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Evaluation of a Sliding Mode Fault Tolerant
Controller for the EL-AL Incident

H. Alwi, C. Edwards, O. Stroosma and J. A. Mulder

Abstract

This paper presents piloted flight simulator results associated with the EL-AL flight 1862 scenario using a
model reference–based sliding mode control allocation scheme for fault tolerant control. The proposed controller
design was carried out without any knowledge of the type of failure, and in the absence of any fault detection and
isolation strategy. This is motivated by the fact that the flight crew were unaware of the loss of the right engines.
For this reason, the control allocation scheme which is proposed uses (fixed) equal distribution of the control signals
to all actuators (for both nominal situations and when a fault or failure occurs). The paper analyzes the scheme
and determines the conditions under which closed-loop stability is retained. The results represent the successful
real-time implementation of the proposed controller on the SIMONA motion flight simulator configured to represent
a B747 aircraft. The evaluation results from the experienced pilots show that the proposed controller has the ability
to position the aircraft for landing in both a nominal and the EL-AL failure scenario. It is also shown that actuator
faults and failures which occured during the EL-AL incident can be handled directly without reconfiguring the
controller.

NOMENCLATURE

6–DOF = 6 degree of freedom
EPR = engine pressure ratio
cmd = command signal
ru, rl = upper and lower rudders
sp = spoiler
air, ail, aor, aol = inboard right, inboard left, outboard right and outboard left ailerons
p, q, r = roll, pitch and yaw rate (rad/s)
Vtas = true air speed (m/s)
α, β = angle of attack and sideslip angle (rad)
ϕ, θ, ψ = roll, pitch and yaw angle (rad)
he, xe, ye = geometric earth position along the z (altitude), x and y axis (m)
λ̄(·), λ(·) = largest and smallest eigenvalues
∥ · ∥ = Euclidean norm (vectors) or induced spectral norm (matrices)
u(t), ν(t) = actual and virtual control input
IR = field of real numbers and the set of strictly positive real numbers
s, σ = Laplace variable, Sliding mode switching function
lat, long = lateral and longitudinal axis
FTC,FDI = Fault Tolerant Control, Fault Detection and Isolation
SMC = sliding mode control
SRS = SIMONA research simulator
DME = distance measurement equipment
ILS = instrument landing system
APP = approach (button on the mode control pannel)
LOC,GS = localizer, glide slope
MCP = mode control panel
FPA = flight path angle
FBW = fly by wire
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I. INTRODUCTION

Lessons learnt from previous incidents where pilots successfully landed damaged aircraft – such as Flight 232
(DC-10) in Sioux City, Iowa 19891, the Kalita Air freighter (B747) in Detroit, Michigan, October 20042 and the
DHL freighter (A300) incident in Baghdad, November 20033 – suggest that in many cases, damaged/faulty aircraft
are still ‘flyable’ and controllable with some level of performance, which makes it possible for the pilot to safely
land the aircraft. This has also been shown by a successful program carried out by NASA on propulsion controlled
aircraft (as described in the work of Burcham et al.[3], [4], [5], Tucker et al.[6] and Burken et al.[7] – which consider
MD-11, B747, C17 and F15 aircraft), which showed that the controllers developed during the study helped the
pilots to land the aircraft safely in the event of total hydraulic loss (Tucker [6]). An independent investigation of
the EL-AL flight 1862 which crashed into an apartment building in Bijlmermeer, Amsterdam, conducted by Delft
University (Smaili & Mulder [8]), suggested that there was still some manoeuvering capability associated with the
damaged aircraft. This is backed up by an early publication on Fault Tolerant Control (FTC) by Maciejowski &
Jones [9] which showed that it was possible to control the damaged aircraft via a Model Predictive Control (MPC)
scheme (although Maciejowski & Jones [9] assume an exact post–damage model is available). Subsequent work
by Hennig & Balas [10] on MPC for FTC, also considers the EL-AL 1862 scenario.

The EL-AL flight 1862 scenario was used as the basis for the GARTEUR (Group for Aeronautical Research
and Technology in Europe) Flight Mechanics Action Group 16 (FM–AG16) which explored and assessed the use
of modern Fault Detection and Isolation (FDI) and FTC strategies to improve flight safety. Recent papers from the
GARTEUR FM-AG16 program include Lombaerts et al.[11] (which uses adaptive nonlinear dynamic inversion)
while the paper by Stroosma et al.[12] discusses simulator evaluations of different FM-AG16 controllers.

The work in Shtessel et al.[13] and Wells & Hess [14] provides practical examples of the combination of Sliding
Mode Control (SMC) and Control Allocation (CA) for FTC. These papers exploit the inherent robustness of sliding
modes, which when integrated with control allocation, allow total failures of certain actuators to be accommodated.
More recently in Alwi & Edwards [15], [16] a sliding mode control allocation scheme was proposed. Easily testable
conditions were developed to guarantee the stability of the closed-loop system subject to a certain class of actuator
faults (which will be described precisely later in the paper). The scheme in Alwi & Edwards [16] uses a control
law which depends on (an estimation of) the ‘efficiency/effectiveness’ of the actuators.

This paper presents the SIMONA 6-DOF motion flight simulator results, obtained by airline and test-pilots, with
experience covering B747, B767, A330 and Citation II aircraft on the EL-AL flight 1862 (Bijlmermeer incident)
scenario – which is one of the case studies associated with the GARTEUR FM–AG16. The results in this paper are
the outcome of the controller evaluation flight testing campaign and the GARTEUR FM–AG16 final workshop at
Delft University, The Netherlands. The results presented represent the successful real–time implementation of the
proposed sliding mode controller on SIMONA.

The controller that has been used is a modification of the model reference sliding mode controller proposed by
Alwi & Edwards [15]. The model reference tracking framework chosen in this paper has advantageous features
– especially the absence of integrators – when compared with the controller in Alwi et al.[17]. The absence of
integrators eliminates the dangers of controller windup in the face of saturation and rate limits being exceeded
during faults, failures or structural damage. Another advantageous feature of the model reference framework is that
the performance specifications are predefined and are represented in terms of an ideal transfer function response.

In this paper, the situation which occurred during the EL-AL flight 1862, whereby the flight crew were unaware
that engines no. 3 and 4 had separated from the wing (despite reporting the loss of thrust from both engines),
will be assumed. This is the motivation for the tests carried out in this paper which are all performed under the
assumption that the type of failure is unknown and in the absence of any FDI or fault reconstruction strategy.
Therefore the controller has been designed with no knowledge of the failure and damage to the airframe. Since
there is no FDI and no actuator effectiveness estimation available, a fixed control allocation approach (as described
in Alwi et al.[17]) will be used. The fixed control allocation scheme is sufficient to access the remaining available

1Flight 232 suffered tail engine failure that caused the total loss of hydraulics (Burcham et al.[1] and Gero [2]).
2The freighter shed engine no. 1, but the crew managed to land safely without any casualties.
3The DHL A300B4 was hit by a missile on its left wing and lost all hydraulics, but still landed safely(Burcham et al.[1]).
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control surfaces capability and ‘passively’4 controls the aircraft, exploiting the robustness properties of sliding mode
controllers, to ensure stability, and some nominal performance.

The controller has been designed as an ‘autopilot’ which receives pilot set-points from the mode control panel
in order to change roll, sideslip, flight path angle and speed. An outer-loop heading & altitude change/hold and
ILS landing approach has also been included to provide assistance to positioned the aircraft for landing.

II. TEST FACILITIES (SIMONA)

The FTLAB747 software (representing a high fidelity 6-DOF rigid body aerodynamic model of the B747-100/200
aircraft) which runs on MATLAB,5 has been developed by several researchers (van der Linden[20], Smaili[21] and
Marcos & Balas [22]). The 77 state FTLAB747 model consists of the 12 rigid body states, and incorporates detailed
dynamical models of the sensors and actuators – together with realistic position and rate limits. This software has
been used as a realistic platform to test FTC and FDI schemes by many researchers e.g. Hennig & Balas [10],
Marcos & Balas [23], Marcos et al.[24], Szaszi et al.[25] and Zhou et al [26]. In its latest incarnation, it has been
used as part of the GARTEUR FM-AG16 group as a benchmark (and described in detail Smaili et al.[27]).

(a) Outside view (b) Flight deck view

Fig. 1. SIMONA research simulator

The SIMONA (SImulation, MOtion and NAvigation) Research Simulator (SRS) shown in Figure 1 is a pilot-in-
the-loop flight simulator with motion capabilities operated by Delft University of Technology. It provides researchers
with a powerful tool that can be adapted to various uses (Stroosma et al.[28]). The simulator’s flexible software
architecture and high-fidelity cueing environment allows the integration of the aircraft model from Smaili et al.
[27]. Its inputs and outputs were standardized to fit the SRS software environment and the SIMULINK model was
converted to C code using Real-Time Workshop. Finally the model was integrated with the pilot controls, aircraft
instruments (Figure 1(b)) and other cueing devices of the SRS (i.e. outside visual and motion systems). On the
flight deck of the SRS, the evaluation pilot was presented with flight instruments representative of a B747 aircraft, a
control column with appropriate feel system dynamics, a central pedestal with dual engine controls, a Mode Control
Panel (MCP) for controlling the autopilot and a wide collimated view on a virtual outside world. The simulator’s
motion system was tuned to give the pilot realistic inertial motion cues in nominal and failure conditions.

III. EL-AL FLIGHT 1862: THE INCIDENT

On the 4th October 1992, the EL-AL flight 1862 freighter aircraft – a Boeing 747-200 – (on a scheduled flight
from New York JFK airport to Tel Aviv Israel) departed from Schiphol Airport, Amsterdam after refuelling and
a crew change. Shortly after takeoff, as the aircraft reached an altitude of about 6500ft, the pilots transmited an
emergency call. The crew reported a fire in engine no. 3 and reported the loss of thrust in engines no. 3 and 4 as
the aircraft was turning to the right. As described in the incident report by the Netherlands Aviation Safety Board

4Here ‘passive’ refers to ‘passive’ fault tolerant controllers, which are defined by Patton [18] and Zhang & Jiang [19] as controllers that
are robust and insensitive to certain faults without use of on-line fault information and without requiring controller reconfiguration.

