 
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technologies to derive energy from the environment, for example, from ambient 

vibrations [82] or solar radiation [83].  

Global Positioning Systems (GPS) 

A network of 30 satellites, which are constantly orbiting around the earth, 

comprise the Global Positioning System (GPS). GPS can be used to measure 

displacements and other derived parameters by tracking the location of GPS 

transmitters. A GPS transmitter sends out a signal (high frequency radio beam), 

which is received by at least four satellites that together locate the position of the 

transmitter on the planetary axes. In bridge monitoring, GPS antennas or 

transmitters installed at strategic locations are combined with a system of 

reference receivers located in the vicinity of the bridge to measure deformations 

at high resolution such as of the order of millimetres. One of the major drawbacks 

of GPS is their high costs. However, recent studies have addressed this issue 

and low-cost GPS receivers for SHM are expected to emerge in the near future 

[84].  

One of the initial studies on the use of GPS-based monitoring of civil structures 

was by Lovse and Teskey [85] for measuring dynamic deformations of the 

Calgary Tower. Today, there are many high-rise buildings equipped with GPS 

sensors for continuously measuring displacements [86], [87]. The number of 

bridges monitored using GPS has also increased since the late 1990s. Long-span 

bridges [88] such as the Humber Bridge [89] and the Tsing Ma Bridge [90] have 

been monitored with GPS sensors for more than a decade and, the obtained data 

has been useful for bridge owners, engineers and researchers. 

Non-contact measurement systems 

Installing sensors on bridges can be a complicated process due to concerns 

related to health and safety and difficulties in gaining access. These challenges 

can be avoided when non-contact measurement systems are employed. Non-

contact measurement techniques allow for capturing structural changes without 

coming in physical contact with the structure. Vaghefi et al. [91] describes twelve 

non-contact (remote) systems that are commonly deployed for the condition 

assessment of bridges. In this section, the focus is on laser- and vision-based 

systems, which show a lot of promise for long-term bridge monitoring. The 
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majority of these technologies are in advanced stages of development with full-

scale deployment for long-term monitoring currently under evaluation. 

Laser-based monitoring 

Laser-based devices measure distances based on the time taken by a laser beam 

to be reflected back from the structure in consideration or from the changes in 

properties of the laser beam upon reflection. Terrestrial Laser Scanning (TLS) is 

a technology derived from Light Detection And Ranging (LiDAR), which is now 

used widely in practice for applications such as flood resilience and surveying. 

When using TLS [92] for SHM, the laser scanner instead of being airborne is fixed 

at a location in the vicinity of a structure. TLS has been demonstrated for 

evaluating displacements of a laboratory steel beam [92] and a heritage arch 

bridge [93]. At present, there are no applications of TLS for long-term monitoring 

although the technology is considered promising [94].  

Laser Doppler Vibrometers (LDVs), which are also a type of laser-based 

measurement devices, use Doppler shift in frequencies to measure vibrations of 

a surface. Nassif et al. [95] showed that displacements of a bridge under live load 

tests measured with LDVs are in agreement with those collected using linear 

variable differential transducers (LVDTs). Miyashita et al. [96] summarized a few 

studies where tensile forces in cables were estimated using displacement 

measurements collected with LDVs.  

Park et al. [97] developed a wireless sensing system with laser displacement 

sensors (LDS) for a large-scale steel building. The main purpose of the system 

was to measure displacements of the structure during the construction period. 

Collected displacements showed that wireless LDS nodes offer good 

performance and hence, constitute another laser-based system for long-term 

monitoring [97].  

Vision-based monitoring  

Vision-based monitoring employs cameras to capture digital images of a 

structure, which are later analysed using sophisticated image processing 

techniques such as digital image correlation. A number of researchers have 

investigated vision-based monitoring strategies for SHM in recent years [98]–

[101]. Methods, which can be employed to quantify displacements in bridges 

using digital image processing techniques, have been validated successfully on 
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laboratory and full-scale structures [99]. Vision-based systems can also indicate 

the location, number and types of vehicles on a bridge, and this information can 

be coupled with measurements of structural response for damage detection 

[102]. 

Vision-based measurement techniques can also be used to capture effects of 

ambient conditions, and, in particular, those due to temperature variations. A 

Thermal Imaging Camera (TIC) can be used to measure temperature 

distributions in a full-scale bridge. A thermal image of a steel bridge is shown as 

an example in Figure 2.1.  

 

Figure 2.1 Thermal image of a steel girder bridge, in Exeter. 

At present, vision-based technologies are mainly deployed for short-term 

monitoring. Applications to long-term monitoring of bridges are however currently 

in the development phase. In the future, vision-based technologies may 

constitute a holistic monitoring system that can track vehicular traffic [103]–[105] 

and human activities [106], and also measure structural response.  

2.2.2 Data acquisition, transmission and storage 

Data acquisition, transmission and storage are key components of a SHM system 

and their roles are of utmost importance. Data, in general, refers to any factual 

information. However, in this research, the term refers to measurements collected 

by the sensing system. Recent progress in data acquisition, transmission and 

storage to support long-term monitoring is covered in this section.  
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Data acquisition and transmission 

Typically sensors in a SHM system are connected to a data acquisition system 

[69] that is supported by technologies to communicate the data to remote servers 

for storage. To illustrate an example, consider the SHM system for the River Trent 

Floodplain Bridge in Derbyshire, UK shown in Figure 2.2. The bridge has over 

150 vibrating-wire strain gauges, which collect hourly strain measurements. 

Vibrating-wire strain gauges are tethered to a data acquisition station, which 

forwards the data in digital format to a data transmission station. This station then 

transmits the digital data to a remote server using 3G communication protocols. 

While there are inherent difficulties in installing and maintaining wired sensing 

systems particularly due to the time and effort required for cabling, a number of 

these systems are now field-proven and increasingly find acceptance among 

bridge owners and operators. Consequently many wired sensing systems are 

currently in operation on bridges around the world.  

     

Figure 2.2 Data acquisition and transmission stations on the River Trent 

Floodplain Bridge. Courtesy Highway Agency.  

Wireless sensing offers many advantages over wired systems, and significant 

research is hence underway in this topic. Especially in combination with energy 

harvesting technologies, wireless sensing has the potential to solve the difficulties 

currently associated with wired sensing by easing significantly the process of 

installing SHM systems and of data acquisition [69], [74], [80], [107], [108]. 

Researchers and engineers envisage such sensing technologies becoming 

integral components of future smart infrastructures [109].  

The size of transmitted data is an important factor in long-term bridge monitoring. 

Various techniques exist to reduce the amount of transmitted and stored 
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measurements. Sensors can have embedded firmware with data interpretation 

capabilities [110]. Dynamic measurements can be pre-processed and 

transformed from time domain to frequency domain, and frequencies related to 

only the first few mode shapes can be transmitted to receivers via 3G or wireless 

internet. A relatively new concept to reduce the amount of data transmitted is 

compressive sensing. It focuses on the efficient acquisition of measurements. It 

uses signal processing techniques to re-construct the complete data-set from a 

reduced set of measurements [111]. Compressed sensing is particularly 

advantageous when embedded in wireless sensor nodes. Benefits include more 

efficient use of power and bandwidth. Promising applications of compressed 

sensing have been demonstrated on a surrogate structure [112] and the 

Telegraph Road Bridge located in Monroe, MI [113]. Furthermore, Bao et al. [28] 

proposed a compressed sensing strategy to collect acceleration measurements 

from a fast moving vehicle by having a receiver that retrieves measurements from 

wireless sensor nodes while crossing the bridge. Good results were obtained 

when validating the approach on the Shandong Binzhou Yellow River Highway 

Bridge in China. 

Data Management 

The transmitted data is usually stored and archived in database servers, and can 

subsequently be analysed using data interpretation techniques. At present, 

however, the stored measurements are often examined visually by bridge 

engineers [114]. The amount of data collected and transmitted in long-term 

monitoring can be significant. Let us consider the monitoring system of the 

Cleddau Bridge, which is discussed in detail in Section 6.4. The system 

comprises of 10 displacement and 12 temperature sensors. Displacements and 

temperatures are measured once every second and once every minute 

respectively. The measured data is then sent to a server from which data can be 

downloaded through the internet. The size of raw data collected daily is 43MB. 

The space required to store the data collected over a period of two years is 30GB. 

Structures with sensing systems that consist of several hundreds of sensors such 

as the Ting Kau Bridge, Hong Kong, which is equipped with 236 sensors, can 

generate data of this size within a couple of weeks [25]. Therefore Big Data 

concepts for storing and processing large data-sets are crucial to extract the 

maximum benefit from SHM [115]. 
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2.3 Measurement interpretation 

In this research, measurement interpretation includes all steps related to 

processing of stored measurements and the feedback to engineers on structural 

performance. Approaches that are currently employed for measurement 

interpretation are often simplistic and tend to be unreliable. For example, the 

commonly adopted approach is to check whether collected measurements 

exceed pre-defined threshold values and to then send notifications to bridge 

engineers when such situations occur. However, specifying threshold values 

such that a monitoring system is sensitive to changes in structural performance 

while avoiding excessive false alarms is seldom possible due to the complex 

quasi-static behaviour of real-life bridges resulting from the various types of 

operational and environmental loads. The development of robust and reliable 

strategies for measurement interpretation is therefore accepted as the central 

challenge that is currently limiting practical uptake of SHM [21], [116]. Such 

strategies are also considered fundamental to realize the vision of smart 

infrastructures, which incorporate emerging advances in wireless sensing [74] 

and energy harvesting technologies [23], [107], [117]–[119], and offer support for 

real-time asset condition monitoring [21], [24], [109], [120]. 

This research envisions a computational framework as illustrated in Figure 2.3 

for measurement interpretation. It encompasses computing approaches to 

support all stages of the measurement interpretation process including data 

preparation (see Section 2.3.1), system identification (see Section 2.3.2) and 

data visualization. It will have a user interface that is designed suitably to support 

decision-making by bridge engineers and will provide access to an assortment of 

techniques for the measurement interpretation process. Users, assisted by the 

framework, will decide the combination of computational techniques that are most 

appropriate for the structure in consideration. This follows from the premise that 

a universal approach for measurement interpretation that is suitable for all 

structures under all scenarios is unlikely to exist. The following sub-sections 

provide a review of previous research into the two main stages in measurement 

interpretation that is of direct relevance to this research - data preparation and 

structural identification.  
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Figure 2.3 Envisioned data interpretation framework for long-term monitoring. 

Shaded portions in the framework are investigated in this thesis. 

2.3.1 Data preparation 

The first step towards meaningful measurement interpretation is adequate data 

preparation [121]. This step can include: 

 selection of measurements for analysis (e.g. down-sampling), 

 pre-processing of measurements (e.g. smoothing, outlier removal), and 

 dimensionality reduction. 

Selection of measurements includes deciding the spatial and temporal 

distribution of measurements to be considered for analysis. Down-sampling 

[122], [123] is especially common and it refers to artificially simulating a reduced 

rate of measurement collection by ignoring certain measurements in order to 

reduce computational effort or to improve the performance of the measurement 

interpretation approach. Pre-processing refers to the application of numerical 

procedures to treat common problems in the data such as outliers and errors. 

This can comprise outlier detection and removal [121], [124], smoothing and 

filtering (e.g. moving average, low-pass filters) [125]–[128] and data imputation 

[129]. Dimensionality reduction, which is also assumed to be part of pre-

processing in certain studies, refers to transforming measurement vectors from a 

highly multi-dimensional space to equivalent data vectors in a low dimensional 

space. This often helps in identifying relevant data for further processing and can 

also significantly reduce computational effort. A number of numerical approaches 

exist for each of these tasks. Techniques appropriate for the data-sets in 

consideration need to be chosen based on knowledge of the data-sets and 

engineering judgment.  
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2.3.2 Structural Identification (St-Id) 

Structural Identification (St-Id) refers to the application of system identification 

approaches for SHM. System identification, which is a broad area of research 

with applications to many engineering disciplines, is the inverse engineering task 

of defining the state of a system from indirect measurements [130]. St-Id aims to 

develop analytical models that are capable of accurately predicting structural 

behaviour using measurements from SHM [110]. Historically, the application of 

St-Id techniques has been primarily for damage detection. In the context of 

aerospace and mechanical systems, Worden and Dulieu-Barton [10] suggested 

the following terminology to define the various stages at which a change in 

system performance may be detected:  

(i) defect, 

(ii) damage, and 

(iii) fault. 

A defect refers to a flaw in the system or its component; it may not necessarily 

affect overall system performance and hence can be difficult to detect from 

measurements. Damage refers to deterioration, often arising out of a defect, that 

results in a change in system performance. The aim of conventional St-Id 

techniques has been to detect the onset of damage. Thus they have also been 

called as damage identification techniques. A fault is a structural condition that 

compromises the performance of the system. This refers to a stage when 

interventions are necessary to get the system back to full functionality. 

Conceptually, damage identification can be considered to be part of a broad 

measurement interpretation paradigm [10] that has the following five steps, where 

the first four are part of St-Id and the last step is for residual life prediction: 

 Detection. Detect anomalous behaviour (damage) of a structure. 

 Localisation. Indicate the location of the damage. 

 Classification. Determine the type of damage. 

 Assessment. Assess the extent and severity of the damage. 

 Prediction. Determine the fitness of the bridge and give a prognosis of its 

residual life. 
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Research in St-Id has generally focused on addressing one or more steps among 

damage detection, damage localisation, damage classification and damage 

assessment. Each of these steps requires a certain level of prior knowledge of 

structural behaviour. For example, the last step – damage assessment, is difficult 

to accomplish without having detailed information on the structure. Consequently, 

St-Id techniques [131] differ in the level of physical information they require as 

input to their models, and can be broadly classified into the following two 

categories based on the types of models they employ: 

1. Physics-Based (PB) models; 

2. Non-Physics-Based (NPB) models.  

St-Id approaches that employ PB models are most common and these are often 

referred to as model-based approaches in literature. In contrast to PB models, 

NPB models rely solely on measurements. Approaches that use NPB models are 

often called data-driven or model-free methods. Both model-based and model-

free approaches have been studied over the years [132]. However, key 

challenges still remain. One important challenge is the quantification of ambient 

conditions and in particular, temperature variations, which are known to have a 

strong influence on structural response [73], [133], [134].  

Temperature variations and its effects on bridge movements are a major factor in 

bridge design [135]. Bridges are subject to temperature distributions with complex 

spatio-temporal variations that are determined by numerous factors related to the 

structure and its environment [136]. Since considering all these factors is 

extremely difficult at the design stage, designers often use the guidance given in 

the design codes, which is aimed at identifying the extreme temperature 

distribution scenarios [13]. The design codes prescribe worst-case vertical and 

longitudinal temperature gradients for bridges according to the structure, its 

material (e.g. steel, concrete) and its geographical location [137]. To 

accommodate the thermal expansion and contraction evaluated using the design 

codes, bridges are either equipped with bearings [138], which are mechanical 

elements designed to permit rotation and/or translation, or designed as integral 

bridges, which restrain thermal movements while ensuring that the structure can 

withstand the resulting stresses [139]. 
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Considering a few extreme scenarios of temperature distributions, as done for 

bridge design, is however insufficient for the interpretation of measurements from 

bridge monitoring. Measurements from long-term monitoring have shown that 

temporal patterns in response measurements resemble closely those of 

measured ambient temperatures [15], [17], [18], [32]. In comparison, traffic loads 

are seen to have relatively little effect on overall structural response [19]. For 

example, deformations caused by seasonal temperature variations in the 

Commodore Barry Bridge in the USA were observed to be as much as ten times 

the response caused by traffic loadings [19]. Hence, quantifying the influence of 

temperature variations on structural response is crucial to interpreting 

deformation-based measurements from bridge monitoring.  

In addition to affecting deformations, temperature effects also play an important 

role in determining the stresses and forces in bridges. Previous research has 

shown that nonlinear temperature gradients [140] produced by environmental 

conditions introduce thermal stresses even in bridge girders with simple supports. 

Potgieter and Gamble [140] used measurements from an existing box girder 

bridge to show that stresses and forces due to non-linear temperature 

distributions can be of magnitudes comparable to those due to live loads. 

Consequently, determining the effects of temperature variations on stress 

distributions is fundamental to supporting assessment and management of 

bridges using measurements from SHM.  

The following sections provide an overview of research in St-Id using both model-

based and data-driven approaches. While advances in both approaches are 

covered, particular attention is given to developments targeted at discriminating 

thermal effects within measurements from SHM. 

Model-based techniques 

In a model-based approach, one or more numerical models of a structure are 

developed considering its material properties, geometry and boundary 

conditions. The models are then calibrated using collected measurements such 

that predictions from calibrated models match measured structural behaviour. 

This task of calibration or updating usually requires identification of suitable 

values for a set of model parameters. Creating PB models can be time and 

resource-intensive requiring expert knowledge of computational modelling (e.g. 
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finite elements) [141]. The accuracy of calibrated models can also be difficult to 

estimate as it depends upon modelling assumptions such as modelled geometry 

of structure, chosen behaviour model, inclusion of non-structural elements and 

choice of boundary conditions [142]. 

Two categories of models are used in model-based approaches – 

phenomenological models and finite element (FE) models. They differ in the scale 

of model complexity. Phenomenological models are simplified behavioural 

models that have lower geometric resolution and fewer elements than 

conventional FE models. These models are not computationally expensive and 

are widely employed for output modal analysis [110]. Although their model 

complexity is low, engineering expertise is still required to ensure that they 

represent the real structure. The downside of simplifications in phenomenological 

models is that it renders them insensitive to early-stage damage. 

FE models can be significantly more complex than phenomenological models 

and their generation and calibration often requires significant computational 

resources and time. As an example, an FE model of a span of the Cleddau Bridge 

(see Section 6.4) that is specifically designed to characterize thermal effects is 

shown in Figure 2.4. In many cases, FE models can be developed from a priori 

3D CAD models thereby reducing the time for model generation. However, due 

to their complexity, detailed investigations of their validity is essential in order to 

detect and eliminate modelling errors [19].  

 

Figure 2.4 FE model of a part of the Cleddau Bridge. Courtesy: Bill Harvey 

and Associates and Pembrokeshire County Council.  

Model-based strategies may use a single model or multiple models for St-Id. 

These two approaches are briefly reviewed below. 
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Single model approach 

The majority of SHM studies have employed a single model approach [110], and 

these have focused primarily on the evaluation of modal parameters such as 

mode shapes, frequencies and damping from vibration-based monitoring [21], 

[133], [143]. A few examples are mentioned here. Whelan et al. [76] used as-built 

drawings of a steel-concrete composite, integral abutment bridge to develop an 

FE model of the bridge that subsequently enabled demonstration and validation 

of capabilities of a wireless sensing system. In the case of the Pedro e Inês 

footbridge, which has been monitored since 2007, an FE model helped validate 

a vibration-based damage detection (VBDD) methodology [144]. Acceleration 

measurements from long-term monitoring of a curved post-tensioned concrete 

box-girder bridge in Connecticut, USA were used to define a baseline FE model 

through model updating [145]. 

Single model approaches to St-Id have also been investigated for interpreting 

static measurements [146], [147]. Costa and Figueiras [127] employed a FE 

model of Trezói Bridge [148], which is a metallic railway bridge in Portugal, to 

interpret measurements from its strain monitoring system. FE models of the 

Tamar Bridge [149] in the UK and the Runyang [150] suspension bridge in China 

were calibrated with high accuracy using ambient vibration and static 

measurements. Ko et al. [151] used a numerical model of the Kap Shui Mun 

Bridge [151] to construct a multi-stage damage identification scheme. Ni et al. 

[29] employed modal flexibility analysis for damage identification in the Ting Kau 

Bridge in Hong Kong using an FE model and data from long-term monitoring. 

Catbas et al. [19] used long-term monitoring data from the Commodore Barry 

Bridge, which is the longest cantilever truss bridge in the USA, to generate a 

numerical model for reliability assessments. An FE model also has been used for 

the evaluation of early-stage shrinkage and creep in concrete of the Leziria 

Bridge, which is a 9160m long precast continuous viaduct over the Tagus River 

in Portugal [27], [152]. These examples are only a few of the many that can be 

found in literature. 

Multimodel approach 

Multimodel approaches account for uncertainties arising from the modelling and 

measurement process through consideration of multiple candidate models [153]. 

Uncertainties in modelling assumptions or epistemic uncertainties are particularly 
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difficult to manage in single model St-Id approaches. For example, a model of a 

bridge with incorrect boundary conditions can be made to predict its measured 

structural behaviour through model updating. However, the updated model is not 

truly representative of the real structure and decisions taken using such a model 

as a basis will be unreliable. Multimodel approaches explicitly address the 

uncertainties arising out of such modelling assumptions by accepting that multiple 

models may be capable of predicting the same measured behaviour [154]. 

Appropriate candidate models can be selected using data mining techniques 

such as clustering [155].  

Multimodel strategies [154], [156] have been illustrated successfully for analyzing 

measurements from static load tests of full-scale bridges [141]. Uncertainty 

dependencies, which govern the validity of models, can also be addressed and 

desirable improvements in prediction accuracies obtained through techniques 

such as error-domain model falsification [157]. The effectiveness of these 

methodologies is demonstrated for the Grand-Mere Bridge which is a long span, 

prestressed bridge in Canada [158].  

Capturing temperature effects 

Environmental conditions are now recognized to have significant effects on 

structural response. For example, modal parameters, which are often the 

parameter of interest in vibration-based St-Id, are affected strongly by 

environmental and operational conditions [133], [159]. Evaluating these effects 

using PB models is difficult [133], [160]. Many model-based approaches have 

attempted to remove temperature-induced response from measurements [16], 

[161]. For example, [162] created a detailed FE model of a steel arch bridge 

having a span length of 168m to investigate thermal effects. Few approaches 

have also exploited temperature effects to enhance the St-Id process. Recently, 

[163] showed that behaviour models could be developed for predicting thermal 

response of a multi-span pre-stressed concrete bridge from distributed 

temperature measurements. However, in most cases, the influence of 

temperature on structural behaviour has proven problematic during data 

interpretation.  

In addition to the difficulties in accounting for thermal effects within model-based 

methods, model development and simulation is also often time and 

resource-intensive. Moreover, processing huge amounts of data from continuous 
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monitoring using complex models is challenging [164] and may not be practically 

feasible. On the contrary, approaches for measurement interpretation that are 

generic and easy-to-deploy without requiring detailed a priori knowledge of 

structural behaviour can offer tremendous value in the context of continuous 

monitoring of bridges.  

Data-driven techniques 

In contrast to model-based methods, model-free or data-driven methods require 

minimal structural knowledge and hence offer a lot of promise for real-time 

measurement interpretation [165]. These methods attempt to detect anomalous 

structural behaviour by evaluating whether new measurements deviate 

sufficiently from those taken during a reference period when the structure is 

assumed to be in a healthy state (baseline conditions). For example, 

measurements collected soon after construction or strengthening can be 

assumed to represent baseline conditions. The duration of the reference period 

may depend on the type of the bridge. For example, the behaviour of concrete 

bridges may take a couple of years to stabilize due to the large initial variations 

in material properties due to shrinkage and creep after construction [152].  

Data-driven methods generally rely on statistical pattern recognition techniques 

to identify measurement patterns that reflect normal structural behaviour from 

measurement sets collected during from a reference period [110]. Data-driven 

methods may require significant amounts of data to identify useful patterns. 

However, this is not a drawback when these methods are applied for interpreting 

data from long-term monitoring, where scarcity of data is seldom an issue. Data-

driven techniques are also often referred to as anomaly detection techniques 

since the majority of them are designed to detect anomalies in the time series of 

measurements [166]. It is important to note that an anomaly, by definition, 

generally means a deviation from normal behaviour. It does not imply a change 

in structural performance (e.g. damage). It can also indicate, for example, a 

malfunctioning sensor or an abnormal loading condition [167]. 

When applying data-driven methods to measurements from continuous 

monitoring of bridges, time-histories of measurements are often treated as 

signals. Signals can be processed individually or in clusters in order to detect 

anomalies. The former is termed univariate analysis, and the current practice of 
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setting thresholds to time series can be considered to belong to this category of 

signal analysis. The latter, which is more computationally intensive but also 

potentially more useful, often involves tracking relationships (e.g. correlations) 

between several signals. This approach can also be more robust than univariate 

analysis due to its potential to discriminate between false alarms (e.g. faulty 

sensors) and actual changes in structural performance by using integrated data 

analysis [121]. Researchers have investigated many numerical techniques for 

both univariate and multivariate analysis of quasi-static measurement time-

histories, inspired by their prior application to other engineering problems [168] 

or even to problems in other subjects, such as econometrics [161]. Examples of 

such techniques are wavelet transform [169], pattern recognition [170] and 

autoregressive moving average models [171]. 

Research in data-driven techniques for SHM has led to the development of 

approaches that demonstrate excellent performance on simulated data obtained 

from FE models, which allow for varying damage location and severity. However, 

the approaches seldom replicate their performance when applied to 

measurements from real-life bridges. For example, Lanata and Del Grosso [172] 

proposed a proper orthogonal decomposition (POD) approach to detect and 

localize damage. The approach was successfully evaluated on measurements 

obtained from an FE model of a reinforced concrete (RC) girder [172]. However, 

the approach was unable to reliably detect damage events, and also gave many 

false alarms when applied to long-term strain measurements collected from RC 

beams, which were exposed to environmental effects and deliberately damaged 

[173]. Moreover, the removal of temperature effects using a sensitivity parameter 

derived from measured temperature and strain variations [173], [174] did not 

improve damage detectability significantly.  

Another common aspect of the majority of previous research in data-driven 

techniques is that they have all focused on the analysis of response 

measurements, and tended to ignore environmental factors and loads. Posenato 

et al. [175] proposed moving principal component analysis (MPCA), which is 

principal component analysis (PCA) of response measurements within a moving 

time window of fixed duration, for anomaly detection. Posenato et al. [121] 

furthered the study and investigated several data-driven methodologies using the 

FE model developed by [172] and concluded that MPCA and robust regression 
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analysis (RRA) outperform other methodologies. However, MPCA was observed 

to require a large reference period, and was also unable to detect anomalous 

behaviour unless damage was very severe. Laory et al. [126], [176] investigated 

the application of MPCA and RRA in more detail using numerical models which 

included vehicular and thermal loads. The performance of the methodologies was 

evaluated in terms of the following three factors:  

 time to detect damage, 

 sensitivity to damage severity, and 

 the number of sensors required to detect damage.  

Laory et al. [126] observed that eliminating seasonal temperature variations from 

the measurement time-histories using low-pass filter methods affected the 

performance of MPCA negatively. They therefore recommended that 

environmental effects have to be treated in a more comprehensive manner to 

achieve meaningful measurement interpretation. Subsequently, Laory et al. [177] 

also showed that a data-driven methodology that integrates two different 

statistical approaches such as MPCA and support vector regression (SVR), or 

MPCA and RRA [166], can offer superior performance. However, its sensitivity to 

damage was still limited significantly by environmental effects. 

Cross et al. [161] proposed a new statistical technique called cointegration, which 

is a time-series analysis originating from econometrics, to remove operational 

and environmental trends from response measurements. Cointegration was 

evaluated successfully on measurements collected from the National Physical 

Laboratory (NPL) footbridge [178]. Worden et al. [179] subsequently introduced 

Multi-Resolution Analysis (MRA) into cointegration. MRA is an approach for 

discrete wavelet analysis and synthesis that allows for recognizing factors with 

different time scales in response signals [180]. MRA coupled with cointegration 

increases the damage sensitivity when analysing time-histories of quasi-static 

structural response. This enhanced SHM approach strives to remove: 

 seasonal trends including long-term thermal effects; 

 diurnal trends that are superimposed on seasonal trends; 

 and operational effects, e.g., daily traffic (peak and non-peak); 
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By removing these variations, the approach aims to magnify the effects of 

damage sensitive features. However, while the approach has the potential to 

detect anomalies, support for further decision-making such as in the form of an 

approximate location of the anomaly is weak. 

Goulet and Der Kiureghian [165] proposed a data-driven probabilistic framework 

for damage detection. The proposed methodology was demonstrated using 

dynamic measurements collected on the Tamar Bridge, UK, which has been 

continuously monitored since 2006 [181]. However damage was simulated as an 

instantaneous shift in the frequency time-histories, which seldom occurs in real-

life structures. After 2009, a data-driven stochastic subspace identification 

(Data-SSI), which performs output-only modal analysis, is employed to provide 

online modal identification of the Tamar Bridge [15]. Santos et al. [182] proposed 

a damage detection methodology which combines multivariate statistical 

methods and quantities, symbolic data and cluster analysis. Damage was 

introduced by increasing temperature of selected cables of an FE model, which 

was representative of the International Bridge over River Guadiana (cable-

stayed). The study concluded that 1% stiffness loss in a cable, which was 

simulated as an increase of its temperature, can be detected.  

The Z-24 Bridge was a post-tensioned concrete box girder bridge located in 

Switzerland, which served as an SHM test-bed [183] before being demolished. 

The monitoring campaign for the bridge lasted for almost a year and different 

types of damage were created during this time. The available data has served for 

multiple damage detection case studies [16], [184], [185].  

To conclude, data-driven methods have mostly been illustrated on numerical 

models where damage is located close to sensors [121], [177]. Their 

performances on simulated data with numerical models representing damage 

scenarios seldom scale to real measurements from full-scale structures [182]. 

When experiments are conducted on scaled test-beds, even known damage 

events cannot be reliably identified [173]. Variation in ambient conditions is cited 

as a major factor behind the poor performance of data-driven methods on real-

life data sets [15], [173]. This is because damage-induced changes in structural 

response are often masked by larger changes due to ambient conditions, and in 

particular, diurnal and seasonal temperature variations. Since existing data-

driven methods for measurement interpretation do not include reliable strategies 
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for accounting for temperature effects, they fail to detect changes in structural 

performance unless the underlying cause (e.g. damage) is of such a serious 

nature that it would have been evident from a visual inspection. This research 

aims to alleviate this problem by tackling head-on the challenge of accounting for 

thermal effects in measured response. 

2.4 SHM in the Future 

The robustness and accuracy of new sensing technologies have definitely 

benefited researchers and practitioners, as evident from its many successful 

applications. However, there is also agreement that current applications only 

scratch the surface, and in the future, more widespread usage of these 

technologies in civil infrastructures is inevitable. Future infrastructures are 

predicted to be smart, i.e. capable of intelligently responding to actions or 

changes in environment using networks of sensors and sophisticated data 

interpretation methodologies. More information on smart structure technologies 

for civil infrastructures can be found in a comprehensive overview in [114], which 

covers research and application of these ideas to bridges in Korea.  

A diagram illustrating a possible SHM system for a smart bridge is shown in 

Figure 2.5. The bridge is monitored with advanced sensing technologies such as 

fibre optic sensors, cameras and motes. These are all self-powered and 

communicate measured data directly to receivers. Technological advances will 

lead to further improvements in data transmission, measurement processing 

speed and capacity. There is already a move towards a cloud paradigm in data 

storage and services. New materials such as graphene are expected to enable 

processors that are 10,000 times faster than current processors [186]. Novel data 

storage technologies such as heat-assisted magnetic recording will allow storing 

hundreds of terabytes of data in smaller devices [187]. Therefore the process of 

data collection and storage will be further simplified in the coming years. Another 

natural development will be to integrate SHM with Building Information Models 

(BIM) to support lifecycle management of smart infrastructures. For example, a 

detailed virtual model of a structure that is derived from its BIM can be used to 

visualize its real-time performance.  

A key component of the system given in Figure 2.5 is measurement interpretation. 

This links measured data to meaningful information about the structure. 
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Techniques for measurement interpretation will therefore be crucial to process 

data from cloud-based servers in order to enable engineers to derive knowledge 

of structural behaviour from the data. This process of measurement interpretation 

may be semi-autonomous with appropriate user interfaces enabling engineers to 

steer the process.  

This research recognizes that developing reliable, data-driven measurement 

interpretation methodologies is fundamental to realizing the vision of smart 

infrastructures. Furthermore, it also believes that methodologies for 

measurement interpretation must incorporate approaches to characterize 

temperature effects on structures in order to effectively interpret measurements 

from continuous monitoring. Therefore it endeavours to develop data-driven 

approaches for characterizing and predicting the thermal response of bridges. 

 

Figure 2.5 SHM system for a smart bridge  

2.5 Conclusions  

The literature review summarizes developments in sensing technologies and 

measurement interpretation methodologies for continuous monitoring of bridges. 

From this review, the following conclusions are drawn: 

1. Today, sensing technologies have developed to an extent such that they 

are suitable for long-term monitoring of bridges with data collection and 

retrieval no longer considered a challenge.  

2. Measurement interpretation remains a major challenge limiting practical 

uptake of SHM systems. Approaches to relate measurements to decision-

making are therefore of significant value.  
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3. Temperature distributions in structures due to diurnal and seasonal 

variations in ambient conditions have a significant influence on quasi-static 

structural response. 

4. Detailed PB models are computationally intensive for processing 

measurements from continuous monitoring, and also unreliable due to 

modelling uncertainties [188].  

5. Data-driven methods have great scope for application to analysis of 

measurements from continuous monitoring due to their ability to handle 

large data sets and the lack of a need for structure-related information. 

6. Model-based and data-driven methods have been mainly evaluated on: 

a. simulated measurements from FE models,  

b. measurements from experimental test-beds and 

c. in-situ measurements that have been altered systematically to 

represent damage. 

However, such studies have major weaknesses since simulated damage 

scenarios are often unrealistic and the effects of continuously changing 

environmental conditions are seldom included in the measurement 

interpretation process.  

7. The sensitivity of current model-based and data-driven St-Id methods 

to damage is limited severely by their inability to account for the effects 

of continuously changing environmental conditions [16], [161], [179].  
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Chapter 3:  Measurement interpretation 
approach 

Bridges are exposed to several types of loads ranging from gradually varying 

thermal loads to relatively rapidly varying vehicle loads. Of these, thermal effects 

are now widely recognized to govern the quasi-static structural response of 

bridges. This research uses this observation as a basis for the development of a 

methodology for structural performance monitoring. The key research hypothesis 

is that a priori knowledge of the relationship between temperature distributions in 

a bridge and its thermal response can be employed to create statistical models 

for predicting structural response from distributed temperature measurements. 

This chapter will describe the approach envisioned to monitor structural 

performance. 

3.1 Structural performance evaluation 

The response of a structure is determined by the applied loads, ambient 

conditions, and the structure’s configuration and material properties. If using a 

systems approach to predict the behaviour of a structure, the loads and ambient 

conditions (e.g. humidity) will be modelled as inputs into the structural system 

while response parameters (e.g. strain, displacement) become outputs from the 

system (see Figure 3.1). The structure can be modelled using a physics-based 

model (e.g. finite element model) or using a data-driven model (e.g. regression 

model) depending upon the goals of the engineering task in hand. During the 

design stage, engineers typically use a physics-based model, often a finite 

element model that is developed based on design assumptions, to demonstrate 

that stresses and deformations in the full-scale structure will be within acceptable 

limits. When interpreting measurements from SHM, which is the context of this 

work, the objective is to understand measured structural behaviour, and track 

structural performance. For this task, either of the two types of models described 

in Section 2.3.2 – data-driven models or physics-based models, can be used. 

This research focuses mainly on data-driven models, which are recognized to be 

much more effective than physics-based models for dealing with large sets of 

measurements as collected from continuous monitoring of bridges. In the 
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following sections, the parameters that constitute the inputs and outputs for such 

models are discussed. 

 

Figure 3.1 Structural system with its inputs and outputs 

Inputs: Inputs to a data-driven model of a structural system correspond to the 

various types of loads. These could be environmental loads such as temperature 

and wind, traffic loads and human-induced loads such as from pedestrians. 

Technology is currently available or emerging to measure all these types of loads. 

Each load type affects the structural response in unique ways. In normal service 

conditions, the dynamic behaviour of a bridge is governed by vehicle, human-

induced and wind loads. Short-term static changes in bridge performance are 

typically due to wind and vehicular loads. Quasi-static (slowly changing) effects, 

which are predominant in long-term monitoring, are driven mainly by temperature. 

Outputs: The outputs from a data-driven model are parameters related to 

structural response. These can be deformation-related parameters such as 

strains and displacements or force-related parameters such as stresses. 

Although stresses are more useful than deformations from the perspective of 

structural assessment, measuring them accurately in full-scale structures is 

seldom feasible. However, technologies for measuring deformation accurately 

and inexpensively have developed greatly in the last few decades. These have 

had numerous applications in full-scale structures as described in the previous 

chapter.  

Measurements of deformation-related parameters are termed as ‘indirect’ 

measurements since these must be interpreted using appropriate computational 

tools to evaluate structural performance and to recommend interventions. This 

research aims to solve one aspect of the measurement interpretation problem, 

i.e. to account for temperature-related effects in measured structural response. 
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3.2 Temperature effects in bridges 

Temperature distribution across full-scale structures can be very complex as it 

depends upon various factors such as the geographical location, shape and 

orientation of the bridge, and its surrounding environment. Bridge engineers 

attach significant importance to thermal effects. Consequently, bridges are 

designed to either accommodate thermal movements (e.g. using expansion 

joints) or to withstand stresses that could be created by restraining thermal 

movements (e.g. integral bridges). At the design stage, engineers typically 

assume linear temperature gradients, as indicated by current design codes [13]. 

The same approach is however not appropriate for interpreting measurements 

from long-term monitoring, where a significant component of response 

measurements will be due to temperature variations. 

A few examples are provided to highlight the influence of temperature effects in 

measurements from quasi-static monitoring. First, consider measurements from 

the piers of the River Trent Bridge (see Section 6.3) situated across the River 

Trent floodplain in Derbyshire, UK, which has been monitored continuously since 

2004 using vibrating-wire strain gauges. The purpose of monitoring is to detect 

sudden or gradual changes in the loads transmitted by the piers due to concerns 

about the condition of concrete in the pile caps at the bottom of the piers. 

Measurements collected over a period of four years reveal that strain variations 

closely follow seasonal temperature changes (Figure 3.2). Clearly, detecting any 

change in structural performance of the piers from strain measurements requires 

evaluation of the thermal strain component in these measurements. 

As a second example, consider the measurements from the Cleddau Bridge in 

Pembrokeshire, Wales. Figure 3.3 (left) shows daily variations of bearing 

displacements for the bridge (see Section 6.4). The plot shows clearly that 

bearing displacements increase during the day as ambient temperature 

increases with sunrise and then decreases later in the day with sunset. Only a 

closer look at these measurements (Figure 3.3 (right)) reveals the effects of 

vehicular traffic, represented as numerous small spikes superimposed on the 

bearing displacements due to temperature variations. 
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Figure 3.2 The River Trent bridge: time-series of measured temperatures 

(left) and strains (right). 

 

 

Figure 3.3 The Cleddau Bridge: time-series of bearing displacements 

measured over 1 day (left); a zoomed-in view of the time-series plot over a 2-

hour period (right). (Courtesy: Bill Harvey Associates and Pembrokeshire 

County Council). 

Lastly, consider measurements from the River Exe Bridge near St. David’s station 

in Exeter (Figure 3.4). This is a single-span simply-supported ‘half through’ steel 

bridge. It is a short-span structure with a span of only 36.6m. Horizontal 

movements of the girder facing north were monitored at the expansion joint for 7 

hours (Figure 3.5 (left)). Displacements are observed to closely follow 

temperature variations. Similar to the Cleddau Bridge, spikes in the displacement 

time-series indicate passages of heavy vehicles. For example, a 500μm 

horizontal displacement is measured during the passage of a two-axle truck 

(Figure 3.5 (right)).  
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Figure 3.4 North face of the River Exe Bridge. 

 

Figure 3.5 The River Exe Bridge: time-history of horizontal displacements of 

the steel girder at the expansion joint collected over 7 hours (left) and during the 

passage of a heavy vehicle (right). (Courtesy: Dr David Hester and Devon 

County Council). 

In addition to measurements from the above-mentioned bridges (Figure 3.2, 

Figure 3.3 and Figure 3.5), there is also ample evidence in literature (see Chapter 

2) that demonstrates that the quasi-static structural response of a bridge closely 

follows ambient temperature. These observations indicate that understanding the 

relationship between temperature variations and deformations is essential to 

interpreting deformation-related measurements from bridges. This supports the 

fundamental premise of this research, which is that temperature effects have to 

be factored into the measurement interpretation process for the early and reliable 

detection of abnormal changes in structural behaviour. 
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3.3 SHM for bridge management 

This research will develop data-driven strategies for accounting for thermal 

response during the measurement interpretation process. The developed 

strategies will support a bridge management paradigm that is schematically 

illustrated in Figure 3.6. A bridge like any structural system exhibits responses 

that vary according to the applied loads. A continuous monitoring system 

measures the integrated structural response (e.g. strains, displacements) of the 

system to all applied static and dynamic loads. The collected measurements may 

undergo a preliminary analysis depending on the computing power available on-

site, and is then transmitted to remote servers via the internet or other 

communication modes. These measurements can be transformed and analysed 

through a number of stages of measurement interpretation ranging from initial 

pre-processing to complex data fusion in order to infer structural performance. 

This research deals with the development of measurement interpretation 

strategies to support this part of the bridge management cycle. Results from 

measurement interpretation may then be presented via suitable interfaces so that 

engineers are able to plan and prioritize interventions to ensure optimal structural 

performance. 

 

Figure 3.6 A bridge management paradigm involving SHM. 
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3.4 Temperature-Based Measurement Interpretation 

(TB-MI) 

To be able to detect changes in structural performance from the measured 

response, it is imperative that one can discriminate between the effects of the 

various loads on response and those due to changes in structural parameters 

such as stiffness. This study focuses on the development of computational 

approaches that enable isolating the thermal component of response from 

measurements. The thermal response is directly related to the temperature 

distribution across the structure. While it is practically impossible to measure 

temperature at every point on a bridge, measurements from distributed sensing 

could approximate the temperature distribution in the structure. Therefore this 

research proposes to employ distributed temperature measurements to 

understand and predict thermal response of bridges. This data interpretation 

approach is referred to from hereon as Temperature-Based Measurement 

Interpretation (TB-MI) approach. This research investigates to what extent 

correlations between temperature distributions and structural response can help 

assess structural performance of bridges. The vision of this research is that the 

TB-MI approach can later be expanded into a broader approach that includes 

effects of other inputs to the structural system.  

While the TB-MI approach can be implemented using either physics based or 

non-physics based models, this study will focus on the latter. It will derive data-

driven strategies for generating statistical models that reliably predict thermal 

response given a reference set of measurements. It opts for statistical models 

over physics-based models such as FE models for the following two reasons:  

1. ease of transferring the developed approach to a wider range of structures, 

and  

2. suitability for processing voluminous amounts of data collected from 

continuous monitoring.  

A schematic illustrating the TB-MI approach is shown in Figure 3.7. It implements 

the concept of data interpretation as previously illustrated in Figure 2.3 in 

Chapter 2. Central to the proposed approach is a methodology for predicting 

thermal response referred to as the regression-based thermal response 

prediction (RBTRP) methodology. The methodology uses datasets considered to 



Chapter 3: Measurement interpretation approach 

70  

represent baseline conditions of a bridge to generate numerical models that can 

accurately compute real-time thermal response of the structure from distributed 

temperature measurements. Residuals between measured and predicted 

response form time-series, which are then examined for anomalies using signal 

processing techniques. The RBTRP methodology and all its components are 

presented in detail in Chapter 4. Anomaly detection techniques are described in 

detail in Chapter 5. 

 

Figure 3.7 The TB-MI approach in the measurement interpretation process. 

Shaded components of the process are investigated in this research. 

