Appendix A

Mineralogical report on ceramics

Jens Andersen, David Dawson and Gavyn Rollinson

Mineralogical analysis was carried out by QEMS-CAN using the methodology described by Andersen *et al.* (in press). Four major mineralogical types were recognised and the key mineralogical characteristics of these types are listed in Table A.1 on the next page. A list of potential minerals included in the QEMSCAN mineral groups is given in Table A.2 on page 291.

Results of the Mineralogical Analysis

The most obvious result of the mineralogical analysis is that the sherds from production sites display consistent mineralogical groupings that appear to relate to differences in the local bedrock geology. Although the present dataset does not adequately account for variability within and between sites, these geological correlations to some extent corroborate the existing archaeological groupings. Particularly significant mineralogical differences separate the West Somerset types produced on Triassic bedrock formations from the East and South Somerset types, represented by samples from Donyatt and Wanstrow, that were produced on Jurassic bedrock. The dominance of alkali feldspar over plagioclase and the near absence of kaolinite are the most significant characteristic features of the West Somerset types. We have not examined enough samples from East and South Somerset to generalise about their particular characteristics.

Sherds from Taunton Castle are mineralogically similar to the sherds from production sites but also include additional types that cannot presently be linked to production sites based on the samples studied here.

A further significant observation is that the sherds have significant mineralogical differences between their inclusions and matrix. The abundance of inclusions is very variable, and in some cases for the post-medieval less than one volume percent. It is particularly worrying that sherds that are visually very similar have significantly different inclusion populations and matrix compositions. This demonstrates, perhaps, how difficult it is to establish the provenance of pottery fabric types based on their inclusion mineralogy using optical microscopy. Generally (for types A, B, and C) the inclusion populations can be described as simple mixtures of two minerals, and it is likely that they have been derived from distinct sources that are relatively mineralogically pure. While some accidental inclusions are likely, the uniform mineralogy of the inclusions between different types makes it more likely that the pottery was intentionally engineered from components that had been deliberately sourced as appropriate materials for tempering of different wares. Type D in contrast, has a very mixed inclusion population, perhaps reflecting less refinement in the material selection.

Some mineralogical differences undoubtedly have geological explanations, particularly the clay minerals which are always fine grained in geological materials, and therefore distinct matrix components. A more interesting mineral is the plagioclase feldspar, which consistently reports to the matrix. While plagioclase would geologically not always be expected to be fine grained, it appears to be a characteristic component of the clays used for types B, C, and D.

The presence of glauconite is particularly significant in Somerset as it could be used as an indicator of Upper Greensand derived material (Allan *et al.* 2011). It is no surprise, therefore, that sherds from Donyatt site 4 (type B1) and Langford Budville (type A), which come from sites that are near geological exposures of the Upper Greensand, have significant glauconite. It is more A The clay composition of the matrix is dominated by Fe–Al–K silicates with some muscovite/illite. This type has no or little kaolinite. Inclusions are predominantly quartz and Kfeldspar. Plagioclase feldspar and calcite are absent from both inclusions and matrix. Glauconite is locally significant.

Type A appears to be consistent with samples from the West Somerset production sites at Crowcombe (Figure A.14), Langford Budville (Figure A.17), Nether Stowey (Figure A.18) and Wrangway (Figure A.21) and with Taunton Castle fabric types 74, 83 and 89 (Figure A.11 to Figure A.13).

- B The clay composition of the matrix is a mixture of Fe–Al–K silicates and kaolinite (between 1:1 and 2:1) with significant (although less) muscovite/illite. The matrix has significant Fe–Al silicates and plagioclase feldspar. Two subtypes are defined by differences in the inclusions:
 - B1 Inclusions of quartz and K-feldspar. Glauconite is locally significant but calcite is absent. This subtype includes Donyatt Site 4 (Figure A.15) and the two samples from Wanstrow (Figure A.19 and Figure A.20) as well as two sherds from Taunton Castle fabric types unclassified and type 14 (Figure A.2 and Figure A.7)
 - B2 Inclusions of quartz and calcite with minor K-feldspar. This subtype includes four medieval sherds from Taunton Castle fabric types 3, 7B, 8 and 15 (Figure A.3, Figure A.5, Figure A.6 and Figure A.8). No examples were studied from potential production sites.
- C The matrix clay composition of type C is closely similar to type B except the content of kaolinite appears to be slightly less. Inclusions are 60–70 percent calcite with the remaining being quartz and minor alkali feldspar.