5MATHWORKS trademark



THIS PREPRINT APPEARS IN ITS FINAL FORM IN THE JOURNAL OF GUIDANCE, CONTROL AND DYNAMICS, VOL.33, NO.3 (2010), PP.677-694. (DOI: 10.2514/1.47442) 4

[29], the pilots were operating under extreme workload conditions trying to control the aircraft. Straight and level
flight required full left (positive) rudder pedal deflection and 60% to 70% maximum lateral control (the wheel
almost full to the left (negative)) [29]. A series of right hand turns were performed in order to land in runway 27.
The first attempt to intercept the localizer and align for the final approach course was unsuccessful as the aircraft
overshot the localizer. Shortly after, the crew reported that engines no. 3 and 4 were inoperative and reported a
problem on the wing flaps. During the second attempt to intercept the localizer, a heading and altitude change to
310◦ and 1500ft respectively were requested. The flight crew immediately reported control difficulties. The aircraft
crashed 13km east of Schiphol airport into an apartment building in Bijlmermeer, a suburb of Amsterdam. Further
details on the incident can be found in the accident report by the Netherlands Aviation Safety Board [29].

Fig. 2. EL-AL flight 1862: actuator fault/failure and structural damage (adapted from the EL-AL incident report [29] and Smaili et al.[27])

It is important to highlight that, for the duration of the incident, the flight crew was unaware that engines no. 3
and 4 had separated from the wing, despite reporting loss of thrust from both engines. Unknown to the flight crew,
the inboard fuse-pin6 that held engine no. 3 to the pylon broke due to fatigue. This caused no. 3 engine and its
pylon to separate from the right wing shortly after takeoff causing damage to the leading edge of the right wing.
The shedding of engine no. 3 from the right wing in an outboard and rearward direction resulted in a collision with
no. 4 engine (see Figure 2), causing it and its pylon to separate from the wing. Figure 2 illustrates the estimated
damage thought to have occurred on the right wing. (Smaili et al.[27] argue that, although only engine no. 2 was
shed in the accident at Anchorage on March 31, 1993, the amount of damage on the wing leading edge, as shown
in Figure 3, is probably indicative of the damage inflicted on the El Al 1862 wing).

The damage and the effect on the EL-AL flight 1862 aircraft, as described by Smaili et al.[27], are:
1) Aircraft systems

• loss of hydraulic systems no. 3 and 4;

6The role of the fuse pin is to allow the engine to separate from the wing under a strong impact that occurs in the event of a crash or
hard landing in order to protect the fuselage from engine fire.
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(a) (b)

Fig. 3. Wing damage due to separation of engine no. 2, Anchorage, 1993 (adapted from Smaili et al.[27])

• a right (positive) yawing moment due to asymmetric thrust from engines no. 1 and 2;
2) Mass properties

• a mass reduction of about 10 tonnes resulting from the loss of engines no. 3 and 4 (and the pylons);
• lateral CG displacement (towards the left wing) due to the loss of the engines;

3) Aerodynamics
• lift loss on the right wing and additional drag caused by the damaged leading edge;
• changes to the roll pitch and yaw moment caused by the wing damage;
• loss of efficiency of the right inboard aileron and spoilers 10 & 11, due to airflow disruption caused by

the damaged right wing leading edge.
Figure 2 summarizes the losses and the remaining functional control surfaces (due to the loss of hydraulic systems
no. 3 and 4 as described in the incident report [29]). The control surfaces lost due to the failure of hydraulic
systems no. 3 and 4 are the outboard trailing edge flaps, the right outboard aileron, spoilers 1,4,5,8,9 & 12, the
left inboard elevator and the right outboard elevator. The control surfaces which are still functional but are affected
by the loss of the hydraulic systems, are the horizontal stabilizer, the inboard ailerons (both at half rate) and the
lower rudder (lag). Although the right inboard aileron and spoilers 10 and 11 remain fully functional, the airflow
disruption, resulting from the damage to the leading edge of the right wing, reduces their aerodynamic efficiency
and their capacity to provide a roll moment. The only fully functional control surfaces are the inboard trailing edge
flaps, spoilers 2 & 3, the left outboard elevator and the right inboard elevator.

Early FTC studies on the EL-AL flight 1862 by Maciejowski & Jones [9] showed that it is possible to control
the damaged aircraft (although Maciejowski & Jones [9] assumed an accurate model of the damaged aircraft was
available to the controller – either from an FDI scheme or from system identification/estimation).

IV. A MODEL REFERENCE SLIDING MODE CONTROL ALLOCATION SCHEME

This paper considers a situation where a fault associated with the actuators develops in a system. It will be
assumed that the system subject to actuator faults or failures, can be written as

ẋ(t) = (A+Aδ(t))x(t) +Bu(t)−BK(t)u(t) +BK(t)d(t) (1)

where A ∈ IRnx×nx and B ∈ IRnx×nu . Structural damage is described by a change in the system matrix A
represented by Aδ(t). The effectiveness gain K(t) := diag(k1(t), . . . , knu

(t)), where the ki(t) are scalars satisfying
0 ≤ ki(t) ≤ 1. These scalars model a decrease in effectiveness of a particular actuator. If ki(t) = 0, the ith actuator
is working perfectly whereas if ki(t) > 0, a fault is present, and if ki(t) = 1 the actuator has failed completely. The
exogenous signal d(t) represents a disturbance which may impact on the system as a result of a fault/failure: for
example, the moment generated by a control surface which has stuck in a non-neutral position in control channel
i could be modelled as ki = 1 and di ̸= 0.
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Remark: The control law based on the model in (1) i.e. from a linearization about an operating condition is likely
only to be applicable over part of the flight envelope, and will rely on the robustness properties of the controller.

In most control allocation (CA) strategies, the control signal is distributed equally among all the actuators (Shin
et al.[30], Shtessel et al.[13] and Wells & Hess [14]) or distributed based on the limits (position and rate) of the
actuators (Härkegård & Glad [31]). In papers by Alwi & Edwards [15], [16], information about K(t) has been
incorporated into the allocation algorithm through a weighting matrix W , so that the control is redistributed to the
remaining healthy actuators when faults/failures occur. In this paper, the CA strategy is based on the widely used
approaches from the literature; i.e. fixed and equal distribution of the control signals. This is motivated by the fact
that the information about K(t) in (1) is not always available and mirrors what happened during the EL-AL flight
1862 scenario.

The input distribution matrix B from (1) is assumed to have been reordered and partitioned as:

B =

[
B1

B2

]
(2)

where B1 ∈ IR(nu−nν)×nu and B2 ∈ IRnν×nu has rank nν < nu. The partition is in keeping with the notion of
splitting the control law from the control allocation task (Härkegård & Glad [32] and Beck [33]). In aircraft systems,
the overall control objectives can be successfully achieved by generating appropriate moments about the principal
axes by use of the control surfaces (Härkegård & Glad [32] and Beck [33]). In this paper, B2 is associated with
the equations of angular acceleration in roll, pitch and yaw [31], although in principle, this can be extended to
other systems which may have no partition of the control law (Beck [33]). In this paper, the matrix B2 represents
the dominant contribution of the control action on the system, while B1 generally will have elements of small
magnitude compared with ∥B2∥. This formulation is more general when compared earlier work – for example by
Shin et al.[30] where it is assumed that B1 = 0. It will be assumed without loss of generality that the states of
the system in (1) have been transformed so that B2B

T
2 = Inν

and therefore ∥B2∥ = 1. Let the ‘virtual control’7 be
given by

ν(t) := B2u(t) (3)

so that
u(t) = B†

2ν(t) (4)

where the right pseudo inverse8 is chosen as
B†

2 := BT
2 (5)

The pseudo-inverse in (5) arises from the optimization problem

min
u

∥u∥2 subject to B2u = ν (6)

Remark: Note that, compared with (6), there exist more general optimization problem formulations for control
allocation (see for example Enns [36] and Durham[37]). However, in the context of this paper, especially for the
real-time SIMONA implementation, it will be shown that one of the key issues is the onboard computational
constraint. By adopting a simple optimization approach as in (6), the real-time computational constraints can be
met, thus allowing successful real time implementation.

In the event of faults/failures or structural damage to the aircraft, equilibrium needs to be achieved first. The
damage on the wing in the EL-AL incident caused a nonzero roll, pitch and yaw moment. Therefore in order to
achieve equilibrium, control surface trims are required. During the actual incident, the pilots managed to achieve an
equilibrium condition of straight and level flight by manipulating the control surfaces. In this paper, the changes in
the trim condition will be automatically compensated for by the controller, and no pilot input is required. In terms
of the stability analysis which follows, the effect of the exogenous disturbance d(t) from (1) is ignored. Clearly

7In this context, virtual control refers to a fictitious ‘control input’ which is used for control law design, and not the actual plant inputs.
The mapping between the virtual inputs and the true inputs is the problem of control allocation (Härkegård [32]).