3.5 Conclusions  

This chapter has highlighted the influence of temperature variations on the 

structural response of bridges using measurements from a few real-life bridges 

as examples. The resulting observations support the premise of this thesis that 

characterizing the thermal response of bridges is important to understand 

measurements from quasi-static monitoring of bridges. This chapter then 

introduces the TB-MI approach, the components of which are to be detailed in 

subsequent chapters.  

This chapter draws the following conclusions: 

1. Temperature variations are major drivers of quasi-static deformations in 

bridges. From the perspective of interpreting measurements from long-

term monitoring, bridge response can even be considered approximately 

equivalent to its thermal response.  

2. The strong correlations between temperatures and structural response 

support the development of a data-driven methodology for predicting 

thermal response from distributed temperature measurements.  
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Chapter 4:  Prediction of thermal 
response 

This chapter covers in detail a methodology for thermal response prediction 

referred to as the Regression-Based Thermal Response Prediction (RBTRP) 

methodology. The methodology identifies regression-based models for predicting 

structural response from distributed temperature measurements. To a large 

extent, the success of the TB-MI approach depends largely on the performance 

of these prediction models since predictions from these models are subsequently 

compared with measured response for anomaly detection. The reliability of the 

anomaly detection methods are therefore directly related to the accuracy of the 

models generated by the RBTRP methodology. 

4.1 Overview of the RBTRP methodology  

The RBTRP methodology consists of the following two phases (Figure 4.1):  

1) a model generation phase  

2) a model application phase  

In the first phase, regression models that are capable of predicting the structural 

response from distributed temperature measurements are generated. This phase 

includes the selection of reference measurements and their preparation for model 

training. Models that predict the structure’s response with the highest accuracy 

are chosen as those that characterize the baseline conditions of the bridge in 

consideration. These models are subsequently employed in the model 

application phase. In this phase, real-time measurements of temperature 

distributions are employed to predict thermal response. The two phases of the 

RBTRP methodology are described in greater detail in later sections in this 

chapter. 
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Figure 4.1 The TB-MI approach incorporating the RBTRP methodology 
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4.2 Model generation phase 

The model generation phase is a key step for successful application of the 

RBTRP methodology. The aim is to generate one or more statistical models for 

each sensor location such that they are capable of predicting the corresponding 

structural response from knowledge of distributed temperatures. The model 

generation phase (see Figure 4.1) involves a series of iterations over the following 

interlinked steps: 

1. Selection of reference set: This refers to the selection of a set of 

measurements that are representative of the baseline conditions of the 

structure. The duration corresponding to the selected measurements is 

often called a ‘reference period’, i.e. a period when the structure is known 

to be in normal condition [174], [189]. Measurements collected over a 

period of one year can be taken to form the reference set [32], [178] since 

they are generally representative of the expected daily and seasonal 

variability. 

2. Data pre-processing: This step involves the following tasks. 

a) Removal of outliers and de-noising via smoothing; 

b) Down-sampling of measurement sets; 

c) Composition of training and test sets; 

3. Dimensionality reduction: The purpose of this step is to reduce the 

dimensionality of the measurement sets in order to decrease the number 

of input parameters for the regression models. 

4. Generation of statistical models: This step involves generating a model for 

response prediction based on a specific regression algorithm. It involves 

the following sub-steps.  

a) Decide on the input data sets for the regression models in order to 

account for effects of thermal inertia in measurements; 

b) Tuning of the regression algorithm by selecting appropriate values for 

model parameters that need user input in order to maximize the model 

prediction accuracy; 

c) Creation of a model for the response measured at each sensor 

location from the selected training sets; 

5. Model evaluation: This step compares the prediction accuracy of 

regression models and selects those with the best prediction accuracy. 
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The model generation phase iterates over the above steps to generate models 

for response prediction using each of the chosen regression algorithms. All the 

above elements of the model generation phase are discussed in detail below.  

4.2.1 Reference period 

The specification of an appropriate reference period requires exercising 

engineering judgement. For an existing bridge, the reference period can start 

immediately after the sensing system is installed. Newly built bridges may need 

a certain maturation period after which the behaviour of the structure stabilizes. 

For example, newly built concrete bridges can experience significant shrinkage 

and creep. Noticeable changes in concrete strains due to these effects can last 

for more than a year [190]. Thus the size of the reference period can vary 

depending upon the structure in consideration. A general recommendation is to 

select a sufficiently large reference period such that the corresponding 

measurements cover the expected daily and seasonal variability in 

measurements. Catbas et al. [110] concluded that measurements collected for 

over a decade may even be required in some scenarios. However, as a rule-of-

thumb, a reference period of nearly 18 months is sufficient [145]. 

4.2.2 Measurement pre-processing 

Measurements from full-scale structures often include outliers and noise. A 

sensor can also fail to function after being in service for certain duration. This can 

lead to data sets missing large portions of measurements. There are various 

effective statistical approaches that can be used to treat outliers and noisy 

measurements. Some of the most commonly used techniques in the SHM domain 

that are also employed in this research are covered.  

Outlier removal 

There are two fundamental approaches to managing outliers:  

 exclude them from further analyses, or  

 replace them with appropriate values.  

In the former approach, excluding an outlier measurement from one sensor 

usually also requires the exclusion of measurements collected by other sensors 

at the same instant of time. This leads to loss of useful data. For this reason, the 

latter approach, where outliers are replaced by appropriate substitutes, is 
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employed in this study. Following a preliminary evaluation of outlier replacement 

techniques [121] such as three-σ analysis and interquartile range (IQR) 

technique, the IQR technique is chosen to manage outliers in this study. This 

technique is also shown to outperform other outlier detection techniques in an 

earlier study by [121]. The IQR technique uses the statistics of data within a 

moving window to determine the outliers in a time-series and replace them with 

suitable values as follows. The value in the middle of a window is evaluated 

against thresholds defined based on the statistics of the data in that window. If 

the value exceeds the bounds of the thresholds, it is classified as an outlier. A 

value classified as an outlier is replaced by the median value for the moving 

window [121]. The optimal size of the moving window is dependent on the data 

set. Guidance on choosing appropriate values for this parameter is provided 

along with the case studies in later chapters. 

Measurement smoothing 

Measurements from full-scale structures have a degree of measurement noise 

depending upon the quality of sensors. Measurement time histories can be 

smoothed using moving average [191] and low-pass filters [192], [193] to remove 

the effects of measurement noise. In quasi-static monitoring, effects of traffic 

loads or daily temperature variations can also be perceived as noise in the 

measurement time histories. Smoothing signals can remove these effects and in 

the process may lead to loss of information that is critical for anomaly detection 

at a later stage. Therefore care must be taken during selection of the smoothing 

technique and its related parameters. In this research, the moving average filter 

(MAF), which is a widely-used smoothing technique for time-series, is selected to 

smooth measurements. The main input parameter to MAF is the length of the 

moving window, which determines the degree of smoothing. Figure 4.2 

graphically illustrates the effects of smoothing using different window sizes. Using 

a window size of 30 days can generally eliminate diurnal temperature variations, 

while a window size of 1 day will have only a negligible effect on them (Figure 

4.2). 
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Figure 4.2 Measurement smoothing with different moving window sizes 

Missing data 

In long-term monitoring, measurement time-histories are seldom continuous. 

There can be gaps in the time-histories due to reasons such as loss of power 

supply or malfunctioning sensors. In worse cases, a time-series of measurements 

may be rendered useless by the permanent loss of a sensor. For example, if a 

sensor that measures response such as a strain gauge is damaged, a 

replacement is unlikely to provide measurements that can be combined with the 

previously collected data. Measurement interpretation techniques must therefore 

be capable of dealing with measurement time-histories with missing data. One 

approach to deal with missing data is to impute the time-series with appropriate 

data [123]. A second and simpler approach is to ignore time-steps corresponding 

to missing data altogether from the reference period. Most measurement sets 

used in this research do not suffer this problem and hence issues arising from 

missing data are only briefly touched upon and investigated.  

4.2.3 Training and test sets  

An approach for model generation that is based on statistical regression 

techniques requires training and test datasets. Training sets refer to data used to 

train the regression models. Therefore training sets have to be chosen to cover 

the full range of expected variability in the data. Test sets are the data upon which 

the accuracy of the regression models are evaluated. As for a training set, a test 

set that covers the full range of variability in the data is ideal for assessing the 

performance of the model. Refinements to the model are often made based on 

the performance of the regression models on the test sets.  
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There are many ways of forming training and test sets from the measurements 

taken over the reference period. The most common approach is to create training 

and test sets of equal sizes by dividing the available data into two halves. This 

may however not be suitable when limited data is available for model generation. 

For example, when a reference period of only one year is available, a training set 

corresponding to six months of measurements may not be appropriate as it may 

not cover the full range of seasonal variability in measurements. In such a 

scenario, a better option is to have a training set with data selected across the 

whole year. This research will offer recommendations on forming training and test 

sets in later chapters when illustrating the developed methodology on case 

studies. 

4.2.4 Thermal inertia effects 

The term thermal inertia refers to the phenomenon of temperatures in certain 

parts of a structure lagging behind ambient temperatures and temperatures in 

other regions of the structure. This is common in concrete and masonry bridges, 

which are more voluminous than metallic structures and have high thermal mass 

and low thermal conductivity. In these bridges, material temperature varies not 

only in the longitudinal direction of a structural element but also across the depth 

and breadth of the element [194].  

Thermal inertia can have visible effects in measurement time-histories. To 

consider an example, take the case of concrete girder bridges. Internal 

temperatures within a concrete girder can be higher than the surface 

temperature, especially late in the evenings when the ambient temperature has 

fallen. If strains are measured from within the girder and temperatures taken on 

the surface, then strain measurements will reach their daily maximum after 

temperatures have peaked for the day. Therefore, a methodology to predict 

strains from temperature measurements must account for this temporal 

correlation between response and prior temperature measurements.  

Hua et al. [195] proposed a “dynamic” approach to capture the effects of thermal 

inertia in their research investigating the relationship between vibration modes 

and ambient temperatures. An approach that is inspired by [195] work is adopted 

in this research. The proposed methodology accounts for thermal inertia effects 

in response by providing both current (Di) and former temperature (Di-j) 
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measurements as input to the regression models. Here, i refers to the most recent 

measurement time-step and i-j to one that is j time-steps prior to i. Di and Di-j are 

the measurement sets corresponding to the two time-steps. This relationship 

between Di and Di-j is graphically illustrated in Figure 4.3. From here onwards, j 

is referred to as the thermal inertia parameter.  

 

Figure 4.3 Thermal inertia parameter j 

4.2.5 Dimensionality reduction 

Reducing the dimensionality of data-sets can help speed up the model generation 

process and also lead to robust regression models. Principal component analysis 

(PCA) [196] is a widely-employed statistical technique that takes advantage of 

inherent correlations between variables in the data-set for dimensionality 

reduction. It first involves finding a set of principal PC vectors that define an 

orthogonal transformation from the original set of linearly-correlated variables to 

a new set of uncorrelated variables. The PCs are sorted according to their ability 

to capture the variability in the original data. Then, the first few PC vectors, usually 

only a handful, which capture almost all the variability in the original data, are 

chosen to transform the raw data to a low-dimensional PC space. 

In this research, PC vectors are first estimated from measurements taken from 

all temperature sensors over the reference period. The transformed data is then 

given as input to the regression models for thermal response prediction. 

Dimensionality reduction can, however, negatively impact the accuracy of the 

regression models as there can be information loss depending upon the chosen 

number of PC vectors. Therefore, this research also investigates the relationship 

between the number of chosen PC vectors and the performance of the generated 

regression models. 
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The general equation describing PCA is as follows: 

𝐷 = 𝑋𝑃𝑇 + 𝑀 (4.1) 

D, X, P and M are matrices where D stands for the original data set; X for the 

scores, i.e., the equivalent values in PC space; P for the set composed of chosen 

PCs and M for the mean values of the variables comprising the data-set D.  

As applied to this work, matrix D of size n×m represents a time-series of 

temperature measurements with m and n denoting the number of temperature 

sensors and measurements respectively. X of size n×m denotes a matrix of 

scores, which are essentially the equivalent values of D in PC space. The first 

few number (c) of PCs such that c<<m are chosen to transform the data into PC 

space. This is performed as follows: 

𝑋 = (𝐷 − 𝑀)𝑃 (4.2) 

Here X represents the temperature measurements transformed into PC space 

and is of dimensionality n×c. X, instead of D, constitutes the input to the 

regression models that are discussed in the next step. Chapter 6 investigates the 

effectiveness of dimensionality reduction for the interpretation of large datasets. 

4.2.6 Regression algorithms 

Many supervised learning algorithms are capable of generating statistical models 

that capture the relationship between multiple independent variables 

(temperature) and a single dependent variable (response). In this research, the 

following four supervised learning algorithms are investigated for thermal 

response prediction: 

 Multiple linear regression (MLR) [197], [198]; 

 Robust regression (RR) [121], [177]; 

 Artificial neural networks (ANN) [143], [199]; 

 Support vector regression (SVR) [200], [201]. 

The above set of algorithms is chosen for the variety they present in terms of 

computational complexity and due to their previous applications to interpreting 

measurements in the field of SHM.  
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Multiple linear regression 

MLR is fundamentally an extension of the concept of simple linear regression. In 

simple regression, available measurements of a dependent variable and an 

explanatory variable are used to generate a function that can later be used to 

forecast values for the dependent variable given values for the explanatory 

variable. However, in many engineering scenarios, multiple explanatory variables 

may have to be taken together to accurately predict values for a dependent 

variable [202] and this is accommodated by MLR. The general form of a MLR 

model can be given in terms of the following equation relating the dependent and 

the explanatory variables: 

𝑦𝑝 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 (4.3) 

𝑥1, 𝑥2 . . . 𝑥𝑘 are explanatory variables; k is the number of explanatory variables; β0 

is the intercept and (β1,β2 … βk) are regression weights. The values for βi are 

computed to minimize an error function based on least-squares estimates. In this 

research, (x1, x2, … , xk) represent the equivalent values in PC space for the 

temperature measurements recorded by available sensors. 𝑦𝑝 represents the 

response predicted at a sensor location.  

Robust regression (RR) 

Regression techniques typically use a least-squares fitting criterion to identify 

values for the parameters in the regression model. However, this criterion is 

known to be sensitive to the presence of outliers in the datasets and may 

therefore lead to models that are not robust [203]. RR mitigates this problem by 

employing a fitting criterion that eliminates outlier-induced bias in the regression 

model. This criterion is often implemented as a weighted least-squares function 

where weights are assigned to individual data-sets. The values for the weights 

are determined in an iterative manner. Initially identical values are assigned to all 

of them. In subsequent iterations, new values are chosen for the weights based 

on the errors in model predictions such that higher values are given to data-sets 

that produce more accurate predictions. This process is terminated when there 

are minimal changes to the values of the weights between iterations. 

Artificial neural networks 

ANNs [204], which are inspired by biological neural systems, are a powerful way 

of producing nonlinear regression models between a number of input and output 
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parameters using large numbers of training sets. A neural network consists of 

neurons that are interconnected in various layers as shown in Figure 4.3. The 

connections between the neurons have weights associated with them and these 

are calibrated during training to capture the actual relationship between the input 

and output parameters.  

 

Figure 4.3 Architecture of a neural network 

In this research, ANNs are simulated using MATLAB’s [205] neural network 

toolbox. A key step is the selection of an appropriate architecture of the network 

that maximizes its efficiency, i.e., use low computational resources while 

achieving high prediction accuracy [206]. Similar research in SHM on the 

application of ANN for data interpretation recommend using a hidden layer 

composed of between 3 and 30 neurons [14], [207]. The number of neurons for 

the hidden layer can also be estimated as N1/3 based on a general rule-of-thumb, 

where N is the number of input points [208].  

This study uses a multi-layer feed-forward neural network that implements the 

back-propagation rule [209]. It has one hidden layer and one output layer. The 

output layer has a single linear neuron. The optimal number of neurons for the 

hidden layer is found through a trial and error approach that gradually increases 

the number of neurons while evaluating the performance of the ANN on both 

training and test sets. A hidden layer of 5 to 10 neurons is observed to produce 

consistently good results. The input parameters to the ANN are PC vectors 
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computed from distributed temperature measurements. The output parameters 

are response values (e.g. strains, tilts) at specific locations on the structure.  

Support vector regression 

SVR is chosen in this research due to its many successful applications for 

anomaly detection in diverse subjects such as computer networks, finance and 

medicine [210], [211]. In the domain of SHM, Shengchao et al. [212] proposed a 

SVR-based fault detection method to detect anomalies in the structure of F-16 

fighters without requiring prior measurements indicative of faulty conditions. 

Other applications in SHM include structural integrity assessment [193] and 

structural system identification [155]. 

SVR uses the same features that are central to support vector machines (SVMs) 

[213]. In SVMs, datasets are often first transformed to a higher dimensional 

feature space using a kernel function [214]. Optimisation is then used to find the 

hyperplane that best separates datasets in this transformed feature space. The 

vectors that define the hyperplane are referred to as support vectors. The process 

of finding support vectors can be computation-intensive due to the tuning required 

as well as the quadratic optimisation that is involved. In comparison to SVM, the 

only addition in SVR is a loss function that determines the degree of complexity 

and generalisation provided by the regression. 

As for any machine learning technique, the core task in developing a regression 

model is to find model parameters that minimise the prediction error. The 

sensitivity of the SVR model is greatly dependent on the value specified for a 

model parameter ν, which determines the number of support vectors and the 

number of bias support vectors [215], [216]. In addition to ν, values for two other 

parameters – a regularization constant (C) and gamma (γ), that also affect the 

performance of the SVR model have to be specified. Fivefold cross-validation is 

employed to evaluate the best values for C and γ. In this procedure, the reference 

data set is split into five equal parts such that one part constitutes a test set and 

the other four parts constitute training sets. The values for C and γ are chosen 

such that they maximise the coefficient of determination R2, also called the 

squared correlation coefficient, which is derived as follows: 

𝑅2 =
1−∑ (𝑦𝑝𝑖−𝑦̅)

2𝑛
𝑖=1

∑ (𝑦𝑟𝑖−𝑦̅)2𝑛
𝑖=1

, 𝑖 = 1, 2, … , 𝑛  (4.4) 
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ypi and yri represent the predicted and measured thermal response such as strain 

or displacement at the ith measurement time-step, and n is the number of 

observations. 𝑦̅ refers to the mean of the data in the training set.  

Lastly, several types of kernel functions such as radial basis function (RBF) 

kernels and linear kernels can be considered. Each kernel function requires 

tuning of parameters C and γ. Only linear kernels are used in this research since 

they have been observed to give the best performance on data generated by FE 

models [217]. These kernels are observed to require comparatively less time to 

construct models and also offer higher prediction accuracy over RBF kernels. 

4.2.7 Model evaluation 

Model generation is an iterative process. The iterations can be performed not 

only over the type of regression algorithm but also over other steps in the model 

generation phase such as formation of training sets and data pre-processing. The 

purpose of the iterations is to improve regression model performance. The 

performance of various regression models are compared in terms of the root 

mean squared error (RMSE) 𝑒y̅, which is computed using the following equation: 

𝑒𝑦̅ = √(
1

𝑛
∑ |𝑦𝑝𝑖 − 𝑦𝑟𝑖|

𝑛
𝑖=1 ) , 𝑖 = 1, 2, … , 𝑛 (4.5) 

The iterations are stopped when the improvement in prediction accuracy is 

judged to be small. This requires a degree of engineering judgement and can be 

related to the range of variability in the measurements as will be shown in later 

chapters. Models, which show good performance, are chosen for the model 

application phase. 

4.3 Model application 

The model application phase is a two-step process (see Figure 4.1). It includes: 

1. pre-processing of newly collected measurements,  

2. dimensionality reduction, and 

3. prediction of thermal response using the selected regression models.  

Newly collected measurements can be erroneous or error-free. These are hence 

treated for outliers and noise using the same techniques that are employed in the 

model generation phase. A measurement cannot be classified as an outlier 



Chapter 4: Prediction of thermal response 

84  

without having knowledge of the measurements that follow it. This is also evident 

from the fact that IQR technique and MAF, which employ a moving window 

concept, can only process measurements up to a time-step m such that 𝑚 < 𝑖 −

𝑙
2⁄  where i is the current measurement time-step and l is the length of the moving 

window.  

Missing temperature measurements can be predicted and replaced. Statistical 

models predicting temperature of one sensor from the other temperature sensors 

can be created for this purpose. However, this is not explored in this research.  

The pre-processed measurements along with any prior measurements, as 

required for accounting for thermal inertia effects, are then transformed into PC 

space using Equation (4.3) and the same PC vectors chosen in the model 

generation phase (see Section 4.2.4). These are then given as input to the model 

identified in the model generation phase to predict the response at the current 

time-step. Model predictions are then compared with measured response to 

determine the prediction error (PE) (Equation 4.6). 

𝛥𝑦𝑖 = 𝑦𝑝𝑖 − 𝑦𝑟𝑖, 𝑖 = 1, 2, . . . , 𝑛 (4.6) 

𝛥𝑦𝑖 is the prediction error. PE time-histories are hereon referred to as PE signals. 

These are then analysed using anomaly detection methodologies introduced in 

Chapter 5. 

4.4 Discussion and conclusions 

In this thesis, the performance of the regression algorithms that are briefly 

described in Section 4.3 are investigated for thermal response prediction. There 

are however many other regression algorithms such as multivariate polynomial 

regression and multivariate adaptive regression splines, and other approaches 

such as ensembles [177], [206] and hybrid regression methods that combine, for 

example, genetic algorithms with regression approaches [218]. Investigating all 

of these methods is not within the scope of this research.  

In a preliminary investigation, this research has validated the methodology for 

thermal response prediction on simulated measurements from finite element 

models. The results from this investigation are provided in Appendix A and have 

also been published in [201]. These results support the original premise behind 



Chapter 4: Prediction of thermal response 

85 

this work that thermal response of structures can be predicted from distributed 

temperature and response measurements.  

Preliminary conclusions drawn from the development of the RBTRP methodology 

are listed below:  

 The RBTRP methodology is a generic regression-based approach to 

predict thermal response from distributed temperature measurements.  

 The generation of regression models is an iterative process with a degree 

of automation. However, engineering judgement is required in a few 

stages such as for data pre-processing and for selecting the best-fit 

statistical models.  

 Dimensionality reduction using PCA offers a mechanism to reduce the 

number of input parameters for models for thermal response prediction. 

 The model application phase of the RBTRP methodology is setup to 

predict near real-time response using distributed temperature 

measurements.  
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Chapter 5:  Anomaly detection 
methodologies 

This chapter describes how prediction errors (PEs), which are computed in the 

model application phase of the RBTRP methodology, are used for anomaly 

detection. The PEs computed for a given sensor location are assembled together 

chronologically to form a signal. The hypothesis for anomaly detection is that 

changes in the patterns of PE signals can indicate anomalous structural 

behaviour. This chapter introduces the anomaly detection methodologies that are 

evaluated in this research. Methods that can be employed to determine the 

confidence interval, which specify baseline conditions of a signal, are presented. 

Anomaly detection techniques are compared on their ability to identify the location 

of damage, in addition to their sensitivity to changes in structural performance. 

5.1 Introduction 

A key objective of the data-driven TB-MI approach is to detect anomalous 

structural behaviour from collected measurements. Traditional anomaly detection 

techniques essentially compare patterns derived from new measurements 

against measurement patterns observed during a reference period to detect 

deviations from normal behaviour. In this research, prediction error (PE) signals 

generated by the model application phase of the RBTRP methodology are 

analysed using signal processing techniques to detect anomalous structural 

behaviour. The reference period for anomaly detection is kept the same as the 

period used for training regression models in the RBTRP methodology. Patterns 

in the PE signals during the reference period are assumed to represent the 

baseline conditions of the structure. An anomaly is said to be detected when the 

deviations in measurement patterns, which are evaluated in relation to patterns 

present during the reference period, exceed confidence bounds determined 

based on the characteristics of the baseline patterns.  

An anomaly detected by a data-driven approach such as the proposed TB-MI 

approach may not necessarily imply a change in structural performance. 

Anomalies can also be due to factors unrelated to structural performance such 
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as a traffic jam or a sensor malfunction. Therefore classifying all anomalies as 

damage or a change in structural performance can lead to false alarms. This 

chapter, therefore, first discusses the various possible reasons for anomalies in 

PE signals and proposes ways of distinguishing false alarms from anomalous 

structural behaviour. 

5.2 Types of anomalies/damages 

Table 5.1 lists events that can be detected as anomalies by anomaly detection 

procedures, and consequences of the events in terms of its impact on structural 

safety and on the costs of bridge management. The table lists six types of events, 

which are sorted according to the level of urgency with which engineering 

interventions may be required. These types of events are described in greater 

detail below. 

Table 5.1 Examples of anomaly events in bridges. 

Event # Description of event  Consequence 

1 A malfunctioning or faulty 

sensor 

No threat to the structure, however, 

sensor may need replacement. 

2 Structural repair and 

maintenance works (e.g. 

strengthening) 

Can change structural properties (e.g. 

stiffness); baseline conditions, which 

were established prior to maintenance, 

may no longer be valid. 

3 Damage to non-load bearing 

elements, e.g., damaged 

guardrail or parapet. 

This event is unlikely to compromise the 

integrity of the bridge, though 

maintenance may still be required. 

4 Abnormal loads (e.g. traffic 

jams) 

No action may be required as they are 

temporary phenomena posing no 

danger to the bridge. 

5 Gradual deterioration (e.g. 

failure of prestressing tendons 

due to corrosion) 

Detecting the onset of deterioration and 

tracking its evolution is essential to plan 

and prioritize interventions.  

6 Instantaneous damage to a 

load bearing element, e.g., a 

ship striking a bridge pier.  

The bridge may need to be inspected 

and repaired depending on extent of 

damage. 
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Event #1: One of the most common causes of anomalies is sensor malfunction. 

Sensors, exposed to harsh environmental conditions, may malfunction for the 

following reasons: 

 loss of or inefficient power supply, 

 damage to sensors (e.g. vandalism), and  

 poor installation. 

The effects of sensor malfunction could be reflected in measurements in a 

number of ways: gradual drift in measurements, increased number of outliers and 

higher levels of noise. Sensor malfunction can be distinguished effectively from 

other anomalous events using anomaly detection techniques, as will be 

demonstrated in later chapters.  

Event #2: Structural maintenance and repair work can alter measurement 

patterns. For example, when a bridge is strengthened, the structure will become 

stiffer and consequently, measurement patterns will also change to reflect the 

increase in stiffness. Such changes can be detected as anomalies but are unlikely 

to be of major concern to bridge operators, as they only confirm the performance 

of the maintenance intervention. 

Event #3: Anomalies can indicate damage to secondary structural elements, i.e. 

non-load bearing elements. Such events, however, do not pose a risk to the 

integrity of the bridge, and may not require major structural interventions. On the 

other hand, repairing non-load bearing elements may be important for other 

reasons such as road safety and traffic management.  

Event #4: This event type is intended to describe unusual events of short 

durations. For example, the effects of abnormal loads such as from traffic jams 

due to network disruptions may be detected as anomalies in measurements, 

especially if such scenarios were not encountered during the reference period. 

However, such events are temporary, and as long as the structure reverts to its 

original state after the events, there may be no real concern to structural safety.  

Event #5: This event type refers to commonly occurring damage or deterioration 

(e.g. corrosion, fatigue), which evolves slowly over long timescales. At the stage 

of their onset, damage or deterioration in structural elements may affect only 

marginally a bridge’s structural performance. They can also be masked by 
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variations in operational and environmental conditions. However, changes in 

measurement patterns can be discerned if measurements are interpreted 

appropriately. Early detection of such events, and tracking of their evolution can 

enable effective planning of interventions. 

Event #6: This type refers to short duration events that abruptly alter the structural 

performance of a bridge. For example, a collision of a ship with a bridge pier can 

result in permanent damage to the pier. The effects of the collision and the time 

of the event may be evaluated from the perceived changes in measurement 

patterns.  

The six types of events described above, while not necessarily comprehensive, 

summarize to a large extent the classes of events that may be detected as 

anomalies. A bridge is considered to act as a well-connected structural system. 

The majority of the event types require a level of engineer input to determine the 

course of action. For example, in order to determine that event #4 is not related 

to a change in structural performance, knowledge of the abnormal loads on the 

structure may be required. However, some events may be recognizable without 

engineer’s intervention. For example, a malfunctioning sensor can often be 

identified from the large deviations in its measurement patterns in comparison to 

those from other sensors, which are functioning properly and thus show no 

changes in patterns. 

5.3 Anomaly detection methodology 

This section describes the anomaly detection methodology proposed as part of 

the TB-MI approach (see Figure 3.7 and Figure 4.1). A schematic diagram of the 

anomaly detection process is shown in Figure 5.1. Similarly to the RBTRP 

methodology, the anomaly detection methodology has two phases. Initially, 

baseline conditions of a bridge are identified in the form of patterns derived from 

the PE signals corresponding to the reference period. This phase is represented 

as baseline condition identification in Figure 5.1. Subsequently, PEs computed 

from newly collected measurements and predicted response are examined for 

anomalies. This phase is shown as real-time anomaly detection in Figure 5.1. 
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Figure 5.1 Flowchart of anomaly detection process 

The baseline condition identification phase includes the following steps: 

1. Pre-processing of PE signals: PE signals are pre-processed for outliers 

and noise. The same techniques, which were adopted for measurement 

pre-processing in the RBTRP methodology, are employed.  

2. Selection of the anomaly detection technique: A suite of signal processing 

techniques are employed to interpret PE signals. The techniques can be 

classified under the following two categories.  

a) Univariate signal analysis. Signal processing techniques in this 

category analyze the PE signal for each sensor individually. These 

techniques are useful to detect faulty sensors or damage that is very 

local to a sensor. This research investigates only one such technique 

- moving fast Fourier transform (MFFT).  

b) Multivariate signal analysis. These techniques enable integrated 

analysis of time-series of several parameters. These are useful for 

data interpretation in large, complex structures that have vast numbers 

of sensors. In such structures, clustering sensors into groups 

according to their correlations or other metrics, and then analyzing 

these clusters for changes in correlations can reveal damages [219]. 

3. Selection of the training set: Similar to the RBTRP methodology, a training 

set is specified for the chosen anomaly detection technique. The PE 

values in the training set are used to derive key features as described in 

the next step.  

4. Generation of statistical features: All signal processing techniques used 

for anomaly detection in this research rely fundamentally on statistical 

features, which define the patterns in the PE signals. In this step, these 
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features that are tracked by the chosen signal processing technique are 

evaluated from the values for the PE signal in the training set.  

5. Determination of confidence bounds: This step involves evaluating 

confidence bounds or thresholds for the statistical features identified in the 

previous step. The bounds are determined probabilistically based on the 

values for the PE signal in the reference set. 

The real-time anomaly detection phase, which denotes the application of signal 

processing techniques for online anomaly detection, includes the following three 

steps: 

1. Pre-processing of PE values: PE values are pre-processed as in the 

baseline condition identification phase. 

2. Computation of statistical features: This step involves computing values 

for the statistical features used in the selected anomaly detection 

technique from PE values evaluated for newly collected measurements.  

3. Classification of new measurements: This step evaluates if patterns 

derived from PEs are within the establish confidence bounds, and based 

on this evaluation, classifies new measurements as representative of 

either anomalous or normal structural behaviour. 

Figure 5.2 graphically illustrates the classification step, which is described above 

as the last step in real-time anomaly detection phase, on an arbitrary PE signal. 

An anomaly is likely to indicate damage when the feature tracked by the anomaly 

detection technique departs irreversibly outside of the confidence bounds. 

Confidence bounds for the statistical features can be defined assuming the 

parameters of the features are Gaussian variables. For example, they can be 

specified as [μ-nσ, μ+nσ], where μ and σ are the mean and standard deviation of 

the values for the PE signal during the reference period, and n is an integer value 

greater than zero. Defining confidence bounds closer to the mean value of the 

signal, i.e. by choosing a small value for n, will increase the likelihood of false-

positives and false-negatives. In contrast, larger threshold bounds, i.e. by 

choosing large values for n, will imply that only damage events of high severity 

are detected [161]. Commonly used values for n are 3 and 6, which correspond 

to confidence levels of 99.73% and 99.99% assuming that the signal is 

representing a Gaussian process [121], [177], [178]. Therefore, the specification 
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of threshold bounds, and by implication, selection of the training set has to be 

done prudently.  

 

Figure 5.2 Determination of baseline conditions 

The classification step, as illustrated in Figure 5.2 and discussed above, is 

structured in a simplistic manner, although, in reality, it can be more complicated. 

This step can be related to visualizing results for bridge operators, and therefore 

careful consideration has to be given to how the results from anomaly detection 

are presented. For example, the classification step can be probabilistic in nature 

and suggest the likelihood that new measurements are representative of 

anomalous structural behaviour. However, this research focuses only on the 

application of anomaly detection techniques; human-computer interaction and 

results visualization are considered outside the scope of this work. 

5.4 Signal processing techniques 

The previous section noted that signal processing techniques can be classified 

into two categories depending upon whether they perform univariate or 

multivariate signal analysis. In the context of this research, they can be 

considered as techniques that exploit and do not exploit spatial correlations 

between response, since each PE signal corresponds to a sensor at a specific 

location on the structure. Similarly, signal processing techniques can also vary 

according to their usage of temporal correlations in data. Techniques that do not 

employ temporal correlations rely primarily on spatial correlations in data. These 

techniques process PE values evaluated for measurements collected at each 

instant of time in isolation. An example of such a technique is cointegration. 

Signal processing techniques that use temporal correlations analyze PE values 
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computed for new measurements in combination with PE values corresponding 

to a sequence of prior measurements. These techniques can also integrate 

spatial correlations between PE values. Examples of such techniques are moving 

fast Fourier transform and moving principal component analysis. 

Signal processing techniques that utilize temporal correlations often employ the 

concept of a moving window, which is illustrated in Figure 5.3 using an arbitrarily 

chosen PE signal. Data within a moving window are analysed together. Every 

time new measurements are collected, the window slides forward in time to 

include the newly collected data. Also, statistical features that determine anomaly 

detection in such techniques are extracted for the data in the moving window. 

Choosing an appropriate value for the length of the moving window is important. 

While the effects of signal noise on the anomaly detection decrease with 

increasing length of the moving window, time to detect an anomaly increases. 

This phenomenon is considered in the case studies. The length of a moving 

window (lmw) is specified generally as a function of the length of the reference 

period (lrp).  

 

Figure 5.2 Moving window technique. 

In the following sections, signal processing techniques, which are grouped as 

univariate and multivariate signal analysis techniques in this research, are 

described.  
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5.4.1 Univariate signal analysis 

These signal processing techniques analyse each PE signal individually, and are 

hence appropriate for detecting faulty sensors or anomalies in a univariate signal. 

The interpretation of a single signal also requires less computational effort than 

integrated analysis of multiple PE signals.  

Moving fast Fourier transform (MFFT) 

Fourier transforms are generally used to transform signals from time domain to 

frequency domain by determining its frequency content, and also the relative 

magnitudes of the various frequencies [220]. Moving fast Fourier transform 

(MFFT) is the fast Fourier transform of a moving window of data points from a 

time series, which in this case is the PE signal. When applying MFFT for anomaly 

detection, the frequency content of the PE signal is tracked to identify changes in 

structural performance. Specifically, the amplitude of the lowest frequency 

component is considered in this research. An example of the application of MFFT 

is illustrated conceptually in Figure 5.3. In this example the same PE signal as in 

Figure 5.2 is used. Guidance on the optimal choices for the lengths of the training 

set and reference period will be provided in later chapters when evaluating the 

performance of the technique on real-life measurements. 

 

Figure 5.3 Application of the MFFT on a PE signal 
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5.4.2 Multivariate signal analysis 

The measured response at a particular location of a bridge is often correlated 

with other response measurements taken in its vicinity. Multivariate signal 

processing techniques take advantage of spatial correlations in signals. They can 

be superior to univariate signal analysis techniques when evaluating strongly 

correlated signals such as from SHM. As already shown in the literature review, 

anomalies are often hidden by variations introduced by external effects such as 

ambient temperature changes. Multivariate signal analysis techniques are 

capable of resolving such environmental and operational variations by using 

spatial correlations. This research employs three multivariate signal processing 

techniques: signal subtraction method, moving principal component analysis and 

cointegration.  

Signal Subtraction Method 

Signal subtraction method (SSM) is a novel technique proposed in this research, 

wherein two PE signals are linearly combined to generate a new signal, which is 

then analysed for anomaly detection. Mathematically, it is applied as follows.  

𝑇𝑘𝑙 =  (
𝑤𝑘

𝑟𝑘
) 𝛥𝑦𝑘 − (

𝑤𝑙

𝑟𝑙
) 𝛥𝑦𝑙 (5.1) 

Tkl is the new signal resulting from the subtraction process. 𝛥𝑦𝑘 and 𝛥𝑦𝑙are values 

of the PE signals corresponding to sensors k and l respectively. rk and rl are 

scaling factors for the two PE signals. These are equal to the range of signal 

values in the training period, i.e., the difference between the maximum and 

minimum values in the training period. wk and wl are weights specified according 

to the accuracies of the respective sensor and its corresponding model for 

thermal response prediction. In this study, the hypothesis is that measurements 

from all elements are equally important. Therefore weights of all PE signals are 

set equal to 1.  

Using SSM on all sensor combinations may not be computationally viable due to 

the combinatorial explosion as the number of sensors increases. However, a 

small number of sensor combinations can be chosen based on engineering 

judgment. PE signals of sensors, for which measurements are strongly 

correlated, are potential candidates for SSM.  
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Moving principal component analysis (MPCA) 

Moving principal component analysis (MPCA) was originally proposed for 

anomaly detection by Posenato et al. [175]. Its damage detection capabilities 

were shown to be superior in comparison to a number of other techniques such 

as ARIMA and wavelets [121]. MPCA is fundamentally an extension of PCA, 

which is a statistical technique to reduce the dimensionality of large data-sets 

[196]. PCA has been introduced in Section 4.2.5 of this thesis. PCA involves 

finding a set of ordered orthonormal vectors referred to as principal components 

such that a few vectors explain nearly all the variability in the data-sets (see 

Equation 4.1). Application of MPCA to a cluster of time-series essentially involves 

the iterative application of PCA over arrays of data obtained from windows 

moving incrementally over a cluster of time-series. The moving window concept 

is the same as for MFFT, however MPCA is used simultaneously on multiple 

signals (see Figure 5.3). 

In this study, MPCA is applied to a cluster of PE signals. Changes to the principal 

components will indicate changes in the correlations between the PE signals and 

hence, can imply the onset of anomalous structural behaviour. For structures that 

are monitored with a vast number of sensors, the process of clustering PE signals 

is a crucial step, and can affect significantly the performance of anomaly detection 

methodology. Posenato et al. [175] in their investigation on using MPCA to 

analyze response measurements, suggested a simple heuristic that uses the 

correlations between measurements from various sensors to arrive at the number 

and composition of clusters. The idea is to cluster measurement time-series that 

are strongly correlated, and the corresponding sensors can usually be identified 

using engineering judgment. In this research, a similar approach is used to cluster 

PE signals that are strongly correlated as described when applying the technique 

for anomaly detection in later chapters.  

Cointegration 

The cointegration technique utilizes the statistical properties of cointegrated 

signals for anomaly detection. Measurement time-series of bridges’ response 

(signals) follow diurnal and seasonal temperature trends. Such time-series can 

be classified as non-stationary processes. A non-stationary signal is said to be 

integrated to an order d, if a process of taking differences over the time-series 

repeated d times leads to a stationary signal. In mathematical notation, the order 
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of integration of a signal is often denoted by I(d). When considering a cluster of 

signals, the cluster is said to be cointegrated if there exists a linear combination 

of the component variables (measurements) that is stationary [221]. The resulting 

stationary signals are referred to as cointegrated signals. This technique, initially 

proposed and used in the field of econometrics [222], has been introduced 

recently for SHM by Cross et al. [161]. It has been shown to be useful for purging 

quasi-static effects in measurements, and has been demonstrated on a few 

benchmark problems, and on measurements from the NPL Footbridge [178]. 

The features that are tracked in cointegration, when applied for anomaly 

detection, are the cointegrated signals, which are derived as follows.  

1. Test PE signals for stationarity. Non-stationary signals are made 

stationary by integration - for engineering applications order of one (I(1)) 

[179]. Augmented Dickey-Fuller (ADF) test is used to examine the 

stationarity of a signal. In this research, rejection decisions of a given 

signal are tested using the adftest function provided in the MATLAB 

Econometrics Toolbox [221]. 

2. Select signals which have passed the ADF stationarity test. 

3. Apply the Johansen cointegration procedure [223] to examine if signals 

are cointegrated and to find suitable cointegrating vectors. In this research, 

the jcitest function in MATLAB is used for this purpose. (The reader 

can seek for more information in MATLAB Econometrics Toolbox [221].) 

4. Project response measurements in the space of cointegrated vectors. 

These projected vectors are termed cointegrated residuals. These are 

ranked according to their eigenvalues. There are n-1 cointegrated 

residuals, if n is the number of PE signals for cointegration.  

For reasons of brevity, the mathematics behind cointegration is not detailed in 

this thesis. Relevant literature can be found in [161]. 
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5.5 Summary and conclusions 

The primary goal of anomaly detection methodologies is to detect changes in 

structural performance. A secondary goal is to help identify the component that 

is responsible for the change in performance. This chapter proposed a generic 

anomaly detection methodology that is compatible with the RBTRP methodology 

presented in the previous chapter. A number of anomaly detection techniques, 

which are derived from the signal processing domain, are outlined for application 

within this methodology. The anomaly detection methodology will be evaluated 

on a number of measurement datasets from laboratory and full-scale bridges in 

the next chapter. 

The main conclusions from this chapter are as follows: 

 An anomaly is simply a sudden or gradual deviation in measurement 

patterns that is evaluated in relation to the patterns observed during a 

reference period.  

 Detection of an anomaly does not necessarily imply a change in structural 

performance. It can also indicate other events such as a sensor starting to 

malfunction or abnormal loading. 

 The proposed anomaly detection methodology can incorporate a number 

of univariate and multivariate signal analysis techniques, which take 

advantage of spatial and/or temporal statistical variations in the PE 

signals. 

 The selection of an appropriate length for the moving window is critical for 

techniques such as MPCA and MFFT in order to ensure sufficient 

sensitivity to changes in structural performance.  

 The size of the confidence bounds can be defined based on the statistics 

of the chosen features during the reference period.  

In Appendix A, results from a pilot study of the TB-MI approach are presented. 

Multiple damage scenarios are simulated on a numerical model of a concrete 

girder. The MFFT technique, described in this chapter, is used to assess PE 

signals for anomalies. Results from this pilot study, which demonstrated the 

feasibility of the TB-MI approach, have been published in [201]. 
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Chapter 6:  Case studies 

The TB-MI approach and its components including the RBTRP methodology and 

anomaly detection techniques were introduced in Chapters 3, 4 & 5. This chapter 

investigates the performance of the TB-MI approach on the following three case 

studies.  

1. Laboratory truss (Section 6.1): The truss is designed and constructed 

specifically to develop and validate the proposed TB-MI approach. It is 

monitored with a sensing system collecting distributed temperatures and 

response. Several damage scenarios are also created to investigate 

anomaly detection. 

2. The NPL Footbridge (Section 6.2): The footbridge was setup as a test-bed 

to evaluate various SHM methodologies. This research employs 

measurements from this structure to evaluate if the developed 

methodology can be scaled up to full-scale bridges.  