This group includes two medieval sherds from Taunton Castle fabric types 7A and 23 (Figure A.4 and Figure A.9), while no examples were examined from potential production sites.

D The clay composition of the matrix is predominantly kaolinite and muscovite/illite with only minor Fe–Al–K silicates. Quartz is below 20 percent and plagioclase dominates over alkali feldspar. The inclusion population is much more diverse than in all other types. Around 70 percent is quartz but the remaining 30 percent include alkali feldspar, muscovite/illite, kaolinite, and Fe–Al silicates

The group includes Donyatt Site 13 (Figure A.16) and a single sherd from Taunton Castle fabric type 62 (Figure A.10), both of which are post-medieval.

Table A.1: Mineralogical types

surprising that other samples in close proximity to the Upper Greensand exposures (particularly that from Wrangway) have little if any glauconite.

Of the three medieval sherds that were previously identified to have Upper Greensand components, our results confirm significant glauconite in two (type C) but not the third (type B2). It is particularly striking (on the basis of the occurrence of glauconite), that either the Upper Greensand derived material has been used locally in the production of most of the different mineralogical types (not confined to either the medieval or the post-medieval production), or that glauconite occurs more widely across the county.

The Effect of Firing Earthenwares on their Mineralogy

The very purpose of pottery firing is to introduce mineralogical changes, which as a consequence will alter the physical properties of the pottery fabric. The conditions under which these changes take place fundamentally determine the properties of the final product. However, although the products of the firing are reasonably predictable within the context of individual production sites and periods, the complex mineralogical changes that the materials undergo are only poorly understood.

Most analytical work in relation to pottery firing is either carried out on sherds from archaeological contexts, or from samples prepared from possible clay sources prepared in the laboratory. The essential difference is that it is likely that

Fe sulphides	pyrite, marcasite, pyrrhotite (and possibly jarosite)
Pb glaze	Pb bearing silicates, oxides and sulphides/sulphates
Barite	barite
Chrome spinel	chromite, chrome spinel
Fe Ox/CO ₃	siderite, haematite, magnetite, goethite, ochre and limonite
Mn phases	all manganese bearing minerals including pyrolusite, rhodonite, rhodocrosite and umber
Rutile	rutile, anatase, brookite
Ilmenite	ilmenite
Zircon	zircon
REE phases	monazite, xenotime, allanite
Quartz	quartz, opal, chert, flint, chalcedony
Plagioclase feldspar	plagioclase feldspar
K-Feldspar	orthoclase, sanidine, microcline
Muscovite/Illite	muscovite, illite
Fe Al K silicates	iron-bearing clays, biotite mica
Glauconite	any phase with Fe, Al, K,Mg, Si, O
Kaolinite	kaolinite, halloysite, dickite, kyanite, sillimanite, andalusite
Tourmaline	tourmaline
Fe Al silicates	chlorite/clinochlore, nontronite, vermiculite
Mg Al silicates	palygorskite, magnesiochloritoid
Mg silicates	asbestos, talc, serpentine minerals
Ca Fe Al silicates	epidote, zoisite, clinozoisite
Calcite	calcite, chalk, limestone, lime, ankerite, dolomite
Ca phosphates	apatite, tooth and bone material
Others	any other mineral

Table A.2: Mineral groups used in the QEMSCAN analysis

the former were fired and exposed to the naked flame in a simple kiln with a regimen of oxidation, reduction and final reoxidation as described by Dawson and Kent (1999, 165–67) following experimental work with Dr Andy Tubb; the latter most often in an oxidising atmosphere in an electric kiln where the firing temperature can be controlled. What has been little explored is what changes occur to the mineralogy of the matrix and inclusions in pottery when fired in the former way. That there are changes can be observed in the finished pottery.