8In linear algebra terms, a pseudo inverse is a generalization of the inverse matrix (Horn & Johnson [34] and Penrose [35]). For a non
square matrix, a perfect inverse is not available, and therefore an approximate inverse i.e. a pseudo inverse is used. Here B†

2 has the property
that B2B

†
2 = Inν whilst solving the optimization problem in (6).
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this external signal does not formally affect the stability or otherwise of the closed-loop system associated with
(1) – although of course it affects the closed-loop performance of the system. In the real system, it will directly
affect the trim points and flight envelope of the damaged aircraft. In the following stability analysis d ≡ 0. The
development which follows is similar in spirit to Alwi & Edwards [16] but is different in detail because of the
model reference setting. Using (4) and (5), it can be shown that (1) can be written as

ẋ(t)= (A+Aδ(t))x(t) +

[
B1B

T
2

I

]
︸ ︷︷ ︸

Bν

ν(t)−
[
B1KB

T
2

B2KB
T
2

]
︸ ︷︷ ︸

B̄k

ν(t) (7)

In the nominal fault–free case Aδ(t) = 0, K = 0 and B̄k in (7) is zero. Consider a reference model defined as

ẋm(t) = Amxm(t) +Bmyd(t) (8)

where yd(t) is the reference signal and Am ∈ IRnx×nx , Bm ∈ IRnx×nν with Am stable. Define

e(t) = x(t)− xm(t) (9)

and therefore from (7) and (8) the error system

ė(t) = (A+Aδ(t))e(t) + (Aδ(t) +A−Am)xm(t) +Bνν(t)− B̄kν(t)−Bmyd(t) (10)

The matrices Am and Bm in (8) represent the reference model which defines the required closed-loop system
performance. Here the reference model matrices Am and Bm are chosen as

Am = A+BνF, Bm = BνG (11)

Other approaches to define the ideal model can be adopted (see for example Landau et al.[38], [39] and Monopoli &
Subbarao [40]), but here the formulation which has been traditionally incorporated within a sliding mode framework
has been employed (Broussard & O’Brien [41], and Zinober et al.[42]). The matrices F and G represent the feedback
and feed–forward terms which define the reference model. Based on these matrices, define a feed-forward signal
as

νm(t) := Fxm(t) +Gyd(t) (12)

Sliding mode techniques (Utkin[43] and Edwards & Spurgeon [44]), will now be used to synthesize ν(t). The control
objective seeks to minimize the error between the reference model and the ‘virtual’ controlled plant (A,Bν) in (7).
Define a so–called switching function σ : IRnx → IRnν to be

σ(t) = Se(t) (13)

where the design parameter S ∈ IRnν×nx and det(SBν) ̸= 0 by construction. Let S be the hyperplane defined
by S = {e(t) ∈ IRnx : Se(t) = 0}. If a control law can be developed which forces the closed-loop trajectories
onto the surface S in finite time and constrains the states to remain there, then an ideal sliding motion is said to
have been attained (Edwards & Spurgeon [44]). The sliding surface will be designed based on the nominal no fault
condition (K = 0). Using (11), equation (10) can be rewritten as

ė(t)=(A+Aδ(t))e(t) +Aδ(t)xm(t)− B̄kν(t) +Bν(ν(t)−Fxm(t)−Gyd(t)︸ ︷︷ ︸
−νm(t)

) (14)

where Bν and B̄k are defined in (7). A coordinate transformation e 7→ Tre(t) = ê(t) is introduced to obtain ‘regular
form’ (Utkin [43] and Edwards & Spurgeon [44]). If

Tr :=

[
I −B1B

T
2

0 I

]
(15)

then using similar argument to those in Alwi & Edwards [45], equation (14) becomes:

˙̂e(t) = (Â+ Âδ)ê(t) + Âδx̂m(t) +

[
0
I

]
︸ ︷︷ ︸

B̂ν

(ν(t)− νm(t))−
[
−B1B

N
2 (I −K)BT

2

I −B2(I −K)BT
2

]
ν(t) (16)
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where Â := TrAT
−1
r , Âδ := TrA

δT−1
r and x̂m = Trxm(t). The projection operator is

BN
2 := (I −BT

2B2) (17)

Because by construction the matrix B2B
T
2 = Il, it follows that BN

2 B
T
2 = (I − BT

2B2)B
T
2 = 0. Therefore, the last

term in (16) is zero in a fault–free case (K = 0), but is treated as (unmatched) uncertainty when K ̸= 0. Define

W := I −K (18)

and write
B+

2 :=WBT
2 (B2WBT

2 )
−1 (19)

As shown in Stewart [46], there exists a scalar γ0 which is finite and independent of W such that

∥B+
2 ∥ = ∥WBT

2 (B2WBT
2 )

−1∥ < γ0 (20)

for all W = diag(w1 . . . wnu
) such that 0 < wi ≤ 1.

The development now diverges from the exposition in Alwi & Edwards [16] because of the inclusion of the
parametric uncertainty not analyzed in Alwi & Edwards [16]. A virtual control law will now be designed based on
the nominal fault-free system in which the last term in (16) is zero. In the ê(t) coordinates, a suitable choice for
the sliding surface matrix is

Ŝ = ST−1
r =

[
M I

]
(21)

where M ∈ IRnν×(nx−nν) represents design freedom. Introduce another transformation (ê1, ê2) 7→ (ê1, σ) = ẽ,
associated with

Tσ =

[
I 0
M I

]
(22)

Equation (16) then becomes[
˙̂e1(t)
σ̇(t)

]
=

[
Ã11 + Ãδ

11 Ã12 + Ãδ
12

Ã21 + Ãδ
21 Ã22 + Ãδ

22

] [
ê1(t)
σ(t)

]
+

[
Ãδ

1

Ãδ
2

]
x̃m(t)

+

[
0
I

]
(ν(t)− νm(t))−

[
−B1B

N
2 WBT

2

I −MB1B
N
2 WBT

2 −B2WBT
2

]
ν(t) (23)

In the above equation, Ã11 := Â11 − Â12M , Ã21 :=MÃ11 + Â21 − Â22M , where

Â =

[
Â11 Â12

Â21 Â22

]
and Ãδ =

[
Ãδ

11 Ãδ
12

Ãδ
21 Ãδ

22

]
=

[
Ãδ

1

Ãδ
2

]
(24)

and col(x̃m1
, x̃m2

) = x̃m = Tσx̂m.
If a control law can be designed to induce a sliding motion, then during sliding, σ̇(t) = σ(t) = 0 and the

equivalent control necessary to maintain sliding is obtained from solving for νeq(t) from the lower equations of
(23) to give

νeq(t) = (B2WBT
2 )

−1(I +MB1B
N
2 B

+
2 )

−1(− (Ã21 + Ãδ
21)ê1(t) + νm(t)− Ãδ

2x̃m(t)) (25)

where BN
2 and B+

2 are defined in (17) and (19) respectively. Assume the sliding surface matrix M has been
designed, so that Ã11 := Â11 − Â12M is stable and ∥MB1B

N
2 B

+
2 ∥ < 1 for all 0 < W ≤ I .

Remark: ∥MB1B
N
2 B

+
2 ∥ < 1 guarantees the inverse in (25) exists and uses the boundedness result from

(20). If the inverse in (25) cannot be guaranteed to exist, the sliding motion cannot be guaranteed. Inequality
∥MB1B

N
2 B

+
2 ∥ < 1 depends on both the hyperplane design (through M ) and the faults/failures – since B+

2 depends
directly on W .

If (A,Bν) is controllable, then (Â11, Â12) from (24) is controllable (Edwards & Spurgeon [44]) and so M can
be chosen to make Â11− Â12M stable. Substituting (25) into the top partition of (23), yields the following reduced
order system which governs the sliding motion:

˙̂e1(t) = ((Ã11 + Ãδ
11)−B1B

N
2 B

+
2 (I +MB1B

N
2 B

+
2 )

−1(Ã21 + Ãδ
21))ê1(t)

+B1B
N
2 B

+
2 (I +MB1B

N
2 B

+
2 )

−1(νm(t)− Ãδ
2x̃m(t)) (26)

In the event of faults/failures, stability of the system in (26) (which depends on W through B+
2 ) needs to be

established.
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A. Stability analysis

The stability of the sliding mode is dependent on the reduced order system (26). Since by construction, the
reference model is stable, for a bounded signal yd(t), the signal xm(t) is bounded and hence νm from (12) is
bounded. Therefore the stability of the reduced order system which governs the sliding motion depends on:

˙̂e1(t) = ((Ã11 + Ãδ
11)−B1B

N
2 B

+
2 (I +MB1B

N
2 B

+
2 )

−1(Ã21 + Ãδ
21))ê1(t) (27)

In a fault–free case, W = I , Ãδ
11 = Ãδ

21 = 0, and the system in (27) ‘collapses’ to ˙̂e1(t) = Ã11ê1(t) which is
the nominal sliding mode reduced order system for which M has been designed to guarantee stability. In the case
when actuator faults/failure occurs but there is no structural damage, Ãδ = 0 ⇒ Ãδ

11 = Ãδ
21 = 0 and the stability

analysis which was discussed in Alwi & Edwards [16] applies.
Assume that Ãδ

21 = ∆̃2(t)Ã21 where ∆̃2(t) ∈ IRnν×nν and ∆̃2(t) is unknown but bounded. Also assume that
Ãδ

11 = G̃∆̃1(t)H̃ where G̃ ∈ IR(nx−nν)×ny , H̃ ∈ IRny×(nx−nν) and ∆̃1(t) ∈ IRny×ny . Here, the matrices G̃ and H̃
are assumed to be known, while ∆̃1(t) is unknown but bounded. Therefore (27) can be represented by

˙̂e1(t) = ((Ã11 + G̃∆̃1H̃)−B1B
N
2 B

+
2 (I +MB1B

N
2 B

+
2 )

−1(Il + ∆̃2)Ã21)ê1(t) (28)

To facilitate the subsequent analysis, define

P̃ (s) :=

 Ã11 G̃ −B1B
N
2

H̃

Ã21
0

 (29)

where s represents the Laplace variable. By construction the transfer function P̃ (s) is stable. Suppose

γ1 := ∥MB1B
N
2 ∥ (30)

and assume that M has been designed so that Ã11 = (Â11 − Â12M) is stable and γ1 ≤ 1
γ0

where γ0 is defined in
(20). Suppose that

∥I + ∆̃2(t)∥ ≤ γ3 (31)

where γ3 > 1 is a known scalar. Therefore it can be shown that

∥B+
2 (I +MB1B

N
2 B

+
2 )

−1(I + ∆̃2)∥ ≤ ∥B+
2 ∥∥(I +MB1B

N
2 B

+
2 )