3. The River Trent Bridge (Section 6.3): This bridge is part of a motorway 

over the River Trent floodplain. Piers of the bridge have been monitored 

since 2004 due to deterioration of concrete in the foundations. In this 

research, the TB-MI approach is employed to interpret measurements 

collected from this structure. 

In addition to the above three case studies, a fourth case study is used to illustrate 

a model-based approach to consider thermal response. A physics based (PB) 

model of a steel box-girder bridge - the Cleddau Bridge (Section 6.4), is employed 

to explore temperature induced deformations at bridge bearings in order to 

understand the reasons for their failure. 

  



Chapter 6: Case studies, Laboratory truss 

102  

6.1 Laboratory truss 

A truss with geometry similar to those commonly used in short span railway 

bridges has been fabricated at Exeter to serve as a laboratory-scale structure for 

this research. The truss, as set up at the beginning of the monitoring project, is 

shown in Figure 6.1. All members of the truss are made of aluminium. Aluminium 

is chosen over steel for the structure since it has a much higher value for 

coefficient for thermal expansion (α = 23.1×10⁻⁶ K⁻¹), almost twice as for steel. 

Therefore, thermal strains in an aluminium structure will be nearly double that for 

a steel structure of the same size. The aluminium structure will also show a larger 

range of variations in structural response. This is beneficial when attempting to 

understand temperature effects using models of reduced length-scales in the 

laboratory.  

Two channel sections, each of size 55mm×25mm×3mm are placed together to form 

the shape of an “I”, form the top and bottom chords, and also the diagonal 

elements at the two ends, which connect the top and bottom chords. The other 

vertical and diagonal elements are made up of flat bars: first five (from left to right 

in Figure 6.1) are of size 32mm×3mm, the other four - 51mm×3mm. Elements of the 

truss are interconnected using joints consisting of six high strength steel bolts. In 

addition to these joints, the top and bottom chords have a splice joint 250mm 

from the centre of the truss (see the connection in Figure 6.1).   

The truss has a length of 3.2m and a height of 0.55m. The left support of the truss 

is fully fixed (i.e. clamped to prevent both rotations and translations). This is 

achieved by connecting the left end of the truss to a concrete block that is firmly 

attached to the steel floor. In a similar manner, the right support is also initially 

configured to act as a fully fixed support but the boundary condition can be 

modified to simulate a roller support (i.e. allow for horizontal translation).  
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Figure 6.1 Photograph of the truss, with zoomed-in views of connection and 

support details. 

The truss is located and monitored in the structures laboratory. The monitoring 

system has been enhanced gradually, and modifications made to the truss during 

the course of this project. These are detailed in later sections. The structures lab 

is open to the outside environment. Hence the ambient temperature in the lab is 

the same as the outside air temperature. However, variations in ambient 

conditions happen in time-scales that are too long in relation to the planned 

duration of this project. Understanding quasi-static effects on the truss due to 

changes in ambient conditions would require measurements taken over at least 

a year in order to capture seasonal variations in temperatures. Furthermore, the 

truss being a lab-scale structure, which is not exposed directly to the sun and 

composed of members made up of small cross-sections, will mostly exhibit 

uniform temperature distributions. On the other hand, real-life bridges often show 

nonlinear temperature distributions that are mostly governed by exposure to solar 

radiation [224]. For these reasons, this project has opted to create artificial diurnal 

temperature cycles using a system of infrared thermal heaters. An infrared 

heater, with a maximum output of 2kW, is installed above it. The vertical and 

horizontal distances between the heater and the top-chord of the truss are 0.5m 

and 0.15m respectively (see Figure 6.2). The heater is connected to an adjustable 

timer so that it is switched on and off automatically after pre-defined time 

intervals. 
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The truss, with all of its components, monitoring system and environmental 

conditions, is designed specifically to evaluate the proposed TB-MI approach. 

This section provides results from studies conducted on measurements from this 

truss in order to evaluate the performance of: 

1. the RBTRP methodology, and  

2. the anomaly detection methods. 

The experimental setup evolved during the course of this research, for example, 

by changing boundary conditions, adding more sensors and having more infrared 

heaters, and these changes are stated when describing the data used for 

performance evaluation. The initial stage of the research focused on using 

measurements from the truss to validate the RBTRP methodology. 

6.1.1 Feasibility evaluation of the RBTRP methodology 

This section describes the experimental setup of the truss and the collected 

measurements that are used to validate the RBTRP methodology. The following 

aspects of the methodology are investigated: 

1. the performance of regression models, and 

2. the impact of dimensionality reduction. 

Thermal inertia is not investigated for the laboratory truss since it is unlikely to 

experience this phenomenon due to its material make-up, i.e. thin aluminium 

elements that have high thermal conductivity, and also due to the small scale of 

the model.  

For this part of the study, the truss is fully fixed at both supports and an infrared 

heater, with a maximum output of 2kW, is installed above it to drive its thermal 

cycles as shown in Figure 6.2. The heater is switched on automatically for a 

period of one hour every three hours to emulate diurnal temperature variations. 

In this experiment, one simulated day thus lasts 3 hours. As shown in Figure 6.2, 

strain and temperature sensors are installed at a number of locations on the truss. 

Strain sensors are simple resistance-based strain gauges (gauge length 

6.35mm). Material temperature is monitored using K-type thermocouples and 

thermistors; both provide precise temperature measurements. These sensors are 

connected to a data-logger unit that is programmed to record measurements 

every 5 minutes. 
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Figure 6.2 A sketch of the laboratory structure showing its principal 

dimensions and the locations of installed thermocouples (TEMP-i) and strain 

gauges (S-i). 

Measurements collected over a period of 16 days are used to illustrate the 

performance of the RBTRP methodology. In total, 4590 measurements have 

been taken with each of the 15 sensors. Changes in the material temperature 

and strains are influenced by variations in the ambient temperature in the 

laboratory and by the radiation from the heater (see Figure 6.2). However 

seasonal effects are negligible; this is useful as the purpose is to first validate the 

approach, and therefore minimize the number of interfering parameters.   

The range of temperature and strain values recorded during the monitoring period 

is provided in Table 6.1 and Table 6.2. As it would be expected, the ranges of 

temperature and strain measurements are largest at the sensors closer to the 

heater (Table 6.1 and Table 6.2 – shaded columns). Data in Table 6.1 and Table 

6.2 confirm that the experimental set-up produces temperature gradients in the 

truss, which result in thermal deformations. Strains measured at sensor S-4 are 

plotted against measurements of the ambient temperature in Figure 6.3. The 

short, cyclic variations of the strains in the figure are due to the operation of the 

infrared heat lamp. The variations in the moving average of the strain time-series 

are induced by the daily variations in ambient temperature. 
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Table 6.1 Maximum and minimum temperatures from the laboratory truss 

 Temperature sensor (TEMP-i) 

i 1 2 3 4 5 6 7 8 9 10 11 

Max (°C) 20.7 21.8 24.5 21.3 21.0 21.0 22.0 30.3 28.1 20.9 21.7 

Min (°C) 14.9 15.2 15.2 15.2 16.0 15.6 15.9 16.1 16.1 16.0 16.2 

Range (°C) 5.8 6.5 9.3 6.1 5.0 5.4 6.2 14.2 12.0 4.8 5.5 

 

Table 6.2 Maximum and minimum strain measurements from the laboratory 

truss 

 S-1 S-2 S-3 S-4 

Maximum strain (×10-6) 20.1 37.1 49.6 97.1 

Minimum strain (×10-6) -24.3 -14.5 7.9 -37.1 

Range (×10-6) 44.5 51.6 41.7 134.1 

 

 

Figure 6.3 Strain measurements from sensor S-4 for the monitoring period 

(left) and a zoomed-in view for 1/10th of the monitoring period (right).  

Data pre-processing 

Raw data sets are pre-processed to handle outliers and noise. The resulting data 

is subsequently used to generate regression models. The pre-processing step is 

essential to generate regression models with high prediction accuracy. The data 

pre-processing phase is illustrated in Figure 4.1. In the first stage of this phase, 

outliers are identified and replaced with appropriate values. Moving windows of 

specified sizes are considered to determine outliers. IQR technique is used to 

classify if the value at the centre of a moving window is an outlier by comparing 
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it to other values within that window (see Section 4.2.2). Noise in measurements 

is then reduced by smoothing the data using moving averages [191]. A moving 

window of 12 measurements has been selected for both IQR and smoothing 

techniques. This has been found to replace potential outliers and average noisy 

data more efficiently than smaller or larger sized windows.  

Examples of raw and pre-processed strain and temperature measurements from 

the laboratory truss are given in Figure 6.4. Strains are often significantly noisier 

than temperatures and, hence, smoothing strain measurements is particularly 

important for generating accurate regression models.  

 

Figure 6.4 Strain and temperature measurements from sensors S-2 (left) and 

TEMP-3 (right) on the laboratory truss before and after outlier pre-processing. 

Training and test sets 

The truss is kept indoors and, therefore, not exposed to ambient effects such as 

sunlight, rain and wind. Effects of seasonal temperature variations are also 

minimal since measurements from only a 16-day period are used. Measurements 

are divided almost equally into training and test sets. Measurements taken over 

the first 7 days, which make up a total of 2000 data-points, constitute the training 

set. The remaining 2590 measurements are used to evaluate the performance of 

the four regression algorithms: MLR, RR, SVR and ANN. 

Results  

Dimensionality reduction is performed on both raw data-sets and data-sets that 

have been pre-processed for outliers and noise. Models for thermal response 

prediction are generated using all four regression algorithms. For the purposes 

of illustrating model performance, the predictions from a SVR model for strain 
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sensor S-2 that uses all PCs are plotted against measured response in Figure 

6.5. The figure shows that model predictions follow measured response closely. 

 

Figure 6.5 Predictions from a SVR model giving the response at sensor S-2 

on the laboratory truss and corresponding measured strains 

Figure 6.6 and Figure 6.7 show the relationship between average prediction error 

and the number of PCs used as input to the regression models for all four strain 

sensors and for all regression algorithms. The data points corresponding to 

minimum values of prediction errors are also circled for each sensor in the figures. 

MLR, SVR and RR lead to reliable models as evidenced by the small values for 

the average prediction error. For these regression algorithms, the largest errors 

occur when only the first PC is used. The prediction error generally decreases 

with increasing number of PCs although this relationship is not monotonic. This 

can be attributed to not all temperature measurements being strongly correlated 

to response measurements. Identifying individual temperature measurements 

that determine the response at a specific location and using only these as input 

to regression models could help overcome this weakness. The prediction errors 

for the strain sensors, which are located on the bottom chord (S-1, S-2 and S-3) 

of the truss, stabilize when two or more PCs are used; however, the prediction 

error for S-4 stabilizes only when 4 or more PCs are used. In contrast to other 

regression algorithms, the performance of ANNs varies significantly with the 

number of PCs employed for model training. The prediction error does not follow 

a definitive trend with increasing numbers of PCs as seen in Figure 6.7 (left).  
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Figure 6.6 Average strain error from post-processed data sets: MLR (left) 

and RR (right). Circled elements indicate the minimum average strain error.  

 

Figure 6.7 Average strain error from pre-processed data sets: ANN (left) and 

SVR (right). Circled elements indicate the minimum average strain error.  

Results in Figure 6.6 and Figure 6.7 show that the decrease in prediction error is 

insignificant beyond four PCs. Therefore reducing the dimensionality of data-sets 

enables using less computational time for model training while maintaining high 

prediction accuracy. This is particularly useful for structures with large numbers 

of sensors where the training of models could become time and resource-

intensive if measurements from all the sensors are used. 

The minimum average prediction errors obtained for the models generated by the 

various regression algorithms are summarized in Table 6.3. Data in the table 

show that pre-processing the data for outliers and noise has not significantly 

altered prediction accuracy. However, this is due to the laboratory conditions not 

inducing significant noise or outliers in the measurements. Results also show that 

all algorithms are capable of generating accurate and robust regression models 
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as indicated by the low values for the mean and standard deviation of the 

prediction error. 

Table 6.3 Minimum average prediction errors (×10-6 strain) of various 

regression models for various sensor locations for data-sets from the laboratory 

truss 

Algorithm S-1 S-2 S-3 S-4 Mean Standard deviation 

MLR 2.30 1.98 2.22 1.83 2.08 0.22 

MLR* 2.24 2.00 2.13 1.66 2.00 0.25 

RR 2.37 2.16 2.31 1.71 2.14 0.30 

RR* 2.29 2.16 2.19 1.54 2.05 0.35 

NN 3.17 2.52 2.16 2.66 2.63 0.42 

NN* 3.66 2.36 2.62 1.93 2.64 0.74 

SVR 2.37 2.06 2.27 1.81 2.13 0.25 

SVR* 2.30 2.14 2.12 1.59 2.04 0.31 

*pre-processed for outliers and noise 

 

6.1.2 Performance evaluation of the TB-MI approach 

After demonstrating feasibility of the RBTRP (Section 6.2.1) methodology, this 

study couples the RBTRP methodology with anomaly detection methodologies to 

evaluate the performance of the TB-MI approach. For this part of the research, 

the sensing system of the truss is enhanced with strain gauges and 

thermocouples, and the heating system is augmented by adding two more 

infrared heaters as shown in Figure 6.8. Structural response of the test-bed is 

monitored with 10 foil strain gauges. Temperatures are measured with 31 

thermocouples.  
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Figure 6.8 A sketch of the test-bed showing its principal dimensions, 

locations of heaters, thermocouples (black dots), strain gauges (S-i, where i = 

1, 2, … , 10) and the  joints (J-i where i = 1, 2, 3, 4) where damage is simulated. 

Simulated scenarios 

The TB-MI approach is evaluated on measurements from the laboratory truss, 

which is setup to simulate various scenarios that differ in the following 

parameters:  

 temperature distributions, 

 boundary conditions, and  

 damage (location and severity).   

The following two kinds of temperature loads are created using the system of 

heaters:  

1. Load case A: This refers to accelerated temperature cycles simulated 

using infrared heaters. One simulated diurnal cycle lasts 90 minutes of 

which heaters are switched on for 45 minutes. Thus 16 diurnal cycles are 

emulated per day. A thermal image of the test-bed taken shortly after 

heaters are turned off is shown in Figure 6.9. Temperatures at the top 

chord of the truss are up to 10°C higher than that of the bottom chord. This 

temperature distribution is similar to those observed in other test-beds 

[163] and full-scale structures [140]. 

2. Load case B: This corresponds to ambient temperature cycles. The 

structures lab is open to the outside environment. Hence the ambient 
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temperature in the vicinity of the test-bed resembles the outside air 

temperature.  

Note that Load A cannot be applied in isolation as ambient effects are always 

present. Thus there are two possible load combinations: (A+B) and B.  

 

Figure 6.9 Temperature distribution captured with thermal imaging camera 

In this experiment, response and temperature measurements are recorded at 

10-second intervals for load case (A+B) and at 1-minute intervals for the load 

case B. The measurement frequency has been reduced for the load case B since 

temporal changes in temperature distributions due to ambient effects alone are 

relatively gradual. Measurements can however be down-sampled later for 

measurement interpretation.  

The boundary conditions for the right support of the truss can be modified to either 

of the following:  

(i) a fixed support, or  

(ii) a roller support. 

These boundary conditions, when combined with the two temperature load 

cases, form three different structural scenarios as listed in Table 6.4. 

Measurements for scenarios X and Y are collected for approximately 12 days 

while those for scenario Z are collected for 96 days.  
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Table 6.4 List of structural scenarios as determined by load and boundary 

conditions 

Scenario 
Temperature 

load case 

Constraint at 

right support 
Duration 

X A+B fixed 12 days (Sep 10 - Sep 21, 2013) 

Y A+B released 12 days (Sep 22 - Oct 3, 2013) 

Z B fixed 96 days (Oct 4, 2013 - Jan 7, 2014) 

 

In addition to varying thermal loading and boundary conditions, damage is 

simulated by removing bolts from joints. Each act of either changing a joint 

configuration or altering the boundary condition is termed as an event that must 

ideally be recognized by the TB-MI approach as an anomaly. The list of events is 

provided in Table 6.5 along with the joint that is affected, the number of removed 

bolts and the corresponding structural scenario. For example, damage event #3 

refers to the load scenario X when joints J-1 and J-2 are damaged and in total 

eight bolts are removed. Measurements are collected from the truss for the three 

structural scenarios listed in Table 6.4. The severity of damage is gradually 

increased for each scenario by increasing the number of damaged joints and the 

total number of removed bolts. Before switching over to a different scenario, the 

structure is repaired by replacing all the removed bolts. Events #5 and #12 

correspond to the structure being repaired. However, the structure is unlikely to 

revert back to its original state due to the manner in which the bolts are tightened. 

In real-life structures, bolts, designed to connect structural elements, are often 

tightened with a torque wrench; hence a prescribed force is applied to each bolt. 

Bolted connections in the test-bed, however, are manually tightened without 

measuring the actual applied torque. Thus the stiffness of each connection will 

be different and also, the same connection may not revert to its original stiffness 

when bolts are put back.  
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Table 6.5 List of events with details of the events and the corresponding 

loading and boundary condition scenarios 

Event Scenario Affected joints Number (#) of removed bolts 

1 X J-1 3 

2 X J-1 5 

3 X J-1, J-2 8 

4 X J-1, J-2, J-3 11 

5 X Repaired* 0 

6 Y - 0 

7 Y J-1 5 

8 Y J-1, J-2 8 

9 Y J-1, J-2, J-3 11 

10 Y J-1, J-2, J-3 13 

11 Y J-1, J-2, J-3, J-4 18 

12 Z Repaired* 0 

13 Z J-3 2 

14 Z J-3 4 

15 Z J-3 6 

*All connections are repaired, i.e., all bolts are put back. 

Measurement time histories 

Measurements are collected from the strain gauges and thermocouples for the 

scenarios listed in Table 6.4. Figure 6.10 shows plots of temperature and strain 

measurements from strain gauge S-3 and a thermocouple (located in the vicinity 

of S-3). Temperatures and strains measured during a simulated diurnal cycle are 

also shown in zoomed-in views in Figure 6.10 (right). Their patterns resemble 

that of measurements collected over one day from full-scale structures. The 

duration of each structural scenario is given in the plots in Figure 6.10 (top). The 

amplitude of strains increases when longitudinal translations are allowed 

(scenario Y). Effects of ambient temperature variations are evident during 

scenarios X and Y. The effects of the accelerated diurnal cycles are 

superimposed on them. When the heaters are turned off in scenario Z, ambient 

effects drive the response as the high frequency patterns due to the heaters 

disappear. 
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Figure 6.10 Time-histories of temperatures at the bottom chord (top) and 

strains (bottom) measured with S-3 with a zoomed-in views for a simulated 

diurnal cycle (right) around the time of damage event #1.  

Prediction of thermal response 

The RBTRP methodology is employed to generate regression models for all three 

scenarios. Application of the methodology to scenario X is first illustrated. Results 

for scenarios Y and Z are provided subsequently. The reference period for 

scenario X is composed of the first 25,920 measurements (equivalent to three 

days of monitoring). Outliers and noise are removed with IQR and smoothing 

techniques respectively.  

Two different approaches for the selection of training and test periods are 

investigated.  

1. Training method 1 (TM1): Starting from the first measurement in the 

reference period, one half of measurements of the reference period is 

chosen as the training set and the other half is selected to test the 

accuracy of regression models. To be more precise, in TM1, 

measurements taken during the first two days of the reference period form 

the training set and the rest form the test set. 

2. Training method 2 (TM2). Both the training and test set, although mutually 

exclusive, are composed of measurements spread over the entire 

reference period.  

15

20

25

30

T
e
m

p
e
ra

tu
re

 (
C

)

20

22

24

0 50000 100000 150000 200000 250000 300000
-200

-150

-100

-50

0

S
tr

a
in

 (
1
0

-6
)

Measurement #

48788 49468

-50

-40

-30

-20

-10

Measurement #

1
Scenario YScenario X

10 to 21/Sept/13 21/Sept - 3/Oct/13

Scenario Z

3/Oct/13-7/Jan/14



Chapter 6: Case studies, Laboratory truss 

116  

This study then systematically evaluates the effect of the following three 

parameters of the RBTRP methodology, which can affect the performance of the 

regression models generated for response prediction. 

1. Down-sampling of measurements 

2. Thermal inertia parameter j 

3. Number of principal components (PC) chosen after transforming input 

temperatures into PC space. 

After selection of the reference period, down-sampling of the measurements is 

recommended to avoid over-training regression models. This study finds the 

optimal down-sampling rate, which is the value for the sampling frequency above 

which negligible improvements are observed in response prediction accuracy. 

For this purpose, the sampling frequency is increased iteratively by a factor of 

two starting from 1 measurement every 10240 seconds (1×10-4 Hz) to 1 

measurement every 20 seconds (0.05 Hz). The influence of the thermal inertia 

parameter j on model predictions is investigated for all scenarios. However, for 

this case study, the thermal inertia parameter is not considered essential due to 

the small scale of the structure and the minimal influence of ambient conditions. 

Temperature measurements chosen as input to the regression models are then 

transformed to PC space. The minimum number of PCs required to achieve a 

reasonably high prediction accuracy is evaluated, and the chosen PCs are input 

to regression models within the RBTRP methodology.  

Results for TM1: Scenario X 

The RBTRP methodology is first evaluated for scenario X using training method 

1 (TM1). All regression algorithms employed within the RBTRP methodology 

provide models that exhibit approximately the same level of performance. For the 

sake of brevity, this section therefore presents results only for SVR, which has 

previously been observed to produce robust and accurate models in the feasibility 

study described in Section 6.2.1.  

In order to understand the influence of the thermal inertia parameter j on the 

performance of regression models, values for j are increased gradually starting 

from j=0. However, minimal improvement in prediction error accuracy is observed 

for scenario X. The average RMSE for scenario X is the lowest for j=1; for this 

value, the error reduces by 1.5% when evaluated in terms of the range of 
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measured strains. j=1 implies that measurements from the current as well as the 

previous time step are included as input to the regression model for thermal 

response prediction. 

The influence of down-sampling on prediction performance is also evaluated by 

varying the sampling frequency as indicated in the previous section. Results 

obtained are given in Table 6.6. The average RMSE is observed to be minimum 

when the sampling frequency is equal to 4×10-4 Hz (see Table 6.6). 

Table 6.6 Average RMSE of the predictions of the regression models 

obtained using various down-sampling frequencies and training methods 

  Measurement sampling frequency (Hz) 

  1×10-4 2×10-4 4×10-4 7.8×10-4 1.6×10-3 3.1×10-4 6.3×10-3 

TM1 Average 
RMSE 
(×10-6 

strains) 

2.66 2.48 2.31 2.38 2.40 2.41 2.41 

TM2 2.57 2.07 1.78 1.72 1.69 1.66 1.66 

 

The study then evaluates the influence of the number of PCs on prediction 

accuracy (see Section 4.2.5). Prediction errors of the regression models 

generated with increasing numbers of PCs are plotted in Figure 6.11. The figure 

shows clearly that approximately ⅓rd of the PCs (i.e. 10 out of 31 in this case) are 

sufficient to produce accurate response predictions. However, the actual optimal 

number varies according to sensor location. For example, the optimal number of 

PCs to accurately predict response at the locations of sensors S-3 and S-7 are 

10 and 11 respectively (see Figure 6.11). 
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Figure 6.11 Prediction error and the number of PCs for sensor locations S-3 

(left) and S-7 (rights), scenario X, TM1, sampling frequency 4×10-4 Hz.  

Figure 6.11 shows prediction error signals corresponding to sensors S-3, S-4 and 

S-7 generated using a SVR model that is trained using TM1 with the thermal 

inertia parameter set to 1, and a measurement sampling frequency of 4×10-4 Hz. 

The number of PCs used varies between 10 and 14. These PE signals are from 

hereon referred to simply as PE sensor name. For example, PE S-3 refers to a 

prediction error signal corresponding to sensor S-3. Figure 6.11 shows that the 

amplitudes of PE S-3 and PE S-4 change abruptly when the right support is 

released for event #6 (see Table 6.5). Similarly PE S-3 also has a shift 

immediately after event #4 (see Table 6.5). These abrupt changes can be 

indicators of anomalous structural behaviour. Such shifts, however, are not 

discernible at the time of other events in any of the PE signals.  

PE S-3 and PE S-4 (Figure 6.12), which correspond to sensors located on the 

bottom chord, slightly drift after the end of the training period towards a new 

mean. This is attributed to the prediction errors increasing due to ambient 

temperatures reaching values that were never encountered previously during the 

training period. However, PE S-7 (see Figure 6.12), which corresponds to sensor 

on the top chord, do not show such a drift after the training period. This is probably 

due to the fact that the top chord is free to expand and contract due to a lack of 

restraint in the longitudinal direction (X axis), and also due to being exposed to 

higher temperature variations than the bottom chord, given that ambient effects 

on are comparatively low during this scenario. 
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Figure 6.12 PE S-3, PE S-4 and PE S-7 generated using training method 

TM1. Numbers in boxes represent events. (This refers to all figures, unless 

otherwise stated.) 

Results for TM2: Scenario X 

The performance of the RBTRP methodology is now evaluated using training 

method TM2. As with the previous case, results are presented only for SVR-

based regression models. The optimal measurement sampling frequency is 

evaluated as 3.1×10-3 Hz (see Table 6.6). The optimal value for thermal inertia 

parameter j is 1 and the improvement in prediction accuracy is 1.5%, similar to 

that for TM1. Results obtained for only sampling frequency of 3.1×10-3 Hz and 

j=1 are illustrated for this scenario although other values offer similar results with 

only a marginal change in the prediction accuracy.  

The prediction error decreases gradually while the number of PCs is increased 

(see Figure 6.13). A significant drop in the prediction error can be observed for 

sensor locations measuring larger strains (sensors installed on the top chord) 

when the number of PCs is increased from 1 to 3. The prediction error reduces 

marginally when the number of PCs is more than 12 (see Figure 6.13), hence, 

twelve PCs are chosen as the optimal input to the regression models.  
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Figure 6.13 Prediction error and the number of PCs for sensor locations S-3 

(left) and S-7 (rights), scenario X, TM2, sampling frequency 4×10-4 Hz. 

PE S-3, PE S-4 and PE S-7 computed using TM2 are plotted in Figure 6.14. The 

mean RMSE of predictions at all sensor locations is lower than those observed 

using TM1 (see Table 6.6). The main reason for the comparatively smaller RMSE 

is that the training set encompasses measurements which are spread over the 

whole reference period. As the full range of peak-to-peak temperatures is 

included in the training period, the resulting statistical models are more robust as 

they are predicting response only for scenarios that they have been trained on.  

 

Figure 6.14 PE S-3, PE S-4 and PE S-7 generated using TM2. 

 

A gradual decrease in PE signals corresponding to sensors installed on the 

bottom chord is no longer observed around measurement #20,000, when the 
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training period used for TM1 ended (see PE signals S-3 and S-4 in Figure 6.12 

in relation to those in Figure 6.14). PE signals corresponding to those sensors 

installed on the top chord (S-6 to S-9) remain fairly stationary until time of event 

#4. PE S-7, which closely resembles the PE signals from the other sensors, is 

plotted as an example in Figure 6.14.  

While the prediction error is low, PE S-3, PE S-4 and those for other sensors on 

the bottom chord have low-amplitude periodic patterns after the reference period 

(and before event #1) that appear to correspond to diurnal temperature changes. 

This phenomenon is common to PE signals obtained using both model training 

methods, however, more noticeable in PE signals generated using TM2. The 

predictions cannot fully account for ambient temperature changes since the 

environment and the structure often change at different rates compared to 

ambient temperature, and since the training period, which lasts three days, 

cannot capture all of these changes. 

Results for scenario Y 

TM2 is used to generate regression models for scenarios Y and Z. Regression 

models for scenario Y are generated using the same technique as for scenario 

X. The optimal measurement down-sampling frequency is determined as 

6.3x10-3 Hz. The mean RMSE of predictions is close to 1% of the strain range for 

the reference period, indicating that the models are predicting accurately the 

response. For illustration purposes, PE S-3, PE S-5 and PE S-10 are plotted in 

Figure 6.15. As for scenario X, periodic distortions in the signals corresponding 

to diurnal temperature changes can be discerned after the reference period. This 

phenomenon is common for all PE signals. The only visually detectable event 

from PE signals is event #11 as observed from the plot of PE S-5. This is probably 

due to the sensor S-5 being close to the joint (J-4) that is damaged in event #11. 

All the other events cannot be detected simply from visually examining the PE 

signals.  
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Figure 6.15 PE S-3, PE S-5 and PE S-10 generated using TM2. 

Results for scenario Z 

In scenario Z, only ambient temperature is applied, i.e. temperature load case 

(B). The length of the reference period is 55 days within which there are almost 

80,000 measurement time steps. The length of the reference period has been 

chosen 55 days to ensure that covers peak-to-peak temperature variations are 

covered. The optimal values for thermal inertia parameter j and measurement 

sampling frequency are determined. A value for j between 10 and 15 is observed 

to be optimal. The optimal measurement sampling frequency is evaluated to be 

5.2×10-3 Hz. In addition, the number of PCs given as input to regression models 

is between 14 and 21, depending upon the sensor for which the model is 

constructed. 

Time-histories of temperatures measured with a thermocouple installed on the 

bottom chord are plotted in Figure 6.16 (top) together with PE S-3 and PE S-4 

(Figure 6.16 (bottom)). The regression models predict accurately the structural 

response as evident from the low values of prediction errors in the plots of PE S-3 

and PE S-4. While events #13 and #14 do not appear to affect PE S-3 and 

PE S-4, after the occurrence of event #15, both show significant deviations from 

previously observed stationarity. However, during the same period, the ambient 

temperature in the structures laboratory, where the truss is being monitored, also 

deviates from previously observed patterns due to abnormally cold weather. 

Therefore, reliably stating whether the deviations in PE S-3 and PE S-4 are due 
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to event #15 or due to abnormal temperature changes is difficult (Figure 6.10). 

Subsequent discussion on anomaly detection will cover this aspect. 

 

Figure 6.16 Time-history of temperature measured near sensors S-3 and S-4 

(top) and PE S-3 and PE S-4 generated using TM2. 

Anomaly detection from PE signals 

In this section, PE signals from experimental scenarios are examined for 

anomalies. PE signals are examined individually with MFFT. Clusters of PE 

signals are analysed with MPCA, SSM and cointegration. Scenario X serves as 

a demonstrator in this study. Scenarios Y and Z are used to emphasize the 

robustness of the TB-MI approach. However, only those anomaly detection 

approaches that clearly indicate the anomalous structural behaviour are 

presented.  

The first step after gathering PE signals is to prepare them for anomaly detection 

via signal processing (see Section 5.4). This involves both smoothing and outlier 

removal. Prior to smoothing, the PE signals are examined visually. While the 

signals as plotted in Figure 6.14 to Figure 6.16 seem to be noisy, upon closer 

examination (see Figure 6.17), they are actually seen to be fairly continuous. 

Figure 6.17 plots a zoomed in view of the PE S-3 obtained for scenario X. The 

plot, which includes 1000 data points, contains no visible outliers and little noise, 

and appears much smoother than the zoomed out view of PE S-3 in Figure 6.14. 
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The author attributes these high frequency patterns to temperature variations 

from both ambient conditions and the simulated thermal cycles. Such patterns 

are observed in all PE signals. Thus no preprocessing of PE signals is required 

prior to anomaly detection. Furthermore, this observation can be generalized for 

other case studies. A PE signal is computed from the differences between 

predicted and measured response. As long as the inputs to the regression model 

and the measured response are both treated for outliers and noise, PE would 

also be free of outliers and noise, and hence not require pre-processing.  

 

Figure 6.17 A zoomed in view of the PE S-3 obtained for scenario X shortly 

after the reference period. 

Scenario X, univariate signal interpretation.  

MFFT: MFFT, described in Section 5.4.1, processes a moving window of values 

from the PE signal. The length of the window is one day, i.e., ⅓ of the length of 

the reference period. The rest of the measurements in the reference period (i.e., 

⅔ of the reference period) are used to determine the confidence interval for the 

feature used for anomaly detection. The threshold for the confidence interval is 

+6σ. Negative thresholds are meaningless as the MFFT feature cannot be 

negative. MFFT interpretations of PE S-2, PE S-3, PE S-4 and PE S-7 are plotted 

in Figure 6.18; from hereon these are referred to as MFFT sensor name, e.g., 

MFFT S-2 refers to a MFFT interpretation of PE S-2. 
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Figure 6.18 MFFT S-2, MFFT S-3, MFFT S-4 and MFFT S-7.  

 

MFFT S-2, MFFT S-3, MFFT S-4 and MFFT S-7 are representatives of typical 

signal trends. MFFT S-1 and MFFT S-2 follow the same trend. MFFT S-2 can be 

observed to exceed the threshold after events #1 and #3 but does return within 

threshold limits after events #2 and #4. MFFT S-3 departs permanently outside 

the confidence interval after event #4. Events #1 and #2 are close to the sensor 

S-4 and these are detected by MFFT S-4. It exceeds the specified threshold soon 

after event #1. MFFT S-5 and MFFT S-10 follow the same pattern as MFFT S-7. 

From MFFT S-7, damage can be detected clearly soon after event #4. MFFT 

signals computed from the other PE signals show little or no changes from their 

normal trends.  

Scenario X, multivariate signal interpretation.  

MPCA: PE signals are well correlated. Thus they can be analysed as one data-

set using multivariate anomaly detection methodologies. The main feature in 

MPCA is the eigenvector computed from the cluster of PE signals. The computed 

eigenvector has components corresponding to each prediction error signal and 

hence to each sensor location. From hereon, eigenvector sensor name refers to 

the signal constituted by sequencing the components corresponding to sensor 

name in the eigenvectors.  

Initially, MPCA is employed on a set comprising all PE signals. Figure 6.19 (a) 

shows the plot of eigenvector time-histories evaluated from PE S-1, PE S-2, 
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PE S-3 and PE S-4. Confidence intervals are not shown for each eigenvector 

signal since it will make the figure messy and difficult to comprehend. Here, the 

emphasis is placed on changes in signal trends. A change in signal trends is 

noticeable soon after event #4. The component of eigenvector signal 

corresponding to sensor S-3 increases while those corresponding to other 

sensors drop.  

MPCA is next evaluated on different sensor clusters to check if anomalous 

behaviour can still be detected. PE S-3 is excluded from the new dataset. Two 

clusters of PE signals are formed. One set comprises PE S-1, PE S-2, PE S-4 

and PE S-5, and the other comprises PE S-6, PE S-7, PE S-8, PE S-9 and PE S-

10. These correspond to sensors on the top and the bottom chords respectively. 

The two clusters are analysed with MPCA and the evaluated eigenvectors are 

plotted in Figure 6.19 (b) and (c), respectively. A slight change in signal trends 

can be noticed close to the measurement #80,000, i.e., after event #4. However, 

this is insufficient to reliably detect the event. When boundary conditions are 

changed (event #6), eigenvector signals change their trend either immediately or 

closely after the event. Therefore event #6 is detected clearly by MPCA. 

 

Figure 6.19 Time-series of the first eigenvectors computed with MPCA from 

PE signals: (a) shows eigenvectors representing S-1 to S-4 which are derived 

using all PE signals; (b) plots eigenvectors related to S-1, S-2, S-4 and S-5 and 

(c) plots S-6 to S-10, these are computed considering all but PE S-3. 
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Cointegration: Cointegrated signals are computed from the PE signals using the 

process described in Section 5.4.2. The cointegrated signal that is ranked first is 

the most likely to detect anomalies, and only these are used to illustrate the 

technique. A cointegrated signal is initially generated for all PE signals (see 

Figure 6.20 (top)). Thresholds for anomaly detection are specified as ±3σ, where 

σ is the standard deviation during the reference period. The cointegrated signal 

shifts noticeably at event #1, when it permanently exceeds the upper threshold. 

This event can also be detected when PE signal S-3 or S-4 is excluded from the 

input set. The sensitivity of the cointegration technique to detecting structural 

changes is illustrated in Figure 6.20 (bottom) which shows cointegrated residuals 

computed from a cluster of all PE signals excluding PE S-3 and PE S-4. The 

cointegrated signal, while not as suggestive of anomaly events as in the case 

including PE S-3 and PE S-4, is still capable of detecting all events. The signal 

drifts out of the confidence interval after event #2, and again exceeds the upper 

threshold after event #4. 

 

Figure 6.20 Cointegrated signal of all PE signals (top) and all PE signals 

except those for sensors S-3 and S-4 (bottom). 

 

SSM: SSM is used to examine all possible subtraction scenarios as described in 

Section 5.4.2. For this case study, the number of sensors is 10; hence, 45 

combinations of subtracted signals can be created. Subtracted signals derived 

from combinations of those PE signals corresponding to the sensors located 

away from damage exhibit no or negligible deviations from their baseline 

conditions. Therefore anomaly detection is demonstrated using only a few 

subtracted signals that are generated from PE signals of sensors which are 
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located closer to the damaged elements. Figure 6.21 displays four subtracted 

signals which reflect the structural behaviour of the truss. Each signal refers to a 

combination of two signals, e.g., subtracted signal TS3S4 refers to a combination 

of PE S-3 and PE S-4 (see Equation 5.1). 

Combinations, which include PE S-3, indicate a sudden change at event #4 (see 

TS3S4 in Figure 6.21). Subtracted signals, which include PE S-4, depart gradually 

from the confidence interval after each subsequent event. Examples illustrating 

this behaviour are given in Figure 6.21. Subtracted signals corresponding to a 

combination of sensors on elements of the truss that are not spatially close to the 

location of damage also diverge from their respective baseline conditions. This 

can be seen in Figure 6.21 for TS4S8, which combines PE S-4 and PE S-8 

corresponding to sensors S-4 and S-8. For event #3, joint J-2 of the truss, which 

is not directly linked to the elements having sensors S-8 and S-9, is damaged. 

This event is detectable from TS4S8 as it begins to depart outside the confidence 

interval. 

 

Figure 6.21 Subtracted signals TS3S4, TS4S5, TS4S8 and TS4S9 generated with 

SSM. 

In summary, event #6 can be detected with all proposed multivariate anomaly 

detection methodologies. Events #1, #2 and #3 are not detected when PE signals 

are analysed using MPCA. These events, however, can be detected using 

cointegration and SSM techniques. Cointegration and SSM can therefore detect 
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changes in structural behaviour, and further investigations can help also in 

revealing the location of damage.  

Scenario Y  

In scenario Y, the restraint at the right support (see Figure 6.8) limiting free 

translation in longitudinal direction is removed by modifying the boundary 

condition to simulate a roller support. Therefore, the range of strains in the bottom 

chord increases (see Figure 6.10).  

MFFT and MPCA: PE signals are analysed with MFFT and MPCA. The length of 

the moving window is set to ⅓rd of the reference period, i.e., one day. Analyses 

reveal no sign of anomalous structural behaviour.  

Cointegration: Cointegration and SSM offer, however, a bit better performance. 

As for scenario X, the first ⅓rd of the data in the reference period form the training 

set and the latter ⅔rds are used to derive the confidence interval. Cointegrated 

signals, which are generated using:  

 all PE signals are plotted in Figure 6.22 (top) and 

 PE S-1, PE S-2, PE S-3, PE S-4 and PE S-5 are shown in Figure 6.22 

(bottom). 

Both cointegrated signals are noisy and frequently exceed confidence intervals 

set based on either of ±3σ or ±6σ of the data in the reference period. In both cases, 

the only event that can be detected reliably is event #11. The cointegrated signals 

show a significant shift that can be attributed to the structural behaviour altering 

after event #11 (Figure 6.22). All other events are difficult to detect, when taking 

into account that the signal is unstable even during the reference period.  
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Figure 6.22 Cointegrated signals of all PE signals (top) and PE S-1 to PE S-5 

(bottom). 

SSM: SSM is used to derive subtracted signals for all combinations of two PE 

signals. The signals that are most affected by the events happening on the truss 

are discussed below. In particular, subtracted signals computed from PE signals 

corresponding to sensors on the bottom chord such as TS1S3 and TS2S3, and 

subtracted signals corresponding to sensor S-5 such as TS5S7 and TS3S5 are 

shown in Figure 6.23. The computed signals show the following: 

 a gradual drift after event #9, and 

 an abrupt shift at the occurrence of event #11. 

The sensors S-2 and S-3 are in close proximity to joint J-3, which is directly 

affected by event #9. Therefore, subtracted signals TS1S3 and TS2S3 (see Figure 

6.23), which are generated by combining PE S-3 with PE S-1 and PE S-2 

respectively, depart noticeably from the confidence interval after event #9. At 

event #11, five bolts are removed from joint J-4, which is close to sensor S-5. 

This event can be detected as a shift in signal patterns when analysing subtracted 

signals which include PE S-5 (see TS3S5 and TS5S7 in Figure 6.23). 
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Figure 6.23 Subtracted signals TS1S3, TS2S3, TS3S5 and TS5S7 for scenario Y. 

 

Compared to scenario X, where the boundary conditions are set to prevent 

translation, in scenario Y, very few of the events are detectable by anomaly 

detection. This is attributed to the fact that mechanically induced response (i.e. 

strains that cause stress) are less prevalent due to allowing free thermal 

movements at the roller support. This hinders the recognition of events that cause 

changes to structure’s performance. 

Scenario Z  

In scenario Z, the truss is exposed only to ambient temperature variations. The 

first 55 days (79,200 measurements) form the reference period. The first 20 days 

(28,800 measurements) from the reference period encompass the training period 

and the rest are used to derive the confidence interval. On the 75th, 77th and 79th 

day (events #13, #14 and #15) of scenario Z, two bolts are removed from the 

splice joint J-3 in the bottom chord. Results from analysing the PE signals using 

the four anomaly detection techniques are described below. 

MFFT: MFFT signals are not stationary and also surpass the confidence interval 

(see Figure 6.24) before the truss is damaged. MFFT S-3, which is similar to 

MFFT S-1 and MFFT S-2, is plotted in Figure 6.24. All three signals – MFFT S-1, 

MFFT S-2 and MFFT S-3, detect event #15.  
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Figure 6.24 MFFT signal of PE S-3 for scenario Z. 

MPCA: Eigenvectors are computed using all PE signals as input. A sudden 

change in eigenvector signals is observed shortly after the training period (after 

measurement #40,000). For illustration purposes, eigenvector signal related to 

sensor S-3 is plotted in Figure 6.25. The signal becomes stable again after 

measurement #50,000. A gradual shift in the signal is observed after event #15. 

Values of the eigenvector change significantly after this event.  

 

Figure 6.25 Time-series of the first eigenvectors related to sensor S-3 

computed with MPCA from all PE signal for scenario Z. 

Cointegrations: The cointegrated signal is very stable during the reference period. 

However, it begins to exceed the confidence interval only after event #14 (see 

Figure 6.26). After event #15, the signal shows a significant shift that is indicative 

of a major change in structural behaviour. 
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Figure 6.26 Cointegrated residuals of all PE signals for scenario Z. 

 

SSM: Subtracted signals computed from PE signals corresponding to sensors on 

the bottom chord are discussed as these are the most likely to be affected by the 

events for this scenario. Similar to the cointegrated signals, the subtracted signals 

are stable during the reference period. They are also unable to indicate the 

occurrence of event #13. However, they do show a gradual shift after event #14. 

Specifically, subtracted signals, which are derived from PE signals corresponding 

to sensors S-2 and S-3 that are located closer to the damaged joint, deviate from 

the confidence interval. TS2S3, TS2S4 and TS3S4 are plotted in Figure 6.27 to 

illustrate the above.  

 

Figure 6.27 Subtracted signals TS2S3, TS2S4 and TS3S4 for scenario Z. 