Setting aside the changes to glazes, perhaps the most obvious change is that the matrix changes colour. A typical plain red earthenware clay that will fire orange to red when fully oxidised, will fire grey to black when reduced. When reoxidised however the same ware may change to buff to pale orange in colour. At any event the reoxidised colour will be paler than the fully oxidised colour. A core of reduced clay may be left grey or black while the surface has reoxidised. The principal active constituents here are iron compounds but a similar though less marked change can be seen in other less iron-rich clay bodies. This implies that the firing cycle is changing other constituents as well.

Two observable changes to specific inclusions may be cited. Organic material may by accident or design be used to temper the ware such as the grass-tempered ware found at Cadbury-Congresbury (Rahtz 1974, 108). It is not uncommon to find that this material has been burnt out of the fabric leaving voids which may provide a detailed cast of the original. Some types of calcareous material will undergo the conversion to quicklime. The change manifests itself as a problem when the lime rehydrates increasing its volume and causing a spall on the surface of the vessel. It is a fault with certain clays once used in the Bridgwater potteries where the specks of lime were characterised by the clay-diggers in former

Figure A.1: Distribution of evidence of post-Roman pottery production sites in Somerset and surrounding area pre 1800. For key to sites see Table A.3 on the facing page

times as "fossilised bird turds." Other calcareous inclusions may leach out during firing and burial leaving a corky surface appearance such as in Pearson's Taunton fabric type 180 (Pearson 1984c, I.47, 11).

A potential explanation for the lack of glauconite identified in our analysis could relate to the thermal stability of the mineral. Geologically, glauconite is an indicator mineral for sediments deposited in marine environments, and it is poorly preserved in rocks that have been subjected to elevated temperatures after their deposition. This causes us to suggest that the thermal stability of glauconite is indeed extremely limited, and it may also break down under certain conditions during firing. A study by Basso et al. (2008) documents visual changes to glauconite pellets during the firing process, and we suggest that these changes are not merely changes to the colour but are caused by the thermal decomposition of the glauconite itself. Although we are currently only able to speculate, it may explain the absence of glauconite in some sherds that have previously been linked to Upper Greensand derived materials. We suspect that the red-brown inclusions of Fe-Al silicates and K-feldspar (which are particularly abundant in the sherds from Wanstrow and Donyatt site 13) may represent thermally decomposed glauconite in pottery that had been subjected to somewhat higher firing temperatures than those of the sherd from Donyatt site 4.

To conclude, the process employed in firing most pottery from archaeological contexts will change the chemistry and physical form of the mineralogy of the clay body from its raw state to its fired state in a different way to an oxidising firing under laboratory conditions.

Medieval potteries

- 1 Batcombe, documentary evidence of land held by potters 1189 (le Patourel 1968, 123, 125).
- 2 Bristol Redcliffe (Wilson and Moorhouse 1971, 152).
- 3 Bristol St Peter, 14th-century pottery waste (Dawson *et al.* 1972).
- 4 Bridgwater, documentary evidence (le Patourel 1968, 125).
- 5 Butleigh, documentary evidence of land held by potters 1189 (le Patourel 1968, 123, 125).
- 6 Chard, documentary evidence of land held by potters 1265 (le Patourel 1968, 123, 125).
- 7 Donyatt sites 1 and 2, documentary evidence (Coleman-Smith and Pearson 1988; le Patourel 1968, 125).
- 8 Evercreech, documentary evidence of land held by potters 1272 (le Patourel 1968, 123, 125).
- 9 Glastonbury, documentary evidence (le Patourel 1968, 125); 14th-century waste pottery from Bove Town (C and N Hollinrake pers. comm.).
- 10 Ham Green, kiln and mid 12th- to 13th-century pottery waste (Barton 1963; Ponsford 1991).
- 11 Ilchester, documentary evidence (le Patourel 1968, 125).
- 12 Llandaff, Cathedral School, 14th-century waste of "Vale ware" pottery and tile (M Redknap and A Forward pers. comm.).
- 13 Long Ashton, documentary evidence (le Patourel 1968, 125) and possible 13th-century cooking pot waste (Ponsford 1987, 82).
- 14 Milverton, documentary evidence of land held by potters 1265 (le Patourel 1968, 123, 125).
- 15 Nether Stowey, documentary reference to right to make pottery *ab antiquo* 1275 and possible kiln site (le Patourel 1968, 104, 125).
- 16 Pill, documentary evidence of duration from 13th to 18th centuries (le Patourel 1968, 123, 125); 13th-century waste pottery (Ponsford 1987, 81).
- 17 Blackdown Hills, Upper Greensand derived wares, based on geological examination and ICP analysis (Allan *et al.* 2011).
- 18 Wrington, documentary evidence of land held by potters 1234 (le Patourel 1968, 125).