−1∥∥(I + ∆̃2)∥∥ ≤ γ0γ3
1− γ1γ0

(32)

since ∥(I +MB1B
N
2 B

+
2 )

−1∥ ≤ (1− ∥MB1B
N
2 ∥∥B+

2 ∥)−1 ≤ (1− γ1γ0)
−1. Scale G̃ and H̃ appropriately so that

max
∆̃1

∥∆̃1(t)∥ =
γ0γ3

1− γ1γ0
(33)

Let

∆̃(t) :=

[
∆̃1 0

0 B+
2 (I +MB1B

N
2 B

+
2 )

−1(I + ∆̃2)

]
(34)

and so by construction ∆̃(t) from (34) satisfies

∥∆̃(t)∥ < γ0γ3
1− γ1γ0

(35)

Proposition 1: During a fault or failure condition, for any combinations of 0 < wi ≤ 1, the closed-loop system
will be stable if

0 <
γ2γ0γ3
1− γ1γ0

< 1 (36)

where
γ2 = ∥P̃ (s)∥∞ (37)

Proof: Consider the reduced order system from equation (28) rewritten as follows:

˙̂e1(t) = Ã11ê1(t) +
[
G̃ −B1B

N
2

]
ũ(t) (38)

ỹ(t) =

[
H̃

Ã21

]
ê1(t) (39)
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where
ũ(t) := ∆̃(t)ỹ(t) (40)

Then clearly

ỹ(s) = P̃ (s)ũ(s) (41)

where P̃ (s) is defined in (29) and from the Small Gain Theorem (Khalil [47]), if

∥P̃ (s)∥∞∥∆̃(s)∥ < 1 (42)

then closed-loop system (38)-(41) is stable. Using (35) and (29), yields

∥P̃ (s)∥∞∥∆̃(s)∥ < γ2γ0γ3
1− γ1γ0

(43)

and so if (36) holds, then from inequality (43) the small gain condition (42) is satisfied and the proposition is
proved.

Remark: The γ1 and γ2 depend on the particular choice of the sliding surface matrix M . Crucially though, they
do not dependent on the weight W . Conversely γ0 depends on W but not on the design matrix M . The scalar γ3
introduced in this paper depends on the uncertainty in the system matrix when structural damage occurs. Equation
(36) represents a test to guarantee the stability of the closed-loop system when faults occur (i.e. when the wi vary).
One important feature is that in order for (26) to hold, the norm of the pseudo-inverse B+

2 which depends on W
must be bounded for all 0 < wi ≤ 1 (which is shown in (20) and was proved in Alwi & Edwards [16] and Stewart
[46]).

For a given design of hyperplane, γ1 and γ2 are fixed. The gain γ0 is independent of the control design and
depends on the faults and the input distribution matrix. The magnitude of the uncertainty γ3 which can be tolerated
must be such that

γ3 ≤
1− γ1γ0
γ2γ0

=
1

γ2
(
1

γ0
− γ1) (44)

Since γ3 ≥ 1, a necessary condition is that

γ2γ0
1− γ1γ0

< 1 (45)

which is the condition in Alwi & Edwards [16].
Remark: Note that the condition ∥MB1B

N
2 B

+
2 ∥ < 1, which guarantees the inverse in (25) exists, holds because

∥MB1B
N
2 B

+
2 ∥ ≤ ∥MB1B

N
2 ∥∥B+

2 ∥ ≤ γ1γ0 < 1. The scalar γ0 depends on W (but not on M ), and can be
interpreted physically as a worst case upper-bound on the change in the feedback loop gain (40)-(41) resulting
from the faults. The scalar γ1 depends on the designed M , i.e the choice of sliding surface, but is independent
of W . Therefore, during the control law design cycle, if γ1γ0 < 1 is not satisfied, M which is chosen to make
Â11 − Â12M stable, needs to be redesigned (for example by lowering the performance requirements).

B. A Sliding Mode Control Law

Next, a sliding mode controller will be designed based on the system in (23) with respect to the virtual control
ν. The proposed control law is given by

ν(t) = νl(t) + νn(t) (46)

where
νl(t) := −Ã21ê1(t)− Ã22σ(t) + νm(t) (47)

and νm(t) is defined in (12). The nonlinear component is defined to be

νn(t) := −(ρ(t) + η) σ(t)
∥σ(t)∥ for σ(t) ̸= 0 (48)

where η is a positive scalar.



THIS PREPRINT APPEARS IN ITS FINAL FORM IN THE JOURNAL OF GUIDANCE, CONTROL AND DYNAMICS, VOL.33, NO.3 (2010), PP.677-694. (DOI: 10.2514/1.47442) 11

Remark: During implementation, the discontinuity in the nonlinear control term σ(t)
∥σ(t)∥ has been smoothed by

using a sigmoidal approximation σ(t)
∥σ(t)∥+δ , where δ is a small fixed positive scalar (see, for example §3.7 in Edwards

& Spurgeon [44]). This removes the so-called ‘chattering’ effect in the control signal and introduces further degrees
of tuning to accommodate the actuator rate limits (especially during actuator fault or failure conditions).

It follows that the actual control which is sent to the actuators is resolved from the ‘virtual control law’ ν(t)
(from (47)-(48)), using (4) and (5). Therefore u(t), is defined as

u(t) = BT
2 ν(t) (49)

Provided (36) is satisfied, the sliding mode controller can handle total actuator failures in the original system in the
situation when det(B2WBT

2 ) ̸= 0. Standard sliding mode controllers cannot handle total actuator failures although
their inherent robustness can cope with faults.

In a fault–free situation, it is not necessary and indeed is not advisable to have a large gain on the switched term
– therefore ideally the term ρ(t) should adapt to the onset of a fault and react accordingly. It is easy to see from
(47) that, if yd(t) is bounded, νl(t) is bounded by

∥νl(t)∥ < l1∥e(t)∥+ l2 (50)

where l1 and l2 are known positive constants. The gain from (48) is defined to be

ρ(t) = r(t)(r̄1∥e(t)∥+ r̄2) (51)

where

r̄1 := (γ4 + (2 + γ1)l1), r̄2 := (γ5 + (2 + γ1)l2) (52)

and the constants γ4 and γ5 are defined as

γ4 := ∥Ãδ
2TσTr∥, ∥Aδ

2x̃m∥ ≤ γ5 (53)

where Aδ
2, Tσ and Tr are defined in (24), (22) and (15) respectively. The scalar variable r(t) is an adaptive gain

which varies according to

ṙ(t) = a
(
r̄1∥e(t)∥+ r̄2

)
Dϵ(∥σ(t)∥)− br(t) (54)

where r(0) = 0 and the a and b are positive design constants. The function Dϵ : IR 7→ IR is the nonlinear function

Dϵ(∥σ∥) =
{

0 if ∥σ∥ < ϵ
∥σ∥ otherwise (55)

where ϵ is a positive scalar. Here, ϵ is fixed to be small and helps define a boundary layer about the surface S,
inside which an acceptably close approximation to ideal sliding takes place. Provided the states evolve with time
inside the boundary layer, no adaptation of the switching gains takes place. If a fault occurs, which starts to make
the sliding motion degrade so that the states evolve outside the boundary layer i.e. ∥σ(t)∥ > ϵ, then the dynamic
coefficients r(t) increase in magnitude, (according to (54)), to force the states back into the boundary layer around
the sliding surface. The choice of the design parameters η, a, b and ϵ depends on the closed-loop performance
specifications and requires some design iteration. The choice of these design parameters will be discussed further
in Section V. The following proposition will show that r(t) is bounded and motion inside a boundary layer around
S is obtained.

Define W to be the set of faults such that

W = {(w1 . . . wnu
) ∈ [0, 1]× [0, 1] . . .× [0, 1]︸ ︷︷ ︸

nu times

| λ(B2WBT
2 ) := w > 0} (56)

where w is a strictly positive scalar and λ(B2WBT
2 ) represents the smallest eigenvalue of (B2WBT

2 ). Notice that
(w1, . . . wnu

) ∈ W ⇒ det(B2WBT
2 ) ̸= 0.

Proposition 2: Consider the potentially faulty system represented by (1) with the control law in (47)-(48); then
the adaptive gain r(t) from (51)-(55) remains bounded, and the switching states σ(t) enter a boundary layer around
S in finite time for any fault condition (w1 . . . wnu

) ∈ W .
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Proof: See appendix.
Remark: Close approximation to ideal sliding can be maintained even in the presence of faults for an appropriate
choice of a, b and ϵ. If ϵ=0 and b=0, it follows that V̇ ≤ −w2∥σ∥(1−γ1γ0)η, which means that ideal sliding can
be attained and maintained in finite time. However ϵ = 0 is not a practical choice, since in the presence of noise
for example, r(t) may become unbounded.

V. CONTROLLER DESIGN

The main objective of the controller design is to bring the damaged EL-AL 1862 aircraft to a near landing
condition on Runway 27 at Schiphol airport (through a proper landing approach using localizer (LOC) and glide
slope (GS) capture procedures). It is assumed that no FDI or fault reconstruction is available which replicates the
actual EL-AL 1862 scenario – the flight crew were even unaware that engines no. 3 and 4 had detached from the
right wing.

A linearization of the nominal aircraft has been obtained around an operating condition of 263× 103Kg (560×
103lbs), 92.6m/s (180kts) true airspeed, and an altitude of 600m (2000ft) at 25.6% of maximum thrust and at a
20◦ flap position. The result is a 12th order linear model (separated into two 6th order models) associated with the
lateral and longitudinal states. For design purposes, only the four longitudinal (xlong = [q Vtas α θ]T) and lateral
states (xlat = [p r β ϕ]T) have been retained. The lateral control surfaces are

δlat = [δair δail δaor δaol δsp1−4 δsp5 δsp8 δsp9−12 δr e1lat
e2lat

e3lat
e4lat

]T

which represent aileron deflection (right & left - inboard & outboard)(rad), spoiler deflections (left: 1-4 & 5 &
right: 8 & 9-12) (rad), rudder deflection (rad) and lateral engine pressure ratios (EPR). The longitudinal control
surfaces are δlong = [δe δs e1long

e2long
e3long

e4long
]T which represent elevator deflection (rad), horizontal stabilizer

deflection (rad), and longitudinal EPR.
The controlled outputs represent the states roll (ϕ) and sideslip angle (β) for lateral control, and flight path angle

(FPA) and speed (Vtas) for longitudinal control. These linear models of the nominal damage free aircraft will
be used to design the control schemes which will be described in the next sections. This is a major difference
compared to Maciejowski & Jones [9] where the MPC controller is designed based on exact knowledge of the
post–damage aircraft.