6.1.3 Anomaly detection from response measurements 

In this section, response measurements are directly analysed using the four 

anomaly detection techniques while completely ignoring temperature 

measurements, which is the approach that has been adopted by most 

researchers in SHM. The purpose is to investigate if there is an improvement in 
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anomaly detection performance by accounting for temperature effects as done in 

this research through using the RBTRP methodology.  

In this study, the emphasis is on the detection of anomalies rather than the time 

to detect an event. The response measurements are analysed using the same 

values for parameters such as the reference period and the size of the moving 

window, as used for the interpretation of PE signals in Section 6.2.2. The training 

period and the length of the moving window are selected to be ⅓rd of the 

reference period. The final ⅔rds of measurements in the reference period is used 

to determine the confidence interval. 

Scenario X 

MFFT: MFFT signals computed from response (strain) measurements offer no 

support for detecting anomalous structural behaviour, and are hence not shown 

here.  

MPCA: Events can be detected, when clusters of strain signals are analysed with 

MPCA. Eigenvectors, which are related to all signals except those of sensors S-5 

and S-10, change their pattern after event #6. Events #1, #2 and #3 are not 

revealed with MPCA. Figure 6.28 illustrates an eigenvector signal related to 

sensor location S-3. Shortly after event #1, the eigenvector signal marginally and 

temporarily exceeds the confidence interval. This change alone may be 

unreliable to state whether there is a change in structural performance. After 

event #4, the eigenvector signal exceeds the upper threshold and returns to the 

confidence interval after event #5 when the truss is repaired. The author 

hypothesizes that the signal would have remained outside the confidence 

interval, if the truss was not mended. Lastly, the change of boundary conditions 

(event #6) is also immediately reflected in the eigenvector signals of response 

measurements (see Figure 6.28). These observations are similar to those made 

for MPCA results on PE signals (illustrated in Figure 6.19). 
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Figure 6.28 Time-series of the first eigenvectors related to sensor S-3 

computed with MPCA from all strain measurements for scenario X. 

 

Cointegration: The cointegrated signal of response measurements is plotted in 

Figure 6.29. The signal is stationary during the reference period and prior to 

event #1. The signal shifts immediately after events #1, #2, #4 and #6. These 

events have changed the performance of the structure and can clearly be 

identified in the cointegrated signal. The signal, however, does not return to its 

original pattern shown during the reference period after the truss is repaired 

(event #5). Thus applying cointegration directly on measured response can 

indicate anomaly events. However, the reliability of anomaly detection is better 

when analyzing PE signals after using RBTRP methodology (see Figure 6.20) 

since the shifts from anomaly events are much more pronounced and therefore 

easier to identify. 

 

Figure 6.29 Cointegrated signal of all strain measurements for scenario X. 

SSM: Subtracted signals can indicate events #4 and #6. Subtracted signal Ts3s4 

computed from response measured by sensors S-3 and S-4 that are located on 

the bottom chord shift abruptly after event #4 (Figure 6.30). All subtracted signals 

are capable of indicating event #6 by showing an abrupt shift, such as can be 

observed in TS3S5 and TS4S5 (Figure 6.30), when boundary conditions are changed 
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(event #6). In contrast, subtracted signals computed from PE signals are able to 

detect most of the events with also a higher degree of confidence. 

 

Figure 6.30 Subtracted signals TS3S4, TS3S5 and TS4S5 generated with SSM 

from strain measurements for scenario X. 

Scenario Y 

As seen before in Section 6.1.2, anomalies are also harder to detect directly from 

the measurement sets of scenario Y in comparison to scenario X.  

MFFT and MPCA: The analysis of response measurements with MFFT and 

MPCA offers no value, and none of the events can be detected.  

Cointegration: Cointegration shows a bit more promise. While the first-ranked 

cointegrated signal is not indicative of any of the events, a higher rank 

cointegrated signal (specifically, the sixth rank in this case) exceeds the 

confidence interval after event #11 (Figure 6.31). The cointegrated signal is also 

not as stable as for scenario X even during the reference period. This 

performance is similar to that shown by cointegrated signals computed from PE 

signals (Figure 6.22). 
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Figure 6.31 Cointegrated signal of all strain measurements for scenario Y. 

 

SSM: Subtracted signals offer weak support for detection of anomalous structural 

behaviour during scenario Y. Only those signals, which are created with 

measurements from the sensor location S-5, reveal the anomaly events. TS5S10 

is used as an example and is plotted in Figure 6.32. Two shifts in the signal are 

observed. The subtracted residuals TS5S10 drift first after measurement point 

#32,000, and then, shift at event #11. The drift of the signal is related to an 

abnormal change in ambient temperature (see Figure 6.10). At the time of 

event #11, TS5S10 exceeds confidence threshold, thus indicating anomalous 

structural behaviour. Subtracted signals computed from PE signals show better 

performance as they are able to detect event #9 in addition to event #11, and the 

shifts are also much more pronounced. 

 

Figure 6.32 Subtracted signal TS5S10 from strain measurements for scenario Y. 

Scenario Z 

The four anomaly detection techniques are evaluated on the measurements 

collected for scenario Z. 

MFFT: All MFFT signals gradually exceed the defined thresholds after event #15. 

Figure 6.33 illustrates MFFT S-3. 
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Figure 6.33 MFFT S-3 for scenario Z. 

 

MPCA: MPCA detects all events with a slight delay. All eigenvectors, except 

those related to the locations of sensors S-5 and S-7, exceed the confidence 

interval soon after event #15. A plot of the component related to S-3 from the first 

eigenvector is shown in Figure 6.35. No obvious shifts are observable for 

events #13 and #14. 

 

Figure 6.34 Time-series of the first eigenvectors related to S-3 computed with 

MPCA from all strain measurements for scenario Z. 

Cointegration: The cointegrated signal, which is derived from all response 

measurements, exceeds the confidence interval soon after event #15 (see Figure 

6.35). However, other events are not indicated by the signal. 
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Figure 6.35 Cointegrated residuals of response measurements from all 

sensors for scenario Z. 

SSM: SSM also provides evidence supporting anomalous structural behaviour. 

Three subtracted signals, which are composed from the measurements collected 

by sensors located on the bottom chord, are plotted in Figure 6.36. TS2S3, TS2S4 

and TS3S4 exceed the confidence interval shortly after event #15. Subtracted 

signals, however, also exceed the thresholds during and after the reference 

period and thereby affect the reliability of anomaly detection (see Figure 6.36). 

 

Figure 6.36 Subtracted signals TS2S3, TS2S4 and TS3S4 from strain 

measurements for scenario Z. 

Results obtained from applying the four anomaly detection techniques directly on 

response measurements from scenario Z are similar to those obtained when the 

techniques are applied to PE signals. Only event #15 can be detected with all 

techniques. However, the events can be detected sooner when PE signals are 

analysed. 
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6.1.4 Summary and conclusions 

In this section, the laboratory truss, which was manufactured specifically for 

investigating the proposed TB-MI approach, is introduced. The RBTRP 

methodology is studied on the measurements collected from this structure under 

various loading and boundary condition scenarios. The performance of four 

anomaly detection techniques is subsequently explored both on the PE signals 

derived from RBTRP methodology, and directly on the response measurements. 

The following conclusions are drawn on the measurements from the laboratory 

truss and the performance of the RBTRP methodology: 

 The truss with the arrangement of infrared heating lamps and its sensors 

provided sufficient measurements to investigate the RBTRP methodology 

and the anomaly detection techniques. 

 The setup enabled the simulation of realistic damage scenarios such as 

the loss of stiffness in a connection by removal of bolts or the locking of a 

bearing. 

 Diurnal scenarios simulated by turning on and off the heating lamps 

generated measurements with patterns that resembled those from full-

scale bridges. 

 The RBTRP methodology can be employed to accurately predict the 

thermal response of the structure from distributed temperature 

measurements. 

 A small subset of PC vectors, which are known to sufficiently capture the 

variance of the original temperatures, provides ample information for the 

generation of accurate prediction models.  

 The down-sampling of input measurement sets within a reasonable range, 

while notably reducing the time for model training, only marginally affects 

the prediction accuracy of the regression model. 

 The thermal inertia parameter j is not observed to be a big factor impacting 

the prediction performance of regression models for the laboratory truss.  

 Selecting a reference period that captures the full peak-to-peak variations 

in measurements is necessary to generate robust regression models for 

response prediction.  
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Main findings from application of the anomaly detection techniques are given 

below. 

 Many anomaly events introduced on the truss can be detected, and their 

locations also spatially defined from the interpretation of PE signals using 

anomaly detection techniques.  

 All anomaly detection techniques are capable of detecting major events 

such as a change in boundary condition. However, events that happen 

during scenario Y (i.e. when the structure is allowed to freely undergo 

thermal movements) and during scenario Z (i.e when the structure is 

subject only to ambient conditions) are, however, difficult to detect.  

 Released boundary conditions (e.g. roller support) are not desirable for the 

purposes of anomaly detection since mechanically-induced response (i.e. 

strains that cause stress) are less prevalent when allowing for free thermal 

movements. This hinders recognition of events that cause changes to 

structure’s performance. 

 Cointegration and SSM are capable of detecting most of the anomaly 

events compared to MPCA and MFFT. While cointegration helps in 

detecting change in structural performance, SSM can offer support for 

determining the location of the event or the cause of the change in 

structural performance. 

 Abnormal changes in ambient conditions can lead to structural behaviour 

that is different from during the reference period. These changes can be 

classified as anomalous behaviour and exercising engineering judgement 

is critical to prevent misinterpretation.  

 The analysis of PE signals using anomaly detection techniques results in 

faster and more robust detection of events compared to the application of 

the techniques directly on response measurements. 
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6.2 NPL Footbridge 

A footbridge (Figure 6.37), which served as a pedestrian passage across the 

entrance to the National Physical Laboratory (NPL) for more than four decades, 

was removed from its original location and relocated for monitoring purposes 

without damaging it and keeping the original boundary conditions. The main span 

of the bridge is 10.5m. The bridge has cantilevers at either end ranging between 

4.5 and 4.75 meters (see Figure 6.38). The bridge has been continuously 

monitored since 2009 with a number of sensors such as optical fibre Bragg 

grating (FBG) sensors, acoustic emission sensors and wireless accelerometers. 

Many surveying-based monitoring techniques including digital image correlation 

and laser scan have also been carried out [225]. The footbridge has also been a 

test-bed for studying important structural issues such as performance of retrofits 

and bridge behaviour under damage. 

 

Figure 6.37 Back view of the NPL Footbridge (left) and front view of mid-

section of the footbridge (right) with tilt-meters (circled). 

In this research, tilt measurements from 8 electro-level tilt sensors and 

temperatures from the thermistors in 10 vibrating-wire arc-weldable strain gauges 

are used to evaluate and characterize thermal effects. The tilt sensors have a 

resolution of 5.2×10⁻³mm/m. The resolution of the thermistors is ±0.01°C. 

Technical details of the sensors are provided in Table 6.7 and their locations, 

together with principal dimensions and axes of the footbridge, are indicated in 

Figure 6.38. Since the vibrating-wire strain gauges are placed at the bottom of 

the hand-rails and not directly on the deck, measured temperatures are unlikely 

to represent the temperatures at the locations where the tilt measurements are 
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collected particularly given the distinct thermal conductivity characteristics of the 

materials of the metal hand-rail and the concrete deck. Therefore predicting the 

response of this footbridge from the measured temperatures is a challenging task. 

Table 6.7 Technical specifications of the tilt and temperature sensors 

employed in the monitoring of the NPL Footbridge. 

Sensor Specifications 

Electrolevel surface mount 
tilt meter 

Range: ±45 Arc Minutes (±13mm/m) 

Resolution: 5.2×10-3mm/m 

Vibrating wire arc-weldable 
strain gauge* with 
temperature sensor 

Temperature range: -20 to 80°C 

Thermistor resolution: ±0.01°C 

*Strain measurements are not considered in this study.  

 

 

Figure 6.38 Sketch of the NPL Footbridge. TL-i (i = 1, 2, …, 8) and TEMP-j 

(j = 1, 2, …, 10) indicate the locations of tilt sensors and thermistors 

respectively. 

In this study, measurements from the NPL Footbridge serve to: 

1. demonstrate the performance of the RBTRP methodology on a full-scale 

structure in a live environment. 

2. inspect tilt measurement time-histories for anomalies. 
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Measurement time-histories 

In this research, data collected from nearly two and a half years of monitoring of 

the footbridge is selected to illustrate the application of the TB-MI approach. While 

measurements were generally recorded every five minutes, the measurement 

collection frequency was occasionally increased to one measurement per minute 

and also reduced to one measurement per hour. There are also periods when 

data collection was interrupted for several days. Maintaining a consistent 

measurement frequency is, however, crucial to identifying patterns in the data. 

Computational requirements can also be reduced by eliminating excess data. 

Portions of the original data-set, where the measurement frequency is one every 

minute, are therefore down-sampled to create a new data-set resembling a 

measurement frequency of one measurement every five minutes (i.e. a frequency 

of 3.3×10⁻³ Hz). Durations corresponding to periods when no measurements 

were collected are removed. The periods when measurements were taken at a 

rate of one every hour comprise a small part of the entire measurement set (<1%). 

For these periods, missing measurements are imputed. 

Time-histories of temperatures measured with sensor TEMP-1, after undergoing 

treatment as described above, are plotted in Figure 6.39. Time-histories show a 

typical sinusoidal trend indicating seasonal temperature variations (Figure 

6.39 (left)). A closer look reveals smaller sinusoidal cycles which are induced by 

diurnal temperature variations (Figure 6.39 (right)). Tilt measurements are also 

pre-processed. Tilt time-histories of TL-5, TL-6, TL-7 and TL-8 are shown in 

Figure 6.40. These plots depict general seasonal tilt patterns of the NPL 

Footbridge. 
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Figure 6.39 Temperatures measured by TEMP-1 over the selected monitoring 

period (left) and one day (right). 

 

 

Figure 6.40 Time-histories of tilt measurements from tilt sensors TL-5, TL-6, 

TL-7 and TL-8. 

Event histories 

During the monitoring project, the footbridge was exposed to a variety of loading 

and cut-and-repair tests. Details of such events that may have changed the 

performance of the footbridge are listed in Table 6.8. While temperature 

variations largely explain patterns in tilt measurements, a closer look at the 

periods when tests were conducted can reveal the changes in structural response 

due to these tests. For example, measurements collected with TL-5 are shown 

up close in Figure 6.41. The effects of events #2 and #3 can be identified from 
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Figure 6.41 by looking at measurements from the corresponding time frame. The 

two drops in tilt measurements due to these events are indicated by circles in 

Figure 6.41. Both events #2 and #3 are static load tests. In these tests (Table 

6.8), a load was applied at the end of the left cantilever portion of the footbridge 

(Figure 6.38). Identifying such events from measurement time-histories is a 

difficult task, especially without having a priori knowledge of times and nature of 

activities. 

Table 6.8 The list of events. 

Event # Date Activities 

1 24/Mar/2009 

Static tests - filling and emptying water tanks 

which are attached to the left cantilever 
2 29 to 30/Jun/2009 

3 01 to 03/Aug/2009 

4 30/Jun to 02/Jul/2010 Static tests and scaffolding activities 

5 18/Oct/2010 Cut in the left cantilever and static tests 

6 01/Nov/2010 Cantilever repaired 

7 28/Apr/2011 Cut in the left cantilever 

8 27/Jun/2011 Rebar cut 

 

 

Figure 6.41 Time histories of TL-5 between 08/Jun/2009 and 19/Aug/2009. 

Periods referring to events #2 and #3 are circled. 

 

Structural performance and behaviour 

Plots of measurements from sensors TL-5 and TL-6 (Figure 6.40) show that tilts 

of the deck, while being correlated with temperatures during the summer times, 

do not strictly follow temperature variations during the winter periods. Instead, the 

magnitude of the tilts shows little variation during winters (from October to March). 
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This phenomenon is possibly due to the limited solar radiation during the winter 

periods resulting in small thermal gradients across the deck cross-section and, 

therefore, causing minimal bending in the deck. Sensors TL-7 and TL-8 (Figure 

6.40) measure tilts of the “A” shaped columns about the Y-axis (Figure 6.38). 

Measurements from TL-7 show sinusoidal trends resembling both diurnal and 

seasonal temperature variations. On the other hand, measurements from TL-8, 

while having some sinusoidal trends, increase in magnitude over the course of 

the monitoring. This may be due to either a sensor malfunction or from ongoing 

settlement of the foundation supporting this column. 

6.2.1 Evaluation of the RBTRP methodology 

In this section, the performance of the RBTRP methodology is investigated. 

Prediction accuracies of regression models generated with the chosen regression 

algorithms (MLR, RR, SVR and ANN) are scrutinized. The importance of the 

following features is considered: 

 number of selected PCs, 

 input sampling frequency, and 

 thermal inertia parameter j. 

Measurement preparation  

In contrast to the laboratory structure, the NPL Footbridge is exposed to naturally 

varying environmental conditions and monitored for a longer period. 

Measurements reflect the effects of diurnal and seasonal variations in 

temperatures. Capturing the full range of tilt and temperature variations requires 

measurements taken over a six-month period, i.e., from peak winter to peak 

summer. However, only measurements taken during the first 6 months are useful 

to validate the proposed methodology since damage and other experimental work 

affecting the behaviour of the structure is known to be undertaken after this initial 

period. This issue is overcome by extrapolating the data-set originally collected 

over duration of six months to two years. This is done by taking advantage of the 

high frequency of measurement collection as follows. Two data sets (D1 and D2) 

of equal size are first generated from the original dataset (D). Odd-numbered 

items in the original time-series D of measurements form D1. The even-numbered 

items are mirrored about the 6-month timeline (before event #2) and this forms 

D2. D2 is appended to D1 hence creating a new data-set E, which emulates 
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approximately one full season, i.e., 1 year. The process is repeated for E by 

mirroring half its data-set about the 1-year timeline and, as a result, a data-set 

having duration of two years is created. In this manner, temperature and tilt 

measurements collected from all the sensors over 6 months are extrapolated to 

two years. These data-sets are used to validate the RBTRP methodology. 

This study draws upon tilt and temperature measurements from 4 tilt sensors and 

all 10 temperature sensors. Tilt sensors TL-1, TL-4, TL-5 and TL-6 are selected. 

It is observed that tilts measured with these sensors have no discernible shifts 

during the first 6 month of the monitoring. Generated time-series are plotted in 

Figure 6.42 and Figure 6.43. The maximal and minimal tilt values that they 

recorded are listed in Table 6.9. TL-1 and TL-6 are located on the two 

cantilevered ends of the footbridge; thus, the tilt measurements from the two 

sensors have similar magnitudes but in opposite directions (see Figure 6.42). In 

contrast, measurements from TL-4 and TL-5, which are located just to the right 

of mid-span of the footbridge, have similar patterns (see Figure 6.43). 

 

Figure 6.42 Tilt measurements from sensors TL-1 (left) and TL-6 (right) on the 

NPL Footbridge. 
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Figure 6.43 Tilt measurements from sensors TL-4 (left) and TL-5 (right) on the 

NPL Footbridge 

 
 

Table 6.9 Maximum and minimum tilt measurements from the NPL 

Footbridge 

 TL-1 TL-4 TL-5 TL-6 

Minimum tilt (mm/m) 0.76 0.70 0.80 1.94 

Maximum tilt (mm/m) -1.81 -0.12 -0.15 -1.81 

Range (mm/m) 2.57 0.82 0.95 3.75 

 

Seasonal variations in ambient temperatures are discernible in Figure 6.44 where 

the time-series of temperatures collected by sensor TEMP-1 are plotted. The 

temperature distribution across a structure is also dependent on the local 

environmental conditions. One side of the footbridge is closer to nearby trees 

(see Figure 6.37) and is hence relatively less exposed to the sun. This aspect 

results in one side of the bridge experiencing much higher temperatures than the 

other. This is evident from Table 6.10, which lists the maximum and minimum 

temperatures measured by temperature sensors over the considered monitoring 

period. Sensors TEMP1, TEMP-3 and TEMP-5, which are in the shade, measure 

significantly lower maximum temperatures than the others.  
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Figure 6.44 Temperature measurements from sensor TEMP-1 on the NPL 

Footbridge  

 

Table 6.10 Maximum and minimum temperatures measured by sensors 

TEMP-1 to TEMP-10 on the NPL Footbridge. 

 Temperature sensor (TEMP-i) 

 i 1 2 3 4 5 6 7 8 9 10 

Max (°C) 26.8 31.2 27.7 31.7 26.3 33.6 33.4 35.0 34.5 35.4 

Min (°C) -6.3 -6.6 -6.5 -6.4 -6.3 -6.4 -6.2 -6.5 -6.5 -6.4 

Range (°C) 33.1 37.8 34.2 38.1 32.6 40.0 39.6 41.4 41.0 41.8 

 

Response predictions 

The data-sets collected from the NPL Footbridge have a large number of samples 

due to the high frequency of measurement collection. The time and resource 

requirements for generating regression models, especially with algorithms of high 

levels of complexity (e.g., SVR, ANN), increase significantly with the size of data-

sets. This study therefore explores if reducing the size of the training data-sets 

by down-sampling available measurements or, in this case, simply ignoring 

measurements would speed up model generation with little loss in prediction 

accuracy. The actual frequency of measurement collection (f) in the data-set is 3 

measurements per hour. In this study, the frequency is artificially varied from 3 

measurements per hour to 1 measurement every 3 hours by regularly omitting 

measurements in the original data-set. For this purpose, regression models are 

first generated for various sizes of the training data-set and the performance of 
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the models are then studied in terms of the average prediction errors. While the 

size of the training sets are changed, the data-sets still present the full variability 

in the measurements as only the number of input measurements is modified; the 

duration of measurement collection is left unchanged. The measurements from 

the first year are used to train regression models. Regression models are then 

evaluated on tilt measurements of the second year. 

Figure 6.45 illustrates the variation of average prediction errors from regression 

models generated using SVR for tilt sensors TL-1 and TL-4; prediction errors are 

plotted against the number of PCs for different numbers of input measurements. 

Data-sets are pre-processed for outliers and noise, and the thermal inertia 

parameter, j is equal to 1. In most cases, the prediction error reduces as the 

number of inputs, i.e., the number of PCs, is increased. The plots in Figure 6.45 

show that the number of measurement inputs employed to train the regression 

algorithm directly affects the prediction accuracy. While the prediction error 

reduces with increasing frequency of measurement collection, the improvement 

in prediction error is negligible when a sufficient number of PCs are used. For tilt 

sensors TL-1 and TL-2, the prediction errors are small if 3 PCs and a 

measurement frequency of 1 measurement every 3 hours are specified (see 

Figure 6.45). 

 

Figure 6.45 Tilt prediction errors (mm/m) using SVR models for sensors TL-1 

(left) and TL-4 (right).  

Next, the study analyses the influence of the thermal inertia parameter j on the 

performance of the regression model. Corresponding results, which are 

illustrated in Figure 6.46 and Figure 6.47, show that there is an optimal value for 

j for which the models have minimum prediction errors. In Figure 6.46, the 
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variation of prediction errors with thermal inertia parameter j for tilt sensor TL-1 

has a sinusoidal pattern. Prediction errors reach their minimum when j = 36 and 

j = 108. The periodicity of the pattern is therefore approximately 72 

measurements, which is equivalent to a time interval of one day. Figure 6.47 

shows the variation of prediction errors with number of PCs and the thermal 

inertia parameter j for each sensor. j is varied from 1 to 40; the prediction error is 

minimum for j = 36. These results illustrate that the thermal response at any time-

instant can be determined from knowledge of the current set of temperature 

measurements and those collected 36 time-steps earlier. For the NPL 

Footbridge, j = 36 corresponds to a time interval of half a day; this value therefore 

suggests thermal lag in the structure caused by internal temperatures that are 

closer to the ambient temperature taken 12 hours earlier in the day. Furthermore, 

the plots also show that the thermal inertia parameter has a larger impact on the 

prediction errors for sensors TL-1 and TL-6 than for TL-4 and TL-5. The reason 

for such behaviour may be due to TL-1 and TL-6 being on the overhanging 

portions of the footbridge, which are relatively free to deform under thermal 

effects than the main-span.  

 

Figure 6.46 Tilt prediction error (mm/m) versus number of PCs and thermal 

inertia parameter j from sensor TL-1. 
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Figure 6.47 Tilt prediction error (mm/m) versus number of PCs and thermal 

inertia parameter j from sensor TL-1 (top left), TL-4 (top right), TL-5 (bottom left) 

and TL-6 (bottom right). 

The minimum tilt errors generated by the various regression algorithms for all tilt 

sensors are given in Table 6.11. Results in the table show that pre-processing 

the measurements to manage outliers and noise reduces prediction error by as 

much as 21%. Of the regression algorithms studied, ANNs provide the minimum 

prediction errors for the NPL Footbridge. Comparing these results to those from 

the laboratory truss, we can conclude that the choice of the regression algorithms 

used to model the temperature-response relationship is dependent on the 

structure. The NPL Footbridge is a concrete bridge. Changes in ambient 

temperature or solar radiation are not immediately reflected in its response due 

to thermal inertia effects arising from its low thermal conductivity and high thermal 

mass. The laboratory truss is made of aluminium, a material with superior thermal 

conductivity, and therefore has minimal thermal inertia effects. Furthermore, 

mechanical properties of concrete such as its elastic modulus are also known to 

vary considerably with changes in temperature in comparison to aluminium. 

Consequently, the nature of the relationship between temperatures and structural 

response for the NPL Footbridge and the laboratory truss are likely to be very 
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different. Generalizing this, the choice of regression model would be dependent 

on the structural system in consideration. This is also in keeping with the well-

known no-free-lunch theorem [226], which states that there is no single algorithm 

that is optimal for all problem classes. 

Table 6.11 Average tilt error in mm/m with minimum error for each tilt sensor 

location are given in bold. 

Algorithm TL-1 TL-2 TL-3 TL-4 Mean Standard deviation 

MLR 0.273 0.026 0.036 0.236 0.143 0.130 

MLR* 0.242 0.021 0.030 0.194 0.122 0.113 

RR 0.271 0.026 0.036 0.235 0.142 0.129 

RR* 0.240 0.020 0.029 0.193 0.121 0.112 

ANN 0.225 0.022 0.030 0.195 0.118 0.107 

ANN* 0.182 0.016 0.023 0.146 0.092 0.085 

SVR 0.274 0.026 0.037 0.242 0.145 0.131 

SVR* 0.237 0.020 0.029 0.192 0.120 0.111 

*pre-processed 

 

As noted in Table 6.11, the prediction errors observed for tilt sensors TL-4 and 

TL-5 are significantly less than those for tilt sensors TL-1 and TL-6. This may be 

attributed to the fact that measurements at TL-4 and TL-5 are more highly 

correlated with temperature measurements than TL-1 and TL-6. However, the 

prediction errors are still not large in magnitude when compared in terms of the 

range of measurements collected at these sensors (see Table 6.9). TL-1 and 

TL-6 measure much larger tilts than TL-4 and TL-5 and therefore, the normalized 

values of the errors are similar in magnitude. To illustrate this aspect, model 

predictions and measurements at tilt sensors TL-1 and TL-4 are compared in 

Figure 6.48 and Figure 6.49 respectively. For both sensors, model predictions 

closely follow actual measurements. The models correctly time the peaks and 

throughs but have shown to under-predict signals over the entire time interval. 
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Figure 6.48 Predictions from a SVR model for tilt sensor TL-1 on the NPL 

Footbridge and corresponding measurements over a 9-day period. 

 

 

Figure 6.49 Predictions from a SVR model for tilt sensor TL-4 on the NPL 

Footbridge and corresponding measurements over a 9-day period. 

6.2.2 TB-MI approach 

This section aims to investigate the application of the proposed TB-MI approach 

for the detection of anomaly events from measurements taken from the NPL 

Footbridge. The case study will also help in evaluating the application of the 

approach to full-scale structures where temperature measurements that offer 

only limited knowledge of temperature distributions are available. This part of the 

study utilizes measurements from all tilt and temperature sensors on the NPL 

Footbridge.  
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Regression model generation 

As stated previously for the truss, the reference period should encompass as 

much of the anticipated variability in measurements as possible, e.g., at least one 

seasonal cycle. Consequently, measurements from the first year of monitoring, 

which constitute a total of 94×10³ measurements, form the reference period.  

As a first step, measurements are pre-processed for outliers using the IQR 

technique, and smoothed with the MAF. The training and test sets are 

subsequently generated as discussed for the truss (Section 6.1). The training 

process is computationally expensive especially when resource demanding 

algorithms such as SVR are employed. For this reason, the sampling frequency 

is initially set to a small value of 6.5×10-6 Hz (i.e. every 512th measurement is 

selected to constitute the training set) to approximately determine the range of 

optimal values for the thermal inertia parameter j and the number of PCs in order 

to generate accurate regression models. For this value of sampling frequency, 

only 184 data points exist in the training set making the generation of regression 

models computationally less challenging. Thermal inertia parameter j is 

incremented in steps from 1 to 144, i.e., from 5 minutes to 12 hours. As there are 

10 temperature sensors installed on the bridge, the number of PCs can range 

from 1 to 10. Considering the above, the number of regression models for each 

sensor in terms of all combinations of values for j and the number of PCs is equal 

to 1440. 

SVR is chosen for this preliminary analysis to find values for j and the number of 

PCs. The prediction errors generated for the computed regression models are 

plotted versus the number of PCs and the thermal inertia parameter j for the 

locations of sensors TL-1 and TL-4 in Figure 6.50. The optimal values for the 

number of PCs and the thermal inertia parameter j can be defined from these 

plots. For sensor TL-1, j ≅120 with the first 4 PCs generates accurate response 

predictions. Similarly, for sensor TL-4, j ≅40 and 4 PCs provide accurate 

predictions.  
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Figure 6.50 Tilt prediction error (mm/m) versus the number of PCs and 

thermal inertia parameter j for SVR models computed for sensors TL-1 (left) 

and TL-4 (right).  

The relationships between prediction error, number of PCs and j for the models 

corresponding to the locations of sensors TL-6 and TL-5 are similar to those for 

TL-1 and TL-5 respectively. The variations in PE for the regression models 

corresponding to the locations of the other tilt sensors however do not show such 

clear patterns. Figure 6.51 illustrates the variation in PE with the number of PCs 

and thermal inertia parameter j for sensors TL-7 and TL-8; the variations of 

sensors TL-2 and TL-3 are also very similar. For sensor TL-7, j≈1 with the first 4 

PCs generates accurate response predictions. Similarly, for sensor TL-8, j≈134 

and 4 PCs provide accurate predictions.  

 

Figure 6.51 Tilt prediction error (mm/m) versus the number of PCs and 

thermal inertia parameter j from sensor TL-7 (left) and TL-8 (right). 

The preliminary analysis conducted using a sampling frequency of 6.5x10-6 Hz 

have shown that 4 PCs are sufficient to generate accurate regression models, 
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and also provided the optimal values for j for each sensor location. Then, the 

effect of down-sampling is evaluated and the optimal sampling frequency is 

identified as 5.2x10-5 Hz.  

Table 6.10 provides the statistics of the prediction errors computed from 

regression models generated for all sensor locations. The prediction error is 

expressed in terms of the mean RMSE and in terms of the percentage of the 

range of tilts measured during the reference period. Similar to the laboratory truss 

(Section 6.1), prediction error signals related to a particular sensor location are 

named as PE sensor name. Overall, the prediction errors are close to 10% or 

smaller for the majority of sensors considering the imperfections in the data set 

such as the lack of a reference period free of anomaly events. As structural 

behaviour may have been altered after these events and only limited knowledge 

of temperature distribution is available from measurements, the generated 

regression models give satisfactory predictions.  

The highest prediction accuracies are at sensor locations TL-4 and TL-5. The 

corresponding sensors are located to the right of the mid-span of the deck (Figure 

6.38). PE TL-2, PE TL-3 and PE TL-7 have high RMSE values of more than 13% 

of the measured range. The RMSEs for especially PE TL-2 and PE TL-3 are in 

contrast to PE TL-4 and PE TL-5, which also correspond to sensors located near 

mid-span. This is attributed to the slight drift in the PE signals prior to event #2 

(Figure 6.52), which may have been caused by a permanent change in structural 

behaviour or a sensor malfunction. 

Table 6.12 Tilt prediction accuracy during the reference period 

Tilt sensor 
The range of tilts for the 
training period (mm/m) 

RMSE (mm/m) RMSE in percent (%) 

TL-1 3.27 0.353 10.8% 

TL-2 0.91 0.165 18.3% 

TL-3 0.55 0.047 14.5% 

TL-4 0.95 0.079 4.9% 

TL-5 1.12 0.058 5.1% 

TL-6 4.00 0.292 7.3% 

TL-7 0.63 0.086 13.7% 

TL-8 0.36 0.032 8.8% 
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Figure 6.52 Prediction error (PE) signals for all sensor locations. Numbers in 

boxes represent events.  

Anomaly detection 

PE signals created using predictions from SVR models are examined for the 

anomaly events listed in Table 6.8. SVR models have previously been shown to 

be robust and provide accurate predictions of structural response due to diurnal 

cycles (see Figure 6.48 and Figure 6.49). All the PE signals are first visually 

examined for patterns and any imperfections. Of all the signals, PE TL-8 alone 

shows a different pattern. This is attributed to the inability of the regression 

models to accurately predict the tilt response at this location, due to the nature 

and quality of measurements collected by the corresponding sensor. Figure 6.40 

shows the trends of tilt measurements collected by tilt sensors. Measurements 
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from sensor TL-8 do not resemble typical seasonal temperature patterns. In fact, 

the measurements show two noticeable drifts that commence at the following 

times: 

 the beginning of winter 2010 and lasting until spring 2010; 

 shortly after event #4.  

Consequently, PE TL-8 is also exhibiting a similar pattern, and also have high 

values due to the large prediction errors, particularly after event #4 (Figure 6.52). 

A few of the events can be identified directly from the PE signals due to prior 

knowledge of the event history. Spikes at events #2 and #3 are discernible in 

PE TL-1, PE TL-4 and PE TL-5 (Figure 6.52). However, in general, all the events 

cannot be identified by visually examining the PE signals. The PE signals are 

therefore processed for anomaly events using MFFT, MPCA, cointegration and 

SSM. 

PE TL-1 drifts slightly from the beginning of the monitoring until event #1. Such 

signal behaviour is not observed in PE TL-6 (sensor TL-6 is located on the other 

cantilever of the footbridge). A drift in PE TL-7 is discernible after event #1. This 

drift lasts for several months and the signal stabilizes at the end of the reference 

period. This can be determined only after the PE signals are analysed for 

anomalies.   

MFFT: The length of the moving window is four months, which is ⅓ of the length 

of the reference period. The later ⅔ of the measurements in the reference period 

are used to derive the confidence interval. Each MFFT signal is different and no 

common trends are noticeable. Some MFFT signals temporarily exceed the 

confidence interval, the others stay within the specified limits. Plots of MFFT TL-3 

and MFFT TL-8 are shown in Figure 6.53. MFFT TL-3 departs the confidence 

interval after event #4. However, MFFT TL-8 exceeds the confidence interval 

soon after the end of the reference period, before February 2010. During this 

period, which is between events #3 and #4, no activity affecting the performance 

of the footbridge was carried out. 
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Figure 6.53 MFFT TL-3 and MFFT TL-8. Numbers in boxes represent events. 

MPCA: PE signals of all tilt sensors are used as input to MPCA. Initially, the length 

of the moving window is set to be the same as for MFFT, i.e. 4 months. No 

anomaly events are revealed in eigenvector signals (Figure 6.54). However, 

many of the events are indicated by spikes in PE signals as discussed earlier 

(see Figure 6.52). The length of the moving window is therefore gradually 

reduced in order to investigate if these events can be detected from analysis of 

PE signals using shorter lengths for the moving windows. The plot of the 

component from the first eigenvector signal corresponding to sensor TL-1 

computed using a moving window length of 30 days is also shown in Figure 6.55. 

The eigenvector values jump immediately after events #1, #2, #3, #4 and #8. 

Events #5 and #7 are not detected. These events may have had little effect on 

the overall structural performance. Also, the eigenvector signal jumps not at event 

#8 but slightly after. This takes place on July 7, 2011. On this day static load tests 

were carried out, which may have amplified the response due to the permanent 

damage created during event #8.  
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Figure 6.54 Time-series of the first eigenvectors related to TL-1 computed with 

MPCA (the length of the moving window is four month) from all PEs with. 

 

 

Figure 6.55 Time-series of the first eigenvectors related to TL-1 computed with 

MPCA (the length of the moving window is 30 days) from all PEs. 

Cointegration: All PE signals are analysed using cointegration. The cointegrated 

signal is plotted in Figure 6.56. The signal departs from the confidence interval 

after event #4. This closely reflects the trend of PE TL-8, which may indicate that 

the event happened close to sensor TL-8. However, the cointegrated signal 

cannot offer support in detecting the location of the events. 

All other events appear to create small drifts in the cointegrated signal. However, 

none of the events other than event #4 are reliably detected using the 

cointegrated signal. This is in agreement with a previous study by Worden et al. 

[178], where they demonstrated that anomalous events from the NPL Footbridge 

can be detected when analysing response measurements using the cointegration 

approach.  

Jan/2009 Aug/2009 Feb/2010 Aug/2010 Mar/2011 Sep/2011
-1

-0.5

0

0.5

1

Time (month/year)

E
ig

e
n

v
e
c
to

rs

1 32

4 5 6 7 8

Jan/2009 Aug/2009 Feb/2010 Aug/2010 Mar/2011 Sep/2011

-1

-0.5

0

0.5

1

Time (month/year)

E
ig

e
n

v
e
c
to

rs

1 4 5 7 82 3



Chapter 6: Case studies, NPL Footbridge 

163 

 

Figure 6.56 Cointegrated signal generated from all PE signals. 

SSM: The interpretation of PE signals with SSM provides results similar to those 

obtained using MPCA and cointegration. Subtracted signals, which are derived 

using PE TL-8, exceed the confidence interval soon after event #4. As an 

example, TTL1TL8 is plotted in Figure 6.57. It resembles the cointegrated signal 

shown in Figure 6.56. In addition to detecting event #4, these results also indicate 

that the event must have occurred close to TL-8. Subtracted signals, generated 

from combinations including PE TL-4 and PE TL-5 have shifts right after at events 

#2, #3 and #4. However, the shifts due to these events, which have short time-

scales, can be noticed only when the signals are examined closely as illustrated 

using TTL1TL5 in Figure 6.58. The results also indicate that events #2, #3 and #4 

must also have occurred near sensors TL-4 and TL-5.  

 

Figure 6.57 Subtracted signal TTL1TL8 generated with SSM. 
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Figure 6.58 Subtracted signal TTL1TL5 generated with SSM. Plot at top shows 

the signal for the full measurement history, while those on the bottom are closer 

views near events #2, #3 and #4. 

6.2.3 Discussion and conclusions 

This section illustrated the application of TB-MI approach on measurements from 

the NPL Footbridge. The footbridge, which has been removed from its original 

location and placed in a new site, served as a full-scale test-bed for many SHM 

techniques. Details of the events (e.g. loading, damage etc.) that took place on 

the bridge are available, and these are employed to investigate the performance 

of the TB-MI approach for anomaly detection (Table 6.8).  

Changes in response are discernible after static load tests (events #1, #2, #3), 

and after winters (see Figure 6.39 and Figure 6.40). These changes can also be 

detected using the TB-MI approach. The author believes that the foundations for 

the bridge may have experienced differential settlement after its installation in its 

new site. Furthermore, the structural performance was altered due to exposure 

to extreme loadings such as during the load tests and to temperatures below 

freezing. These events, although not affecting the integrity of the footbridge, have 

left their signatures in the tilt measurement time-histories, and obscure the 

detection of the events conducted on the bridge. 
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From this study, the following observations are worth mentioning:  

 Results show that the RBTRP methodology can make accurate response 

predictions from measurements offering limited information on 

temperature distributions. 

 Regression models with acceptable prediction accuracy can be generated 

with measurements collected at low frequencies. For this bridge, only 6% 

of measurements from the reference period are shown to be sufficient to 

train regression models.  

 The selection of an appropriate thermal inertia parameter j can 

significantly improve prediction accuracy. The optimal value for the 

parameter will vary according to sensor location. 

 A small number of PCs is sufficient as input to the regression models for 

thermal response prediction. In this case, four PCs are able to explain 

more than 99.9% of the variance in temperature measurements. 

 MPCA can effectively identify sudden and temporary changes in the 

structure’s behaviour when short moving windows are used. 

 Certain events on the bridge such as events #5 (damage) and #6 (repair) 

cannot be detected by any of the anomaly detection techniques due to a 

lack of post-event measurements and due to limited impact of these events 

on structural performance. 

 Cointegration is capable of detecting global changes in structural 

performance, while SSM offers indications of the locations of the events. 
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6.3 River Trent Bridge  

The River Trent Bridge is located in the East Midlands between Nottingham and 

Derby (Figure 6.59). The bridge was built in the mid-sixties. The bridge spans in 

the North-South direction as shown in Figure 6.60 (left). It is a part of the 

M1 Motorway and serves as the crossing over the floodplain adjacent to the River 

Trent. The River Trent Bridge is an important asset to the nation’s infrastructure. 

According to the Department for Transportation [227], the annual average daily 

traffic flow across the bridge in 2013 was estimated to be 136,000 vehicles. 

Consequently any temporary closure of the bridge has the potential to result in 

vast economic losses and cause major traffic disruptions.  

 

Figure 6.59 Location of the River Trent bridge on an enlarged map (left) and a 

zoomed-in view (right) [228]. 

 

 

Figure 6.60 Aerial view of the River Trent bridge (left) and a view from an 

overcrossing (right) [229]. 

The bridge is composed of cast in-situ reinforced concrete elements. A sketch of 

the top and side views of the bridge is shown in Figure 6.61 along with its principal 
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dimensions. The bridge has 21 spans in total. As per the original construction, 

each span is supported on either side by 8 piers (Figure 6.61). The distribution of 

piers may be represented using a grid layout, where the vertical rows are labelled 

alphabetically from A to V (Figure 6.61), and the horizontal rows are labelled 

numerically from 1 to 8.  

Structurally, the bridge is composed of two types of systems - deck-on-beam 

system (the Floodplain Bridge #3) and deck-on-pier system (the Floodplain 

Bridge #2 (Figure 6.61 (bottom))). The 97.3m long span on the left side in Figure 

6.61 (bottom) consists of four deck-on-pier elements, which are connected 

together with pre-cast slabs. The rest of the spans are made of deck-on-beam 

systems. This portion is 78.2m long. A standard concrete bridge deck is laid on 

two beams, each of them supported on 8 piers. Decks at each end of the bridge 

are supported on abutments. Piers are supported on individual footings, which 

are cast on concrete piles. Footings supporting the deck-on-pier system are cast 

on four piles while those for the deck-on-beam system are cast on three piles. 

The diameters of piers for the two systems are 686mm and 457mm respectively. 

 

Figure 6.61 Sketch of the River Trent Bridge: elevation (top) and side view 

(bottom). 
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Due to concerns regarding the cement and the aggregate used in the 

construction, this bridge was investigated for prevalence of alkali-silica reaction 

(ASR). ASR is the result of interaction between highly alkaline cement and 

siliceous aggregate found in aggregate from specific regions [230]. Alkali-

aggregate reactivity forces different components of the aggregate to expand 

more than the others. Hence, ASR causes the deterioration of concrete elements, 

which can lead eventually to their failure. This chemical reaction is observed in 

many concrete structures around the world, especially those built during 1960s-

70s when the means to mitigate ASR were not available.  