Post-medieval potteries (*waste pottery sampled)

- 19 Bridgwater (Boore and Pearson 2010).
- 20 Brislington, St Anne's (Pountney 1920, 23–40).
- 21 Bristol, pottery production until 1968 including tin-glazed earthenwares and creamware (Pountney 1920; Witt 1979), 18th-century waste of yellow slipwares and stoneware (Barton 1961), 19th-century kilns and waste mocha ware at Crews Hole (Marochan 1962), red earthenwares (Brears 1971, 199–200).
- 22 Chard and Chardstock, 17th- to 18th-century kiln furniture from field walking (R Carter and P Woods pers. comm.), South Somerset group of wares.
- 23* Crowcombe, 16th-century pottery waste (Dawson pers. obsv.), one of the West Somerset group of wares.
- 24* Donyatt (sites 4 and 13 sampled), the principal centre of making South Somerset wares (Coleman-Smith and Pearson 1988; Coleman-Smith 2002).
- 25 Dunster (Dawson and Kent 2008a).
- 26 Hemyock, 17th-century waste pottery (J. Allen pers. comm.)
- 27 Holnest, documentary evidence (Brears 1971, 178), late 16th to early 17th-century waste pottery (Dawson and Kent pers. comm.)
- 28* Langford Budville, 17th-century waste saggars (Ponsford 1987, 85), 18th-century red earthenware waste (Dawson pers. obsv.), one of the West Somerset group of wares.
- 29 Lyme Regis, Hole Common, 18th-century waste pottery (Draper 1982).
- 30* Nether and Over Stowey (Coleman-Smith and Pearson 1970; Dunning 1985, 195), one of the West Somerset group of wares.
- 31* Nunney and Trudoxhill (samples Wanstrow A and Wanstrow B from Nunney Catch) 17th to 18th-century pottery waste identical to and grouped with the Wanstrow or East Somerset wares (Vranch 1988).
- 32* Wanstrow, kilns reported (Nunney Catch samples A and B, see 31), a centre making East Somerset wares.
- 33 Wincanton, Ireson Cottage, 18th-century tin-glazed earthenware kiln and waste (Dawson and Kent 2008b).
- 34 Wiveliscombe, 17th-century waste pottery (Ponsford 1987, 85).
- 35* Wrangway, 18th-century kilns and red earthenware waste (Dawson *et al.* 2001), one of the West Somerset group of wares.

 Table A.3: Evidence of post-Roman pottery production sites in Somerset and surrounding area pre 1800. For locations see Figure A.1 on the facing page

¹ Mineral groups listed in Table A2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.2: Mineralogy report on pottery fabric (unclassified) by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