In the original coordinates, the linear component of the control law can be summarized as:

νl(t) = Le(t) + Fxm(t) +Gyd(t)

where L = −SA and SBν has been scaled so that SBν = I . The nonlinear term νn(t) is given in (48), where the
nonlinear gain ρ(t) is based on the adaptive law (51)-(55).

A. Lateral Controller Design
The feedback matrices for the ideal lateral model from (12) have been designed using eigenstructure assignment

(Liu & Patton [48]). The eigenvalues were chosen as {−0.3500± 0.1500,−0.5000,−0.4000} and the desired and
obtained eigenstructures are respectively ∗+ ∗i ∗ − ∗i ∗ 0

0 0 0 0
∗+ ∗i ∗ − ∗i 0 0
1 + ∗i 1− ∗i 1 1


︸ ︷︷ ︸

desired

=⇒

 0.3195− 0.1369i 0.3195 + 0.1369i 0.4498 0.3748
−0.0000− 0.0000i −0.0000 + 0.0000i −0.0430 −0.0526
0.1619 + 0.1412i 0.1619− 0.1412i 0.0182 0.0275

−0.9127 −0.9127 −0.8919 −0.9252


︸ ︷︷ ︸

obtained

The feed-forward matrix Glat has been designed using the inverse steady-state gain for the virtual triple (Alat, Bνlat
, Cclat

):
specifically Glat = −(Cclat

(Alat +Bνlat
Flat)

−1Bνlat
)−1.

It will be assumed that at least one of the control surfaces for both ϕ and β tracking will be available when a
fault or failure occurs (i.e. one of either the four ailerons or the four spoilers will be available, and one of either
the rudder or the four engine thrusts are available). Under these assumptions, a numerical search yields that the
scalar from (20) is γ0lat

= 8.1314.
Next, the matrix M which defines the hyperplane must be computed so that the conditions of (36) are satisfied.

Here a quadratic optimal design (Edwards & Spurgeon [44]) has been used to obtain Slat (which depends on the
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matrix Mlat in equation (21)). The state weighting matrix has been chosen as Qlat = diag(2, 2, 1, 1). The poles
associated with the reduced order sliding motion are {−0.7136 ± 0.0522i} and the associated natural frequency
and damping ratio are 0.7155 and 0.9973 respectively. Based on Mlat, it can be shown that γ1lat

from (30) satisfies
γ1lat

= 0.0230. Consequently γ0lat
γ1lat

= 0.1870 < 1 and the requirements of (36) are satisfied. For the case of
the EL-AL 1862 scenario, and by using G̃lat = 0.001I2 and H̃lat = I2 (which allows perturbations in all elements
of Ã11), it was found that the norm from (31) is γ3lat

= 1.5134.
Finally, it can be verified that the H∞ norm from (37) is ∥P̃lat(s)∥∞ = γ2lat

= 0.0589. Therefore from (36),
γ2lat

γ0lat
γ3lat

1− γ1lat
γ0lat

= 0.8916 < 1

which shows that the system is stable for all 0 < wi ≤ 1. For implementation, the discontinuity in the nonlinear
control term in (48) has been smoothed by using a sigmoidal approximation νδn,lat =

σlat

∥σlat∥+δlat
where the scalar

δlat = 0.05. This introduces further degrees of freedom to accommodate actuator rate limits.
For simplicity, the variables related to the adaptive nonlinear gain have been chosen as r̄1lat

= 0 and r̄2lat
= 1.

The parameter ηlat from (48) was chosen as ηlat = 1. In practice, a maximum limit ρmax for the adaptive nonlinear
gain in (51) has been imposed to avoid the actuators becoming too aggressive. Here, the maximum gain was set at
ρmaxlat

= 5. The adaptation parameters from (54) have been chosen as alat = 100, blat = 0.01 and ϵlat = 5×10−2.
The parameter ϵlat was chosen to be able to tolerate the variation in ∥σlat(t)∥ due to normal changes in flight
conditions, but small enough to enable the adaptive gain to be sensitive to deviations from zero due to faults or
failures. Here alat has been chosen to be large to enable small changes in ∥σlat(t)∥ to cause significant changes in
the gain, so that the control system reacts quickly to a fault. The parameter blat on the other hand dictates the rate
at which ρlat(t) will decrease after ∥σlat(t)∥ has returned below the threshold ϵlat.

To emulate real aircraft flight control capability, an outer-loop heading control law was designed based on a PID,
to provide a roll command to the inner-loop sliding mode controller. In the SIMONA implementation, this outer-
loop heading control can be activated by a switch in the cockpit. The proportional gain as Kplat

= 3, the integrator
gain was set as Kilat

= 0.1 and the derivative gain was set as Kdlat
= 3. Note that the integrator component is

only activated when the heading angle error is less than 5◦ to remove unwanted oscillation during manoeuvres but
to still eliminate steady state error.

B. Longitudinal Controller Design
As in the lateral controller, the feedback matrices for the ideal longitudinal model from (12) have been designed

using eigenstructure assignment. The eigenvalues were chosen as {−0.2400± 0.1700,−0.7000,−0.1250} and the
desired and obtained eigenstructures are 0.5 + ∗i 0.5− ∗i 0 0

0 0 0 1
0.5 + ∗i 0.5− ∗i 0 0

0 0 1 0


︸ ︷︷ ︸

desired

=⇒

 0.1812− 0.1283i 0.1812 + 0.1283i −0.1057 0.0001
−0.0020 + 0.0015i −0.0020− 0.0015i −0.0060 1.0000
0.3220− 0.5264i 0.3220 + 0.5264i 0.9829 −0.0037

−0.7549 −0.7549 0.1510 −0.0012


︸ ︷︷ ︸

obtained

As in the lateral control design, the feed-forward matrix Glong has been designed using the inverse steady-state
gain for the virtual triple so that Glong = −(Cclong

(Along +Bνlong
Flong)

−1Bνlong
)−1.

It will be assumed that at least one of the control surfaces for FPA tracking will still be available when a fault
or failure occurs. It is also assumed that at least one of the four engines is available for Vtas tracking. Under these
assumptions, a numerical search yields γ0long

= 8.2913.
As in the lateral controller, a quadratic optimal design has been used to obtain the sliding surface matrix. The

weighting matrix defining the cost has been chosen as Qlong = diag(2, 2, 1, 1). The poles associated with the
sliding motion can be shown to be {−1.1157,−0.3737} (the associated natural frequencies and damping ratios
are 0.6457 and 1.1533 respectively). For this choice of surface, it can be shown that γ1long

= 3.0160 × 10−4 and
γ0long

γ1long
= 0.0025 < 1. Consequently, the requirements of equation (36) are satisfied. For the case of the EL-AL

1862 scenario, with G̃long = 0.001I2 and H̃long = I2, the norm from (31) is γ3long
= 1.3842. Finally it can be

shown that the H∞ norm from (37) is ∥P̃long(s)∥∞ = γ2long
= 0.0115. Consequently from (36),

γ2long
γ0long

γ3long

1− γ1long
γ0long

= 0.1319 < 1
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This shows that the system is stable for all 0 < wi ≤ 1. The discontinuity in the nonlinear control term in (48) has
been smoothed by using a sigmoidal approximation νδn,long = σlong

∥σlong∥+δlong
where the scalar δlong = 0.05.

As in the lateral design, the variables related to the adaptive nonlinear gain have been chosen as r̄1long
= 0 and

r̄2long
= 1. This was also found to give sufficiently good performance and removes the dependence of r(t) on e(t)

and simplifies the implementation. The parameter ηlong from (48) was chosen as ηlong = 1. In practice, a maximum
limit ρmax for the adaptive nonlinear gain in (51) is imposed to avoid the actuators from becoming too aggressive.
Here, the maximum gain was set as ρmaxlong

= 2. The adaptation parameters from (54) have been chosen similar
to those in the lateral design; i.e. along = 100, blong = 0.01 and ϵlong = 5× 10−2.

Again, to emulate real aircraft flight control capability, an outer-loop altitude control law was designed based
on a PID, to provide a FPA command to the inner-loop sliding mode controller. In the SIMONA implementation,
this outer-loop altitude control can be activated by a switch in the cockpit. The proportional gain was set as
Kplong

= 0.001, the integrator gain was set as Kilong
= 0.00004 and the derivative gain was set as Kdlong

= 0.02.
Note that the integrator component is only activated when the altitude error is less than 15m to remove unwanted
oscillation during manoeuvres but to eliminate steady state error.

As a result of the architecture employed, both the lateral and longitudinal controllers manipulate the engine EPRs.
In the trials, ‘control mixing’ was employed, where the signals from both the lateral controller and longitudinal
controller were added together before being applied to each of the engines. This is similar to the approach adopted
in Burcham et al.[4].

Remark: In terms of the control law design, no actuator magnitude or rate saturations are accounted for explicitly.
However in the evaluations on SIMONA, these effects are present. The model-reference tracking framework was
purposely chosen in this paper because it does not suffer from windup problems (due to the absence of integrators).
In the event a rate limit or position limit is exceeded, a difference between the expected actuator position and the
commanded one occurs, which would be interpreted as a ‘fault’. The robustness property of sliding mode controllers
to actuator faults would then mitigate the effect of the saturation by increasing the control effort deployed in the
remaining available actuators through control the allocation process, thus reducing the burden on the saturated
actuator.