ASR was observed in footings of the piers of the River Trent Bridge. Figure 6.62 

(left) shows ASR on the surface of the footing for a pier of the Floodplain 

Bridge #2. The UK’s Highways Agency (HA) conducted a series of full scale load 

tests on the footings suffering from ASR. The tests were carried out on two 

footings each from the Floodplain Bridges #2 and #3. The tested footings are 

located on grid locations (S,3), (S,6), (L,3) and (L,6) (Figure 6.61). A section of 

the piers resting on these footings was cut out. Before cutting a part of a pier, 

new piers were installed on grid-lines S and L between the existing piers, 

therefore providing the needed support to bear the applied loadings. The 

removed sections of the piers are replaced with steel H-section columns, and 

V-shaped elements are fixed on newly erected piers. Figure 6.62 (right) shows 

piers on the grid-line S. Loading tests demonstrated that footings can carry much 

higher loads than they were designed for. However, in order to detect any change 

in the bearing capacity of the piers due to ASR, a monitoring system was installed 

on the bridge in 2004. 
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Figure 6.62 Alkali-silica reaction on a footing of a pier of Floodplain #2 (left) 

and piers subjected to full scale tests on the grid-line S (right). (Courtesy 

Highways Agency.) 

 

Monitoring 

The purpose of installing the monitoring system is to provide support to regular 

inspections and to detect changes in the structural performance of the piers. The 

system comprises 150 vibrating wire (VW) strain gauges and 8 thermocouples 

(TH). VW strain gauges and thermocouples are from hereon referred to as VW-i 

and TH-i, respectively, where i is a number of a specific sensor. VW strain gauges 

are installed on all piers between grid-lines A and S (Figure 6.61). All sensors but 

VW-3 are installed on the west faces of piers, approximately 300mm from the 

connection to the beam or slab. Figure 6.63 (left) shows VW strain sensors on 

the grid-line B. Temperatures are measured within the concrete deck slab, 

abutment and air. Figure 6.63 (right) shows a thermocouple installed in the deck 

of the bridge. Measurements are collected once per hour (2.78×10-4 Hz). But for 

the most of the monitoring period, between 2004 and 2014, only one 

measurement per day (1.16×10-5 Hz) at 4:00am is recorded. 
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Figure 6.63 Vibrating wire strain sensors (left) and a thermocouple (TH-2) 

installed on the River Trent Bridge. 

This research focuses on the analysis of measurements taken from the River 

Trent Bridge. The objectives are as follows: 

 Illustrate thermal effects on the bridge and their importance in the context 

of monitoring; 

 Visually examine strain time-histories and suggest appropriate pre-

processing methods; 

 Apply the TB-MI approach to interpret the measurements. 

6.3.1 Thermal effects 

The bridge is oriented in a north-south direction (Figure 6.60). In mornings and 

evenings, the east and west sides of the bridge respectively are exposed to the 

sun. In the afternoons the deck of the bridge receives significant solar radiation. 

There are no large obstacles adjacent to the bridge, hence temperature 

distribution is expected to vary equally along the length of the bridge. 

Temperature distribution along the depth and width of the bridge depends on the 

location of the sun. Thermal images of the east side of the bridge with piers on 

grid-line 1 close to the front are shown in Figure 6.64. From these images, one 

can see that the surface temperature of the east side of piers is up to 10°C 

warmer than that of the west side. 
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Figure 6.64 Thermal images of the east face of the River Trent Bridge in the 

morning of the 9th of April, 2014 

The sensing system installed on the River Trent Bridge is exposed to harsh 

environmental conditions. Vandalism had also been reported at the beginning of 

the monitoring. As a result, a few sensors started to malfunction a few years into 

monitoring. There have also been interruptions in the monitoring for various 

reasons including power outages. Time-histories of temperatures and strains 

measured at hourly intervals with sensors TH-1 and VW-32, respectively are 

shown in Figure 6.65. The time-histories show that no data was collected in 

certain periods such as during 2007-08. Response measurements collected 

(Figure 6.65 (bottom)) are overall correlated with temperature variations as 

expected. However, further examination of the measurement patterns recorded 

by various sensors also reveals interesting aspects of the structure’s thermal 

response. 
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Figure 6.65 Time-histories of temperatures measured with sensor TH-1 (top) 

and strains measured with sensor VW-32 (bottom) between December 2004 

and October 2013. 

 

Consider the response of the bridge when the material (concrete) cools. Figure 

6.66 shows a typical cross section of the Floodplain Bridge #2. The section cut is 

along grid-line B. For simplicity, assume that the temperature is always uniform 

throughout the material. The concrete slab contracts when temperature 

decreases, and consequently, pulls beams and piers towards its centre-lines. 

Similarly, when the beams contract, they pull the piers towards the centre. As a 

result, the piers bend even under uniform temperature distributions. This is 

illustrated in Figure 6.66 with arrows indicating the direction of contraction. In 

reality, the temperature distributions are much more complex, especially when 

considering the low thermal conductivity and high thermal mass of concrete.  

 

Figure 6.66 A simplified force diagram of the section across grid-line B. 
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While the strains measured at the top of a pier is effectively the integrated 

response to all loads, temperature effects dominate. The behaviour of the piers 

as illustrated above and the importance of temperature are evident when 

exploring strain time-histories collected over fall and winter, when the mean 

temperature reduces. Figure 6.67 (bottom) shows temperature variations 

measured with TH-1 between August 2009 and January 2010. The decrease in 

temperature is reflected in the bridge’s response. Strain measurements of 

sensors located on grid-line B, for the selected period, are shown in Figure 6.67 

(top). Strains on piers are not symmetric as one might have expected. Strains on 

piers which are located on grid locations (B,1), (B,2) and (B,3) increase with the 

decrease of temperature while strains on the other piers decrease with 

decreasing temperature. 

 

Figure 6.67 Temperature and strain time-history between August 2009 and 

January 2010. 

 

The above observations illustrate the complexity of thermal effects and their 

importance to understanding the measurements. This knowledge can aid in the 

measurement preparation and interpretation processes.  

6.3.2 Data pre-processing 

In this study, the author has selected the period between July 2009 and October 

2013 to evaluate the TB-MI approach for the following reasons: 
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 few sensors that were faulty at the beginning of monitoring have been fixed 

and their measurements have therefore stabilized. 

Strain measurements are noisy and contaminated with outliers. The outliers are 

removed with the IQR technique. The measurements are then treated for noise 

with MAF. The size of the moving windows for the IQR technique and MAF are 

chosen according to the sensor to maximize the removal of outliers and reduction 

of noise. Figure 6.68 shows time-histories of raw and pre-processed strain 

measurements collected at hourly intervals with sensor VW-16.  

 

Figure 6.68 Time-histories of raw and pre-processed strains collected with 

sensor VW-16 between August 20 and October 20, 2012. 

Figure 6.69 plots temperatures measured with sensors TH-1 and TH-2, and the 

strains measured with sensor VW-32 over a one-week period in late April, 2011. 

While sensor TH-1 measures the ambient temperature, TH-2 measures 

temperatures within the slab. Sensor VW-32 is installed on a pier located on grid 

location (C,8). At this location, strains are expected to increase when temperature 

rises (see Figure 6.67). Figure 6.69 illustrates that the time lag between the peaks 

measured by i) TH-1 and VW-32 is 12 hours, and ii) TH-2 and VW-32 is 8 hours. 

These time lags are due to thermal inertia effects in concrete. This example 

shows that measurement collection frequency has to be sufficient to account for 

and detect thermal effects. If measurements are collected once per day, thermal 

effects cannot be understood fully and quantified accurately. Figure 6.68 also 

shows the measurements that would have been collected by sensor VW-16, if 

the measurement frequency was one per day. These measurements would not 

have captured the diurnal variations and therefore also the effect of thermal 

inertia. 

20/09/12 26/09/12 02/10/12 08/10/12 14/10/12 20/10/12

-160

-140

-120

-100

-80

-60

-40

-20

S
tr

a
in

 (

1
0

-6
)

Date

 

 
Raw

Pre-processed

Raw daily



Chapter 6: Case studies, River Trent Bridge 

175 

 

Figure 6.69 Time histories of temperature and strain collected over one week. 

Measurement signals with noticeable flaws such as drifts, excessive level of noise 

and missing data need to be identified prior to the data interpretation phase. For 

this purpose, the measurements from individual sensors are inspected visually to 

identify any obvious discrepancies prior to application of the TB-MI approach. 

This process essentially involves a cursory examination of the patterns in the 

individual measurement time-series from the River Trent Bridge to understand 

the level of correlation between temperatures and strains. The level of correlation 

between strain and temperature measurements is generally observed to fall in 

one of the following categories: 

 good - strain variations reflect changes in ambient temperatures (Figure 

6.70, VW-7 and VW-15); 

 drifting - reasonably good correlation, however, with a noticeable upward 

or downward drift (Figure 6.70, VW-26); 

 noisy - patterns in response measurements do not resemble seasonal 

temperature variations (Figure 6.70, VW-38 and VW-67); 

 incalculable - missing response measurements makes it impossible to 

evaluate the correlations (Figure 6.70, VW-56).  
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Figure 6.70 Time histories of strain measurements collected with sensors VW-

7, VW-15, VW-26, VW-38, VW-67 and VW-56. 

Next the range of measurements collected by the sensors is examined to identify 

measurements that may have errors. The range of strains collected with sensors 

VW-9 to VW-40 for the first year of monitoring is given in Table 6.13. While the 

range of measured strains is expected to be relatively similar for sensors that are 

installed on symmetrically located piers, they are not so as observed in the table. 

For example, the range of strains measured with sensor VW-24 is more than 

double the range of measurements collected with sensors VW-16, VW-32 and 

VW-40. Their trends, however, are similar; also, no outliers are present in these 

measurements that could cause such a large deviation. A possible explanation is 

that these sensors might be installed in slightly different locations on the piers. 

The range of measurements collected by sensor VW-38 is less than one-third the 

range of strain measurements from other sensors installed on grid-line 6, and 

therefore VW-38 may be considered to be malfunctioning. Figure 6.70, which 

shows the measurements from sensor VW-38, supports this finding. The range 

of strains collected from piers located on grid-lines 3 and 4 are significantly lower 

than that of the other piers. This can be better understood when considering the 

geometry of the structure and the location of the sensors in combination with 

thermal effects, as discussed in Section 6.3.1. The prediction error for these 

sensors is expected to be higher than that of the others due to the smaller range 
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of measurements. Altogether, about one-eighth of the signals have been 

identified to have noticeable discrepancies. These signals will still be analysed, 

and the capability of the TB-MI approach to pick these up will be investigated 

later. 

Table 6.13 The range of strains measured with sensors VW-9 to VW-40 

between July 2009 and July 2010. 

Vertical grid-line, 

sensors 

 Horizontal grid-line 
 

1 2 3 4 5 6 7 8 

B, VW9 to VW16 

S
tr

a
in

s
 (

x
1

0
-6
) 175 176 91 118 214 310 307 216 

C, VW17 to VW24 362 171 77 123 200 245 641 601 

D, VW25 to VW 32 248 128 87 105 228 368 317 339 

E, VW33 to VW 40 209 133 68 125 191 81 509 271 

 

6.3.3 TB-MI approach 

Regression model generation 

The RBTRP methodology is employed to generate regression models for thermal 

response prediction. Strain measurements from sensors VW-1 to VW-95, which 

are installed on the Floodplain Bridge #3, are selected for this case study. The 

reference period is of length one year from July 2009 to July 2010.  

As for other case studies, the optimal input down-sampling rate is evaluated by 

gradually increasing the sampling frequency. Only trivial improvements in 

prediction errors are observed as the input measurement frequency is increased 

beyond 4.3×10-6 Hz. The optimal value for the thermal inertia parameter j is found 

to be between 1 and 7 depending upon the sensor. Temporally, these values 

correspond to measurements collected 1 and 7 hours prior to the current 

measurement time-step.  

The relationships between the PE, the number of PCs and thermal inertia 

parameter j for all sensors have a large degree of similarity. Figure 6.71 shows 

PEs evaluated for the regression models for sensors VW-27 and VW-30 plotted 

against the number of PCs and j. The sinusoidal variations in the PE are similar 

to those observed for the NPL Footbridge (see Figure 6.46). The period of 

oscillation can be either 12 or 24 hours depending upon the sensor location in 
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relation to the horizontal grid-lines (Figure 6.61). For example, for sensor VW-27, 

which is on one side of the horizontal centreline, the period of oscillation is 24 

hours. For sensor VW-30, which is on the other side of the horizontal centreline, 

there are oscillations at two different periods – 12 and 24 hours, as shown in 

Figure 6.71. 

  

Figure 6.71 Strain PE (×10-6) versus number of PCs and thermal inertia 

parameter j from sensor VW-27 (left) and VW-30 (right). 

For the sake of brevity, only results based on the strain predictions at sensors 

located on grid-lines B, C, D and E are presented. Table 6.14 shows RMSE 

values of the prediction errors expressed as a percentage of the range of 

measured strains. As discussed in Section 6.3.1, RMSE values are expected to 

be higher for sensors located on grid-lines 3 and 4. The RMSE value for sensor 

VW-38 (the grid-line 6) is particularly large (see Table 6.14). However, this is 

expected as the strains measured with sensor VW-38 are noisy (see Figure 6.70) 

possibly due to a fault. The RMSE value for sensor VW-26 is slightly larger than 

that of the other sensors located on the grid-line 2. The larger RMSE value may 

be due to the measurements from the sensor showing a downward drift (see 

Figure 6.70). The average RMSE computed from the RMSEs of predictions at all 

selected sensor locations is 6.7%, which is significantly lower than that of the NPL 

Footbridge (≈10%) and higher than that of the laboratory truss (≈1.5%). 
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Table 6.14 RMSE values are expressed in percentage of the range of strains 

for sensors VW-9 to VW-40. 

Vertical grid-line, 
sensors 

 Horizontal grid-line 
 1 2 3 4 5 6 7 8 

B, VW9 to VW16 

R
M

S
E

 

5.8% 5.4% 7.8% 7.3% 5.5% 3.5% 4.0% 5.9% 

C, VW17 to VW24 5.3% 4.3% 11.2% 6.8% 3.8% 3.8% 2.8% 4.1% 

D, VW25 to VW 32 5.5% 7.2% 9.3% 7.5% 4.0% 3.3% 3.1% 4.3% 

E, VW33 to VW 40 6.2% 6.1% 11.2% 4.3% 4.9% 14.6% 4.7% 4.0% 

 

Anomaly detection 

The River Trent Bridge is inspected on a regular basis. According to the M1 R 

Trent N floodplain 2 and 3 Monitoring report No. 5 [231], the bridge is sound and 

no threat to its integrity is found. The aim here is to show that signal drifts can be 

detected and further decisions have to be made by responsible engineers on how 

to classify these anomalies. For illustrative purposes PE VW-15, PE VW-23, PE 

VW-26 and PE VW-36 are shown in Figure 6.72. PE VW-15 and PE VW-23 

remain stationary and no obvious shifts or drifts in their signals are observed 

during the monitoring period. However, PE VW-26 and PE VW-36 drift albeit 

gradually.  

 

Figure 6.72 Prediction error signals for sensors VW-15, VW-23, VW-26 and 

VW-36. 
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The PE signals are analysed further with anomaly detection techniques in order 

to detect any events such as a sensor turning faulty or showing drift. SSM has 

proven to efficiently detect anomalous events from PE signals of the laboratory 

truss and the NPL Footbridge. For this reason, SSM is selected to examine PE 

signals generated for the River Trent Bridge. To limit the number of subtraction 

signals, sensor clusters are created. Sensors located along a certain grid-line are 

assigned to one cluster. For example, cluster D encompasses sensors located 

on the vertical grid-line D, and sensor cluster 2 includes sensors located on the 

horizontal grid-line 1 between grid-lines B and G.  

PE VW-26 and PE VW-36 are analysed using anomaly detection techniques to 

evaluate if the techniques can indicate that the corresponding sensors are faulty. 

PE VW-26 is included in clusters D and 2. Four out of seven subtraction signals 

computed from cluster D include PE VW-26, and all of these four exceed 

confidence intervals. The same is observed for cluster 2; four subtraction signals 

that include PE VW-26 exceed the confidence intervals. For the purpose of 

illustration, TVW26VW27 and TVW26VW28 computed from cluster D, and TVW10VW26 and 

TVW26VW42 computed from cluster 2 are plotted in Figure 6.73. Similar results are 

obtained when inspecting subtraction signals derived from clusters E and 4, and 

include PE VW-36. These signals breach confidence intervals as shown in Figure 

6.74. 

 

Figure 6.73 Subtracted signals TVW26VW27 and TVW26VW28 from cluster D (top) 

and TVW10VW26 and TVW26VW42 from cluster 2 (bottom). 
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Figure 6.74 Subtracted signals TVW35VW36 and TVW36VW37 from cluster E (top), 

and TVW20VW36 and TVW28VW36 from cluster 4 (bottom). 

6.3.4 Conclusions and future work 

The River Trent Bridge is exposed to harsh environmental conditions and is 

crossed by more than a hundred thousand vehicles every day [227]. Since 2004, 

the bridge has been equipped with a sensing system comprised of 150 strain and 

8 thermocouples. Some sensors from the sensing system have stopped 

functioning entirely and some have become faulty. In general, strains measured 

by the majority of sensors clearly reflect variations in ambient temperature. Hence 

any anomaly event on the structure may be masked by diurnal and seasonal 

temperature variations. The vast number of sensors also makes visual inspection 

of the data extremely difficult and unreliable. Therefore, a data-driven approach 

to measurement interpretation is desirable. 

From this study, the following conclusions can be drawn on the monitoring of the 

bridge and the TB-MI approach.  

1. Monitoring: 

 Real-life strain signals are likely to be noisy and have outliers. 

Therefore, effective pre-processing of data is crucial to data 

interpretation. 

 Collecting measurements at sufficiently high frequencies is important 

to capture thermal effects, and therefore for reliable data 

interpretation.  

 To be useful, sensors must be installed at locations that provide 

maximum information on structural response. For example, the 
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sensors at the top of the piers on horizontal grid-lines 3 and 4 measure 

only a small range of strains, and therefore offer little information.  

2. TB-MI approach: 

 Results show that the RBTRP methodology can be used to create 

regression models that accurately predict thermal response from 

temperatures taken at only a few locations on such a large structure.  

 Selection of an optimal value for the thermal inertia parameter j is 

important to ensure high prediction accuracy. The optimal value varies 

according to sensor location.  

 Creating meaningful sensor clusters can help with anomaly detection 

when dealing with measurements from such a large number of 

sensors.  

 SSM is able to detect anomaly events, and also identify the locations 

of the events by indicating the sensors that are affected by such 

events.  

The monitoring system on the bridge has been refurbished, and also augmented 

recently following the M1 R Trent N floodplain 2 and 3 Monitoring report No. 5 

[231] produced by A1, the maintenance contractor. The report concludes that:  

 strain measurements “are swamped due to thermal effects”, and  

 thermal effects can be reduced if the sensors are re-sited lower on the 

piers.  

On the author’s visit to the site (April, 2014), the sensing system was enhanced 

with additional VW strain sensors (Figure 6.75 (right)) installed farther below from 

the slab than the originally installed ones (Figure 6.75 (left)). The strains 

measured at the new sensor locations may be generated predominantly from the 

contraction and expansion of piers with minimum effects from pier bending. 

Thermal effects, however, are still expected to dominate deformations. During the 

visit, the author suggested increasing the measurement collection frequency, and 

also considering employing data interpretation methodologies. Collaboration is 

ongoing on this topic. 
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Figure 6.75 Sensors installed on the vertical grid-line S (left) and vibrating wire 

strain gauge (right). 
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6.4 Cleddau Bridge 

6.4.1 Introduction and motivation 

To account for the material expansion and contraction due to thermal effects, 

bridges are often equipped with bearings, which are mechanical elements that 

permit rotation and/or translation, as required at certain locations. Restraints to 

movements from malfunctioning bearings can result in stresses nearing or even 

exceeding design values in structural elements [232]. In the long term, such 

effects may affect bridge’s performance, for example, by reducing fatigue life of 

components.  

While improved understanding of temperature distributions in bridges, partly from 

monitoring projects [18], [232], has now been incorporated in codes of practice 

(e.g. Eurocodes), guidance on thermal actions on bridges (Section 4 of 

EN 1991-1-5 [13]) is still not comprehensive. For example, the codes mainly 

emphasize consideration of vertical temperature gradients when evaluating 

thermal loads [13]. Such gradients primarily result in longitudinal movements. A 

bridge may, however, also experience significant transverse temperature 

gradients depending on its geographical location and orientation. Transverse 

movements, while often smaller in magnitude, can pose a significant threat to 

structural performance [138]. For example, a bridge built across a valley or in an 

urban area with lots of tall buildings in its neighbourhood may have certain parts 

of its structure that are predominantly under shade while the other parts are often 

exposed directly to solar radiation. Temperature differentials from such effects 

can cause one side of the bridge to expand much more than the other and thereby 

create significant plan bending, i.e. bending about the vertical (direction of gravity) 

axis. These deformations can have a significant role in bearing movements and 

in turn, their degradation with time.  

According to the Eurocodes (BS EN 1990:2002 [137]), the design working life of 

bridges is typically taken as 120 years, and that for its bearings can be reduced 

to up to 50 years. Thermal effects and the increase of air temperature are noted 

as major factors for consideration in the design of bridge bearings. However, the 

in-situ performance of bearings depends upon actual traffic and environmental 

loads, which are often difficult to predict accurately at the design stage. Therefore 

real behaviour can be different to that anticipated during the design stage.  
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This sub-chapter aims to illustrate the potential for assessing in-situ performance 

of bearings using monitoring data. The Cleddau Bridge, a steel-box girder bridge 

which has been continuously monitored since 2011, serves to demonstrate the 

importance of prudent examination of thermal effects on the performance of 

bridge bearings.  

6.4.2 The Cleddau Bridge 

The Cleddau Bridge (Figure 6.76) is located in South West Wales. It was first 

opened to the public in 1975. Being 819.4m long, the seven-span steel box-girder 

bridge spans North to South across the estuary of the River Cleddau and is a toll 

connection between Pembroke Dock (at its North end) and Nyland (South end). 

This single carriageway bridge is at an elevation of 37m above the maximum 

water level reached at high tides. The bridge was crossed by (i) 12,300 vehicles 

a day in 2013 [227] and (ii) more than 5 million vehicles since 1975.  

 

Figure 6.76 The Cleddau bridge (looking from east of Pembroke dock) (left) 

and its geographical location (right). (Courtesy: Bill Harvey Associates and 

Pembrokeshire County Council)  

A sketch with main dimensions of the Cleddau Bridge is shown in Figure 6.77. 

The bridge rests on six piers across the Cleddau River and on an abutment at 

each end. Each pier is designed as a fixed column - top end is pinned to the 

bridge and bottom end fixed on bed-rock. Bridge spans are 76.8m, 149.4m and 

213.4m long. The longest span has a suspended part that is hinged at its 

southern end to rocker bearings and propped on two roller bearings at the 
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northern side. A sketch of the section “A-A” view (looking from north to south) 

near the roller bearings is provided in the middle of Figure 6.77. The two roller 

bearings are from hereon referred to as east and west bearings according to 

which side they are on in relation to the vertical centre line of the section. 

 

Figure 6.77 A sketch of the Cleddau bridge; shaded portion of the bridge is 

modelled to investigate thermal effects. 

Bearings 

The main function of a roller bearing is to eliminate undesirable forces and 

moments due to thermal expansion or contraction of material by freely allowing 

longitudinal movements. Partial or full restraint to this movement will exacerbate 

forces in the constrained section of the bridge and also introduce undesirable 

forces at the bearings. Each roller bearing is 440mm long with a diameter of 

203.2mm (8”), and their absolute centres are located 2.7m from the bottom and 

2.76m from the vertical central line of the box-girder. They are made of high 

strength steel. A sketch of the side view and cross section “a-a” of a bearing are 

provided in Figure 6.78. 
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Figure 6.78 Bearing layout: side (left) and cross section (right) views. 

Both ends of the cylindrical bearings are formed into flanges which lay in the gap 

between the bearing plate and the rack. To ensure unidirectional movement, a 

pinion is attached to each end of the bearing. Both pinions have two racks – one 

is attached on the suspended span and the other on the fixed span. These 

bearing components are designed to keep the main cylindrical portion of the 

bearings to be parallel to the Y-axis (Figure 6.77). However, this design implies 

that the bearing will offer resistance to plan bending of the box girder, which 

results from the morning and evening sun causing significant temperature 

gradients across the width of the box-girder. These temperature distributions 

force the structure to bend in plan, therefore, potentially creating large forces on 

flanges and teeth of the pinion and rack. These forces are considered to have 

been the major factors behind the deterioration of the bearings. Figure 6.79 (a) 

and (b) shows the worn-out teeth of the pinion and rack. The central hole of the 

pinion, which centres the pinion along the central line of the bearing, has also 

been severely deteriorated as can be seen from Figure 6.79 (c). The effects of 

the forces on the bearings were further exacerbated by the lack of appropriate 

protection for the bearings from the harsh environment. The bearings were 

vulnerable to corrosion from the accumulation of water under the bearings during 

wet and cold seasons. Corrosion of a bearing and rack at the bridge are shown 

in Figure 6.80 (a). A combination of the effects of corrosion, fatigue and excessive 

forces eventually lead to the fracture of a flange (see Figure 6.80 (b) and (c)). 

This event prompted an investigation into the bearing movements. This research 

uses the data collected from the measurement campaign undertaken as part of 

the investigation. 
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Figure 6.79 Damaged pinion: (a) front view, (b) closer look at worn out teeth 

and (c) central support. (Courtesy: Bill Harvey Associates and Pembrokeshire 

County Council) 

 

 

Figure 6.80 Damaged gears: (a) corrosion on a bearing and bearing plate, (b) 

and (c) damaged flange. (Courtesy: Bill Harvey Associates and Pembrokeshire 

County Council) 

 

6.4.3 Monitoring of the Cleddau Bridge 

Monitoring of the Cleddau Bridge was initiated in October 2011 since bearings of 

the bridge, which had been in operation for nearly forty years, were visibly close 

to the end of their service life. The monitoring was started initially to provide 

warning of adverse behaviour of the bearings. It was later also employed to 

understand their performance under operational and environmental loadings in 

order to inform the design of new bearings, which replaced them in May 2014.  
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The monitoring system consists of a number of sensors for measuring 

temperatures and displacements. Twelve one-wire digital temperature sensors 

are installed a few meters away from the centre of the suspended section of the 

bridge. These are installed on the inside of the box-girder - three on each face of 

the box girder section, as shown in Figure 6.81 (left), and record surface 

temperatures every minute. Figure 6.81 (right) indicates the locations of sensors 

measuring structural displacements. Two linear potentiometers are connected to 

centre of the inner and outer faces of each bearing. Inner in this context refers to 

the bearing face that is closer to the vertical centre line of the box-girder. These 

are setup to measure longitudinal movements at the two ends of each roller 

bearing. One string-pull potentiometer is installed at approximately 500mm 

distance from the outer end of each bearing. These measure the gap between 

the suspended span and northern section of the bridge. These two 

measurements are further referred to as the “east gap” and “west gap” 

measurements.  

 

Figure 6.81 The location of one-wire digital temperature (left) and 

displacement (right) sensors. 

 

The sensors measuring the gap and the movement at the outer end of east 

bearing are indicated in Figure 6.82 (left). The connection of a sensor to a bearing 

after the removal of pinions is shown in Figure 6.82 (right). Bearing and gap 

displacements are collected at one-second intervals.  
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Figure 6.82 Instrumentation for measuring east bearing and east gap 

displacements (left) and sensor connection to a bearing (right). (Courtesy: Bill 

Harvey Associates and Pembrokeshire County Council) 

 

Thermal and vehicular effects on bearing movements 

Figure 6.83 (left) shows temperature variations over two years collected with a 

temperature sensor on the top face of the box-girder. Measured temperatures 

reflect seasonal trends. Of interest to this study are the temperature variations 

produced across the cross-section of the box girder. These variations can be 

understood by considering together the temperatures collected from all sensors 

across the box girder (Figure 6.81). The measured temperatures from all sensors 

for three consecutive days in April 2013 are plotted in Figure 6.83 (right). This 

study uses these measurements as they produce an interesting combination of 

temperature gradients as discussed below. 

 April 21 began cloudy but had sunshine during the latter half of the day. 

Consequently, temperatures initially do not vary much across the 

box-girder, but then, temperatures on the west face of the box-girder 

increase rapidly in the afternoon and evening. 

 April 22 was mostly cloudy. Hence differences between the maximum 

temperature, which is on the top face, and the minimum, which is at the 

bottom face of the box-girder, are small. 

 April 23 was a sunny day. Temperatures on the east face rise rapidly in 

the early morning hours and then drop later in the day. On the contrary, 

while temperatures on the top and west faces remain low during the early 

hours they increase rapidly during the afternoon. 
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Of these three days, the temperature distribution for April 23 is particularly 

important from the perspective of this study. Variations of temperature across the 

width of the box-girder similar to that on April 23 can produce plan bending of the 

bridge, which then leads to plan rotation at bearings as discussed later in this 

section.  

 

Figure 6.83 Temperature measurements from the top surface of the girder for 

two years (left) and time-histories of measurements from all twelve sensors over 

a three-day period (right). 

Gap and bearing movements closely follow the temperature patterns. Figure 6.84 

shows the time-history of east gap displacements for the chosen three days in 

April 2013. A rise in temperatures in the early hours of April 23 results in a rapid 

expansion of the bridge, hence the size of the gap reduces proportionately.  

 

Figure 6.84 Measurements of the gap at the east bearing over a three-day 

period for which temperatures are plotted in Figure 6.83 (right). 

 

Oct/11 Feb/12 May/12 Aug/12 Nov/12 Mar/13 Jun/13 Sep/13

-5

0

5

10

15

20

25

30

35

40

Time (month/year)

T
e
m

p
e
ra

tu
re

 (
C
)

21/Apr 22/Apr 23/Apr 24/Apr

10

15

20

25

Time (date/month)

T
e
m

p
e
ra

tu
re

 (
C
)

Top

East

Bottom

West

21/Apr 22/Apr 23/Apr 24/Apr

-80

-60

-40

-20

0

20

D
is

p
la

c
e

m
e
n

ts
 (

m
m

)

Time (date/month)

 

 

5

10

15

20

25

T
e

m
p

e
ra

tu
re

 (

C

)

Gap displacement

Temperature

See Figure 6.85 (left)

See Figure 6.85 (right)



Chapter 6: Case studies, Cleddau Bridge 

192  

A car crossing the expansion joint does create a movement at the gap, although 

insignificant in comparison to those due to temperature variations. This 

movement can be masked by measurement noise or ambient vibrations. 

However, a heavier vehicle forces the gap to open more. This can be detected 

by having a closer look at the measurements. A pass-by of a heavy vehicle can 

be spotted in Figure 6.85 (left). When the vehicle approaches the expansion joint 

from the cantilever, it forces the gap to open up since the rollers are at a level 

below the neutral axis for the cross-section. As soon as the vehicle reaches the 

gap, the joint is pushed downwards thus enlarging the gap by approximately 2mm 

(see Figure 6.85 (left)). Once the vehicle has crossed the expansion joint, the 

structure strives to return to its former shape, and the size of the gap reduces. 

Vibrations due to the passage of a vehicle can last for many seconds after its 

passage. According to dynamic tests carried out by Eyre [233], the Cleddau 

Bridge, particularly the 213m long span, has relatively low damping values at its 

fundamental frequency (0.53Hz). Consequently vehicle-induced movements may 

take up to a minute to fade. Smoothed time-histories of displacements are 

superimposed on measured displacements in Figure 6.85 (left) from which the 

effects of passage of a heavy vehicle on east-gap measurements are clearly 

discernible. 

 

Figure 6.85 A closer look at east-gap measurements on April 23 in early 

morning (left) and measurements over a one-hour period showing bearing 

locking and release (right). 

 

Time-histories of temperature measurements indicate that complex temperature 

distributions can be created in the bridge by the diurnal variations in ambient 

conditions. In particular, the transverse temperature gradients create plan 

bending and therefore plan rotations at the bearings. The rotations at the bearings 
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can be computed as the difference between the displacement measurements at 

the inner and outer ends of the bearings. Figure 6.85a (left) shows the time-

history of the differences between measurements at the inner and outer ends of 

the west bearing. The figure plots results from measurements taken at a 

frequency of 1Hz. Mean distance travelled by the west bearing is plotted against 

the plan rotations for April 23 in Figure 6.85a (right). If there is no plan rotation, 

the difference should be zero. However, the plan rotation of the bearing varies 

from around -0.23mm to 0.23mm. 

 

Figure 6.86 Measured time-histories of the difference between the movements 

at the outer and inner ends of the west bearing (left) and movement and rotation 

of the bearing (right). 

 

Bearing locking and release 

The high measurement collection frequency of bearing displacements reveals 

that bearing movements are seldom smooth as shown in Figure 6.85. Movements 

happen incrementally and friction plays a significant role. Bearings are seen to 
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phenomenon has also been observed in previous research [234]. In Figure 6.85 
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structure is difficult due to the complex geometry of the box girder section and 

the time required. Furthermore, temperature and deformation measurements are 

available only at a limited number of locations on the bridge. Thus only the main 

structural components, i.e. box girder elements are modelled. Four-node shell 

elements are used to model the girder. The entire length of the bridge from that 

supported on roller bearings to the southern end of the bridge (see the hatched 

section in Figure 6.77) is represented in the PB model for this study. In the model, 

the northern end of the suspended span of the bridge is supported at four nodes 

that are representative of roller bearings. These nodes are free to rotate in all 

directions and translate in all but the vertical direction (Figure 6.87). The southern 

end of the suspended span is pinned at rocker bearings. This is modelled using 

nodes that allow all rotations but no translational motion (see Figure 6.77). The 

bottom side of the box-girder is supported at the piers on the structural axes 3 to 

6 allowing rotation and longitudinal movement (see Figure 6.77). Diaphragms 

present across the box girder section at the supports are also modelled.  

Temperature time-histories are given as input at the nodes of the model. 

Temperatures are assumed to be uniformly distributed along the length of the 

bridge and vary only in the transverse direction. This, while a simplification, is not 

a major concern in this study since (i) it is primarily concerned with plan bending 

of the bridge and, (ii) the bridge is aligned in the north-south direction and is in an 

open setting; hence, a part of the bridge span alone is unlikely to fall in shade.  

Temperature measurements are down-sampled to five-minute time steps, i.e. 

3.3×10-3 Hz. After down-sampling, there are 864 measurement time steps in total 

over the selected period of three days. This saves computational time and does 

not affect results since only quasi-static effects are studied here. As mentioned 

before, temperatures are recorded at three locations on each face of the box 

girder section. The cross-section of the box-girder as modelled with 

corresponding nodes and temperature inputs are shown in Figure 6.87. In the 

figure, T-1 denotes temperature from temperature sensor 1 on the top face of the 

box girder section. Similarly, B-i, E-i and W-i indicate the measurements from 

sensor i on the bottom, east and west faces respectively. 
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Figure 6.87 A sketch of the side view of the PB model (left) and cross section 

(right) of the finite element model of the bridge at the support with the two roller 

bearings. 

 

The PB model is created in ANSYS [235]. The shell elements are modelled as 

made of structural steel with the following material properties: Poisson’s ratio 

ν = 0.3, density ρ = 7850kg/m3, Young’s modulus E = 200GPa and thermal 

expansion coefficient α = 12×10-6K-1. The thickness of the top elements and web 

elements ranges from 10mm to 30mm; thickness of bottom elements is 45mm; 

thickness of diaphragms and those elements adjacent to supports are 75mm. The 

total steel area of the cross-section of the box-girder as evaluated using these 

values for the thicknesses of the plates making up the box girder is close to the 

area of the section calculated from the structural drawings.  

6.4.5 Evaluation of the PB model 

A FE solution of the PB model of the Cleddau Bridge is given in Figure 6.88. It 

shows the deformed shape under thermal loads during the early hours of April 

23, when the east face is exposed to steep temperature gradients. The transverse 

temperature gradients and the resulting plan bending of the box girder are evident 

from the figure. 
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Figure 6.88 PB model of the bridge showing deformed structure and 

temperature distributions. 

 

In the subsequent sections, the PB model is first validated by comparing 

computed displacements with measured values. Then the forces acting at the 

bearings are evaluated using the validated model. 

Bearing movements 

Displacement measurements of the gap and bearing movements are 

smoothened and measurements at 5 minute intervals are chosen to validate 

simulations. Figure 6.89 (left) corresponds to east-gap movements and Figure 

6.89 (right) to movements at the outer end of the west bearing. These are 

simulated using measured temperatures (see Figure 6.83 (right)) for the selected 

three days (April 21 to April 24, 2012). Simulated movements are sufficiently 

accurate, especially when taking into account measurement and modelling 

uncertainties. It should be noted that while the model predicts movements of the 

bearing, measurements are of the gap between the suspended span and the 

northern part of the bridge. The northern part of the bridge is however not 

included in the PB model (see Figure 6.77). Therefore the predicted movement 

of the roller bearing can only be indirectly related to the gap measurements. 

Figure 6.89 (right) shows that although the range of simulated movements at the 

west bearing is slightly larger than measured values, the trends have strong 

similarities. While a better match may be achieved by modelling the entire bridge, 

for the purposes of this study, the obtained bearing displacements and in 
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particular, the displacement trends are sufficiently accurate to make predictions 

on bearing movements and forces.  

Another important modelling uncertainty is the assumption that temperatures do 

not vary in the longitudinal direction of the bridge. As temperature measurements 

were available only at the mid-span cross-section of the box-girder, there is a lack 

of knowledge of the longitudinal temperature gradients. A better understanding 

of thermal loads would have been possible if temperature measurements were 

available also at the piers and at other sections along the box girder. This 

knowledge, when fed into the PB model, may give predictions that are closer to 

the measured bearing displacements. Other modelling uncertainties include the 

use of a simplified structural model, possible errors in choice of material property 

values and ignoring contribution of non-structural elements such as pavement. 

 

Figure 6.89 Measured and simulated time-series displacements of east gap 

(left) and the outer end of the west bearing (right) for three days. 

 

Plan bending 

The bearings at the Cleddau Bridge were designed to enable longitudinal 

translation and rotation. Assumptions on temperature distributions were that they 

would mainly cause longitudinal movements due to longitudinal and vertical 

temperature gradients, and possibly rotations due to vertical gradients along the 

depth of the bridge. However, as observed from the measurement-histories, the 

structure experiences transverse temperature gradients that lead to plan 

bending, which, in turn, causes plan rotation of the bearings.  

The plan rotations are evaluated in terms of the differences between the 

measurements of the movements at the inner and outer ends of the bearings. 
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Figure 6.90 (left) shows time-history of the measured and predicted plan 

rotations. It plots measurements taken at one-second intervals while model 

predictions are at 5-minute intervals. Spikes in the plan rotation time-history 

obtained from the PB model coincide temporally with measured values (Figure 

6.90 (left)). However the magnitude is twice as large as the measured values. 

Measurements offer a more accurate representation of the movements, while 

model predictions are smoother due to using temperatures at 5-minute intervals. 

Simulated mean distance travelled by the west bearing is plotted against the plan 

rotations for April 23 in Figure 6.90 (right). As can be observed from the figure, 

plan rotation of the bearing varies from around -0.6mm to 0.6mm. In the morning, 

the plan rotation increases while the bearing is forced to also move in longitudinal 

direction. When the sun is no longer facing the east side of the bridge, this rotation 

starts to reduce while the longitudinal movement is in the opposite direction. 

However it does not return on the same path because average temperature of 

the structure is still increasing. During the latter half of the day, movements in 

longitudinal and transverse directions mirror the movements in the morning 

(Figure 6.90 (right)). The west bearing moves a total of 70 mm over the course of 

a day. Even though plan rotations are relatively small (of the order of 10th of a 

mm) in comparison, they can still impose significant forces at the bearings as 

shown later. The path of simulated movement and rotation of the bearing (Figure 

6.90 (right)) has some similarities to the measured path (Figure 6.86). 

 

Figure 6.90 Measured and simulated time-histories of the difference between 

the movements at the outer and inner ends (i.e. plan rotations) of the west 

bearing (left) and simulated movement and rotation of the bearing (right). 
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Bearing forces 

Simulated bearing movements are reasonably accurate as shown before and 

therefore derived bearing forces are also expected to be realistic. The interest in 

this study is in the transverse forces (in Y-direction (see Figure 6.77)) that are 

applied to the bearings when they are rotated in plan. Time-histories of transverse 

forces at the west bearing over the selected duration of measurements are plotted 

in Figure 6.91 (left). These forces, which reach magnitudes of over 2500 kN, pose 

a significant threat to the performance of bearings. Restraining the plan rotations 

causes the structure to push the bearings in the transverse (along Y-axis) 

direction (see Figure 6.77) under thermal loads. The resulting high forces are the 

likely reason for damage to the flange of the bearing shown in Figure 6.80 (b) and 

(c). Initially, bearings had pinions which were connected to each end (see Figure 

6.79 (a)). They were designed to guide the bearing movement along the 

longitudinal direction of the bridge. Plan rotations, however, were constrained by 

pinions. They were worn out by the repetitive movements over the years, and 

eventually, the bearing was damaged.  

This study then determines the forces required to release bearings locked in the 

longitudinal direction. Assuming that a bearing is completely locked, the force 

required to initiate the movement is the product of the weight of the structure and 

coefficient of sliding friction (μ). μ between steel and steel ranges from 0.15 to 0.6 

[236]. In practice, bridge engineers assume μ=⅓, which gives a friction force 

equal to ⅓ of the weight of the structure. Assuming further that the force due to 

friction is the same at both bearings, it can be calculated as 2600kN at each 

bearing from knowledge of the weight of the structure.  

The forces that are generated before the bearing is released can be determined 

if roller bearings of the PB model are restrained from movements in the 

longitudinal direction. The forces are predicted at the west bearing for the 

selected duration of monitoring, which is indicated in Figure 6.84 (right). 

Temperature measurements at a frequency of one measurement per minute are 

input to the PB model. While temperatures on all faces of the box-girder rise 

during the chosen period, temperatures applied on the top face of the girder are 

the highest. Therefore, it expands more than the others faces and, thus, the outer 

ends of bearings are pushed northwards and inner ends are pulled in the opposite 

direction. For this reason, the force at the inner end of the bearing is small 
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compared to that at the outer end for the chosen period. In this particular 

scenario, a resultant force of 100kN is generated at the west bearing due to it 

being locked for 400 seconds (see Figure 6.91 (right)). When the bearing is 

released, the force drops to zero, and then increases as the bearing is again 

locked in the longitudinal direction. As can be seen from the figure, for the next 

locking period, the slip force required is greater than 150kN. This phenomenon 

must be investigated in more detail over longer periods of time, and would require 

collection of measurements at a higher frequency.  

 

Figure 6.91 Forces at the west bearing induced by plan rotations; these are in 

the horizontal plane and oriented transverse to the bridge girder (left). Forces at 

west bearing required to initiate translation after temporary locking (right). 

 

6.4.6 Discussion 

Bearing movements 

Bearings are mechanical components of civil structures which cope with gradual 

and instantaneous movements generated by environmental effects (e.g. 

temperature and wind) and vehicular loadings. They are typically designed for a 

high tolerance (±0.5mm). However, evaluating all possible movements, that 

bearings can undergo, at their design stage can be difficult. For the Cleddau 

Bridge, the plan bending and its impacts on bearings were not foreseen fully. In 

addition to the thermal movements that were investigated in this study, forward-

backward movements at the bearings of 0.3mm caused by lateral vibrations, 

which are possibly from ambient conditions (e.g. wind), are also important (see 

Figure 6.92).  
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Figure 6.92 Lateral vibration: difference between measured displacements at 

the east and west gaps. 