Sample: TC 003, context 885			CSM lab code: C05120012	
Type TC 003, context 09/885: CSM Lab code COS120012.		Type TC 003, context 0	P/B5: C5M Lab code COS120012.	
Fabric description		Mineralogical desc	(Grid = 3 x 3 cm)	
Fabric description: a hard-fired ware rec	luced grey with	The sherd has 76 ve	ol% matrix and 24 vol% inclusions.	
reoxidised orange blushes; smooth cork water-worn quartz up to 2mm, crushed limestone (microfossils) again up to 2mr	y surface with chert and n in size	The inclusion popu quartz (92 vol%) an The matrix is comp kaolinite (10 vol%) minor quartz (8 vol muscovite/illite (4 vol	lation is almost exclusively made of d calcite (7 vol%). osed of Fe-Al-K silicates (53 vol%) with and plagioclase feldspar (15 vol%) and %), calcite (5 vol%) and	
Form		Mineralogical type		
Rim of hand-built jar [cooking pot] with	flared neck	B2		
Analogues				
Mixed Upper Greensand derived materi centuries	als; 11th-12th			
Visual appearance of thin section (transmitted light)	Mineralo	gical map	Key to mineral map ¹	
			Fe sulphides Pb glaze Barite Chrome spinel Fe Ox/CO3 Mn phases Rutile Ilmenite Zircon REE phases Quartz Plagioclase feldspar K-Feldspar Muscovite/Illite Fe AI K silicates Glauconite Kaolinite Tourmaline Fe AI silicates Mg AI silicates Ca Fe AI silicates Ca Fe AI silicates Calcite	

• •					
Vineralogical compositi	on			Particle size distrib	bution
	Matrix I	nclusions	Bulk		
Fe sulphides	0.019	0.000	0.014	Matrix (< 63 µm)	= 76.3 vol%
Pb glaze	0.002	0.000	0.001		
Barite	0.000	0.000	0.000	Inclusions (> 63 µn	n) = 23.7 VOI%
Chrome spinel	0.001	0.000	0.001		
Fe Ox/CO3	0.507	0.076	0.405		
Mn phases	0.018	0.001	0.014		
Rutile	0.531	0.014	0.408		
Ilmenite	0.009	0.000	0.007		
Zircon	0.010	0.000	0.007		
REE phases	0.000	0.000	0.000		
Quartz	7.617	91.747	27.597		
Plagioclase feldspar	15.444	0.066	11.792		
K-Feldspar	1.318	0.195	1.052		
Muscovite/Illite	4.382	0.025	3.347	Measurement stat	tistics
Fe Al K silicates	52.811	0.169	40.309		
Glauconite	0.091	0.029	0.076		
Kaolinite	10.421	0.017	7.950	Total measuremen	nt points = 3271938
Tourmaline	0.016	0.121	0.041	Measurement snar	$ring = 10 \mu m$
Fe Al silicates	1.608	0.083	1.246	Wiedbarennene spa	
Mg Al silicates	0.002	0.000	0.001		
Mg silicates	0.040	0.000	0.030		
Ca Fe Al silicates	0.240	0.000	0.183		
Calcite	4,798	6.755	5.263		
Caphosphates	0.088	0.701	0.234		
Others	0.028	0.000	0.021		
/isual representation of	mineralogy				-
Лatrix		Inclusion	าร		Bulk
FAKS	pl ms/ill ksp		cc qz		FAKS pl

¹ Mineral groups listed in Table 2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.3: Mineralogy report on pottery fabric 003 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

Sample: TC 007A, context 45			CSM lab code: C05120003	
Type TC 007A, context 05/45: CSM Lab code COS120003.		Type TC 007A, context	rt 05/45: CSM Lab code COS12000J.	
Fabric description		Mineralogical desc	(Grid = 3 x 3 cm)	
Hard-fired coarse earthenware with dar core and light grey exterior; with crushe limestone inclusions <3mm	rk grey reduced ed quartz and	The sherd has 77 v inclusion populatic (61 vol%) and quar The matrix is comp kaolinite (14 vol%) (9 vol%), muscovite	ol% matrix and 23 vol% inclusions. The on is composed exclusively of calcite tz (39 vol%). oosed of Fe-Al-K silicates (39 vol%) with , calcite (15 vol%), plagioclase feldspar e/illite (9 vol%) and quartz (7 vol%).	
Form		Mineralogical type		
Body sherd of a hand-built open jar/coc	oking pot	C		
Visual appearance of thin section (transmitted light)	Mineralo	gical map	Key to mineral map	
			Fe sulphides Pb glaze Barite Chrome spinel Fe Ox/CO3 Mn phases Rutile Ilmenite Zircon	
			REE phases Quartz Plagioclase feldspar K-Feldspar Muscovite/Illite Fe Al K silicates Glauconite Kaolinite Tourmaline Fe Al silicates Mg Al silicates Ca Fe Al silicates Ca Fe Al silicates	