VI. SIMONA IMPLEMENTATION AND TEST PILOT RESULTS

The designed controller was implemented on the SIMONA flight simulator. The command inputs from the
pilot are regulated through the mode control panel (MCP). In this control scheme an APP (approach) button is
implemented which is engaged in order to intercept the LOC (localizer) and GS (glide slope) for the desired runway.
The controller was implemented as a SIMULINK model with appropriate inputs and outputs to connect it with the
SIMONA hardware, as shown in Figure 4. In Figure 4, an ILS landing capability has been added to the control
loop to allow the aircraft to land on Runway 27 at Schiphol. The controller was set up to work with an Ode4 solver
with a fixed time step of 0.01s. The available processing power is sufficient to run the controller in real time, i.e.
within 10 ms per time step. A connection with the MCP on the flight deck enables the selection of ‘control modes’
e.g. altitude hold, heading select and reference values. The simulator trials were performed with the speed, altitude
and heading select modes active. The pilot commands new headings, speeds or altitudes by adjusting the controls
on the MCP.

Remark: The proposed controller is relatively simple since it is designed from a linearization about an operating
condition. The controller presented in this paper is considered to be a ‘proof of concept’ to show the capabilities of
combining sliding mode control and control allocation. It will be shown in the sequel that despite being designed
from a linearization, the controller is able to give good performance over a relatively large flight envelope – even
in the presence of very significant and damaging faults. Because it is developed from a linearization, the controller
has a relatively simple structure and is not computationally intensive. This enabled the controller to be implemented
on SIMONA in real-time, within the 0.01 sec update time window necessary for implementation, as described in
Smaili et al.[27] and Stroosma et al.[12].

A. ILS landing

A sensor which measures the deviation from the LOC angle/beam error (which is available in typical transport
aircraft) combined with the current aircraft heading are used for aligning the aircraft towards the runway. The
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output of this outer-loop is a roll demand for the LOC controller and an FPA demand for the GS controller. These
demand signals replace the pilot’s commands to the main SMC controller to allow for an almost automatic landing
procedure. The outer-loop controller (LOC and GS) is armed by the pilot by engaging the APP (approach) button on
the MCP when the aircraft is near the LOC signal coverage (see Figure 4 for details). In normal operation, the LOC
will be the first to be engaged (LOC valid) when the aircraft is inside the LOC coverage (for this implementation,
the DME is less than 46.3km when the aircraft is inside the coverage angle of ±10◦ from the LOC beacon and
(-7◦,-0.75◦) inside the glideslope (GS) beacon). During the armed phase, the LOC controller is in standby mode
and the aircraft is controlled either by heading or roll commands from the pilot. When the LOC is engaged (LOC
valid), the LOC controller will provide the inner roll command to the core lateral sliding mode controller and the
whole process becomes an automatic landing mode: i.e. no input from the pilot is needed. The GS is then engaged
(GS valid) when the aircraft is inside the GS coverage (i.e. the DME is less than 18.5km, LOC is within ±8◦ and
the GS is within (-1.35◦,-5.25◦) inside coverage). The GS is in an armed phase (after the APP button is engaged),
and the GS controller is in a standby mode with the aircraft controlled using altitude or via FPA commands from
the pilot. When the GS controller is engaged (GS valid), the GS controller will provide the FPA command to the
core longitudinal SMC controller: again no input from the pilot is needed. If for some reason, during the LOC and
GS manoeuvre to the runway, the LOC or GS becomes invalid (i.e. if the aircraft goes outside the LOC and GS
coverage ‘cones’), the outer-loop controller commands revert to heading and altitude hold (and the LOC and GS
controller provide zero roll and FPA commands respectively: see Figure 4). Then, the pilot can retake full control
of the aircraft by disengaging the APP mode.

Note that the reference command for ϕ was limited to 15◦, and a 0◦ reference was applied for β to force a
slide-slip free flight. As described in Lombaerts et al.[11], a post-failure safe flight envelope analysis suggests that
a safe roll manoeuvre can only be achieved for demand values less than 20◦. However, it can be argued that based
on the current controller implemented in the B747, the roll reference from the autopilot is limited for passenger
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comfort, and especially for LOC turning manoeuvres during the final stages of all ILS landings. Having conservative
roll capabilities is a plausible predesign assumption, when designing controllers for faults or failure conditions.

B. SIMONA flight simulator results with experienced pilots

The controller has been flown by three different pilots (airline and test pilots) with experience on B747, B767,
A330 and Citation II aircraft. An experienced B767 and Citation II pilot, had rigorously tested the controller during
the flight evaluation campaign before the GARTEUR FM–AG16 final workshop in November 2007. During the final
workshop, an experienced B747 pilot, flew the damaged ‘aircraft’ on the SIMONA simulator, during a presentation
to the general public, including the local Dutch press (TV news, radio and newspapers). The results presented here
are gained from tests flown by an experienced A330 pilot and test pilot for NLR (National Aerospace Laboratory,
The Netherlands) during the pilot evaluation campaign in November 2007.

Note that even though the controller has been designed based on the linearization using a mass of approximately
263,000kg at a 20◦ flap position, the controller was tested with a heavy trim mass of 317,000Kg at a 1◦ flap position
as per the actual EL-AL 1862 aircraft. This removes the advantage of low mass and low speed manoeuvrability
and higher performance and controllability compared to the heavy trim mass, which was one of the main findings
in Smaili & Mulder [8]. The heavy trim mass for the flight test also replicates the actual EL-AL 1862 scenario and
fits with the assumption that the exact damage and condition of the aircraft, post faults, is unknown, thus making
the challenge even harder.

The flight test was executed as realistically as possible. As in the actual EL-AL 1862 scenario, the aircraft flew
in a northerly direction from runway 01L before starting to make a right turn. Immediately after the right turn, the
EL-AL failure scenario occurs (see Figure 5) whereby engines no. 3 and 4 detached from the right wing and caused
significant damage to the right wing. The objective is to fly the damaged aircraft back to the runway as intended
by the crew of EL-AL 1862. The chosen runway, Runway 27, faces west at an angle of approximately 269◦ from
the north. Therefore in order for the aircraft to land, two 90◦ turns must be performed before aligning the aircraft
on Runway 27. During the third right turn, the aircraft is required to capture a localizer signal which guides the
heading of the aircraft to line it up with the runway. During this normal procedure for landing, the aircraft will
also be required to intercept a glide slope signal to enable the aircraft to descend at a 3◦ flight path angle, which
will bring the aircraft to the landing target zone. The flare and the actual landing of the aircraft are not carried out
and the simulation was stopped at a point 50 ft above ground level.

C. Classical Controller

Figure 5 shows the results of the piloted evaluation using the classical controller and proposed SMC controller.
The idea of a fault–free test of the SMC is to give the pilot the feel of the capability of the controller in the
nominal condition. Initially the aircraft was flown straight and level, before a heading change of 90◦ to the east
was performed. The pilot tested the aircraft’s capability to climb to a pre-specified altitude from 600m (2000ft)
altitude to approximately 800m (2500ft). Then the pilot commands a return to an altitude of 600m and performs
another right turn to capture the localizer. At this stage, the pilot ‘arms’ the approach mode in order to prepare for
an automated landing approach. Once the aircraft captures the localizer signal, a final turn towards the centre-line
of Runway 27 is started, and after a while, the glide slope signal is captured and the aircraft descends towards the
runway at a 3◦ glide slope. Note that starting from the moment the pilot activates the APP button in the MCP and
the localizer signal has been captured, the aircraft is in a fully automated landing mode and no other pilot input is
required.

The classical controller was also tested by the pilots to give them some ‘feel’ and an idea of the severity of the
actual EL-AL scenario. With this controller, the pilots manually flew the aircraft using control wheel and column
inputs. Piloted evaluation using the classical controller under the EL-AL 1862 scenario (Figure 5) shows that after
the failure, the aircraft is still able to do right turns. Only during the final stage of the test flight does the aircraft
lose control and crash before being able to line up with the runway.

Figures 6-8 show the results of the piloted evaluation using the classical controller tested under the EL-AL flight
1862 scenario.

Figure 6 shows the pilot control deflections. As described in the incident studies in Smaili & Mulder [8] and
the incident report [29], similar patterns appear. Immediately after the failure, the deflection of wheel, column and
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pedal increase in magnitude. As in the EL-AL 1862 flight, almost maximum wheel deflection to the left (negative)
to counter the right turn is visible. Also visible is the pedal deflection to counteract the yawing moment of the
asymmetric thrust. Figure 6 also shows that near to the final stages of the test, a flap setting of 1◦ is selected to
prepare for landing. At about 600s, the power lever angle (throttle) is also reduced for landing. However, when the
speed reaches 110m/s (approx 220Kts) near 700s (Figure 7), the aircraft becomes hard to control and banks to the
right. Figure 6 shows that maximum left (negative) pilot wheel deflection is applied. Still unable to recover from
the right bank, the flap is returned to a 0◦ setting, and the throttle input is increased in order to regain control.
However the aircraft still rolls to the right and loses altitude and speed. The loss of altitude and FPA tries to be
compensated for by the high positive (pull towards the pilot) column deflection. At this stage, all control is lost and
the aircraft rolls at almost 80◦ right with the FPA nearing -40◦ and the pitch angle passing -20◦. This is similar
to what is described in the incident report in [29] when the EL-AL 1862 aircraft hit the apartment building in
Bijlmermeer, Amsterdam.

Analyzing the plots further, it can be seen that when the throttle is reduced in preparation for landing, the speed
becomes low, and during descent, the angle of attack becomes high. As discussed in incident report [29] and
Smaili et al.[8], [27], [8], the increase in the angle of attack causes (high) flow separation and turbulence behind
the damaged right wing leading edge, resulting in the loss of lift and drag rise (compared to the left wing). This
increases the rolling and yawing moment to the right and a further drop in altitude and speed.