 

The wear and tear of bearings depends on the applied forces and the traveled 

distance of bearings. Total bearing movement (l) over the selected days for 

simulation can be calculated by adding up distances (d) traveled between two 

measurement points. Equation 6.1 can be used to calculate the bearing 

movement.  

𝑙 = ∑ |𝑑𝑖−1 − 𝑑𝑖|𝑚
𝑖=2  (6.1) 

where m is the number of measurements. Displacement measurements for the 

Cleddau Bridge were collected once per second. The total bearing movement 

over the selected three days and selecting measurements collected every second 

is 30.9m. Cumulative annual movement could be as much as 3800m. However, 

accurate measurements at a higher frequency may provide larger values for the 

daily and cumulative annual movement of the bearings. This aspect needs further 

investigation. 

Temperature distribution  

Temperature gradients according to Eurocodes are compared to those evaluated 

from collected measurements of the Cleddau Bridge in Figure 6.93. The gradients 

plotted for the Cleddau Bridge are obtained from the measured temperatures 

shown in Figure 6.83 (right). The Eurocodes (BS EN 1991-1-5: 2003, 

Figure 6.2a - 1a. Steel deck on steel girder [13]) advise considering nonlinear 

temperature gradients for steel box-girders along the depth of the section at the 

design stage. The measured temperature gradients in Figure 6.93 shows clearly 

that code-specified temperature distribution scenarios (heating/cooling) alone are 
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not relevant to study the performance of the Cleddau Bridge. For the Cleddau 

Bridge temperature increases not only along the depth of the box-girder but also 

along its breadth. The latter temperature distribution scenario forces the bridge 

to bend in plan and creates twists in bearings. These results highlight the 

significance of temperature effects on structural performance of bridges. 

 

Figure 6.93 Temperature gradients recommended by the Eurocodes and 

measured from the Cleddau Bridge. 

 

6.4.7 Summary and conclusions  

Long-span bridges experience complex temperature distributions, and may 

therefore undergo deformations in ways that were not considered at the design 

stage. These deformations and the ensuing forces can have a significant effect 

on the performance and life of movement restraints such as bearings. This study, 

by using the Cleddau Bridge as a case study, shows that monitoring can help in 

characterizing bearing movements, and thereby assist with their maintenance 

and replacement. The following conclusions can be drawn from this study: 

 Quasi-static structural response of bridges can be accurately estimated 

using distributed temperatures as the sole input loads.  

 Plan bending of the main box girder of the Cleddau Bridge generates plan 

rotations at the roller bearings. These movements, which were not 

foreseen at the design stage, imposed large forces on the bearings and 

contribute to their degradation. 

 Temperature distributions along the width (transverse) of box-girders can 

be an important factor determining bearing movements. This phenomenon 

needs to be more comprehensively considered in the codes of practice.  
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Knowledge of temperature distributions when combined with an appropriate PB 

model can support performance evaluation of bridge bearings. PB models can 

also help in design and assessment of the effects of temperature increases due 

to climate change by utilizing predicted increases in average and peak 

temperatures [237], [238]. Further work is however required in fully relating 

measurements from monitoring to the degradation and performance of bearings. 

This study has investigated only the effects of thermal loads. Effects of vehicles 

and wind loads also need to be evaluated.  

 

  



Chapter 6: Case studies, Conclusions 

204  

6.5 Conclusions 

Thermal effects on four different bridges have been explored and characterized. 

All four case studies show that temperature is a major driver of quasi-static 

deformations in bridges. The laboratory truss (Section 6.1) serves as a 

benchmark case study for the evaluation of the TB-MI approach. Results for the 

NPL Footbridge (Section 6.2) and the River Trent Bridge (Section 6.3) 

demonstrate that sufficient prediction accuracies can be achieved using limited 

temperature information as input to the RBTRP methodology. Results for the 

Cleddau Bridge (Section 6.4) illustrate that the complexity of temperature induced 

deformations can also be derived from PB models. Results taken together also 

demonstrate that knowledge of distributed temperatures and response can help 

engineers in assessing the long-term behaviour of bridges. Specific conclusions 

for the case studies have been provided at the end of the respective sections. 

The most important findings from across the three case studies using the TB-MI 

approach are given below. They are grouped under the two major components 

of the TB-MI approach: RBTRP methodology and anomaly detection techniques. 

RBTRP methodology: 

 The RBTRP methodology can be employed to accurately predict thermal 

response from distributed temperature and response measurements.  

 Pre-processing data for outliers and noise improves the accuracy in 

response predictions. 

 The downsampling of input measurement sets within a reasonable range, 

while notably reducing the time for model training, only marginally affects 

the prediction accuracy of the regression model. 

 As a rule of thumb, the PCs that cover nearly 99.9% of the measurement 

variance is sufficient to achieve good response predictions. For example, 

the optimal number of PCs for the laboratory truss is between 11 and 13 

although the truss is equipped with 31 thermocouples.   

 Using an appropriate value for thermal inertia parameter j can improve 

prediction accuracy significantly, especially for voluminous structures. For 

example, for the NPL Footbridge, a 10% reduction in the average 

prediction error is achieved when accounting for thermal inertia. 
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Anomaly detection techniques:  

 Anomaly events can be detected and located when PE signals are 

examined with an appropriate anomaly detection technique. However, a 

specific anomaly detection technique is unlikely to detect all types of 

anomaly events.  

 The analysis of PE signals using anomaly detection techniques results in 

faster and more robust detection of events compared to the application of 

the techniques directly on response measurements. 

 Cointegration and SSM are capable of detecting most of the anomaly 

events in all three case studies compared to MPCA and MFFT.  

 While cointegration helps in detecting change in structural performance, 

SSM can offer support for determining the location of the event, and 

thereby the cause of the change in structural performance. 

 PE signals have to be clustered into groups prior to evaluation with 

cointegration and MPCA. This step can require engineer’s knowledge of 

structural behaviour.  

The fourth case study using a PB-model to evaluate bearing deformations in the 

Cleddau Bridge leads to the following conclusions. 

 Quasi-static structural response of bridges can be accurately estimated 

using distributed temperatures as the sole input loads into a PB-model.  

 Temperature distributions along the width (transverse) of box-girders can 

be an important factor determining bearing movements. This phenomenon 

needs to be more comprehensively considered in the codes of practice.  

Results from the case studies also support making the following 

recommendations for evaluating thermal effects in the design and operation 

stages. 

 An effective strategy for considering thermal response such as the 

proposed TB-MI approach needs to be considered within a platform for 

interpreting long-term monitoring data.  

 Reference periods of at least one year can cover the full range of peak-to-

peak temperature variations are required for measurement interpretation 

methodologies to be robust to changes in environmental conditions. 
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 Measurements must be analysed with multiple anomaly detection 

techniques in order to have a robust and reliable anomaly detection 

approach. 

 Response measurements must be collected with a suitably high frequency 

to capture the effects of the loading in consideration. If the size of data 

becomes an issue for analysis, measurements can always be 

downsampled. 

 Having a phenomenological model of a bridge can be beneficial to decide 

on the configuration of a sensor network for monitoring. 

 A variety of temperature distributions across the cross-section of the 

bridge deck based on the bridge orientation and local environmental 

parameters have to be considered at the design stage to estimate thermal 

behaviour. 

In summary, the evaluation of bridge performance is a challenging task due to 

continuously changing environmental and operational loadings that the bridge is 

exposed to. Explaining the patterns in measured signals is seldom easy; an 

engineer’s judgement is required to decide whether the measurements indicate 

that the structure is in a sound condition or if its behaviour is anomalous. This has 

been demonstrated through the selected case studies; and also affirmed by other 

researchers such as Koo et al. [15], who stated that “In fact almost every aspect 

of the bridge performance is in some sense anomalous, and present research 

focuses on opposite extremes of data-driven assessment tools and validated 

finite element model simulations.”. 
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Chapter 7:  Integrated analysis of 
vehicular and thermal 
effects 

While long-term response of bridges is governed predominantly by temperature 

variations, a comprehensive evaluation of a structure’s performance is possible 

only when the effects of all forces on the structure are considered. The previous 

chapter demonstrated the scalability of the proposed techniques for interpreting 

thermal response in measurements from full-scale bridges. In this chapter, the 

RBTRP methodology is combined with a data-driven method for predicting traffic 

induced response in order to remove both environmentally and operationally 

induced trends from measurement time-series of structural response. 

Experimental data collected from the laboratory truss is used for the evaluation 

of the proposed approach.  

7.1 Introduction 

Temperature effects on bridge response can exceed those of other 

environmental and operational loads and, thereby, hinder detection of damage 

from response measurements. Three case studies have been used in Chapter 6 

to demonstrate that knowledge of temperature distributions can be exploited to 

predict thermal effects in measured response. The accuracy and robustness of 

the models generated for thermal response prediction largely depend on the 

amount and quality of data-sets that are used for the model training. In this 

chapter, the TB-MI approach is expanded to create a novel approach that 

integrates the structural response to both vehicular and thermal loads. 

Traffic induced-response in deformation time-histories appear as short spikes 

that are superimposed on thermal response. The length of the spikes is 

proportional to the weight and speed of a vehicle crossing the bridge. For 

example, the spike in horizontal displacements shown in Figure 3.5 (right) depicts 

the passage of a heavy truck over the River Exe Bridge. Computing the 

theoretical deformed shape of a structure under a known vehicle load given its 
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geometry, material properties and applied loads can be difficult since this would 

require the creation of an accurate model of the bridge [141]. A data-driven 

approach to evaluate traffic-induced effects can avoid the issue of generating a 

behaviour model. Deformations are directly related to the applied load and its 

location. Therefore a relationship between these parameters can be derived from 

a reference set of measurements of structural response and loading parameters. 

Coupling data from vision-based systems with data from other sensing devices 

can enable identification of the location, number and types of vehicles, hence, 

supporting the characterization of their induced response. For example, the 

background subtraction method can be selected to analyse video streaming 

images to identify location, type and speed of a vehicle [100]. Weigh-in-motion 

sensors can be used to evaluate the axle loads of a vehicle [239]. While vision-

based bridge monitoring has potential for applications to real-life bridges, all 

previous studies have ignored environmental loads and in particular, temperature 

effects. This study presents preliminary research into an approach for accounting 

for both environmental and operational loads that can potentially benefit from 

vision-based monitoring. 

In this experimental study, proposed methods for generating statistical models 

for thermal response are combined with methods for accounting for effects of 

imposed loads. The premise is that the monitoring system captures the location 

and type of vehicles in addition to structural response and temperature 

distributions. Knowledge of traffic loads and the structure’s stiffness-based 

relationship between forces and response can help predict effects of live loads 

on response.  

The truss (see Figure 6.1), which is continuously monitored in the laboratory, 

serves as a test-bed to investigate the proposed approach. Its deformations are 

monitored with contact sensors such as strain and displacement gauges. 

Temperature distributions are captured with a thermal imaging camera (TIC) and 

a number of thermocouples. Traffic load is simulated using a platform, which can 

be moved along the length of the truss and carry chosen combinations of weights 

(loads).  

This study focuses on the interpretation of measurements rather than 

measurement collection, which can itself be a challenging task. For instance, 
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most highway bridges have continuous traffic flow on multiple lanes, and will 

require sophisticated vision-based monitoring systems to capture data on the 

traffic loads. The collection of images and their subsequent processing to produce 

data on the locations and weights of the vehicles is a computational challenge 

that is solvable. This research is however not concerned with this step but rather 

focuses on how to use the traffic data that is eventually generated. The 

fundamental principles of the proposed approach, which are illustrated using a 

simple laboratory structure that has only one load at any given instant, are also 

extendable to much more complex real-life situations. 

Objectives of this study are as follows:  

 Devise an approach to integrate data from continuous monitoring using a 

TIC with the proposed RBTRP methodology for accurately predicting 

thermal response. 

 Investigate regression-based approaches to accurately predict the traffic-

induced response, and thereby help subtract this component from the 

measured response.   

 Evaluate if accounting for both thermal and traffic-induced response 

improves the detection of events on the structure using anomaly detection 

techniques. 

7.2 Traffic and temperature-based measurement 

interpretation approach 

The premise of this study is that explicit information of inputs into and outputs 

from a structural system can be used to remove environmental and operational 

variations from response measurements. The vision is then to develop separate 

data-driven methods to predict the effect of each load and ambient parameter, 

and subsequently integrate these into a comprehensive data-driven approach for 

performance monitoring of bridges. As a first step towards this goal, traffic and 

temperature effects are considered in this research.  

The proposed integrated approach, similar to the TB-MI approach (Figure 3.7), 

has two parts: 1) statistical model generation and application and 2) anomaly 

detection. The first part will filter the effects of various loads from response 

measurements. In addition to the RBTRP methodology, a methodology for 
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predicting traffic-induced response is introduced. The second part will inspect the 

time-histories, which result from subtraction of the thermal and traffic-induced 

response from measurement time-histories, for anomalies.  

The flow-chart in Figure 7.1 illustrates the sequence of steps involved in the 

generation of prediction models. The first step is to define a reference data-set 

(D). D is split into two data-sets: the first set having those measurement time-

points when no traffic is present (DT0), and the second set when traffic is present 

(DT1). Distributed temperature and response measurements from DT0 are then 

fed into the RBTRP methodology, and models for thermal response prediction 

are generated. These are then employed to filter temperature effects from DT1, 

and create PE signals. The proposed traffic-induced response prediction (TIRP) 

methodology, which uses the location and the weight of the vehicle to predict the 

induced response, is then employed. Traffic-induced response is filtered from the 

PE signals which are already free of temperature-induced response. 

 

Figure 7.1 Flow-chart showing the strategy for measurement interpretation. 

 

7.2.1 Traffic-induced response prediction (TIRP) methodology  

A method for predicting structural response to traffic, in order to be useful for real-

time measurement interpretation, has to be computationally inexpensive and also 

potentially applicable to a range of structures. Regression-based models that 

capture the relationship between structural displacements, and loadings and their 

locations are therefore well-suited for this task. Detailed information on traffic 

such as the number of vehicles, their location and loading, are ideally needed for 

the generation of such models. Vision-based technologies and image processing 
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techniques have now developed to an extent to enable fast and robust extraction 

of such data from images. For example, video streams of traffic from a bridge can 

be combined with displacement measurements to create influence lines, which 

then serve as input features into anomaly detection methodologies [100]. 

In this experimental study, a regression-based approach is employed to generate 

statistical models that predict traffic-induced response from knowledge of location 

and weight of vehicle loads. Figure 7.2 is used to illustrate the concept behind 

the approach. The length of the structure (l) is split into 100 segments. The 

segments are numbered sequentially from the left support. The location of the 

vehicle is defined by the number of the segment in which the centre of the vehicle 

is located. Theoretically, a single crossing of a vehicle and the respective 

measured deformations can provide sufficient information to determine 

relationships between load, its location and response. These relationships can 

form the basis of regression models that predict displacements induced by similar 

type of vehicles at any location along the length of the structure. In real-life, 

however, displacements may not always resemble previously measured values 

even under the same traffic load. For example, bearings may lock temporarily, 

hence, creating restraints that change structural behaviour. For these reasons, a 

broad set of traffic and response data is needed to generate robust and accurate 

prediction models. 

 

Figure 7.2 Schematic illustrating input parameters for the TIRP methodology. 

 

7.3 Case study 

In this experimental study, a TIC is employed to measure temperatures, detect 

the moving load and identify its location. The weight of the moving load is known 

since this is a controlled experimental setting. This information in combination 

with measured response is used for the generation of statistical models that 
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predict deformations due to the moving load. The dynamic effects of a moving 

vehicle are not simulated in this experiment due to the slow speeds of the moving 

load. 

7.3.1 Experimental setup 

For this experiment, the laboratory truss (Figure 6.1), previously used in the case 

study described in 6.1, has been equipped with additional sensors and a moving 

platform. A sketch of the truss depicting its principal dimensions, the location of 

sensors and infrared heating lamps and the travel of the moving load is shown in 

Figure 7.3. The experimental setup allows simulating diurnal temperature cycles 

and vehicular loadings. Temperature variations are simulated with three infrared 

heating lamps. They are installed 0.5m above and 0.2m behind the truss. The 

lamps are plugged in to the mains through timer plugs which turn them on every 

1½ hours for ¾ of an hour. This set-up allows simulating 16 temperature cycles 

in a day. Structure’s response is collected at various locations with contact 

sensors: 

 strains are measured with 10 linear pattern foil strain gauges, and  

 displacements are measured with 4 linear variable differential 

transformers (LVDTs). 

Temperature distributions are monitored with 31 K-type thermocouples and a 

TIC. TICs use infrared radiation emitted by objects to evaluate their temperature. 

The light reflected by an object can however interfere with the performance of the 

TIC; a TIC can detect highly reflective surfaces such as the shiny aluminium 

surface of the truss as “hot spots”. To achieve more reliable temperature 

measurements, the truss is coated with a matt black paint (see Figure 7.4) that 

reduces light reflection to a minimum.  
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Figure 7.3 Sketch of the test-bed with its principal dimensions and the 

location of strain gauges (S-i, i = 1, 2, …, 5) and LVDTs (D-i, i = 1, 2, 3, 4). 

 

Moving vehicle loads are simulated using a pulley mechanism installed on the 

bottom chord of the truss. A picture of the truss is given in Figure 7.4. The 

mechanism consists of:  

1) two pulleys - one at each end of the truss 

2) a platform, and 

3) motor.  

One pulley is installed on each side of the truss, approximately 0.5m from its end. 

A string which runs through these pulleys is connected to a platform and motor. 

The total length of the travel is 2.2m. The direction in which the motor rotates is 

reversed automatically when the platform reaches either end of the truss by using 

a trigger switch which is located next to the pulley. This set-up allows the platform 

to move uninterruptedly in both directions. While the speed of the moving platform 

can be adjusted by altering the power supply to the motor, the speeds at which 

the platform is pulled are still much lower than the average speeds of vehicles 

crossing full-scale bridges.  
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Figure 7.4 A picture of the truss showing the moving platform and applied 

loads. 

 

Weights are added onto the platform to simulate traffic loads. These can be 

applied at any location along the length of the travel. From hereon the platform 

with added weights is referred to as the moving load. In this study, 40N, 100N, 

140N and 180N weights are used, and these loads are denoted as L-1, L-2, L-3 

and L-4 respectively. Each type of moving load is applied for up to four simulated 

diurnal cycles. The number of travels per simulated diurnal cycle depends upon 

the speed, which is altered arbitrarily. The weights are altered only when the 

platform is at the right end of the truss, and the motor is turned off. The self-weight 

of the platform is assumed to have negligible effects on response, and it is never 

removed from the truss during this study. The platform is also kept stationary at 

the right end of the truss when no loads are present on it. 

Response measurements are collected at a rate of six measurements per minute. 

Thermal images are taken once a second, which is the lowest measurement 

collection rate for the chosen TIC. While lower measurement collection 

frequencies may be sufficient to capture quasi-static effects, a high frequency (1 

Hz) is used since the technology permits this level of detailed information, and 

since collected measurements can be down-sampled as necessary at a later 

stage. The TIC is also used to detect the location of the moving load. A heating 

element (see Figure 7.4) in the form of an one-watt power resistor is attached to 

the moving platform. The heating element can then be detected in thermal 

images, and thereby its location can be computed. This concept is shown in 

Figure 7.5. 
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Figure 7.5 Thermal image of the experimental set-up with a close-up view of 

the moving load and heating element. 

 

Damage scenarios 

The truss is monitored in both healthy and damaged states. Three damage 

scenarios, which are referred to as DM1, DM2 and DM3, are considered. DM1 

and DM2 affect the joint connecting two diagonal and one vertical elements to 

the bottom chord (see Figure 7.6 (top right)). For DM1, three bolts are removed 

from this joint; for DM2, two additional bolts are removed from the same joint. For 

DM3, three bolts are removed from a joint on the top chord (see Figure 7.6 (top 

left)). Scenarios DM1, DM2 and DM3 last for 47, 46 and 46 simulated diurnal 

cycles (or approximately 25,000 measurements). At the end of scenario DM3, the 

truss is repaired; this event is denoted as scenario F.  
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Figure 7.6 Joints affected by simulated damage scenarios. 

 

7.3.2 Measurement time-histories and data preparation 

Temperatures 

Temperature time-histories are derived from thermal images. The area of the 

truss in the thermal images is divided into segments (see Figure 7.5). The 

average temperature is calculated for each segment from each thermal image. In 

total, 42 segments are created as follows:  

 the top and bottom chords are divided in 8 and 12 segments each, and  

 each element between the top and bottom chords is split into two 

segments leading to 22 segments in total. 

The segments used for computing temperatures on the left side of the truss are 

shown in Figure 7.5. Temperature variations computed for the top and bottom 

chords are shown in Figure 7.7 (left). The plots show that the temperature in the 

laboratory is affected by the outside air temperature. The temperature variations 

induced by the infrared heaters are superimposed on the variations in the ambient 

temperature. A closer look at the time-histories reveals the simulated diurnal 

cycles (Figure 7.7 (right)). A few disruptions are noticeable in the time-histories. 

This was due to temporary problems with storing the thermal images from the 

TIC. For reasons of simplicity, the disruptions in the time-histories are removed 

to have continuous measurement-histories. Consequently all measurements are 

plotted from hereon without the timestamps.  
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Figure 7.7 Time-histories of temperatures calculated from segments of the 

top and bottom chords (Figure 7.5) with those for the entire monitoring period 

on the left and a closer look at two simulated diurnal cycles on the right. 

 

Even though the average temperature computed from a segment of the thermal 

image is based on between 60 and 120 pixels (temperature-points), the 

temperature time-histories obtained, especially for a few segments, are noisy and 

have outliers (Figure 7.7 (right)). Temperature time-histories for the bottom chord 

have more outliers than those for the top chord. An examination of the thermal 

images helps understand the cause of these outliers. The majority of them are 

due to people appearing in front of the truss (see Figure 7.8). Temperature 

signals are therefore treated with the IQR technique and MAF. Temperatures, 

which are classified as outliers, typically exceed +30°C in keeping with our 

reasoning. The majority of outliers are removed successfully by pre-processing. 

Figure 7.9 shows the results of pre-processing the raw signals plotted in Figure 

7.7. The outliers in the time-histories for the bottom chord are removed, however, 

the time-histories have slightly been affected by doing so. However, the resulting 

signals reflect the simulated diurnal cycles with a fair level of accuracy. 
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Figure 7.8 Thermal images with people in front of the truss. 

 

 

Figure 7.9 Pre-processed time-series of temperature showed in Figure 7.7. 

 

Response 

Response measurements have been collected with no interruptions. However, in 

order to keep them compatible with the temperature signals, measurements 

corresponding to periods when thermal images have not been recorded are 

omitted from response time-histories. Figure 7.10 shows plots of the 

measurement time-histories produced by sensors S-2 and D-2. The plots show 

only the first 36,000 measurements in the time-histories. The figure also includes 

closer views of response variations during a simulated diurnal cycle. The plots 

show that variations in ambient temperature as well as the radiation from the 

infra-red lamps affect the structural response. The average strain and 

displacement variations for a single simulated diurnal cycle are 50×10-6 strains 

and 400 μm, as measured with sensors S-2 and D-2.  
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Figure 7.10 Strains measured with sensor S-2 (top) and displacements 

measured with sensor D-2 (bottom), with closer views of the time-histories to 

understand the effects of moving load. 

 

Traffic load L-3 is applied at the beginning of the monitoring. The vertical 

displacement reaches 150μm at the sensor location D-2 when L-3 is applied 

directly above it. Shifts in the measured displacements due to loads L-2 and L-3 

are discernible from a closer look of the time-histories (see Figure 7.10 (bottom 

left)). The effect of the moving load is seen superimposed on the simulated 

diurnal cycles in the form of a noisy pattern (Figure 7.10 (middle)). Examining 

these measurements more closely (Figure 7.10 (right)) reveals the effect of a 

travel of the moving load from the left end of the truss to the right end, and back. 

Strains spike when the moving platform passes sensor S-2 (Figure 7.10 (top 

right)). Such spikes are discernible in raw strain time-histories before 

measurements #100 and #150. When strain measurements are pre-processed 

for noise using a large window, such spikes may be removed by smoothing, and 

this can lead to some loss of information regarding the effects of the moving load. 

On the contrary, filtering using short windows does not effectively remove 

measurement noise. Therefore a trade-off exists in the choice of the window 

length for the filtering process. For this case study, filtering using a window length 

of 6 measurements is observed to reduce measurement noise while minimizing 

loss of the spikes due to moving loads. LVDTs offer more precise measurements 

than strain gauges as seen from the lower level of measurement noise (Figure 

7.10 (right)). The noise, possibly introduced by vibrations of the structure, is 

filtered using MAF. 
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Strain and displacement signals measured with sensors S-4 and D-4 are shown 

in Figure 7.11. Sensors S-4 and D-4 are located close to the joint involved in 

damage scenarios DM1 and DM2. Displacement signal of D-4 (Figure 7.11 

(bottom)) remains fairly stationary until the event corresponding to the repair of 

the truss (F). The event can be seen as a sudden shift in the displacement signal. 

Strain measurements closely resemble variations in temperatures (Figure 7.11 

(top)). While a gradual drift of the signal is observed after damage event DM2, at 

this time the ambient temperature has also decayed (see Figure 7.7).  

 

Figure 7.11 Strain and displacement signals as measured with S-4 (top) and 

D-4 (bottom); also shown are the time of initiation of the various damage 

scenarios. 

 

Detecting the location of the moving load 

The location of the moving load is detected by processing thermal images. A 

matrix of pixels covering the range of the travel of the moving platform is extracted 

from each thermal image. The heating element on the platform is detected by 

analysing the matrices, and its location is defined in terms of its distance from the 

left support of the truss by assuming that the total length of platform travel is 100 

units. For example, if the moving load is detected to be at the mid-span of the 

truss, its location is 50 units. This information is later used as an input to the 

regression models for traffic response prediction.  

Figure 7.12 shows strain (left) and displacement (right) signals in relation to the 

location of the moving load as computed from the thermal images. The 
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correlations between the strains and locations of the moving load, and similarly 

between the displacements and the locations of the moving load show that the 

location of the moving load can be defined accurately from the measured 

response. For example, let us inspect the travel of the moving load in the period 

between measurements #75 and #85. Near measurement #75 the moving 

platform departs from the left side of the truss and when it reaches the sensor 

location S-2 (measurement #79, see Figure 7.12 (right)), the direction of the 

rotation of the motor changes due to an error in the system operating the moving 

platform, and the platform hence returns back immediately to the left side of the 

truss (measurement #82). This event is reflected closely in strain measurements 

collected by sensor S-2 (Figure 7.12 (left)).  

 

Figure 7.12 Locations of the moving load computed from thermal images 

plotted alongside strains (left) and displacements (right). 

 

Reference period 

Measurements from the first 66 simulated diurnal cycles (see Figure 7.11) form 

the reference period for the proposed integrated approach to account for thermal 

and traffic response. Measurements taken during this period are plotted in Figure 

7.10 (left). Periods when the moving load is present, are excluded from the 

reference data-set for the RBTRP methodology to create set DT0 as described in 

Section 7.2. The four periods, when the moving load is present in the reference 

period as indicated in Figure 7.10 (left), form the reference-data set (DT1) for the 

TIRP methodology. In this experimental study, the weight of the moving load is 

known. The magnitude of the load and its location are used as inputs to the 

regression models. Load L-4 has not been deployed during the reference period. 

This study examines if the response due to L-4 can be predicted accurately using 
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regression models that are generated based solely on the loads present during 

the reference period. 

7.4 Results 

In this section, the proposed integrated approach is evaluated on measurements 

collected from the laboratory truss. The RBTRP methodology is employed to 

derive regression-based models to predict thermal response. Regression models 

are generated using temperatures collected using both the TIC and 

thermocouples. Prediction accuracies for the two sets of models are compared. 

The TIRP methodology is subsequently employed to generate statistical models 

for predicting traffic-induced response. The signals derived after purging the 

effects of temperature and vehicular loads from measurement time-histories are 

then processed using anomaly detection techniques. 

7.4.1 Thermal response prediction 

SVR, which has previously demonstrated good performance for generalizing and 

producing accurate statistical models (see Chapter 6) for thermal response 

prediction, is selected for the RBTRP methodology. High prediction accuracies, 

as evaluated in terms of RMSE, are obtained for both strain and displacement 

predictions when: 

 the measurement input frequency is 1.2×10-2 Hz, and 

 the number of PCs is set to 15. (The first 15 PCs (out of 42) cover 99.99% 

variability of temperatures.) 

Since the truss is a small structure, thermal inertia effects are minimal. However, 

providing two consecutive temperature measurements as input to the regression 

models improves prediction accuracy. Therefore, the thermal inertia parameter j 

is set to 1. 

Prediction error (PE) signals computed for sensor locations S-2 and D-2 are 

plotted in Figure 7.13. If noise in thermal response predictions and measurement 

noise follow a Gaussian distribution, the PE signals will resemble a stationary 

signal. A deviation from stationarity such as in the form of changes to the mean 

of the signal may indicate the presence of the moving load. Spikes due to the 

moving loads are discernible in both PE S-2 and PE D-2 shown in Figure 7.13. A 

closer examination of PE S-2 and PE D-2 during the period when load L-2 is 
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applied reveals that thermal effects have not been fully removed from response 

measurements (Figure 7.13 (right)). PE values at the sensor location D-2 rise 

abruptly from 0 to 100μm when the moving load is applied at measurement 

#7510. Similarly when the load is removed, the PE values abruptly decrease at 

measurement #8200 (see Figure 7.13 (right)). With respect to damage scenarios, 

a gradual shift in the mean of PE S-2 can be noticed shortly after scenario DM2. 

However, other scenarios are not detectable from the PE signals. 

 

Figure 7.13 Signals PE S-2 (top) and PE D-2 (bottom), and a closer view of 

the signals to indicate the effect of the moving load. 

 

Next, the performance of regression models generated using temperature 

measurements from thermocouples and TIC are compared in terms of the mean 

RMSE values of their predictions. Material temperatures collected using contact 

thermocouples are more accurate than those extracted from thermal images. 

Temperature measurements from thermocouples are outlier-free and have little 

measurement noise (see Section 6.1.2, Figure 6.10 from previous studies). In 

total, 31 thermocouples are distributed on the truss. However 99.99% variability 

of temperatures is explained by 19 PCs. As when using temperature 

measurements obtained using the TIC, improvements in strain and displacement 

predictions are marginal when more than 1/8th of temperature measurements 

(1.2×10-2 Hz) comprise the training set. RMSE values of strain and displacement 

predictions, which are derived using both temperature sets, are similar. The mean 

RMSE in response predictions are as follows: 

 For strain sensors on the bottom chord, it is 68×10-6 strains; 
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 For strain sensors on the top chord, it is 138×10-6 strains; 

 For displacement sensors, it is 516μm.  

Table 7.1 lists the means of the RMSE in predictions expressed as a percentage 

of the range of strains and displacements. The prediction accuracies of 

regression models generated using temperature measurements from both 

thermocouples and TIC are similar. These show that temperature measurements 

collected using a TIC can be appropriate for accounting for temperature effects 

in measured response. The PE signals computed using measurements from the 

TIC are next treated for effects of the moving loads. 

Table 7.1 Mean RMSE comparison for regression models generated using 

temperature measurements from thermocouples (noted as TH in the table) and 

the TIC. 

 Bottom chord (strains) Top chord (strains) Displacements 

 TH TIC TH TIC TH TIC 

Mean RMSE (%) of 
strain range 

4.2% 3.7% 1.8% 1.8% 4.2% 4.6% 

 

7.4.2 Traffic-induced response predictions  

The cumulative effect of temperature and traffic loads is not a simple algebraic 

sum of their individual effects but a nonlinear combination, as can be concluded 

from the results presented in Figure 7.13 (right). For this reason, in addition to 

information of the magnitude of the applied load and its location, the first few PCs 

of temperatures are also given as input variables for the TIRP methodology. A 

number of regression-based techniques are evaluated for generating models for 

traffic-induced response prediction. ANNs are selected eventually for their 

superior performance, which is in agreement with previous observations on its 

capability to capture nonlinear relationships [160]. Combinations of the 

measurement input frequency and number of PCs are evaluated. The selection 

of every second measurement from the reference data-set and the first four PC 

provides the most reasonable and less biased results. 

The predicted and measured traffic-induced response is provided in Figure 7.14 

for three periods during the monitoring period. These periods are described 

below:  
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 Period A, which is within the reference period, and comprises 

measurements #7,000 to #8,100 during which load L-2 is applied (Figure 

7.14 (left)); 

 Period B, which is outside the reference period but before the introduction 

of damage scenarios, and comprises measurements #55,200 to #55,600 

during which load L-2 is applied (Figure 7.14 (middle)), and 

 Period C, which is outside the reference period but before the introduction 

of damage scenarios, and comprises measurements #81,100 to #81,500 

during which load L-4, a  moving load not applied during the reference 

period, is applied (Figure 7.14 (right)). 

Predicted and measured strains are in a good agreement for periods A and B. 

However, the discrepancy in predictions is comparatively larger for period C 

(Figure 7.14 (top)). Predicted displacements for all three periods deviate 

significantly from measured values, especially for period C. Using a reference 

period that includes all types of loads for the regression model generation may 

provide higher prediction accuracies. Another possible explanation is from the 

fact that displacement sensors are more vulnerable and sensitive to changes in 

the surrounding environment than strain gauges. Even the slightest movement of 

the sensor can change measured displacement values and increase prediction 

errors. 

 

Figure 7.14 Measured and predicted strains and displacements during period 

A (left), period B (middle) and period C (right). 
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The signals derived after removing traffic-induced response from PE signals are 

expected to be stationary with a zero mean. Only changes to structural 

performance due to factors unrelated to loading such as damage are expected to 

be left in the signals. Plots of the resulting signals for sensors S-2 and D-2 are 

provided in Figure 7.15. Traffic-induced response cannot be predicted accurately 

for traffic loads which are not included in the training set as demonstrated in 

Figure 7.14 (right). For this reason, traces of inaccurately predicted traffic-induced 

response remain in form of spikes in the computed signals (see Figure 7.15). As 

the extent of damage increases, the magnitudes of the spikes also increase 

during periods when the moving load is applied. This phenomenon is discernible 

especially after DM3 in Figure 7.15. 

 

Figure 7.15 Prediction errors derived after subtracting traffic-induced and 

thermal response from measurements collected by sensors S-2 (top) and D-2 

(bottom). 

 

7.4.3 Anomaly detection 

In this section, anomaly detection techniques are employed to process response 

measurements, and other signals derived by removing either of or both thermal 

and traffic-induced response.  

In previous case studies (Chapter 6), SSM and cointegration have been shown 

to detect anomaly events better than MPCA and MFFT. Therefore, these 

techniques are employed in this experimental study to analyze signals for 

anomalies.  

As discussed previously, LVDTs are very sensitive to any movements and their 

measured displacements may have been corrupted (see Figure 7.14). For this 
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reason, signals derived from displacement measurements are not analysed for 

anomalies.  

Signals without thermal and traffic-induced response 

Cointegration: The signals derived in Section 7.4.2 are first analysed for anomaly 

events with the cointegration technique. The first 1/3rd of measurements from the 

reference period forms the data-set used to derive the cointegration model. The 

confidence interval is defined using values of cointegrated residuals from the 

reference period. The computed cointegrated signal is plotted in Figure 7.16. 

Spikes and temporary shifts in the signal are indicative of periods when moving 

loads are present. Values of cointegrated residuals are observed to deviate away 

from the confidence interval as the damage severity increases. The trend departs 

gradually from the confidence interval after DM1 and it permanently departs the 

confidence interval after DM2. 

 

Figure 7.16 Cointegrated residual of signals computed in 7.4.2. 

 

SSM: SSM is employed to locate anomaly events. For DM1 and DM2, the joint 

that lies between sensor locations S-3 and S-4 is damaged. The subtracted 

signals created from the signals corresponding to the two sensors can be 

expected to reflect anomaly events. However, all combinations of PE signals from 

strain sensors located on the bottom chord show evidence of anomaly events, 

and especially subtracted signals created from those signals corresponding to 

sensors S-1 and S-2. Figure 7.17 plots three subtracted signals - TS1S5, TS2S4 and 

TS2S5, all of which indicate all anomaly events. Similar to cointegrated signals, 

periods when the moving loads are present can be seen as spikes or temporary 

shifts in values of subtracted residuals. TS1S5 and TS2S5 permanently exceed the 

confidence interval after DM2. TS2S4 departs from the confidence interval soon 

after DM1. TS2S4 deviates further from the upper bound of the confidence interval 

with increasing damage severity. When the structure is mended at event F, the 
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signal tends to return to baseline conditions. The values of subtracted residuals 

of all signals hold steady after the truss is repaired during event F. 

 

Figure 7.17 Subtracted signals TS1S5, TS2S4 and TS2S5 of signals computed in 

Section 7.4.2 generated with SSM. 

 

Signals without thermal response 

Figure 7.16 and Figure 7.17 show results from the analysis of signals derived 

after subtracting both thermal and traffic-induced response from measurements 

that included the effects of moving loads. Spikes and temporary shifts of 

cointegrated and subtracted residuals are observed for periods when the moving 

load is present. In order to understand the effect of moving loads on anomaly 

detection, measurements taken without having moving loads on the structure are 

now analysed separately. PE signals derived from subtraction of the thermal 

response from these measurements are analysed using anomaly detection 

techniques. When the periods when moving loads are present are excluded from 

the measurement interpretation, signal trends become much less noisy. As an 

example, the cointegrated signal is generated and plotted in Figure 7.18. The 

cointegrated signal is relatively free of large spikes and has no shifts when 

compared to the signals plotted in Figure 7.16. Shifts in the signal due to anomaly 

events are distinguishable, especially those due to anomaly events DM1, DM3 

and F. Similar results are achieved when interpreting the same data-set with 

SSM. They are not plotted here for reasons of brevity. 
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Figure 7.18 Cointegrated residuals generated from PE signals for 

measurement periods when no moving load is present.  

 

Response measurements 

A plot of cointegrated residuals generated using collected strain measurements 

is provided in Figure 7.19. Cointegrated signal starts to drift gradually from the 

confidence interval shortly after DM2, and the signal permanently departs the 

confidence interval after DM3. Figure 7.16 and Figure 7.18 show that anomaly 

events can be detected sooner by analyzing the signals generated after 

subtracting traffic-induced and thermal response than by direct analysis of 

response measurements. This conclusion of faster and more reliable damage 

detection using prediction error signals has already been confirmed in 

Section 6.1.3. 

 

Figure 7.19 Cointegrated residuals of strain measurements. 
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This research lastly evaluates the application of the TB-MI approach proposed in 

Chapter 3:  for interpreting response measurements, while ignoring the presence 
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alone can form the basis of measurement interpretation and whether there is a 
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measurement time-histories collected during this monitoring period are not 

separated into two datasets according to whether they have moving loads as 

done in Section 7.2. The reference period used for training models for thermal 

response prediction is same as that used in Section 7.3.2, i.e. 66 simulated 

diurnal cycles. A data-set that comprises all strain measurements during this 

reference period including those that have effects of moving loads is selected as 

input to the RBTRP methodology. The same values are also used for parameters 

related to pre-processing and training period as in Section 7.4.1. Models with high 

prediction accuracies are obtained when the measurement input frequency is 

6.3×10-3 Hz and the number of PCs is 16. The mean RMSEs expressed in as a 

percentage of the range of measured strains and displacements are 3.2% and 

5.5% respectively. These are similar to those RMSE values obtained when the 

TIRP methodology is coupled with the RBTRP methodology (see Table 7.1). PE 

S-2 is plotted in Figure 7.20, which is similar to the signal shown in Figure 7.15 

(top) that is derived using both the TIRP and RBTRP methodologies. As can be 

seen from the plot, PE values spike for periods when moving loads are present. 

 

Figure 7.20 PE S-2 derived from unfiltered strain measurements. 

 

PE signals are inspected for anomaly events using the same parameter settings 

as used in Section 7.4.3. Both SSM and cointegration show reasonably good 

results. For reasons of brevity, signals generated using only SSM are discussed. 

TS1S5, TS2S4 and TS2S5 (similar to those shown in Figure 7.17) are plotted in Figure 

7.21. Drifts in subtracted signals are not as evident as in the signals plotted in 

Figure 7.17, however, trends in signals remain relatively similar. Recognizing 

anomaly events in signals is easy, when knowing the time and nature of anomaly 

events. However, without such knowledge, onset of damage can be recognized 

only in TS1S5 (Figure 7.21 (top)). The other signals are weak indicators of anomaly 

events. 
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Figure 7.21 TS1S5, TS2S4 and TS2S5 generated using SSM from PE signals (see 

Section 7.2) 

7.6 Conclusions 

A novel approach which can be used to predict thermal and traffic-induced 

response is proposed in this chapter. As a first step, this approach is investigated 

using measurements from a laboratory structure that is exposed to accelerated 

temperature variations. Traffic loads are simulated using a moving platform that 

travels along the bottom chord of the truss and can hold adjustable weights. 

Response measurements are collected with contact sensors (e.g. strain gauges 

and displacement transducers), and temperature distributions are captured with 

a thermal imaging camera and thermocouples.  

This experimental study draws the following conclusions: 

 Thermal images can be used to measure temperature distributions at 

accuracies sufficient for data interpretation. The prediction accuracies of 

models generated either with temperatures from the TIC or with 

thermocouples as input are similar.  

 Thermal response can be accurately predicted from knowledge of 

temperature distributions. Consequently its removal from structural 

response reveals the presence of other applied loads such as traffic loads. 

 Detailed information on all types of moving loads is required during the 

reference period to generate statistical models that accurately predict 

traffic-induced response. 
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 The regression models generated for predicting strains have higher 

accuracy than those generated for predicting vertical displacements for the 

experimental structure. 

 The proposed TIRP methodology is unable to fully eliminate the effect of 

moving loads on measured response. Consequently anomaly detection is 

observed to be better when measurements collected during traffic loads 

are excluded from the data set. 

The proposed integrated approach needs further development to integrate a 

broader range of traffic scenarios and validation on measurements from real-life 

structures. The TIRP methodology which aims to predict traffic-induced response 

needs further integration with sensing technologies for applications to full-scale 

structures. TICs need to be employed continuously on full-scale bridges to certify 

their scalability. Surface reflection might be an issue which should be addressed 

in the future research. 
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Chapter 8:  Conclusions  

Previous chapters of this thesis described the proposed approaches for 

evaluating the structural performance of bridges by characterizing and 

interpreting their thermal response, and subsequently demonstrating their 

application to measurements from laboratory-scale and full-scale bridges. This 

chapter concludes the thesis with the following: 

1. A brief summary of the research;  

2. A re-visit of the objectives that had been set out at the start of this research; 

3. Key findings from this research, particularly with respect to the proposed 

RBTRP and anomaly detection methodologies; and 

4. Limitations of this research and recommendations for future work. 

8.1 Summary of research 

The quasi-static response of a bridge, while dependent on the various input 

forces, is affected predominantly by variations in temperature. In many structures, 

the quasi-static response can even be approximated as equal to its thermal 

response. This notion has supported the idea in this study of employing 

distributed temperature and response measurements to create data-driven and, 

to a lesser extent, physics-based models that are capable of predicting structural 

response from temperature inputs.  