¹ Mineral groups listed in Table 2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.4: Mineralogy report on pottery fabric 007A by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.5: Mineralogy report on pottery fabric 007B by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

Sample: TC 008=026, context 340)		CSM lab code: C05120008
Type TC 008=026, context 08/340: CSM Lab code COSI2000	8.	Type TC 008=026, cor	text 08/340: CSM Lab code COS120008.
Fabric description		Mineralogical des	(Grid = 3 x 3 cm)
surface with crushed chert, limestone an inclusions <1mm	nd quartz	The inclusion popul of quartz (~98 vol%) The matrix is compl kaolinite (28 vol%) quartz (5 vol%), pla vol%), Fe-Al silicat	on% matrix and 25 vol% inclusions. ilation is composed almost exclusively 6) with minor calcite (1 vol%). bosed of Fe-Al-K silicates (51 vol%) and with minor Fe-Al silicates (4 vol%), agioclase (3 vol%), muscovite/illite (4 es (4 vol%) and calcite (2 vol%).
Form		Mineralogical type	9
hand-built cooking pot		B2	
Analogues		-	
Upper Greensand derived wares 11th-1	2th century,		
Visual appearance of thin section	Mineralo	gical map	Key to mineral map ¹
			 Fe sulphides Pb glaze Barite Chrome spinel Fe Ox/CO3 Mn phases Rutile Ilmenite Zircon REE phases Quartz Plagioclase feldspar K-Feldspar Muscovite/Illite Fe AI K silicates Glauconite Kaolinite Tourmaline Fe AI silicates Mg AI silicates
1 cm	1	cm	Mg silicates Ca Fe Al silicates Calcite Ca phosphates Others

¹ Mineral groups listed in Table 2.

 2 gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS

= Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.6: Mineralogy report on pottery fabric 008=026 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

/lineralogical composit	on			Particle size distribution	
	Matrix	Inclusions	Bulk		
Fe sulphides	0.001	0.000	0.001	Matrix (< 63 μ m) = 72.4 vol%	
Pb glaze	0.002	0.000	0.001	$\ln(1) \sin(1) = 27.6 \text{ yell}$	
Barite	0.000	0.000	0.000	$11000015 (> 05 \mu 11) = 27.0 v01/6$	
Chrome spinel	0.001	0.000	0.001		
Fe Ox/CO3	0.066	0.129	0.083		
Mn phases	0.795	0.294	0.656		
Rutile	0.325	0.000	0.236		
Ilmenite	0.017	0.012	0.016		
Zircon	0.008	0.018	0.011		
REE phases	0.002	0.000	0.002		
Quartz	5.449	98.611	31.137		
Plagioclase feldspar	2.747	0.000	1.990		
K-Feldspar	1.016	0.117	0.768		
Muscovite/Illite	5.152	0.022	3.737	ivieasurement statistics	
Fe Al K silicates	54.122	0.084	39.222		
Glauconite	0.298	0.094	0.242		
Kaolinite	23.821	0.089	17.277	Total measurement points = 2319625	
Tourmaline	0.056	0.000	0.040	Measurement spacing = 10 µm	
Fe Al silicates	5.562	0.255	4.099	medsurement spueing - 10 µm	
Mg Al silicates	0.001	0.000	0.001		
Mg silicates	0.022	0.000	0.016		
Ca Fe Al silicates	0.030	0.000	0.021		
Calcite	0.446	0.275	0.399		
Caphosphates	0.049	0.000	0.036		
Others	0.012	0.000	0.009		
/isual representation of	f mineralogy	/ ²		D. II.	
latrix		Inclusio	ıs	Bulk	
Kin FAS qz Kin FAKS	⊷ ksp ms/ill		q	z FAKS pl ms/ill	

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.7: Mineralogy report on pottery fabric 014 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.8: Mineralogy report on pottery fabric 015 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