Figure 8 shows the control surface deflections of the classical controller. One major feature of the classical
controller is that most of the control surfaces are mechanically linked. For example, the outboard ailerons on the
left and right wing are only fully active when a flap setting of more than 5◦ is used (Hanke & Nordwall [49] and
Hanke [50]). This can be seen in Figure 8, where the outboard aileron is inactive (0◦ deflection) throughout the
flight test. The large deflection of the left aileron and spoilers up to the saturation limits (-20◦ for the aileron and
40◦ for the spoiler) after the engine failure shows that there is limited control even at a speed of 130-140kts. Note
that a positive deflection for ailerons is a deflection down, and for the spoilers, positive is deflected up (Hanke &
Nordwall [49] and Hanke [50]). Figure 8 shows that the aileron deflections are most of the time at the saturation
limits after the loss of engines 3 and 4 to provide enough roll moment in order to obtain straight and level flight,
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Fig. 6. EL-AL 1862 scenario: classical controller: pilot deflection

and therefore most of the roll manoeuvre capability is assisted by the left spoiler deflections. Shortly after the
reduction in speed i.e. approximately after 600s, the left aileron and spoilers saturate again, but due to the lower
speed and higher angle of attack, the control surface deflections are insufficient to regain control as the aircraft has
gone beyond the capability of the control surfaces to provide enough roll moment. Note that the general control
surface deflections and behaviour in Figures 6-8 closely follow the findings of the actual EL-AL 1862 incident
reported by the Netherlands Aviation Safety Board [29].

Figure 5 shows the flight trajectory of the test. Three different trajectories are shown; the EL-AL 1862 scenario
with classical and SMC controllers and one with the SMC without any failure. With the classical controller, the
pilot manages to maintain some performance and managed two banking turn manoeuvres. During the preparation
for landing and capture of the localizer, the aircraft loses control and the simulation was stopped. The other two
trajectories associated with safe landings by the SMC controller will be discussed in the next section.

D. SMC controller

As discussed in Section V, the controller has been designed based on a linearization obtained around an operating
condition of 263×103Kg (580×103lbs), 92.6m/s (180kts) true airspeed, and an altitude of 600m (2000ft) at 25.6%
of maximum thrust and at a 20◦ flap position. The actual pilot tests were performed at 317×103Kg (700×103lbs),
a speed of 133.8m/s (260kts) and a flap setting of 1◦. The tests were deliberately undertaken at a different trim
condition to allow the pilot to rigorously test the controller and access its performance under different operating
conditions.
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Note that for the purpose of testing the modern control strategy for fault tolerant control, the large transport
aircraft setup in the GARTEUR FM–AG16 program using the FTLAB747 software, has been modified to include a
state of the art fly by wire capability ‘removing’ mechanical links and locks from the classical B747 configuration
(Smaili et al.[27]). This allows more flexibility in the control strategy exploiting independent control of all available
surfaces thus increasing the ways redundant control surfaces can be used to achieve fault tolerant control.

Figure 5 also shows the trajectory of the SMC controller tested with the EL-AL 1862 failure scenario. The same
controller as that used in the nominal fault–free case is applied. In general, the controller performs the same right
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Fig. 8. EL-AL 1862 scenario: classical controller: control surfaces deflection

turn manoeuvres, LOC and GS intercept and lands on Runway 27. The SMC with the EL-AL 1862 failure manage
to bring the aircraft near to landing on the desired runway. Figure 9 shows the controlled states of the damaged
aircraft with the SMC controller. Note at the beginning of the simulation, before the failure occurs at around 200s,
the FPA, Vtas and altitude show small steady state errors due to the mismatch between the designed trim conditions
and the test conditions as described earlier. This is due to the absence of integrators in the main SMC controller.
The mismatch between the designed and test trim conditions demonstrate the controller coping with uncertainty
and allows the pilot to rigorously test the controller outside its ‘comfort zone’.

Figure 9 shows that after the failure occurs, at approximately 200s, the climb capability of the aircraft is severely
degraded when the pilot requests an increase in altitude to 800m (from 600m). On the other hand, the more important
descent capability of the SMC controller is not degraded as it is able to follow the glide slope of 3◦ towards the
runway. This is shown in Figure 10. The glide slope error is maintained below 0.5◦. Figure 9 shows that the side
slip angle of the damaged aircraft has been maintained in the interval (0.5◦,-1.5◦) which is an improvement on the
classical controller (as flown by the pilot) in Figure 9. Heading changes of the damaged aircraft with the SMC
controller in Figure 9 also show a more systematic and higher level of performance of the controller – even when
subjected to the EL-AL 1862 failures. This shows that the lateral controller is able to deal with the asymmetrical
thrust condition, extensive wing damage and control surface loss of efficiency (due to the failure of the hydraulic
systems 3 and 4), and maintains the desired change in heading. Decreasing the speed (to approximately 120m/s
(233.26kts)) helps in terms of lateral control (Smaili & Mulder [8] and the incident report [29]). This is due to
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the lower thrust that is required at lower speed, and thus a lower yawing moment resulting from the asymmetrical
thrust condition. This is seen in terms of the deviation of the side slip angle in Figure 9. The side slip angle is much
smaller than at higher speed after the failure has occurred. The roll angle tracking again shows good performance
even after the loss of the engines and the hydraulics associated with the EL-AL 1862 scenario.

Note that in Figure 9, the heading angle and altitude plot only show the command signals from the MCP. After
the localizer and glide slope have been engaged, the heading and altitude commands from the MCP are no longer
used (and remain at the set value). Instead, the heading and altitude commands come from the ILS navigation (not
shown in the heading angle and altitude plot in Figure 9).

Figure 10 shows the signals from the ILS sensors. It represents the DME , LOC & GS deviation and the moment
when the LOC and the GS are engaged (valid/engaged) after being ‘armed’ using the APP button in the MCP.
As usual, the LOC is engaged before the GS. The LOC coverage is much further than the GS and this allows
the aircraft to be aligned to the extended centre line of the runway before following the specified 3◦ glide slope
descent.

Figure 11 shows the control surface deflections under the EL-AL 1862 scenario. This figure highlights the major
difference between the classical controller (which is mechanically linked) and the FBW aircraft that has been
provided by the GARTEUR FM–AG16 modification (Smaili et al.[27]). In this figure, the outboard ailerons can be
seen to be independently mobile before the occurrence of the failure. After the failure, the right outboard ailerons
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‘float’ due to the loss of hydraulic systems 3 and 4. Independent control can also be seen in the spoilers, elevators,
rudders and EPR. The effect of losing the hydraulic system can also be seen in the floating of the inboard left and
outboard right elevators (see Figure 11) where a clear distinction between the control surface deflection can also
be seen. The spoilers also show similar patterns. Before the loss of engine 3 and 4 occurred, all the spoilers seem
to be moving independently; and when the failure occurs, only spoilers 2,3,10 and 11 are active, the rest remain
at zero deflection. In general, the control surface deflections of the elevators, ailerons and spoilers are almost half
of the ones using the classical controller (see Figure 11). The control surface deflections from the SMC controller
do not reach the saturation limits of the surfaces and the spoilers and the ailerons are generally less aggressive.
Engine EPR shows that differential thrust has been used to achieve the desired performance, to obtain a small side
slip angle and roll angle. Note that all the surfaces are controlled independently by the CA SMC scheme. Pilot’s
inputs only come from supplying the higher level commands such as heading and altitude change (or roll or FPA
commands through the MCP panel). This reduces the pilot’s workload in comparison with the classical controller
where the demand is high.

Remark: Figure 11 shows no chattering in the lateral and longitudinal control surface deflections since the
discontinuity in the nonlinear control term in (48) has been smoothed by using a sigmoidal approximation as
explained in Section V. Figure 11 shows that the right outboard aileron has an up (negative) deflection due to the
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‘float’ failure resulting from the loss of hydraulics.9

Note that although during the design stage, the elevator is modelled as one surface, as shown in Figure 11, the
robustness property of SMC (to uncertainty in the actuator channels) and the flexibility of the CA scheme, manages
to redistribute the control effort to the remaining functional elevators (i.e. the left outboard and right inboard
elevators) and the stabilizer.

Figure 12(a) and 12(b) show the adaptive gain and the associated ∥σ(t)∥ signals that initiate the gain adaptation.
Before the occurrence of the failure, the sliding signal σ(t) is below the selected threshold. Once the threshold is
exceeded, the gain is adapted from a minimum of 1 up to the maximum of 5 and 2 for the lateral and longitudinal
axes respectively. Large deviation from the sliding surface σ(t) = 0 shows the severity of the faults. After the
failure has occurred and during manoeuvres, the switching function plot σ(t) deviates away from the ideal sliding
surface. However, during or near landing conditions, the switching function returns below the adaptation threshold,
near to zero. During this time, the adaptive gain reduces to the minimum value of 1.

Although the SMC controller can be implemented in such a way that pilot’s inputs (such as column, wheel and
pedal) can also be used, the purpose here is to show that, as a proof of concept, the SMC controller is more than
able to handle all the rigorous tests and failures it is subjected to using the minimal amount of input from the pilot,

9During a ‘float’ failure, (as described in Bošković and Mehra [51]) the control surface moves freely without producing any moment. In
the case of straight and level flight, the floating control surface moves freely in the direction of angle of attack (Ganguli et al.[52]) i.e. at
an up (negative) position.
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Fig. 12. EL-AL 1862 scenario: SMC controller: adaptive gain and switching function.

thus lowering the workload during such an emergency condition. This allows the pilot to concentrate on higher
level decisions.

VII. CONCLUSIONS

This paper has presented piloted flight simulator results associated with the EL-AL flight 1862 (Bijlmermeer
incident) scenario which is one of the case studies of the GARTEUR FM–AG16. The results represent the successful
implementation of a FTC SMC controller on the SIMONA 6-DOF flight simulator configured to represent a large
transport aircraft with pilots evaluating and testing the controller. The results show that the proposed SMC scheme
has the ability to position an aircraft for landing. The paper has further developed the sliding mode control allocation
scheme proposed in Alwi & Edwards [16], [15] to handle the situation in which changes to the nominal system
matrix occur as a result of damage to the airframe which changes the aerodynamic properties of the aircraft. A
formal proof of closed-loop stability has been provided for a range of parameter variations.