A major contribution of this research is the proposed regression-based thermal 

response prediction (RBTRP) methodology, which is a generic, regression-

based, data-driven approach to predict thermal response from distributed 

temperature measurements. A laboratory test-bed in the form of a truss structure 

is designed and built for validating the RBTRP methodology. Application of the 

methodology to develop data-driven models for predicting the thermal response 

of specific structures has been illustrated using a few case studies including the 

laboratory truss. The concept of using distributed temperature measurements to 

predict thermal response can also be implemented using physics-based models. 

This research demonstrates this idea for predicting bearing movements in a long-

span bridge.  
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This research demonstrates that the concept of predicting bridge response from 

knowledge of input loads can be used to also predict the response due to vehicle 

loads. It proposes a simple data-driven methodology referred to as the traffic-

induced response prediction (TIRP) methodology for this purpose. This 

methodology is combined with the RBTRP methodology to create an integrated 

approach for analyzing measured response due to both thermal and vehicular 

loads. The integrated approach is evaluated on measurements collected from the 

laboratory truss, which has been equipped with a moving platform to enable 

simulation of moving loads.  

The methodologies for response prediction are subsequently employed for 

anomaly detection by comparing predictions with measured response. An 

anomaly is defined as a sudden or gradual deviation in measurement patterns as 

evaluated in relation to the patterns observed during a reference period. The 

detection of an anomaly event does not necessarily imply a change in structural 

performance. It can also indicate other events such as a sensor starting to 

malfunction or abnormal loading. In this research the emphasis is on detection of 

anomaly events in prediction error (PE) signals, which are time-histories of the 

residuals computed from predicted and measured response. Two new anomaly 

detection techniques – moving fast Fourier transform (MFFT) and signal 

subtraction method (SSM), are introduced in this study. These two techniques 

along with moving principal component analysis (MPCA) and cointegration 

techniques are employed to detect anomaly events from the PE signals computed 

for a few case studies.  

8.2 Achievement of aims and objectives 

The research goal, as originally stated in Chapter 1, was to investigate the 

hypothesis that distributed temperature and response measurements can be 

employed to detect change in structural performance of bridges. This goal has 

been achieved. The objectives formulated in Chapter 1 have also been met 

during the course of this research as follows. 

1. Literature on long-term monitoring of bridges with particular emphasis on 

available technologies and methodologies for quasi-static measurement 

collection and data interpretation has been reviewed.   
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2. The RBTRP methodology, which is a regression-based approach to 

capture the relationship between quasi-static structural response and 

distributed temperature measurements, has been developed. 

3. A number of regression algorithms ranging from simple linear regression 

to artificial neural networks have been evaluated for their ability to predict 

thermal response from distributed temperature measurements. 

4. An anomaly detection methodology that is based on the comparison of 

predicted response with measured structural response has been 

developed. Two novel anomaly detection techniques: MFFT and SSM 

have also been proposed. 

5. The developed approach for characterizing and analysing thermal 

response of bridges has been extended to include the response due to 

vehicular loads. 

6. An experimental test-bed - the laboratory truss, has been designed and 

built to validate the proposed approaches for response prediction and 

anomaly detection. 

7. The application of the developed approaches to measurements from full-

scale bridges has also been investigated through a number of case 

studies. 

8.3 Conclusions  

The general conclusions from this research are as follows.  

 The laboratory truss, built specifically for this research, and the associated 

experimental setup is shown to produce measurement time-histories 

similar to those from full-scale structures. 

 The data-driven RBTRP methodology provides regression models that 

accurately predict thermal response from distributed temperature 

measurements, as demonstrated successfully through various case 

studies. 

 Thermal imaging cameras can measure temperatures at similar levels of 

accuracies as contact sensors such as thermocouples. The prediction 

accuracies of response prediction models trained to accept input 

temperatures from either a thermal imaging camera (TIC) or 

thermocouples are hence comparable. 
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 Physics-based models, although computationally intensive, are capable of 

accurately estimating quasi-static structural response of bridges from 

distributed temperature measurements. 

 There is no one technique that is capable of detecting all types of anomaly 

events. Therefore a robust and reliable anomaly detection approach must 

encompass a range of anomaly detection techniques. 

 The proposed temperature-based measurement interpretation (TB-MI) 

approach is applicable for interpreting measurements from full-scale 

bridges, and can be integrated within a measurement interpretation 

platform for continuous bridge monitoring. 

Specific conclusions on the individual elements of the research are provided 

below. 

8.3.1 Characterizing response of bridges 

Data-driven approach  

RBTRP methodology  

 Regression models generated using support vector regression (SVR) and 

artificial neural networks (ANNs) are more robust and provide more 

accurate predictions of structural response than multiple linear regression 

(MLR) and robust regression (RR), which themselves provide satisfactory 

results. 

 The down-sampling of input measurement sets within a reasonable range, 

while notably reducing the time for model training, only marginally affects 

the prediction accuracy of the regression model. 

 Principal components (PCs) covering nearly 99.9% of the measurement 

variance are sufficient as input to regression models to achieve good 

response predictions. As a rule of thumb, the first one-third of PCs 

provides ample information to generate accurate regression models.  

 Thermal inertia effects in response predictions can be accounted for by 

providing both current and prior temperature measurements as input to 

regression models. Using an appropriate value for the thermal inertia 

parameter can improve prediction accuracy significantly especially for 

concrete structures. 
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 Results from case studies of the NPL Footbridge and River Trent Bridge 

show that the RBTRP methodology can make accurate response 

predictions even when measurements offer only limited information on 

temperature distributions. 

TIRP methodology 

 Thermal response can be accurately predicted from knowledge of 

temperature distributions. Consequently its removal from structural 

response reveals the presence of other applied loads such as traffic loads. 

 Detailed information on all types of moving loads is required during the 

reference period to generate statistical models that accurately predict 

traffic-induced response. 

Model-based approach for Cleddau Bridge 

 Plan bending of the main box girder of the Cleddau Bridge generates plan 

rotations at the roller bearings. These movements, which were not 

foreseen at the design stage, imposed large forces on the bearings and 

led to their degradation. 

 The thermal gradients across the width of the deck forces the bridge to 

bend laterally and can be an important factor determining bearing 

movements. This phenomenon may have to be considered more 

comprehensively in the codes of practice.  

 Measurements show that temperature distributions across the cross-

section of the bridge deck can vary in a complex manner based on the 

bridge orientation and local environmental parameters. These aspects 

have to be considered at the design stage to estimate thermal behaviour. 

8.3.2 Anomaly detection 

 MFFT and SSM, which are two novel anomaly detection techniques 

proposed in this research, are shown to be useful to detect anomaly events 

in the case studies. 

 Cointegration and SSM are observed to outperform MPCA and MFFT for 

the detection of anomaly events in the case studies. While cointegration 

helps in detecting changes in structural performance, SSM can offer 

support for determining the location of the event, and thereby the cause of 

the change in structural performance. 
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 PE signals have to be clustered appropriately into groups prior to 

evaluation with cointegration and MPCA. This step, which influences the 

performance of these techniques, can require engineer’s knowledge of 

structural behaviour.  

 The analysis of PE signals using anomaly detection techniques results in 

faster and more robust detection of events compared to the direct 

application of these techniques on response measurements. 

 The proposed TIRP methodology is unable to fully eliminate the effect of 

moving loads in measured response. Consequently anomaly detection is 

observed to improve when measurements collected during traffic loads are 

excluded completely from the data set. 

8.4 Limitations 

This study and the proposed methods have the following limitations: 

 Results from this research are affected by the quality of measurement sets 

generated from following structures: 

1) The laboratory truss: The truss is a small-scale laboratory structure 

subject to regular temperature variations and a few loading cases. 

However, in real-life, each diurnal cycle is different; temperature 

variations also affect the environment around the bridge (e.g. soils), 

which then affect structural behaviour. Furthermore, only a few 

damage scenarios are simulated on the truss, while anomaly events 

in real-life can have numerous causes.  

2) The NPL Footbridge: Ambient temperatures were measured at the 

level of the deck of the footbridge, and provide limited information on 

temperature distributions. Furthermore, a few tests were carried out 

during the selected reference period (first year of monitoring) for the 

TB-MI approach. There is strong evidence that these have altered 

the bridge behaviour. The study has demonstrated that short 

reference periods, e.g., three months, cannot be employed to 

achieve high prediction accuracies.  

3) The River Trent Bridge: This bridge that spans over 175m is 

monitored with a vast number (>150) of strain gauges but with only 

five thermocouples. The limited knowledge of temperature 

distributions in the structure causes the statistical models generated 
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from the available data to have low prediction accuracies. Prediction 

models of high accuracies can be generated with a better knowledge 

of temperature distributions in the structure. 

 For the TB-MI approach to cope with changes in environmental conditions, 

a reference period of at least one year duration is required in order to cover 

the full range of peak-to-peak seasonal temperature variations. 

Consequently, application of the TB-MI approach to measurement sets 

that do not span a year may lead to unreliable results. 

 The physical relationship between load and response for a bridge may 

change permanently after events such as the application of abnormal 

temperature gradients due to extreme weather scenarios. Such events are 

likely to be detected as anomaly events although the change in structural 

performance may not be serious. 

 In this research, an anomaly is said to be detected when a feature 

computed by an anomaly detection technique irreversibly departs from its 

confidence interval. However signals may often leave the confidence 

interval temporarily creating false-positives; such scenarios can create 

confusion when interpreting measurements in real-time. 

 The RBTRP methodology may not be able to capture thermal inertia 

effects if measurements are collected at a very low frequency. For 

example, measurements collected once a day will not provide sufficient 

information to predict thermal inertia effects in measured response. 

 For full-scale structures that are exposed to changing environmental 

conditions, managing false-positives is challenging. The robustness of the 

models can be improved by appropriate model training, i.e., provide more 

data covering peak-to-peak temperature/response variations. 

Furthermore, the size of the threshold bounds may be increased to reduce 

false-positives although this may reduce the sensitivity of the methodology 

to damage, and consequently lead to false-negatives. A traffic signal 

approach to damage detection may also be appropriate.  

 In experimental studies, exact time of damage events is usually known. 

However, some damage events could still not be detected using the TB-MI 

approach when analysing measurements from the truss and the NPL 

footbridge. Detecting these false-negatives in measurement time-histories 

still remains a challenge.  
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8.5 Recommendations for future work 

 Investigate the RBTRP methodology on real-life bridges or a full-scale test-

bed from which distributed temperature measurements of high spatial and 

temporal resolution are available. At least one year of measurements is 

needed for the reference period. 

 Develop further the RBTRP methodology to: i) include more than one 

thermal inertia parameter as input to the regression models, ii) integrate 

optimization options to tune and reduce input parameters to the regression 

models, and iii) evolve prediction models with new measurements.  

 Investigate classification of events based on exceedance of the 

confidence interval. Short-term anomaly events which are triggered by 

unusual loads such as abnormal temperatures and traffic jams have to be 

distinguished from events that indicate the onset of anomalous structural 

behaviour. 

 Develop further the proposed integrated approach for measurement 

interpretation by integrating a broader range of traffic scenarios and 

validating it on measurements from real-life bridges.  

 Propose a broader approach for measurement interpretation, which 

integrates the effects of all major loads and environmental parameters 

such as wind and humidity, in addition to temperature and traffic effects, 

in the integrated approach. 

 Design a user interface for the TB-MI approach that facilitates selection 

and application of available measurement interpretation methodologies to 

real-life measurement sets. 

In closure, according to Scopus, more than 2000 peer-reviewed papers 

presenting methodologies, approaches and applications of SHM have been 

published since the early 1990s; half of these papers have been published after 

2010. However, there is still a major gap between research and uptake in 

practice. Bridging this gap requires application of sensing technologies, and 

importantly, development of data interpretation methodologies, suitable for full-

scale bridges. The effective strategy for accounting for thermal response that is 

proposed in this research as the TB-MI approach is targeted at addressing this 

gap. To further validate and develop such approaches for measurement 

interpretation, however, requires bridge operators and owners to readily make 
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available monitoring data for researchers. An open access database of 

measurements from a range of civil structures may encourage the evolution of 

SHM approaches outside the realm of research. Improved communication of 

research between universities and research institutions, and sharing of data and 

research on methodologies can aid development of the next-generation structural 

health monitoring platforms applicable for research and practice. 

 





Appendix – A 

243 

Appendix – A 

A pilot study which validates the proposed the TB-MI approach is provided in this 

appendix. The full study can be found in the paper by Kromanis and Kripakaran [217]. 

The appendix highlights the importance and delivers/validates the TB-MI approach. 

A.1 Numerical model 

A numerical model (see Figure 8.1) representative of a typical reinforced concrete 

girder found in highway bridges is employed as a test-bed in this pilot study. The 

model is created using eight-noded plane stress elements in ANSYS [240]. Each 

element has the following dimension: 360mm×300mm×500mm 

(length×width×thickness). Fiber Bragg grating (FBG) sensors that measure both 

strains and temperatures are assumed to be present on top and bottom faces at 

the quarter-spans of the girder. They have accuracies of ±1μɛ and ±0.1°C. The 

locations of these sensors are shown in Figure 8.1 as S-1, S-2, etc.  

 

Figure 8.1 Numerical model of a bridge girder with S-i (i = 1, 2, …, 12) 

showing the assumed FBG sensor locations; the damaged element is near S-2. 

 

The main purpose of setting up the numerical model is to simulate measurements 

of strains and temperatures similar to those generated by distributed sensing 

systems in continuously-monitored bridges under daily and seasonal temperature 

variations. The temperature distribution in a bridge is dependent on several 

factors including the ambient temperature, the geographical orientation of the 

bridge and its exposure to the sun. These effects could lead to complex, nonlinear 

temperature gradients in the bridge. This study focuses on the computational 

modelling of the relationship between temperature distributions and thermal 

response. Since it is the first such investigation into the thermal response of 

bridges, it evaluates the proposed approach for linear temperature gradients. 
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Specifically, the following temperature distribution (see Figure 8.2) is considered: 

TEMP1 – a scenario representing linear temperature gradients across the length 

and depth of the girder (Figure 8.2). It is similar to the scenarios used in a previous 

study by [121]. Other forms of linear temperature gradients and combinations of 

these distributions have also been evaluated in this research to ensure that the 

proposed methodology is not sensitive to the nature of temperature distribution. 

However, results for these cases are not presented in this paper since its focus 

is on the central theme of anomaly detection. 

 

Figure 8.2 Temperature distribution for model in Figure 8.1; arrows show the 

direction of temperature increase. 

Temperature histories from the European Climate Assessment and Dataset 

project (ECAD) project [237] are used to define the temperature distributions 

outlined in Figure 8.2. The histories are comprised of minimum, average and 

maximum daily temperature readings for a specific geographic location. Values 

for T1 – T4 in Figure 8.2 for each time step are derived from the ECAD 

temperature histories. This study uses temperature histories recorded in 

Camborne, Cornwall, UK. Sensor readings are assumed to be taken during the 

hours when the bridge has minimal vehicular traffic. This is to ensure that the 

effects of ambient temperature variations dominate the measurements. This 

study also assumes the frequency of measurement collection to be one reading 

per day.  

The model is used to simulate measurements from a bridge in both normal and 

damaged states. The structure is assumed to behave normally for the first three 

years. Damage is introduced after 1100 days (≈ 3 years) as a reduction in the 

material stiffness in one element. In concrete bridges, damage is often initiated 

by the corrosion of reinforcing steel due to chemical ingress. This tends to occur 

closer to mid-spans since the bending moments and the widths of resulting 

flexural cracks are largest around these locations. In an attempt to generate 

realistic damage scenarios, damage is modelled close to the middle of the first 
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span of the bridge girder as shown in Figure 8.1. The following damage scenarios 

are considered: 

1) D1 – Instant stiffness loss of 30%. 

2) D2 – Instant stiffness loss of 10%. 

3) D3 – Instant stiffness loss of 5%. 

4) D4 – Instant stiffness loss – 1% reduction in stiffness every 15 days for 10 

months (until it reaches 10%). 

5) D5 – Gradual stiffness loss – 1% reduction in stiffness every 30 days for 

10 months. 

Measurements from full-scale structures often include outliers and noise. To 

account for this, randomly distributed outliers are introduced to the data set to 

represent malfunctioning sensors or external effects that may temporarily affect 

the sensors. They are introduced in both temperature and response 

measurements. We consider three outlier scenarios – O1, O2 and O3, equivalent 

to outlier percentages of 1%, 2% or 4% respectively. Magnitudes of outliers are 

assumed to be between – 100 and +100 units. Measurement noise is added using 

a uniformly distributed random variable that takes values under 1% (N1), 2.5% 

(N2) or 5% (N3) of the peak-to-peak range of measurements from the first year.  

A.2 Results 

A.2.1 Performance of SVR model 

The efficiency of the RBTRP strategy is evaluated on data from the numerical 

model. Strain outputs from the numerical model are taken as the measurement 

histories in this example. Measurements are simulated for several scenarios, 

where each corresponds to a combination of a damage scenario and certain 

levels of outliers and noise. For example, scenario D1O1N1 refers to 

measurements simulated from the numerical model for damage case D1 taken 

together with outliers and noise levels corresponding to scenarios O1 and N1 

respectively. Figure 8.3 shows strain (right) and temperature (left) histories at 

sensor S-2 of the girder for scenario D1. The figure shows that damage modelled 

as a 30% loss in stiffness is not visually discernible from the time series. The 

effects of damage are masked by the larger changes in strains due to daily and 

seasonal temperature variations. 
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A SVR model is created for each strain measurement location. Distributed 

temperature measurements constitute the input to the SVR model.  In this study, 

five-fold cross validation is chosen for the training phase. In this procedure, the 

dataset is randomly divided into five parts; four parts are used for training and 

one part for testing the SVR model. Measurements taken during the first year 

form the training and test sets. The Libsvm package [241] is used for generating 

SVR models. A linear kernel is selected for the SVR. The SVR model is then 

evaluated for the task of predicting the structural response, i.e., strains. Figure 

8.4 illustrates predictions from a SVR model trained on the first year of 

measurements from scenario D1N3. The SVR model is observed to predict 

strains to a high degree of accuracy. 

 

Figure 8.3 Temperature (left) and strain (right) readings from sensor S-2; 

dashed line indicates the introduction of damage. 

 

 

Figure 8.4 Comparison of measured and predicted strains for scenario D1N3 

for two years (left) and a zoomed-in view for two weeks (right). 
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The prediction error (Δy), which is the difference between the measured strain 

and the prediction from the SVR model, could be an indicator of damage. This 

difference is plotted in Figures 8.5, 8.6 and 8.7 for sensor S-2 for damage 

scenarios D1, D3 and D5. There is a noticeable drop in the prediction error Δy 

after the damage is introduced; this illustrates that there is a deviation from 

normal behaviour. The time series could also be indicative of a transition to a new 

stable state upon collection of sufficient measurements after damage occurrence. 

This could help in monitoring progress of damage or deterioration. In the next 

step, time histories of predicted errors are analysed with signal processing 

methods for automated detection of onset of anomalous structural behaviour. 

A.2.2 Post-processing of SVR predictions 

This research applies moving fast Fourier transform (MFFT) [242] to find 

statistical evidence of anomalous behaviour from the time series of prediction 

errors. MFFT is the fast Fourier transform of a moving window of data points from 

a time series, which in this case is on a sequence of Δy values. An anomaly is 

said to be detected when the indicator, which is the amplitude of the lowest 

frequency from MFFT, deviates significantly from its baseline value. The baseline 

value is defined as the mean value (m) of the indicator during the reference 

period, i.e., the first year. The maximum permissible deviation from the baseline 

value beyond which a measurement is classified as an anomaly is defined as a 

constant n times the standard deviation (σ) of the indicator values during the 

reference period [126]. The assumption is that indicator values follow a Gaussian 

distribution with mean m and standard deviation σ, and therefore, measurements 

that lead to indicator values outside the interval of [μ-nσ, μ+nσ] have a high 

probability of representing anomalies. While increasing n reduces the sensitivity 

of the anomaly detection technique, it also minimizes the likelihood of false 

alarms. In this study, n=6 is chosen since it is observed to provide consistent and 

accurate results as shown below. The influence of this parameter on the 

performance of this methodology will be the focus of future research. 

The time to damage detection is measured as the number of days between the 

introduction of damage and the detection of an anomaly. Results are illustrated 

for three damage scenarios D1, D3 and D5 in Figure 8.5, Figure 8.6 and Figure 

8.7 respectively. In all three scenarios, the MFFT indicator shows a discernible 
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jump after damage occurrence and clearly detects anomalous structural 

behaviour. 

 

Figure 8.5 Time series of prediction errors (Δy) at sensor S-2 for scenario D1 

(left) and results from MFFT (right); dashed line indicates the introduction of 

damage. 

 

 

Figure 8.6 Time series of prediction errors (Δy) at sensor S-2 for scenario D3 

(left) and results from MFFT (right); dashed line indicates the introduction of 

damage. 
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Figure 8.7 Time series of prediction errors (Δy) at sensor S-2 for scenario D5 

(left) and results from MFFT (right); dashed line indicates the introduction of 

damage. 

 

A.2.3 Performance under noise and outliers 

The performance of the RBTRP methodology in the presence of noise and 

outliers in the measurements is studied. The time series of strains and 

temperatures are first pre-processed to handle outliers. The application of IQR to 

temperature and strain time series from sensor S-2 for scenario D5O3 are shown 

in Figure 8.8 and Figure 8.9 respectively. 

 

Figure 8.8 Time series of temperature collected at S-2 for scenario D5O3. 

Before outliers are removed (left) and after (right). 
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Figure 8.9 Time series of strains collected at S-2 for scenario D5O3. Before 

outliers are removed (left) and after (right); dashed line indicates the 

introduction of damage. 

 

IQR analysis does not fully eliminate the problems posed by outliers. First, they 

seldom identify all outliers in the data. Second, the median values that replace 

the outliers may still have significant errors. Therefore, even after pre-processing, 

outliers could still detrimentally affect the training of regression models and the 

accuracy of predictions. The use of SVR helps address these issues. The 

generalization ability of SVR is useful in producing robust models. Also, the 
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moving window of a length of one month is chosen for this task. This procedure 

is illustrated in Figure 8.10 and Figure 8.11. The plots on the left in these two 

figures show the time series of Δy values before and after outlier removal 

respectively for sensor S-2 under scenario D5O3. The plots on the right in Figure 

8.10 and Figure 8.11 provide the results from MFFT. It is clear that the removal 

of outliers reveals a drop in the prediction error which could then be identified as 

an anomaly using MFFT (see Figure 8.11). 
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Figure 8.10 Time series of prediction errors (Δy) at sensor S-2 for scenario 

D5O3 after pre-processing strain/temperature measurements for outliers (left) 

and results from MFFT (right); dashed line indicates the introduction of damage. 

 

 

Figure 8.11 Time series of prediction errors (Δy) (left) produced after applying 

IQR analysis to data in Figure 8.10 and corresponding results from MFFT 

(right); dashed line indicates the introduction of damage. 

 

Next the robustness of the methodology is evaluated for increasing levels of 

noise. The magnitude of noise is derived from peak-to-peak values of sensor 

readings from the first year (365 days). The time series of prediction errors (Δy) 

has increased distortion in the presence of noise. This will increase the variability 

in the baseline data and hence delay the detection of damage. The prediction 

error and corresponding results from MFFT for the scenario D5N2 is represented 

in Figure 8.12. 

0 500 1000 1500 2000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

P
re

d
ic

ti
o

n
 e

rr
o

r 
( 

y
)

Days
500 1000 1500

-4

-2

0

2

4

6

8

10

12

x 10
-3

A
m

p
li
tu

d
e
 o

f 
th

e
 l
o

w
e
s
t 

fr
e
q

u
e
n

c
y

Days

+6

-6

0 500 1000 1500 2000

-10

-5

0

5

x 10
-3

P
re

d
ic

ti
o

n
 e

rr
o

r 
( 

y
)

Days
400 600 800 1000 1200 1400 1600

0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3
A

m
p

li
tu

d
e
 o

f 
th

e
 l
o

w
e
s
t 

fr
e
q

u
e
n

c
y

Days

+6

-6



Appendix – A 

252  

 

Figure 8.12 Time series of prediction errors (Δy) at sensor S-2 for scenario 

D5N2 (left); results from MFFT of the Δy time series (right); dashed line 

indicates the introduction of damage. 

 

A.3 Discussion 

The previous section presented notable results for only a few scenarios. This 

research, however, has investigated the proposed methodology that combines 

SVR and MFFT for a much larger set of scenarios. These results are summarised 

in Table 8.1. As expected, time to detect damage varies depending upon the 

chosen scenario. The introduction of outliers and noise has a significant impact 

on the performance of the methodology. The presence of noise and outliers in 

the measurements increase the time to detect damage and for large levels of 

noise, the methodology completely fails to detect anomalies as shown in Table 

8.1. 

This study has also compared the performance of the proposed methodology with 

moving principal component analysis (MPCA) of the response time histories as 

previously proposed by [121]. These are also presented in Table 8.1. Results 

illustrate the superior performance of the proposed methodology over the MPCA-

based approach. The MPCA approach fails to detect damage in all scenarios 

except for the ones where the intensity of damage is the strongest i.e., a reduction 

of 30% of material stiffness. Moreover, the evidence for occurrence of an anomaly 

may also be weak, i.e., the threshold is exceeded only briefly and the 

eigenvectors do not clearly indicate anomalous behaviour by transitioning to a 

new stable state as would be expected. An example of this behaviour is illustrated 

for scenario D1O1 in Figure 8.13.  
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Table 8.1 Time (days) to anomaly detection of the proposed methodology 

and MPCA [121] for a range of scenarios. 

Algorithm 
Noise and 

outlier 
scenario 

Damage scenario 

D1 D2 D3 D4 D5 

Proposed 
approach/ 
MPCA [31] 

- 7/4 25/x 19/x 81/x 126/x 

O1 5/70* 22/x 21/x 79/x 116/x 

O2 8/x 17/x 42/x 105/x 139*/x 

O3 25/x 9/x 75/x 80/x 129/x 

N1 3/62 106/x 153/x 140/x 105/x 

N2 105/52 276/x 225/x 102/x 297/x 

N3 71/x 151/x x/x x/x 436*/x 

O1N1 43/56 129/x x/x 294/x 265/x 

O1N2 159/89 x/x x/x x/x x/x 

O1N3 242/x x/x x/x x/x x/x 

* –  weak evidence of anomalous behaviour 

x – failure of algorithm to detect anomaly 

 

 

Figure 8.13 Plot of the component corresponding to sensor S-2 in the first 

principal component from MPCA of strain measurements for scenario D1O1. 

 

Conclusions from this pilot study are as follows: 

 The relationship between distributed temperature and response 
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are faster and more accurate than the interpretation of the response time 

histories using MPCA. 

 SVR models can be trained to accurately predict the thermal response of 

a structure from distributed temperature measurements. 

 The prediction error, which is the difference between a prediction from a 

SVR model and a corresponding measurement, is a reliable indicator of 

damage. The time series of prediction errors can be analysed by MFFT for 

anomaly detection. 

 The proposed methodology that combines SVR and MFFT is shown to 

reliably detect anomalous structural behaviour from distributed response 

and temperature measurement in the presence of outliers and 

measurement noise. 

 



Bibliography 

255 

Bibliography 

Papers presented by the author 

Journal paper 

 Kromanis R and Kripakaran P. (2014) Predicting thermal response of 

bridges using regression models derived from measurement histories. 

Computers & Structures, 136, 64-77. 

 Kromanis R and Kripakaran P. (2013) Support vector regression for 

anomaly detection from measurement histories. Advanced Engineering 

Informatics, 27(4), 486–495. 

Conference proceedings 

 Kromanis R and Kripakaran P. (2014) Integrated analysis of vehicular and 

thermal effects within a structural health monitoring system. 6th World 

Conference on Structural Control and Monitoring (6WCSCM), Barcelona, 

Spain, 14th – 17th July 2014.  

 Kromanis R, Harvey B and Kripakaran P. (2014) Evaluation of quasi-static 

temperature effects on the Cleddau bridge from continuous monitoring. 

Structural Faults + Repairs 2014, 15th European Bridge Conference, 

Imperial College, London, UK, 9th – 11th July 2014. 

 Kromanis R and Kripakaran P. (2014) Kriging models for compensating 

thermal response in measurements from bridges monitoring. 22nd UK 

Conference on Computational Mechanics (ACME2014), University of 

Exeter, UK, 2nd – 4th Apr 2014, pages 169-172. 

 Kromanis R and Kripakaran P. (2013) Continuous monitoring of bridges: 

methodologies for anomaly detection using thermal response predictions. 

International Conference on Structural Health Monitoring on Intelligent 

Infrastructure (SHMII-6), Hong Kong, 9th – 11th Dec 2013. 

 Kromanis R and Kripakaran P. (2012) Support vector machines for 

anomaly detection from measurement histories. International Workshop: 

Intelligent Computing in Engineering, Herrsching, Germany, 4th – 6th July 

2012. 

  



Bibliography 

256  

List of references 

[1] G. Cole, “The role of assessments in highway bridge management,” Proc. 
ICE - Bridg. Eng., vol. 161, no. 3, pp. 133–139, 2008. 

[2] Federal Highway Administration (FHWA), “Tables of Frequently 
Requested NBI Information,” 2014. [Online]. Available: 
http://www.fhwa.dot.gov/bridge/deficient.cfm. 

[3] International NACE White Paper, “Corrosion control plan for bridges,” 
2012. 

[4] National Transportation Safety Board, “Collapse of I-35W Highway 
Bridge, Minneapolis, Minnesota, August 1, 2007,” Highway Accident 
Report NTSB/HAR-08/03., Washington, DC., 2008. 

[5] J. Beaubien, “Policeman’s Bridge-Rescue Efforts Lauded,” 2007. [Online]. 
Available: 
http://www.npr.org/templates/story/story.php?storyId=12483119. 

[6] Federal Highway Administration (FHWA), “Excellence in Highway Design 
2010,” 2010. [Online]. Available: 
http://www.fhwa.dot.gov/publications/focus/10nov/04.cfm. 

[7] H. Grover, Fatigue of aircraft structures. Battelle Memorial Institution, 
1966. 

[8] E. Wolf, “A Significance of fatigue creack closure,” in Damage Tolerance 
in Aircraft Structures: A Symposium Presented at the Seventy-third 
Annual Meeting American Society for Testing and Materials, Toronto, 
Ontario, Canada, 21-26 June 1970, 1971, p. 230. 

[9] D. Dasgupta, K. KrishnaKumar, D. Wong, and M. Berry, “Negative 
selection algorithm for aircraft fault detection,” Artif. immune Syst., 2004. 

[10] K. Worden and J. M. Dulieu-Barton, “An Overview of Intelligent Fault 
Detection in Systems and Structures,” Struct. Heal. Monit., vol. 3, no. 1, 
pp. 85–98, 2004. 

[11] NCE Editorial, “Technology: Sensors and sensor ability,” New Civil 
Engineer Magazine, 2014. [Online]. Available: 
http://www.nce.co.uk/features/transport/technology-sensors-and-sensor-
ability/8660314.article. 

[12] Transport Scotland, “Forth Replacement Crossing,” 2011. [Online]. 
Available: http://www.transportscotland.gov.uk/road/forth-replacement-
crossing/frc-faqs. 

[13] British Standards Institution, BS EN 1991-1-5: 2003: Eurocode 1: Actions 
on structures: General actions - Thermal actions. London, 2003. 



Bibliography 

257 

[14] J. Mata, “Interpretation of concrete dam behaviour with artificial neural 
network and multiple linear regression models,” Eng. Struct., vol. 33, no. 
3, pp. 903–910, 2011. 

[15] K. Y. Koo, J. M. W. Brownjohn, D. I. List, and R. Cole, “Structural health 
monitoring of the Tamar suspension bridge,” Struct. Control Heal. Monit., 
vol. 20, no. 4, pp. 609–625, 2012. 

[16] K. Worden, E. J. Cross, and J. M. W. Brownjohn, “Switching Response 
Surface Models for Structural Health Monitoring of Bridges,” in Surrogate-
Based Modeling and Optimization, Springer, 2013, pp. 337–358. 

[17] V. Livina, E. Barton, and A. Forbes, “Tipping point analysis of the NPL 
footbridge,” J. Civ. Struct. Heal. Monit., Nov. 2013. 

[18] N. de Battista, J. M. W. Brownjohn, H. P. Tan, and K.-Y. Koo, “Measuring 
and modelling the thermal performance of the Tamar Suspension Bridge 
using a wireless sensor network,” Struct. Infrastruct. Eng., pp. 1–18, Jan. 
2014. 

[19] F. N. Catbas, M. Susoy, and D. M. Frangopol, “Structural health 
monitoring and reliability estimation: Long span truss bridge application 
with environmental monitoring data,” Eng. Struct., vol. 30, no. 9, pp. 
2347–2359, 2008. 

[20] S. Nathan, “Forth Amendment,” The Teen Engineer, 2012. [Online]. 
Available: http://www.theengineer.co.uk/in-depth/the-big-story/forth-
amendment/1011632.article. 

[21] J. M. W. Brownjohn, “Structural health monitoring of civil infrastructure,” 
Philos. Trans. R. Soc. a-Mathematical Phys. Eng. Sci., pp. 589–622, 
2007. 

[22] N. Hoult, P. J. Bennett, I. Stoianov, P. Fidler, C. Maksimovic, C. 
Middleton, N. Graham, and K. Soga, “Wireless sensor networks: creating 
‘smart infrastructure,’” Proc. Inst. Civ. Eng. Eng., pp. 136–143, 2009. 

[23] E. Sazonov, H. Li, D. Curry, and P. Pillay, “Self-Powered Sensors for 
Monitoring of Highway Bridges,” Sensors Journal, IEEE, vol. 9, no. 11, pp. 
1422–1429, 2009. 

[24] M. Fraser, A. Elgamal, X. He, and J. P. Conte, “Sensor Network for 
Structural Health Monitoring of a Highway Bridge,” J. Comput. Civ. Eng., 
vol. 24, no. 1, pp. 11–24, 2010. 

[25] H. Wenzel, Health Monitoring of Bridges. Chichester: John Wiley & Sons 
Ltd, 2009. 

[26] J. Ou and H. Li, “Structural health monitoring in mainland China: review 
and future trends,” Struct. Heal. Monit., vol. 9, no. 3, pp. 219–231, 2010. 



Bibliography 

258  

[27] H. Sousa, J. Bento, and J. Figueiras, “Construction assessment and long-
term prediction of prestressed concrete bridges based on monitoring 
data,” Eng. Struct., vol. 52, no. 0, pp. 26–37, 2013. 

[28] Y. Q. Bao, H. Li, and J. P. Ou, “Compressive sensing based data mining 
for structural health monitoring,” in The 6th International Conference on 
Structural Health Monitoring of Intelligent Infrastructure, 2013, no. 
December, pp. SS01–02. 

[29] Y. Q. Ni, H. F. Zhou, K. C. Chan, and J. M. Ko, “Modal Flexibility Analysis 
of Cable-Stayed Ting Kau Bridge for Damage Identification,” Comput. Civ. 
Infrastruct. Eng., vol. 23, no. 3, pp. 223–236, 2008. 

[30] P. J. Schubel, R. J. Crossley, E. K. G. Boateng, and J. R. Hutchinson, 
“Review of structural health and cure monitoring techniques for large wind 
turbine blades,” Renew. Energy, vol. 51, no. 0, pp. 113–123, 2013. 

[31] B. Glisic and D. Inaudi, Fibre optic methods for structural health 
monitoring. John Wiley & Sons Ltd, 2008. 

[32] E. J. Cross, K. Y. Koo, J. M. W. Brownjohn, and K. Worden, “Long-term 
monitoring and data analysis of the Tamar Bridge,” Mech. Syst. Signal 
Process., vol. 35, no. 1–2, pp. 16–34, 2013. 

[33] Y. Q. Ni, X. G. Hu, K. Q. Fan, and J. M. and  Ko, “Correlating modal 
properties with temperature using long-term monitoring data and support 
vector machine technique,” Eng. Struct., vol. 27, no. 12, p. P. 1762–1773, 
2005. 

[34] P. J. Barr, S. M. Petroff, D. J. Hodson, T. P. Thurgood, and M. W. Halling, 
“Baseline testing and long-term monitoring of the Lambert Road Bridge 
for the long-term bridge performance program,” J. Civ. Struct. Heal. 
Monit., vol. 2, no. 2, pp. 123–135, Aug. 2012. 

[35] K. S. Thyagarajan and A. Ghatak, Fiber optic essentials. John Wiley & 
Sons Inc., 2007. 

[36] T. G. Giallorenzi, “Fibre optic sensors,” Opt. Laser Technol., vol. 13, no. 
2, pp. 73–78, 1981. 

[37] E. Udd, Fiber optic sensors. Wiley Online Library, 1991. 

[38] S. S. Yin and P. Ruffin, Fiber optic sensors. Wiley Online Library, 2002. 

[39] B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber 
Technol., vol. 9, no. 2, pp. 57–79, Apr. 2003. 

[40] J. M. López-Higuera, S. Member, L. R. Cobo, A. Q. Incera, and A. Cobo, 
“Fiber Optic Sensors in Structural Health Monitoring,” J. Ligthwave 
Technol., vol. 29, no. 4, pp. 587–608, 2011. 



Bibliography 

259 

[41] Y. Yao, S. Tung, and B. Glisic, “Crack detection and characterization 
techniques—An overview,” Struct. Control Heal. …, vol. 21, no. 12, pp. 
1387–1413, 2014. 

[42] K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” 
Sensors Actuators A Phys., vol. 82, no. 1–3, pp. 40–61, May 2000. 

[43] B. Afzal, M. Hassan, S. Kabir, and O. Sidek, “An In-depth Review: 
Structural Health Monitoring using Fiber Optic Sensor.,” IETE Tech. Rev., 
vol. 29, no. 2, 2012. 

[44] K. S. C. Kuang, S. T. Quek, C. G. Koh, W. J. Cantwell, and P. J. Scully, 
“Plastic Optical Fibre Sensors for Structural Health Monitoring: A Review 
of Recent Progress,” J. Sensors, vol. 2009, pp. 1–13, 2009. 

[45] D. Inaudi, “Fiber optic sensor network for the monitoring of civil 
engineering structures,” Ecole Polytechnique Federale de Lausanne, 
1997. 

[46] H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, B. 
R. Nadler, and J. J. Czarnecki, “A Review of Structural Health Monitoring 
Literature: 1996–2001,” Los Alamos National Laboratories, Los Alamos, 
2004. 

[47] D. Inaudi and S. Vurpillot, “Monitoring of Concrete Bridges with Long-
Gage Fiber Optic Sensors,” J. Intell. Mater. Syst. Struct., vol. 10, no. 4, 
pp. 280–292, Apr. 1999. 

[48] B. Glišić and N. Simon, “Monitoring of concrete at very early age using 
stiff SOFO sensor,” Cem. Concr. Compos., vol. 22, pp. 115–119, 2000. 

[49] B. Glisic, D. Inaudi, J. M. Lau, and C. C. Fong, “Ten-year monitoring of 
high-rise building columns using long-gauge fiber optic sensors,” Smart 
Mater. Struct., vol. 22, no. 5, p. 055030, May 2013. 

[50] F. Porco, A. Fiore, G. Porco, and G. Uva, “Monitoring and safety for 
prestressed bridge girders by SOFO sensors,” J. Civ. Struct. Heal. Monit., 
vol. 3, no. 1, pp. 3–18, Dec. 2012. 

[51] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. 
Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Light. 
Technol., vol. 15, no. 8, pp. 1442–1463, 1997. 

[52] S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous 
independent temperature and strain measurement using in-fibre Bragg 
grating sensors,” Electron. Lett., vol. 32, no. 12, pp. 1133–1134, 1996. 

[53] B. Glišić and D. Inaudi, Fibre optic methods for structural health 
monitoring. Chichester: John Wiley & Sons Ltd, 2007. 

[54] Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol., vol. 8, 
no. 4, pp. 355–375, Apr. 1997. 



Bibliography 

260  

[55] P. Moyo, J. M. W. Brownjohn, R. Suresh, and S. C. Tjin, “Development of 
fiber Bragg grating sensors for monitoring civil infrastructure,” Eng. 
Struct., vol. 27, no. 12, pp. 1828–1834, Oct. 2005. 

[56] Y. Rao, “Recent progress in applications of in-fibre Bragg grating 
sensors,” Opt. Lasers Eng., vol. 31, no. 4, pp. 297–324, 1999. 

[57] M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and 
D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring—
Present status and applications ,” Sensors Actuators A Phys., vol. 147, 
no. 1, pp. 150–164, 2008. 

[58] T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature 
sensing using stimulated Brillouin scattering in optical silica fibers.,” Opt. 
Lett., vol. 15, no. 18, pp. 1038–40, Sep. 1990. 

[59] L. Zou, G. A. Ferrier, S. Afshar V, Q. Yu, L. Chen, and X. Bao, 
“Distributed Brillouin scattering sensor for discrimination of wall-thinning 
defects in steel pipe under internal pressure,” Appl. Opt., vol. 43, no. 7, 
pp. 1583–1588, 2004. 

[60] L. Zou, X. Bao, F. Ravet, and L. Chen, “Distributed Brillouin fiber sensor 
for detecting pipeline buckling in an energy pipe under internal pressure,” 
Appl. Opt., vol. 45, no. 14, pp. 3372–3377, 2006. 

[61] B. Glisic and Y. Yao, “Fiber optic method for health assessment of 
pipelines subjected to earthquake-induced ground movement,” Struct. 
Heal. Monit., vol. 11, no. 6, pp. 696–711, Aug. 2012. 

[62] X. Bao, M. DeMerchant, A. Brown, and T. Bremner, “Tensile and 
compressive strain measurement in the lab and field with the distributed 
Brillouin scattering sensor,” J. Light. Technol., vol. 19, no. 11, p. 1698, 
2001. 

[63] X. Zeng, X. Bao, C. Y. Chhoa, T. W. Bremner, A. W. Brown, M. D. 
DeMerchant, G. Ferrier, A. L. Kalamkarov, and A. V Georgiades, “Strain 
measurement in a concrete beam by use of the Brillouin-scattering-based 
distributed fiber sensor with single-mode fibers embedded in glass fiber 
reinforced polymer rods and bonded to steel reinforcing bars,” Appl. Opt., 
vol. 41, no. 24, pp. 5105–5114, 2002. 

[64] A. Mufti, D. Thomson, D. Inaudi, H. M. Vogel, and D. McMahon, “Crack 
detection of steel girders using Brillouin optical time domain analysis,” J. 
Civ. Struct. Heal. Monit., vol. 1, pp. 61–68, 2011. 

[65] B. Glisic and D. Inaudi, “Development of method for in-service crack 
detection based on distributed fiber optic sensors,” Struct. Heal. Monit., 
vol. 11, no. 2, pp. 161–171, Aug. 2011. 

[66] B. Glišić, D. Posenato, and D. Inaudi, “Integrity monitoring of old steel 
bridge using fiber optic distributed sensors based on Brillouin scattering,” 



Bibliography 

261 

in The 14th International Symposium on: Smart Structures and Materials 
& Nondestructive Evaluation and Health Monitoring, 2007. 

[67] B. Glisic, J. Chen, and D. Hubbell, “Streicker Bridge a comparison 
between Bragg-grating long-gauge strain and temperature sensors and 
Brillouin scattering-based distributed strain and temperature sensors,” in 
SPIE Smart Structures and Materials+ Nondestructive Evaluation and 
Health Monitoring, vol. 7981, M. Tomizuka, Ed. 2011, p. 79812C–
79812C. 