Sample: TC 023, context 931		CSM lab code: C05120013
Type TC 023, context 09/93: CSM Lab code COS120013.	Type TC 023, contex	c 09/93: CSM Lab code COS120013.
Fabric description	Mineralogical des	cription
surface with rough feel to the surface; fabric contains with quantities of crushed chert, quartz, limestone and fossil material <2mm.	The snerd has 83 of The inclusion pop vol%) with some of (2 vol%). The matrix is com some muscovite/i calcite (8 vol%) an plagioclase (4 vol%)	vol% matrix and 17 vol% inclusions. ulation is dominated by calcite (63 juartz (~35 vol%) and trace K-feldspar posed of Fe-Al-K silicates (54 vol%) with llite (14 vol%), quartz (11 vol%) and d minor K-feldspar (5 vol%) and 6).
Form	Mineralogical typ	e
Rim of hand-built open jar/cooking pot	C	
Analogues	-	
Upper Greensand derived 11th-12th century		
Visual appearance of thin section (transmitted light)	alogical map	Key to mineral map ¹
		 Fe sulphides Pb glaze Barite Chrome spinel Fe Ox/CO3 Mn phases Rutile Ilmenite Zircon REE phases Quartz Plagioclase feldspar K-Feldspar Muscovite/Illite Fe AI K silicates Glauconite Kaolinite Tourmaline Fe AI silicates Mg AI silicates Ca Fe AI silicates Calcite
1 cm	1 cm	Ca phosphates Others

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.9: Mineralogy report on pottery fabric 023 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

Sample: TC 062, con	text 1105				CSM lab code: C05120014
Mineralogical compositi	on			Particle size distrib	oution
	Matrix	Inclusions	Bulk		
Fe sulphides	0.002	0.000	0.002	Matrix (< 63 um)	= 99.1 vol%
Pb glaze	0.043	17.989	0.552		a = 0.0 yell
Barite	0.001	0.000	0.001		1) = 0.9 V01
Chrome spinel	0.007	0.000	0.007		
Fe Ox/CO3	0.025	0.209	0.027		
Mn phases	0.001	0.000	0.001		
Rutile	0.772	0.128	0.764		
Ilmenite	0.055	0.000	0.055		
Zircon	0.012	0.000	0.012		
REE phases	0.002	0.000	0.002		
Quartz	17.733	58.153	18.023		
Plagioclase feldspar	7.716	1.517	7.635		
K-Feldspar	5.641	8.332	5.645	Management	
Muscovite/Illite	24.999	3.383	24.723	ivieasurement stat	listics
Fe Al K silicates	9.806	0.358	9.689		
Glauconite	0.082	0.000	0.081		
Kaolinite	30.189	3.598	29.851	Total measuremen	t points = 4230938
Tourmaline	0.094	0.000	0.093	Measurement space	$ring = 10 \mu m$
Fe Al silicates	2.734	5.717	2.750	incusurement sput	
Mg Al silicates	0.022	0.000	0.021		
Mg silicates	0.012	0.000	0.011		
Ca Fe Al silicates	0.001	0.000	0.001		
Calcite	0.018	0.136	0.019		
Ca phosphates	0.015	0.480	0.019		
Others	0.016	0.000	0.016		
/isual representation of	mineralogy ²				
Matrix		Inclusior	ns		Bulk
FAKS ms/ill	pl ksp	kln ms/ill ksp	FAS	qz	FAS qz kln pl ksp FAKS ms/ill

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.10: Mineralogy report on pottery fabric 062 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.11: Mineralogy report on pottery fabric 074 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.12: Mineralogy report on pottery fabric 083 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table 2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.13: Mineralogy report on pottery fabric 089 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.14: Mineralogy report on pottery fabric 55/1992 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.15: Mineralogy report on pottery fabric Donyatt site 4 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