APPENDIX

Proof of Proposition 2 : Define a scalar

ζ :=
1

w2(1− γ1γ0)
(57)

The expression for ζ in (57) is guaranteed to be positive, since in the requirements of equation (36), the inequality
γ1γ0 < 1 must hold. Assume that K̇(t) = 0 almost always, this implies Ẇ (t) = 0 almost always and so only
isolated abrupt step changes in the effectiveness are considered here. Using the fact that (B2WBT

2 ) > 0, the
following candidate Lyapunov function

V =
1

2

(
σT(B2WBT

2 )σ +
w2

a
(1− γ1γ0)(r(t)− ζ)2

)
(58)
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is positive definite with respect to σ, the adaptive gain error r(t)− ζ, and is radially unbounded. Taking derivatives
along trajectories

V̇ = σT(B2WBT
2 )σ̇ +

w2

a
(1− γ1γ0)(r(t)− ζ)ṙ(t) (59)

From (23) (and using (46) and (47)),

σ̇(t) = (Ã21 + Ãδ
21)ê1(t) + (Ã22 + Ãδ

22)σ(t) + (ν(t)− νm(t))

−(I −MB1B
N
2 WBT

2 −B2WBT
2 )ν(t) + Ãδ

2x̃m(t)

= Ãδ
21ê1(t) + Ãδ

22σ(t) + (I +MB1B
N
2 B

+
2 )(B2WBT

2 )νn(t)

−(I −MB1B
N
2 WBT

2 −B2WBT
2 )νl(t) + Ãδ

2x̃m(t)

= Ãδ
2ẽ(t) + Ãδ

2xm(t) + (I +MB1B
N
2 B

+
2 )(B2WBT

2 )νn(t)

−(I −MB1B
N
2 WBT

2 −B2WBT
2 )νl(t) (60)

where ẽ = (ê1(t), σ(t)). Using the fact that

∥Ãδ
2ẽ(t) + Ãδ

2xm(t)∥ ≤ ∥Ãδ
2ẽ(t)∥+ ∥Ãδ

2x̃m(t)∥ ≤ ∥Ãδ
2TσTr∥︸ ︷︷ ︸
γ4

∥e(t)∥+ ∥Ãδ
2x̃m(t)∥︸ ︷︷ ︸
γ5

(61)

and
σ(t)T(B2WBT

2 )(B2WBT
2 )σ(t) = ∥B2WBT

2σ∥2

where ∥(B2WBT
2 )∥ ≤ ∥B2B

T
2 ∥ = 1, together with the fact ∥WBT

2 ∥ ≤ ∥W∥∥BT
2 ∥ ≤ 1 for all (w1, . . . wnu

) ∈ W ,
it follows that when σ ̸= 0

σT(B2WBT
2 )σ̇ = −(ρ+ η)

∥σ∥
∥B2WBT

2σ∥2 − (ρ+ η)σT(B2WBT
2 )(MB1B

N
2 B

+
2 )(B2WBT

2 )
σ

∥σ∥
−σT(B2WBT

2 )(I −MB1B
N
2 WBT

2 −B2WBT
2 )νl(t)

+σT(B2WBT
2 )(Ã

δ
2ẽ(t) + Ãδ

2x̃m(t))

≤ −(ρ+ η)

∥σ∥
∥B2WBT

2σ∥2 +
(ρ+ η)

∥σ∥
∥B2WBT

2σ∥2∥(MB1B
N
2 B

+
2 )∥

+∥B2WBT
2σ∥∥(I −MB1B

N
2 WBT

2 −B2WBT
2 )∥∥νl(t)∥

+∥B2WBT
2σ∥∥(Ãδ

2ẽ(t) + Ãδ
2x̃m(t))∥

≤ ∥B2WBT
2σ∥

(
− (ρ+ η)

∥σ∥
∥B2WBT

2σ∥(1− γ1γ0)

+(2 + γ1)∥νl(t)∥+ (γ4∥e(t)∥+ γ5)

)
(62)

since ∥MB1B
N
2 B

+
2 ∥ ≤ ∥MB1B

N
2 ∥∥B+

2 ∥ ≤ γ0γ1, and

∥I −MB1B
N
2 WBT

2 −B2WBT
2 ∥ ≤ 1 + ∥MB1B

N
2 WBT

2 ∥+ ∥B2WBT
2 ∥ ≤ 2 + γ1

Using the Rayleigh principle, −∥B2WBT
2σ∥2 ≤ −λ(B2WBT

2 )
2∥σ∥2 = −w2∥σ∥2. This together with the fact that

λ̄(B2WBT
2 ) = 1, means inequality (62) implies

σT(B2WBT
2 )σ̇ ≤ −w2∥σ∥(ρ+ η)(1− γ1γ0) + ∥σ∥(2 + γ1)∥νl(t)∥+ ∥σ∥(γ4∥e(t)∥+ γ5)

= w2∥σ∥(1− γ1γ0)
(
− (ρ+ η) + ζ(2 + γ1)∥νl(t)∥+ ζ(γ4∥e(t)∥+ γ5)

)
≤ w2∥σ∥(1− γ1γ0)

(
− (ρ+ η) + ζ(2 + γ1)(l1∥e(t)∥+ l2) + ζ(γ4∥e(t)∥+ γ5)

)
= w2∥σ∥(1− γ1γ0)

(
− (ρ+ η) + ζ( γ4 + (2 + γ1)l1︸ ︷︷ ︸

r̄1

)∥e(t)∥+ ζ( γ5 + (2 + γ1)l2︸ ︷︷ ︸
r̄2

)
)

(63)

where ζ is defined in (57), and r̄1 and r̄2 are defined in (52). Using (50) and (51), inequality (63) above can be
written as

σT(B2WBT
2 )σ̇ ≤ −w2∥σ∥(1− γ1γ0)η − w2∥σ∥(1− γ1γ0)(r̄1∥e(t)∥+ r̄2)(r(t)− ζ) (64)
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Finally, substituting (54) and (64) into (59) yields

V̇ ≤ −w2∥σ∥(1− γ1γ0)η − w2∥σ∥(1− γ1γ0)(r̄1∥e(t)∥+ r̄2)(r(t)− ζ)

+w2(1− γ1γ0)(r(t)− ζ)
(
r̄1∥e(t)∥+ r̄2

)
Dϵ(∥σ(t)∥)

− b
a
w2(1− γ1γ0)(r(t)− ζ)r(t) (65)

If ∥σ∥ > ϵ then Dϵ(∥σ∥) = ∥σ∥ and so substituting in (65) and simplifying terms yields

V̇ ≤ −w2∥σ∥(1− γ1γ0)η −
b

a
w2(1− γ1γ0)(r(t)− ζ)r(t) (66)

By construction 0 ≤ γ1γ0 < 1 and r(t) ≥ 0. Further manipulation of (66), and using (57) yields

V̇ ≤ −w2∥σ∥(1− γ1γ0)η −
b

a
w2(1− γ1γ0)(

1

2
ζ − r)2 +

b

4a

1

w2(1− γ1γ0)
(67)

since expanding the quadratic term on the right-hand side of (67) gives the right-hand side of (66). If ∥σ∥ > ϵ, then
w2∥σ∥(1− γ1γ0)η ≥ w2(1− γ1γ0)ηϵ. The quantities ϵ, η, a and b are design parameters and so if they are chosen
to satisfy

ϵη ≥ b

4a

1

w4(1− γ1γ0)2
=

b

4a
ζ2 (68)

then from (67)
V̇ ≤ − b

a
w2(1− γ1γ0)(

1

2
ζ − r)2 ≤ 0

If ∥σ∥ < ϵ then Dϵ(∥σ∥) = 0 and so substituting in (65) and simplifying terms yields

V̇ ≤ −w2∥σ∥(1− γ1γ0)η − w2∥σ∥(1− γ1γ0)(r̄1∥e(t)∥+ r̄2)(r(t)− ζ)

− b
a
w2(1− γ1γ0)(r(t)− ζ)r(t) (69)

Notice by construction γ1γ0 < 1 and r(t) ≥ 0 and therefore for ∥σ∥ < ϵ and r(t) > ζ, it follows V̇ < 0. Define a
rectangle in IR2 as R = {(∥σ∥, r) | ∥σ∥ ≤ ϵ, 0 ≤ r ≤ ζ} (70)

Also define R+ ∈ IR2 as R+ = {(∥σ∥, r) | r ≥ 0}. By construction of the adaptive gains, r(t) ≥ 0 for all time
and so the trajectory of (∥σ(t)∥, r(t)) ∈ R+ for all time, and so outside the set R∩R+ = R, from (67) and (69),
the derivative of the Lyapunov function V̇ < 0. Let Vd denote the truncated ellipsoid

Vd = {(∥σ∥, r) | V (∥σ∥, r) ≤ d} ∩ R+

where V (·) is defined in (58). Because R in (70) is a compact set, for a given w > 0, there exists a unique d0 > 0
such that d0 = min{d ∈ IR+ | R ⊂ Vd}. As shown in Figure 13, since R ⊂ Vd0

, it follows outside Vd0
the

derivative of the Lyapunov function V̇ < 0 and so Vd0
is an invariant set which is entered in finite time t0. Since

Vd0
is entered in finite time, V (∥σ∥, r) ≤ d0 for all t > t0 which implies ∥σ∥ ≤

√
2d0/w for t > t0, and hence σ

enters and remains in a boundary layer of size
√
2d0/w around the ideal sliding surface S.

 
                                                
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                                    
 

            
 

                  
 
        

                                                                                                                     

                                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Level set of the Lyapunov functions V
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