[68] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless 
sensor networks: a survey,” Comput. Networks, vol. 38, no. 4, pp. 393–
422, Mar. 2002. 

[69] B. F. Spencer, M. E. Ruiz-Sandoval, and N. Kurata, “Smart sensing 
technology: opportunities and challenges,” Struct. Control Heal. Monit., 
vol. 11, no. 4, pp. 349–368, Oct. 2004. 

[70] K. Chintalapudi, T. Fu, and J. Paek, “Monitoring civil structures with a 
wireless sensor network,” IEEE Internet Comput., vol. 10, no. 2, pp. 26–
34, 2006. 

[71] H. Ceylan, K. Gopalakrishnan, S. Kim, P. C. Taylor, M. Prokudin, and A. 
F. Buss, “Highway infrastructure health monitoring using micro-
electromechanical sensors and systems (MEMS),” J. Civ. Eng. Manag., 
vol. 19, no. sup1, pp. S188–S201, Dec. 2013. 

[72] N. Barroca, L. M. Borges, F. J. Velez, F. Monteiro, M. Górski, and J. 
Castro-Gomes, “Wireless sensor networks for temperature and humidity 
monitoring within concrete structures,” Constr. Build. Mater., vol. 40, pp. 
1156–1166, Mar. 2013. 

[73] B. Moaveni and I. Behmanesh, “Effects of changing ambient temperature 
on finite element model updating of the Dowling Hall Footbridge,” Eng. 
Struct., vol. 43, pp. 58–68, 2012. 

[74] J. P. Lynch and K. J. Loh, “A summary review of wireless sensors and 
sensor networks for structural health monitoring,” Shock Vib. Dig., vol. 38, 
no. 2, pp. 91–130, 2006. 

[75] J. P. Lynch, Y. Wang, K. J. Loh, J.-H. Yi, and C.-B. Yun, “Performance 
monitoring of the Geumdang Bridge using a dense network of high-
resolution wireless sensors,” Smart Mater. Struct., vol. 15, no. 6, pp. 
1561–1575, Dec. 2006. 

[76] M. J. Whelan, M. V. Gangone, K. D. Janoyan, and R. Jha, “Real-time 
wireless vibration monitoring for operational modal analysis of an integral 
abutment highway bridge,” Eng. Struct., vol. 31, no. 10, pp. 2224–2235, 
Oct. 2009. 

[77] K. Chebrolu, B. Raman, and N. Mishra, “Brimon: a sensor network system 
for railway bridge monitoring,” in Proceedings of the 6th international 



Bibliography 

262  

conference on Mobile systems, applications, and services, 2008, pp. 2–
14. 

[78] J.-H. Weng, C.-H. Loh, J. P. Lynch, K.-C. Lu, P.-Y. Lin, and Y. Wang, 
“Output-only modal identification of a cable-stayed bridge using wireless 
monitoring systems,” Eng. Struct., vol. 30, no. 7, pp. 1820–1830, Jul. 
2008. 

[79] M. J. Chae, H. S. Yoo, J. Y. Kim, and M. Y. Cho, “Development of a 
wireless sensor network system for suspension bridge health monitoring,” 
Autom. Constr., vol. 21, pp. 237–252, Jan. 2012. 

[80] N. Hoult and P. Fidler, “Long-term wireless structural health monitoring of 
the Ferriby Road Bridge,” J. Bridg. Eng., vol. 15, no. 2, pp. 153–159, 
2010. 

[81] S. Jang, H. Jo, S. Cho, K. Mechitov, J. a. Rice, S.-H. Sim, H.-J. Jung, C.-
B. Yun, B. F. J. Spencer, and G. Agha, “Structural health monitoring of a 
cable-stayed bridge using smart sensor technology: deployment and 
evaluation,” Smart Struct. Syst., vol. 6, no. 5–6, pp. 439–459, Jul. 2010. 

[82] R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy, and S. 
Beeby, “Self-powered autonomous wireless sensor node using vibration 
energy harvesting,” Meas. Sci. Technol., vol. 19, no. 12, p. 125202, Dec. 
2008. 

[83] D. Boyle, M. Magno, B. O’Flynn, D. Brunelli, E. Popovici, and L. Benini, 
“Towards persistent structural health monitoring through sustainable 
wireless sensor networks,” 2011 Seventh Int. Conf. Intell. Sensors, Sens. 
Networks Inf. Process., pp. 323–328, Dec. 2011. 

[84] H. Jo, S. Sim, A. Tatkowski, B. F. J. Spencer, and M. E. Nelson, 
“Feasibility of displacement monitoring using low-cost GPS receivers,” 
Struct. Control Heal. Monit., vol. 20, no. 9, pp. 1240–1254, 2013. 

[85] J. Lovse and W. Teskey, “Dynamic deformation monitoring of tall 
structure using GPS technology,” J. Surv. Eng., vol. 121, no. 1, pp. 35–
40, 1995. 

[86] A. Nickitopoulou, K. Protopsalti, and S. Stiros, “Monitoring dynamic and 
quasi-static deformations of large flexible engineering structures with 
GPS: Accuracy, limitations and promises,” Eng. Struct., vol. 28, no. 10, 
pp. 1471–1482, Aug. 2006. 

[87] T. Yi, H. Li, and M. Gu, “Recent research and applications of GPS-based 
monitoring technology for high-rise structures,” Struct. Control Heal. 
Monit., vol. 20, no. 5, pp. 649–670, 2013. 

[88] S. Im, S. Hurlebaus, and Y. Kang, “Summary review of GPS technology 
for structural health monitoring,” J. Struct. Eng., vol. 139, no. 10, pp. 
1653–1664, 2011. 



Bibliography 

263 

[89] V. Ashkenazi and G. Roberts, “Experimental monitoring of the Humber 
Bridge using GPS,” Proc. ICE-Civil Eng., vol. 120, no. 4, pp. 177–182, 
1997. 

[90] J. Jiang, X. Lu, and J. Guo, “Study for real-time monitoring of large-span 
bridge using GPS,” Proc. ISSST, 2002. 

[91] K. Vaghefi, R. C. Oats, D. K. Harris, T. (Tess) M. Ahlborn, C. N. Brooks, 
K. A. Endsley, C. Roussi, R. Shuchman, J. W. Burns, and R. Dobson, 
“Evaluation of commercially available remote sensors for highway bridge 
condition assessment,” J. Bridg. Eng., vol. 17, no. 6, pp. 886–895, 2012. 

[92] H. S. Park, H. M. Lee, H. Adeli, and I. Lee, “A New Approach for Health 
Monitoring of Structures: Terrestrial Laser Scanning,” Comput. Civ. 
Infrastruct. Eng., vol. 22, no. 1, pp. 19–30, Jan. 2007. 

[93] B. Riveiro, P. Morer, P. Arias, and I. de Arteaga, “Terrestrial laser 
scanning and limit analysis of masonry arch bridges,” Constr. Build. 
Mater., vol. 25, no. 4, pp. 1726–1735, Apr. 2011. 

[94] R. Vezočnik, T. Ambrožič, O. Sterle, G. Bilban, N. Pfeifer, and B. Stopar, 
“Use of terrestrial laser scanning technology for long term high precision 
deformation monitoring,” Sensors (Basel)., vol. 9, no. 12, pp. 9873–9895, 
Jan. 2009. 

[95] H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler 
vibrometer with contact sensors for monitoring bridge deflection and 
vibration,” NDT E Int., vol. 38, no. 3, pp. 213–218, Apr. 2005. 

[96] T. Miyashita and M. Nagai, “Vibration-based structural health monitoring 
for bridges using laser Doppler vibrometers and MEMS-based 
technologies,” Int. J. Steel Struct., vol. 8, no. 2008, pp. 325–331, 2008. 

[97] H. S. Park, J. M. Kim, S. W. Choi, and Y. Kim, “A wireless laser 
displacement sensor node for structural health monitoring.,” Sensors, vol. 
13, no. 10, pp. 13204–13216, Jan. 2013. 

[98] J. J. Lee and M. Shinozuka, “A vision-based system for remote sensing of 
bridge displacement,” NDT E Int., vol. 39, no. 5, pp. 425–431, Jul. 2006. 

[99] J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development 
and application of a vision-based displacement measurement system for 
structural health monitoring of civil structures,” Smart Struct. Syst., vol. 3, 
no. 3, pp. 373–384, 2007. 

[100] R. Zaurin and F. Necati Catbas, “Structural health monitoring using video 
stream, influence lines, and statistical analysis,” Struct. Heal. Monit., vol. 
10, no. 3, pp. 309–332, Jun. 2010. 

[101] H. N. Ho, J. H. Lee, Y. S. Park, and J. J. Lee, “A synchronized multipoint 
vision-based system for displacement measurement of civil 
infrastructures.,” Sci. World J., Jan. 2012. 



Bibliography 

264  

[102] R. Zaurin and F. N. Catbas, “Integration of computer imaging and sensor 
data for structural health monitoring of bridges,” Smart Mater. Struct., vol. 
19, no. 1, p. 015019, Jan. 2010. 

[103] D. Koller, J. Weber, and J. Malik, Robust multiple car tracking with 
occlusion reasoning. Springer Berlin Heidelberg, 1994. 

[104] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time 
computer vision system for vehicle tracking and traffic surveillance,” 
Transp. Res. Part C Emerg. Technol., vol. 6, pp. 271–288, 1998. 

[105] Z. Liu and Z. You, “A Real-time Vision-based Vehicle Tracking and Traffic 
Surveillance,” in Eighth ACIS International Conference on Software 
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed 
Computing (SNPD 2007), 2007, pp. 174–179. 

[106] W. Zhao and R. Chellappa, “Face recognition: A literature survey,” Acm 
Comput. Surv. ( ACSU), vol. 35, no. 4, pp. 399–458, 2003. 

[107] J. P. Lynch, “An overview of wireless structural health monitoring for civil 
structures,” Philos. Trans. R. Soc. A, vol. 365, 2007. 

[108] T. Fu and A. Ghosh, “Energy-efficient deployment strategies in structural 
health monitoring using wireless sensor networks,” Struct. Control Heal. 
Monit., vol. 20, no. August 2012, pp. 971–986, 2013. 

[109] Royal Academy of Engineering (RAE), “Smart infrastructure: the future.,” 
R. Acad. Eng., 2012. 

[110] F. N. Catbas, T. Kijewski-Correa, and A. E. Aktan, Structural Identification 
( St-Id ) of Constructed Facilities Constructed Facilities. ASCE 
Publications, 2011. 

[111] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, 
no. 4, pp. 1289–1306, Apr. 2006. 

[112] D. Mascarenas, A. Cattaneo, J. Theiler, and C. Farrar, “Compressed 
sensing techniques for detecting damage in structures,” Struct. Heal. 
Monit., vol. 12, no. 4, pp. 325–338, Jun. 2013. 

[113] S. M. O’Connor, J. P. Lynch, and A. C. Gilbert, “Compressive Sensing 
Methods for Reducing Resources Requirments in Wireless Bridge 
Monitoring Systems: Validation on the Telegraph Road Bridge,” in The 6th 
International Conference on Structural Health Monitoring of Intelligent 
Infrastructure, 2013, no. December, pp. SS01–01. 

[114] C.-B. Yun, J.-J. Lee, and K.-Y. Koo, “Smart structure technologies for civil 
infrastructures in Korea: recent research and applications,” Struct. 
Infrastruct. Eng., vol. 7, no. 9, pp. 673–688, Sep. 2011. 

[115] J. Manyika, M. Chui, B. Brown, and J. Bughin, “Big data: The next frontier 
for innovation, competition, and productivity,” 2011. 



Bibliography 

265 

[116] A. E. Aktan, C. J. Tsikos, F. N. Catbas, K. Grimmelsman, and R. Barrish, 
“Challenges and opportunities in bridge health monitoring,” Struct. Heal. 
Monit., pp. 461–473, 2000. 

[117] G. Park, T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss, “Energy 
harvesting for structural health monitoring sensor networks,” J. Infrastruct. 
Syst., vol. 14, no. 1, pp. 64–79, 2008. 

[118] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. 
Turon, “Health monitoring of civil infrastructures using wireless sensor 
networks,” in Information Processing in Sensor Networks, 2007. IPSN 
2007. 6th International Symposium on, 2007, pp. 254–263. 

[119] S. D. Glaser, H. Li, M. L. Wang, J. Ou, and J. Lynch, “Sensor technology 
innovation for the advancement of structural health monitoring: a strategic 
program of US-China research for the next decade,” Smart Struct. Syst., 
vol. 3, no. 2, pp. 221–244, 2007. 

[120] P. J. Bennet, I. Stoianov, P. Fidler, C. Maksimovic, C. Middletion, N. 
Graham, K. Soga, and N. Hoult, “Wireless sensor networks: 
creating’smart infrastructure',” in Proceedings of the Institution of Civil 
Engineers. Civil engineering, 2009, vol. 162, pp. 136–143. 

[121] D. Posenato, P. Kripakaran, D. Inaudi, and I. F. C. Smith, “Methodologies 
for model-free data interpretation of civil engineering structures,” Comput. 
Struct., vol. 88, pp. 467–482, 2010. 

[122] K. Worden, C. R. Farrar, G. Manson, and G. Park, “The fundamental 
axioms of structural health monitoring,” Proc. R. Soc. A Math. Phys. Eng. 
Sci., vol. 463, no. 2082, pp. 1639–1664, 2007. 

[123] T. Hastie, R. Tibshirani, and J. J. H. Friedman, The elements of statistical 
learning, vol. 1. Springer New York, 2001. 

[124] M. Gul and F. N. Catbas, “Statistical pattern recognition for Structural 
Health Monitoring using time series modeling: Theory and experimental 
verifications,” Mech. Syst. Signal Process., vol. 23, no. 7, pp. 2192–2204, 
2009. 

[125] J. P. Lynch, K. H. Law, A. S. Kiremidjian, E. Carryer, C. R. Farrar, H. 
Sohn, D. W. Allen, B. Nadler, and J. R. Wait, “Design and performance 
validation of a wireless sensing unit for structural monitoring applications,” 
Struct. Eng. Mech., vol. 17, no. 3–4, pp. 393–408, Mar. 2004. 

[126] I. Laory, T. N. Trinh, and I. F. C. Smith, “Evaluating two model-free data 
interpretation methods for measurements that are influenced by 
temperature,” Adv. Eng. Informatics, vol. 25, no. 3, pp. 495–506, 2011. 

[127] B. J. A. Costa and J. A. Figueiras, “Evaluation of a strain monitoring 
system for existing steel railway ,” J. Constr. Steel Res., vol. 72, pp. 179–
191, 2012. 



Bibliography 

266  

[128] Y. Ying, J. H. Garrett Jr, I. J. Oppenheim, L. Soibelman, J. B. Harley, J. 
Shi, and Y. Jin, “Toward data-driven structural health monitoring: 
application of machine learning and signal processing to damage 
detection,” J. Comput. Civ. Eng., vol. 27, no. 6, pp. 667–680, 2012. 

[129] Q. Song and M. Shepperd, “A new imputation method for small software 
project data sets,” J. Syst. Softw., vol. 80, no. 1, pp. 51–62, Jan. 2007. 

[130] L. Ljung, “System identification,” Birkhäuser Boston, 1998. 

[131] A. E. Aktan and F. N. Catbas, “Long-term vision for the ASCE Technical 
Committee: Structural identification of constructed systems,” in 
Proceedings of the 3rd International Conference on Structural Health 
Monitoring of Intelligent Infrastructure, 2007. 

[132] A. E. Aktan and J. M. W. Brownjohn, “Structural Identification: 
Opportunities and Challenges,” J. Struct. Eng., vol. 139, no. 10, pp. 1639–
1647, Oct. 2013. 

[133] Y. Xia, B. Chen, S. Weng, Y. Q. Ni, and Y. L. Xu, “Temperature effect on 
vibration properties of civil structures: a literature review and case 
studies,” J. Civ. Structrual Heal. Monit., vol. 2, pp. 29–46, 2012. 

[134] O. S. Salawu, “Detection of structural damage through changes in 
frequency: a review,” Eng. Struct., vol. 19, no. 9, pp. 718–723, 1997. 

[135] J. Rees, T. Harris, B. Smith, S. Denton, and R. Ko, “The UK National 
Annex to BS EN 1991-1-4, BS EN 1991-1-5, and PD 6688-1-4,” in Bridge 
Design to Eurocodes: UK Implementation, ICE Publishing, 2011, pp. 123–
147. 

[136] I. Essa, “Ubiquitous Sensing for Smart and Aware Environments,” IEEE 
Pers. Commun., vol. 7, no. 5, pp. 47–49, 2000. 

[137] British Standards Institution, “EN 1990:2002+A1 2005: Eurocode: Basis of 
structural design,” 2005. 

[138] S. Moorty and C. W. Roeder, “Temperature dependent bridge 
movements,” J. Struct. Eng., vol. 118, no. 4, pp. 1090–1105, 1992. 

[139] G. L. England, D. I. Bush, and N. C. Tsang, Integral bridges: a 
fundamental approach to the time-temperature loading problem. Thomas 
Telford, 2000. 

[140] I. C. Potgieter and W. L. Gamble, “Nonlinear Temperature Distributions in 
Bridges at Different Locations in the United States,” PCI J., vol. July-
Augus, pp. 80–103, 1989. 

[141] J. A. Goulet, P. Kripakaran, and I. F. C. Smith, “Multimodel Structural 
Performance Monitoring,” J. Struct. Eng., vol. 136, no. 10, pp. 1309–1318, 
2010. 



Bibliography 

267 

[142] C. D. Eamon and A. S. Nowak, “Effect of secondary elements on bridge 
structural system reliability considering moment capacity,” Struct. Saf., 
vol. 26, no. 1, pp. 29–47, Jan. 2004. 

[143] M. Mehrjoo, N. Khaji, H. Moharrami, and A. Bahreininejad, “Damage 
detection of truss bridge joints using Artificial Neural Networks,” Expert 
Syst. Appl., vol. 35, no. 3, pp. 1122–1131, 2008. 

[144] W. H. Hu, C. Moutinho, E. Caetano, and F. Magalhães, “Continuous 
dynamic monitoring of a lively footbridge for serviceability assessment 
and damage detection,” Mech. Syst. Signal Process., vol. 33, pp. 38–55, 
2012. 

[145] C. Liu, J. T. DeWolf, and J. H. Kim, “Development of a baseline for 
structural health monitoring for a curved post-tensioned concrete box–
girder bridge,” Eng. Struct., vol. 31, no. 12, 2009. 

[146] M. Sanayei and O. Onipede, “Damage assessment of structures using 
static test data,” AIAA J., vol. 29, no. 7, pp. 1174–1179, 1991. 

[147] M. Sanayei, G. R. Imbaro, J. A. S. McClain, and L. C. Brown, “Structural 
model updating using experimental static measurements,” J. Struct. Eng., 
vol. 123, no. 6, pp. 792–798, 1997. 

[148] F. Marques and Á. Cunha, “Evaluation of dynamic effects and fatigue 
assessment of a metallic railway bridge,” Struct. Infrastruct. Eng., vol. 6, 
no. 5, pp. 635–646, 2010. 

[149] R. Westgate and J. Brownjohn, “Development of a Tamar Bridge finite 
element model,” Dyn. Bridg., vol. 5, pp. 13–20, 2011. 

[150] H. Wang, A. Li, and J. Li, “Progressive finite element model calibration of 
a long-span suspension bridge based on ambient vibration and static 
measurements,” Eng. Struct., vol. 32, no. 9, pp. 2546–2556, 2010. 

[151] J. Ko, Z. Sun, and Y. Ni, “Modal analysis of cable-stayed Kap Shui Mun 
Bridge taking cable local vibration into consideration,” Adv. Struct. Dyn., 
vol. 1, pp. 529–536, 2000. 

[152] H. Sousa, C. Sousa, A. S. Neves, J. Bento, and J. Figueiras, “Long-term 
monitoring and assessment of a precast continuous viaduct,” Struct. 
Infrastruct. Eng., vol. 9, no. 8, pp. 777–793, 2013. 

[153] B. Raphael and I. Smith, “Finding the right model for bridge diagnosis,” 
Artif. Intell. Struct. Eng., vol. 1454, pp. 308–319, 1998. 

[154] Y. Robert-Nicoud, B. Raphael, O. Burdet, and I. F. C. Smith, “Model 
Identification of Bridges Using Measurement Data,” Comput. Civ. 
Infrastruct. Eng., vol. 20, pp. 118–131, 2005. 



Bibliography 

268  

[155] S. Saitta, P. Kripakaran, B. Raphael, and I. F. C. Smith, “Feature 
Selection Using Stochastic Search: An Application to System 
Identification,” J. Comput. Civ. Eng., vol. 24, no. 1, pp. 3–10, 2010. 

[156] J. L. Beck and K. Yuen, “Model selection using response measurements: 
Bayesian probabilistic approach,” J. Eng. Mech., vol. 130, no. 2, pp. 192–
203, 2004. 

[157] J. A. Goulet and I. F. C. Smith, “Structural identification with systematic 
errors and unknown uncertainty dependencies,” Comput. Struct., vol. 128, 
pp. 251–258, Nov. 2013. 

[158] J. Goulet, M. Texier, and C. Michel, “Quantifying the effects of modeling 
simplifications for structural identification of bridges,” J. Bridg. Eng., vol. 
19, no. 1, pp. 59–71, 2013. 

[159] G.-D. Zhou and T.-H. Yi, “A Summary Review of Correlations between 
Temperatures and Vibration Properties of Long-Span Bridges,” Math. 
Probl. Eng., vol. 2014, pp. 1–19, 2014. 

[160] H. Sohn, K. Worden, and C. Farrar, “Statistical Damage Classification 
under Changing Environmental and Operational Conditions,” J. Intell. 
Mater. Syst. Struct., vol. 13, no. 9, 2002. 

[161] E. J. Cross, K. Worden, and Q. Chen, “Cointegration: a novel approach 
for the removal of environmental trends in structural health monitoring 
data,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 467, no. 2133, pp. 
2712–2732, Sep. 2011. 

[162] M. T. Yarnold, “Temperature-based structural identification and health 
monitoring for long-span bridges,” Drexel University, 2013. 

[163] N. Kulprapha and P. Warnitchai, “Structural health monitoring of 
continuous prestressed concrete bridges using ambient thermal 
responses,” Eng. Struct., vol. 40, pp. 20–38, 2012. 

[164] J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. E. Aktan, 
“Vibration-based monitoring of civil infrastructure: challenges and 
successes,” J. Civ. Struct. Heal. Monit., vol. 1, pp. 79–95, 2011. 

[165] J. A. Goulet and A. Der Kiureghian, “Forecasting anomalies using 
monitoring data and dynamic Bayesian networks,” in The 6th International 
Conference on Structural Health Monitoring of Intelligent Infrastructure, 
2013, no. December, pp. MS04–10. 

[166] F. Cavadas, I. F. C. Smith, and J. Figueiras, “Damage detection using 
data-driven methods applied to moving-load responses,” Mech. Syst. 
Signal Process., vol. 39, no. 1, pp. 409–425, Apr. 2013. 

[167] E. Cross, “On structural health monitoring in changing environmental and 
operational conditions,” University of Sheffield, 2012. 



Bibliography 

269 

[168] K. Worden and G. Manson, “The application of machine learning to 
structural health monitoring,” Phil. Trans. R. Soc. A, no. 365, pp. 303–
315, 2007. 

[169] P. Moyo and J. M. W. Brownjohn, “Detection of anomalous structural 
behaviour using wavelet analysis,” Mech. Syst. Signal Process., vol. 16, 
no. 2, pp. 429–445, 2002. 

[170] C. R. Farrar and K. Worden, “An introduction to structural health 
monitoring,” Philos. Trans. R. Soc. A, vol. 365, pp. 303–315, 2007. 

[171] E. P. Carden and J. M. W. Brownjohn, “ARMA modelled time-series 
classification for structural health monitoring of civil infrastructure,” Mech. 
Syst. Signal Process., vol. 22, no. 2, pp. 295–314, 2008. 

[172] F. Lanata and A. Del Grosso, “Damage detection and localization for 
continuous static monitoring of structures using a proper orthogonal 
decomposition of signals,” Smart Mater. Struct., vol. 15, no. 6, pp. 1811–
1829, Dec. 2006. 

[173] A. del Grosso and F. Lanata, “A long-term static monitoring experiment on 
RC beams: damage identification under environmental effect,” Struct. 
Infrastruct. Eng., vol. 10, no. 7, pp. 911–920, 2013. 

[174] F. Lanata and F. Schoefs, “Multi-algorithm approach for identification of 
structural behavior of complex structures under cyclic environmental 
loading,” Struct. Heal. Monit., vol. 11, no. 1, pp. 51–67, Feb. 2011. 

[175] D. Posenato, F. Lanata, D. Inaudi, and I. F. C. Smith, “Model-free data 
interpretation for continuous monitoring of complex structures,” Adv. Eng. 
Informatics, vol. 22, no. 1, pp. 135–144, 2008. 

[176] I. Laory, N. Hadj Ali, T. Trinh, and I. Smith, “Measurement System 
Configuration for Damage Identification of Continuously Monitored 
Structures,” J. Bridg. Eng., vol. 17, no. 6, p. NA, 2012. 

[177] I. Laory, T. N. Trinh, D. Posenato, and I. F. C. Smith, “Combined model-
free data-interpretation methodologies for damage detection during 
continuous monitoring of structures,” J. Comput. Civ. Eng., 2013. 

[178] K. Worden, E. Cross, and E. Barton, “Damage detection on the NPL 
Footbridge under changing environmental conditions,” in 6th European 
Workshop on Structural Health Monitoring, 2012, pp. 1–8. 

[179] K. Worden, E. J. Cross, I. Antoniadou, and a. Kyprianou, “A 
multiresolution approach to cointegration for enhanced SHM of structures 
under varying conditions – An exploratory study,” Mech. Syst. Signal 
Process., vol. 47, no. 1–2, pp. 243–262, Aug. 2014. 

[180] G. Kaiser, A friendly guide to wavelets. Springer, 2010. 



Bibliography 

270  

[181] J. Brownjohn and P. Carden, “Real-time operation modal analysis of 
Tamar Bridge,” in 26th International Modal Analysis Conference (IMAC 
XXVI), 2008. 

[182] J. P. Santos, C. Crémona, A. D. Orcesi, and P. Silveira, “Multivariate 
statistical analysis for early damage detection,” Eng. Struct., vol. 56, no. 
null, pp. 273–285, Nov. 2013. 

[183] C. Krämer, C. De Smet, and G. De Roeck, “Z24 bridge damage detection 
tests,” SPIE Proc. Ser., pp. 1023–1029, 1999. 

[184] B. Peeters and G. De Roeck, “One-year monitoring of the Z 24-Bridge: 
environmental effects versus damage events,” Earthq. Eng. Struct. Dyn., 
vol. 30, no. 2, pp. 149–171, 2001. 

[185] E. Figueiredo and E. Cross, “Linear approaches to modeling 
nonlinearities in long-term monitoring of bridges,” J. Civ. Struct. Heal. 
Monit., vol. 3, no. 3, pp. 187–194, 2013. 

[186] S. Anthony, “IBM builds graphene chip that’s 10,000 times faster, using 
standard CMOS processes,” 2014. [Online]. Available: 
http://www.extremetech.com/extreme/175727-ibm-builds-graphene-chip-
thats-10000-times-faster-using-standard-cmos-processes. 

[187] Seagate, “Seagate Reaches 1 Terabit Per Square Inch Milestone In Hard 
Drive Storage With New Technology Demonstration,” 2012. [Online]. 
Available: http://www.seagate.com/about/newsroom/press-
releases/terabit-milestone-storage-seagate-master-pr/. 

[188] J. A. Goulet, “Probabilistic model falsification for infrastructur diagnosis,” 
École Polytechnique Fédérale de Lausanne, 2012. 

[189] K. Worden, H. Sohn, and C. R. Farrar, “Novelty Detection in a Changing 
Environment: Regression and Interpolation Approaches,” J. Sound Vib., 
vol. 258, no. 4, pp. 741–761, Dec. 2002. 

[190] C. Sousa, H. Sousa, A. S. Neves, and J. Figueiras, “Numerical evaluation 
of the long-term behavior of precast continuous bridge decks,” J. Bridg. 
Eng., vol. 17, no. 1, pp. 89–96, 2011. 

[191] R. Ganguli, “Noise and outlier removal from jet engine health signals 
using weighted FIR median hybrid filters,” Mech. Syst. Signal Process., 
vol. 16, no. 6, pp. 967–978, 2002. 

[192] P. Paultre, J. Proulx, and M. Talbot, “Dynamic testing procedures for 
highway bridges using traffic loads,” J. Struct. Eng., vol. 121, no. 2, pp. 
362–376, 1995. 

[193] M. N. Noori, Y. Cao, Z. Hou, and S. Sharma, “Application of Support 
Vector Machine for Reliability Assessment and Sturctural Health 
Monitoring,” Int. J. Eng. Under Uncertain. Hazards, Assess. Mitig., vol. 2, 
no. 4, pp. 89–98, 2010. 



Bibliography 

271 

[194] F. A. Branco and P. A. Mendes, “Thermal actions for concrete bridge 
design,” J. Struct. Eng., vol. 119, no. 8, pp. 2313–2331, 1993. 

[195] X. G. Hua, Y. Q. Ni, J. M. Ko, and K. Y. Wong, “Modeling of 
Temperature–Frequency Correlation Using Combined Principal 
Component Analysis and Support Vector Regression Technique,” J. 
Comput. Civ. Eng., vol. 21, no. 2, pp. 122–135, 2007. 

[196] I. T. Jolliffe, Principal Component Analysis. Springer-Verlag New York 
Inc., 2002. 

[197] Z. X. Li, T. H. T. Chanb, and R. Zheng, “Statistical analysis of online strain 
response and its application in fatigue assessment of a long-span steel 
bridge,” Eng. Struct., vol. 25, no. 14, pp. 1731–1741, 2003. 

[198] J. Mata, A. T. Castro de, and J. Costa da Sá, “Time–frequency analysis 
for concrete dam safety control: Correlation between the daily variation of 
structural response and air temperature,” Eng. Struct., vol. 48, pp. 658–
665, 2013. 

[199] J. M. Ko, Z. G. Sun, and Y. Q. Ni, “Multi-stage identification scheme for 
detecting damage in cable-stayed Kap Shui Mun Bridge,” Eng. Struct., 
vol. 24, no. 7, pp. 857–868, 2002. 

[200] J. Zhang, T. Sato, and S. Iai, “Support vector regression for on-line health 
monitoring of large-scale structures,” Struct. Saf., vol. 28, no. 4, pp. 392–
406, 2006. 

[201] R. Kromanis and P. Kripakaran, “Support vector regression for anomaly 
detection from measurement histories,” Adv. Eng. Informatics, vol. 27, no. 
4, pp. 486–495, 2013. 

[202] L. S. Aiken and S. G. West, “Multiple Linear Regression,” in Handbook of 
Psychology. Volume 2: Research Methods in Psychology, vol. 2, J. A. 
Schinka and W. F. Velicer, Eds. Hoboken, New Jersey: John Wiley & 
Sons, Inc., 2003, pp. 484–507. 

[203] P. J. Huber, “Robust regression: asymptotics, conjectures and Monte 
Carlo,” Ann. Stat., vol. 1, no. 5, pp. 799–821, 1973. 

[204] I. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, 
computing, design, and application,” J. Microbiol. Methods, vol. 43, no. 1, 
pp. 3–31, 2000. 

[205] MATLAB, “Statistics Toolbox Release 2011b.” The MathWorks, Inc., 
Natick, Massachusetts, United States. 

[206] U. Dackermann, “Vibration-based damage identification methods for civil 
engineering structures using artificial neural networks,” University of 
Technology Sydney, Sydney, 2010. 



Bibliography 

272  

[207] C. E. Katsikeros and G. N. Labeas, “Development and validation of a 
strain-based Structural Health Monitoring system,” Mech. Syst. Signal 
Process., vol. 23, pp. 372–383, 2009. 

[208] S. Haykin, “Neural networks: a comprehensive foundation by Simon 
Haykin,” Macmillan, 1994, ISBN 0-02-352781-7, 1999, pp. 409–412. 

[209] M. Riedmiller, “A Direct Adaptive Method for Faster Backpropagation 
Learning : The RPROP Algorithm,” in Neural Networks, 1993., IEEE 
International Conference on, 1993, pp. pp. 586–591. 

[210] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection : A Survey,” 
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009. 

[211] K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo, “One class 
support vector machines for detecting anomalous windows registry 
accesses,” in Workshop on Data Mining for Computer Security (DMSEC), 
2003. 

[212] S. Shengchao, D. Na, and H. Y. Gang, “An SVR-based online fault 
detection method,” in Measuring Technology and Mechatronics 
Automation (ICMTMA), 2011 Third International Conference on, 2011, pp. 
447–450. 

[213] V. N. Vapnik, The Nature of Statistical Learning Theroy. 2nd edition. New 
York: Springer-Verlag New York Inc., 1999. 

[214] A. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. 
Comput., pp. 199–222, 2004. 

[215] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. 
Williamson, “Estimating the support of a high-dimensional distribution,” 
Neural Comput., vol. 13, pp. 1443–1471, 2001. 

[216] C.-C. Chang and C.-J. Lin, “Training v-Support Vector Regression: 
Theory and Algorithms,” Neural Comput., vol. 14, no. 9, pp. 1959–1977, 
2002. 

[217] R. Kromanis and P. Kripakaran, “Support Vector Machines for Anomaly 
Detection from Measurement Histories,” International Workshop: 
Intelligent Computing in Engineering. Herrsching, Germany, 2012. 

[218] O. Giustolisi and D. Savic., “A symbolic data-driven technique based on 
evolutionary polynomial regression,” J. Hydroinformatics, vol. 8, no. 3, pp. 
207–222, 2006. 

[219] M. Gul and F. N. Catbas, “Structural health monitoring and damage 
assessment using a novel time series analysis methodology with sensor 
clustering,” J. Sound Vib., vol. 330, no. 6, pp. 1196–1210, Mar. 2011. 

[220] J. S. Walker, Fast fourier transforms, Vol. 24. CRC Press, 1996. 



Bibliography 

273 

[221] MATLAB, “Statistics Toolbox Release 2013b.” The MathWorks, Inc., 
Natick, Massachusetts, United States, 2013. 

[222] J. H. Stock and M. W. Watson, “Testing for common trends,” J. Am. Stat. 
Assoc., vol. 83, no. 404, pp. 1097–1107, 1988. 

[223] S. Johansen, “Statistical analysis of cointegration vectors,” J. Econ. Dyn. 
Control, vol. 12, pp. 231–254, 1988. 

[224] R. J. Westgate, “Environmental Effects on a Suspension Bridge’s 
Performance,” The University of Sheffield, 2012. 

[225] E. Barton, C. Middleton, K. Koo, L. Crocker, and J. Brownjohn, “Structural 
finite element model updating using vibration tests and modal analysis for 
NPL Footbridge – SHM demonstrator,” J. Phys. Conf. Ser., vol. 305, no. 
1, p. 012105, 2011. 

[226] D. H. Wolpert, D. Nna, H. Road, S. Jose, and W. G. Macready, “No Free 
Lunch Theorems for Optimization 1 Introduction,” Evol. Comput. IEEE 
Trans., vol. 1, no. 1, pp. 67–82, 1997. 

[227] Department for Transport, “Annual Average Daily Flows,” 2015. [Online]. 
Available: http://www.dft.gov.uk/traffic-counts/download.php. 

[228] Google Maps, “UK, Derbyshire and Nottinghamshire.” [Online]. Available: 
https://www.google.co.uk/maps. 

[229] Google Maps, “Long Eaton, Nottingham.” [Online]. Available: 
https://www.google.co.uk/maps. 

[230] R. N. Swamy, The alkali-silica reaction in concrete. CRC Press, 2002. 

[231] A-one+integrated Highways Services, “M1 R Trent N floodplain 2 and 3 
Monitoring report no 5,” Nottingham, 2013. 

[232] Y. Xu, B. Chen, and C. Ng, “Monitoring temperature effect on a long 
suspension bridge,” Struct. Control Heal. Monit., vol. 17, no. 6, pp. 632–
653, 2010. 

[233] R. Eyre, “Dynamic tests on the Cleddau bridge at Milford Haven,” 1976. 

[234] M. Emerson, “Bridge temperatures estimated from the shade 
temperatures,” 1976. 

[235] ANSYS, “ANSYS® Academic Research, Release 14.0 .” 2011. 

[236] F. Cobb, Structural engineer’s pocket book, 2nd ed. Elsevier Ltd, 2008. 

[237] A. M. G. Klein Tank, J. B. Wijngaard, G. P. Können, R. Böhm, G. 
Demarée, A. Gocheva, M. Mileta, S. Pashiardis, L. Hejkrlik, C. Kern-
Hansen, R. Heino, P. Bessemoulin, G. Müller-Westermeier, M. Tzanakou, 
S. Szalai, T. Pálsdóttir, D. Fitzgerald, S. Rubin, M. Capaldo, M. Maugeri, 



Bibliography 

274  

A. Leitass, A. Bukantis, R. Aberfeld, A. F. V van Engelen, E. Forland, M. 
Mietus, F. Coelho, C. Mares, V. Razuvaev, E. Nieplova, T. Cegnar, J. A. 
López, B. Dahlström, A. Moberg, W. Kirchhofer, A. Ceylan, O. Pachaliuk, 
L. V Alexander, and P. Petrovic, “Daily dataset of 20th-century surface air 
temperature and precipitation series for the European Climate 
Assessment,” Int. J. Climatol., vol. 22, no. 12, pp. 1441–1453, 2002. 

[238] D. P. Van Vuuren, M. Meinshausen, F. Joos, K. M. Strassmann, S. J. 
Smith, T. M. L. Wigley, S. C. B. Raper, K. Riahi, M. G. J. Den Elzen, J. 
Fujino, K. Jiang, N. Nakicenovic, S. Paltsev, and J. M. Reilly, 
“Temperature increase of 21st century,” Proc. Natl. Acad. Sci., vol. 105, 
no. 40, pp. 15258–15262, 2008. 

[239] L. E. Y. Mimbela and L. A. Klein, “Summary of vehicle detection and 
surveillance technologies used in intelligent transportation systems,” 
2000. 

[240] ANSYS, “ANSYS® Academic Research, Release 13.0, Help System, 
Mechanical APDL, Element Reference,” ANSYS, Inc. 2011. 

[241] C. C. Chang and C. J. Lin, “LIBSVM : a library for support vector 
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011. 

[242] B. G. Sherlock and D. M. Monro, “Moving discrete Fourier transform,” 
Radar Signal Process. IEE Proc. F, vol. 139, no. 4, pp. 279–282, 1992.  

 


	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	Notations
	Chapter 1:  Introduction
	1.1 SHM of constructed facilities
	1.2 Aim and research objectives
	1.3 Outline of thesis

	Chapter 2:  Literature review
	2.1 Continuous monitoring of bridges
	2.2 Sensing systems for SHM of civil infrastructure
	2.2.1 Sensing technologies
	Fibre optic sensors (FOS)
	Microelectromechanical systems (MEMS)
	Global Positioning Systems (GPS)
	Non-contact measurement systems

	2.2.2 Data acquisition, transmission and storage
	Data acquisition and transmission
	Data Management


	2.3 Measurement interpretation
	2.3.1 Data preparation
	2.3.2 Structural Identification (St-Id)
	Model-based techniques
	Data-driven techniques


	2.4 SHM in the Future
	2.5 Conclusions

	Chapter 3:  Measurement interpretation approach
	3.1 Structural performance evaluation
	3.2 Temperature effects in bridges
	3.3 SHM for bridge management
	3.4 Temperature-Based Measurement Interpretation (TB-MI)
	3.5 Conclusions

	Chapter 4:  Prediction of thermal response
	4.1 Overview of the RBTRP methodology
	4.2 Model generation phase
	4.2.1 Reference period
	4.2.2 Measurement pre-processing
	Outlier removal
	Measurement smoothing
	Missing data

	4.2.3 Training and test sets
	4.2.4 Thermal inertia effects
	4.2.5 Dimensionality reduction
	4.2.6 Regression algorithms
	Multiple linear regression
	Robust regression (RR)
	Artificial neural networks
	Support vector regression

	4.2.7 Model evaluation

	4.3 Model application
	4.4 Discussion and conclusions

	Chapter 5:  Anomaly detection methodologies
	5.1 Introduction
	5.2 Types of anomalies/damages
	5.3 Anomaly detection methodology
	5.4 Signal processing techniques
	5.4.1 Univariate signal analysis
	Moving fast Fourier transform (MFFT)

	5.4.2 Multivariate signal analysis
	Signal Subtraction Method
	Moving principal component analysis (MPCA)
	Cointegration


	5.5 Summary and conclusions

	Chapter 6:  Case studies
	6.1 Laboratory truss
	6.1.1 Feasibility evaluation of the RBTRP methodology
	Data pre-processing
	Training and test sets
	Results

	6.1.2 Performance evaluation of the TB-MI approach
	Simulated scenarios
	Measurement time histories
	Prediction of thermal response
	Anomaly detection from PE signals

	6.1.3 Anomaly detection from response measurements
	6.1.4 Summary and conclusions

	6.2 NPL Footbridge
	Measurement time-histories
	Event histories
	Structural performance and behaviour
	6.2.1 Evaluation of the RBTRP methodology
	Measurement preparation
	Response predictions

	6.2.2 TB-MI approach
	Regression model generation
	Anomaly detection

	6.2.3 Discussion and conclusions

	6.3 River Trent Bridge
	Monitoring
	6.3.1 Thermal effects
	6.3.2 Data pre-processing
	6.3.3 TB-MI approach
	Regression model generation
	Anomaly detection

	6.3.4 Conclusions and future work

	6.4 Cleddau Bridge
	6.4.1 Introduction and motivation
	6.4.2 The Cleddau Bridge
	Bearings

	6.4.3 Monitoring of the Cleddau Bridge
	Thermal and vehicular effects on bearing movements

	6.4.4 Physics-based model
	6.4.5 Evaluation of the PB model
	Bearing movements
	Plan bending
	Bearing forces

	6.4.6 Discussion
	6.4.7 Summary and conclusions

	6.5 Conclusions

	Chapter 7:  Integrated analysis of vehicular and thermal effects
	7.1 Introduction
	7.2 Traffic and temperature-based measurement interpretation approach
	7.2.1 Traffic-induced response prediction (TIRP) methodology

	7.3 Case study
	7.3.1 Experimental setup
	Damage scenarios

	7.3.2 Measurement time-histories and data preparation
	Temperatures
	Response
	Detecting the location of the moving load
	Reference period


	7.4 Results
	7.4.1 Thermal response prediction
	7.4.2 Traffic-induced response predictions
	7.4.3 Anomaly detection
	Signals without thermal and traffic-induced response
	Signals without thermal response
	Response measurements


	7.5 Application of the TB-MI approach
	7.6 Conclusions

	Chapter 8:  Conclusions
	8.1 Summary of research
	8.2 Achievement of aims and objectives
	8.3 Conclusions
	8.3.1 Characterizing response of bridges
	Data-driven approach
	Model-based approach for Cleddau Bridge

	8.3.2 Anomaly detection

	8.4 Limitations
	8.5 Recommendations for future work
	Appendix – A

	A.1 Numerical model
	A.2 Results
	A.2.1 Performance of SVR model
	A.2.2 Post-processing of SVR predictions
	A.2.3 Performance under noise and outliers

	A.3 Discussion
	Bibliography

	Papers presented by the author
	List of references