Sample: Donyatt Sit	e 13			CSM lab code: C05120021	
Vineralogical compositi	on			Particle size distribution	
	Matrix	Inclusions	Bulk		
Fe sulphides	0.003	0.000	0.003	Matrix (< 63 μ m) = 99.1 vol%	
Pb glaze	0.099	44.686	0.708	$\ln d \ln n (1 \cos \mu n) = 0.0 \text{ yell}$	
Barite	0.000	0.000	0.000	111111111111111111111111111111111111	
Chrome spinel	0.009	0.000	0.009		
Fe Ox/CO3	0.035	0.154	0.036		
Mn phases	0.009	0.000	0.009		
Rutile	0.781	0.000	0.772		
Ilmenite	0.055	0.000	0.054		
Zircon	0.011	0.000	0.011		
REE phases	0.001	0.000	0.001		
Quartz	15.534	36.701	15.706		
Plagioclase feldspar	7.091	0.790	7.018		
K-Feldspar	4.530	4.327	4.520		
Muscovite/Illite	27.062	3.459	26.788	Measurement statistics	
Fe Al K silicates	10.536	0.364	10.420		
Glauconite	0.210	0.018	0.208		
Kaolinite	30.381	3.099	30.066	Total measurement points = 2866664	
Tourmaline	0.092	0.000	0.091	Measurement spacing - 10 um	
Fe Al silicates	3.473	6.400	3.494	Wedstrement spacing - 10 µm	
Mg Al silicates	0.018	0.000	0.018		
Mg silicates	0.036	0.000	0.036		
Ca Fe Al silicates	0.001	0.000	0.001		
Calcite	0.017	0.000	0.017		
Caphosphates	0.005	0.000	0.005		
Others	0.000	0.000	0.011		
/isual representation of	mineralogy	,			
Лatrix		Inclusio	ns	Bulk	
FAS kin FAKS ms	z pl ksp /ill	ms/ill kst	qz	gz FAS qz kin pl ksp FAKS ms/ill	

¹ Mineral groups listed in Table 2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.16: Mineralogy report on pottery fabric Donyatt site 13 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.17: Mineralogy report on pottery fabric 85/1994 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.18: Mineralogy report on pottery fabric Nether Stowey by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

Sample: Wanstrow A			CSM lab code: C05120017
Wanstrow A: CSM Lab code COS120017.		Wanstrow A: CSM Lab	rode COSI20017.
Fabric description		Mineralogical deso	(Grid = 3 x 3 cm)
grey core and outer surface and reoxide brown zone and inner surface; very fine surfaces reflecting the fine sandy struct very occasional specks of mica	sandy feel to the ure to the fabric;	The inclusion popul of quartz (~88 vol% Fe-Al silicates and The matrix is a mix kaolinite (21 vol%) muscovite/illite (6 and plagioclase fel	(1% matrix and 5 vol% inclusions. lation is composed almost exclusively (and K-feldspar (~9 vol%) with minor traces of kaolinite and Fe-Al-K silicates. ture of Fe-Al-K silicates (42 vol%), and quartz (18 vol%) with some vol%); minor Fe-Al silicates, K-feldspar dspar and traces of rutile.
Form		Mineralogical type	2
Body sherd of a wheel-thrown small jar		B ₁	
Analogues			
East Somerset ware 17th-18th century			
Visual appearance of thin section (transmitted light)	Mineralo	gical map	Key to mineral map ¹
			Fe sulphides Pb glaze Barite Chrome spinel Fe Ox/CO3 Mn phases Rutile Ilmenite Zircon REE phases Quartz Plagioclase feldspar K-Feldspar Muscovite/Illite Fe Al K silicates Glauconite Kaolinite Tourmaline Fe Al silicates Mg Al silicates Mg silicates
1 cm		1 cm	Calcite Caphosphates Others

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.19: Mineralogy report on pottery fabric Wanstrow A by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.20: Mineralogy report on pottery fabric Wanstrow B by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ

¹ Mineral groups listed in Table A.2.

² gz = glaze, qz = quartz, pl = plagioclase, ksp = K-feldspar, ms/ill = muscovite/illite, FAKS = Fe-Al-K silicates, glt = glauconite, kln = kaolinite, FAS = Fe-Al silicates, cc = calcite

Figure A.21: Mineralogy report on pottery fabric 91/1995 by QEMSCAN analysis. Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, TR10 9EZ