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A maximum-likelihood method for fitting colour–magnitude diagrams
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ABSTRACT

We present a maximum-likelihood method for fitting two-dimensional model distributions to
stellar data in colour–magnitude space. This allows one to include (for example) binary stars
in an isochronal population. The method also allows one to derive formal uncertainties for
fitted parameters, and assess the likelihood that a good fit has been found. We use the method
to derive an age of 38.5+3.5

−6.5 Myr and a true distance modulus of 7.79+0.11
−0.05 mag from the V

versus V − I diagram of NGC 2547 (the uncertainties are 67 per cent confidence limits, and the
parameters are insensitive to the assumed binary fraction). These values are consistent with
those previously determined from low-mass isochronal fitting, and are the first measurements to
have statistically meaningful uncertainties. The age is also consistent with the lithium depletion
age of NGC 2547, and the Hipparcos distance to the cluster is consistent with our value.

The method appears to be quite general and could be applied to any N-dimensional data
set, with uncertainties in each dimension. However, it is particularly useful when the data are
sparse, in the sense that both the typical uncertainties for a data point and the size of structure
in the function being fitted are small compared with the typical distance between data points.
In this case binning the data will lose resolution, whilst the method presented here preserves
it.

Software implementing the methods described in this paper is available from
http://www.astro.ex.ac.uk/people/timn/tau-squared/.

Key words: methods: data analysis – methods: statistical – techniques: photometric – stars:
fundamental parameters – open clusters and associations: general – open clusters and associ-
ations: individual: NGC 2547.

1 I N T RO D U C T I O N

The extraction of astrophysical parameters from colour–magnitude
diagrams (CMDs), has been a crucial technique for astronomy since
the discovery of the CMD as a diagnostic tool (almost certainly
attributable to Hertzsprung 1911). Since a coeval population of
singe stars occupies a curve in a CMD, comparison with theoreti-
cal isochrones should allow a determination of global properties of
the population such as age, distance and metallicity. Unfortunately
such determinations have been hampered by the lack of good statis-
tical methods for carrying out the comparison between observation
and theory. For galactic astronomy, the main technique has been a
visual comparison of isochrones with the data (although more so-
phisticated methods have been used for resolved populations in other
galaxies). This not only leads to questions of objectivity, but also
makes it impossible to derive statistically meaningful uncertainties
for parameter estimates.

�E-mail: t.naylor@exeter.ac.uk

Were the problem simply fitting a set of data points with un-
certainties in one dimension (say colour) to a curve then classical
χ2 analysis would suffice. Unfortunately a data point in colour–
magnitude space has uncertainties in both colour and magnitude.
(In addition the uncertainties are normally correlated, but as shown
by Tolstoy & Saha 1996, this can be overcome by transforming
the problem into a magnitude-magnitude space.) This problem can
still be solved analytically if the curve is actually a straight line
(Nerit, Saittaf & Chiofalo 1989, and references therein). Flannery
& Johnson (1982) extended this analytical approach to the general
case of a curve by a small curvature approximation. Their method
has been used on a significant volume of data, including globular
clusters (Durrell & Harris 1993; Borissova, Markov & Spassova
1997) single-age extra-galactic populations (Georgiev et al. 1999)
and young (<10 Myr-old) populations (Jordi, Trullols & Galadi-
Enriquez 1996; Trullols & Jordi 1997). None of these studies make
significant use of the uncertainty measurements, partly because of
systematics, but partly there is also the comment that they produce
shallow χ2 spaces (Heasley & Christian 1986) which result in large
derived uncertainties (Noble et al. 1991). This is clearly in part
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because the isochrones do not fit the data well, but may also be a
warning that, although one can place clusters in an age sequence by
eye, the absolute values of the ages, which must be derived by com-
parison with the model isochrones, are not as precise as we might
hope.

There is a further limitation of the Flannery & Johnson (1982)
technique, pointed out most explicitly by Galadi-Enriquez, Jordi
& Trullols (1998): no population of stars consists entirely of sin-
gle stars. Unresolved binaries make up a significant fraction of
most photometric samples, and are seen as objects which lie up to
0.75-mag brighter than the single-star sequence. Indeed, in some co-
eval populations a distinct equal-mass binary sequence is observed
0.75-mag above the single-star sequence, with unequal-mass bina-
ries lying between the two. Whilst one may be able to extract a
single-star sequence by eye and then fit it (Holland & Harris 1992),
clearly the best way is to fit the binaries as well.

Thus, one arrives at the fundamental question we address in this
paper. If the model is a two-dimensional distribution in the colour–
magnitude plane, can we derive a statistical test to fit the data to the
model? There has been some interest in using Bayesian methods to
determine the age of each star in a CMD (Jørgensen & Lindegren
2005, and references therein), and then using the mean for the cluster
age. Although von Hippel et al. (2006) demonstrate such a technique
for age determination, it is clear their work will be developed to fit
other parameters as well. The problem here, though, is the absence of
a goodness-of-fit parameter to choose between isochrones. Another
obvious solution is to bin the data into pixels, and compare this with
a model. Dolphin (1997) and Aparicio, Gallart & Bertelli (1997)
have developed this technique for large extra-galactic populations,
with Dolphin (2002) bringing much of the literature together into a
cohesive method. The problem is, however, that our data are often
sparse, by which we mean the typical separation of data points is
large compared with their uncertainties (see Fig. 1). Then binning the
data simply has the effect of washing out our hard-won photometric
precision.

Tolstoy & Saha (1996) developed a technique which does retain
the data points as points, and which can been seen as a relative of
the method we use here. They created simulated observations with a
similar number of data points to the observed data set, and then used
the distances in colour–magnitude space between the points of the
simulated and actual observations as a fitting statistic. Our method,
first presented in Naylor & Jeffries (2005), improves on this by using
a quasi-continuous 2D distribution as the model, which overcomes

Figure 1. A simulated observation of a 40-Myr-old cluster. See text for
details.

problems of sampling the model into a finite number of data points,
and allows robust uncertainties to be derived.

The method we are proposing is relatively intuitive, so rather than
embarking first on a formal analytical proof, we first give the intu-
itive interpretation (Section 2), and then discuss a numerical exper-
iment which demonstrates the technique using a simulated observa-
tion, allowing us to conclude that it recovers the correct answer and
uncertainties (Section 3). The formal proofs are in Sections 4 and 5,
and the details of practical implementation in Section 6. We draw all
the work together in an example using real data in Section 7, before
reaching our conclusions in Section 8. An alternative to reading this
paper in this order would be to gain a working understanding from
Sections 2, 3 and 7, and try the worked examples available with the
software from http://www.astro.ex.ac.uk/people/timn/tau-squared.

2 A N I N T U I T I V E I N T E R P R E TAT I O N

Fig. 1 shows a simulated observation of 100 stars drawn from a
40-Myr isochrone from D’Antona & Mazzitelli (1997), henceforth
referred to as the DAM97 isochrones. As for all the isochrones
used in this paper we have converted the isochrones from effec-
tive temperature to colour–magnitude space using the relationships
derived from fitting the Pleiades (see Jeffries, Thurston & Hambly
2001, for details). The cluster is assumed to be unreddened and at
a distance modulus of zero. The underlying power-law mass func-
tion (dN/dM ∝ M−2.1) has been chosen to give a reasonable spread
of stars over the magnitude range chosen. We have assumed that
50 per cent of the objects are unresolved binaries, but that there
are no higher order multiples. Ignoring the higher order multiples
should be a small effect since only about 5 per cent of systems have
more than two members (Duquennoy & Mayor 1991). The masses
of the secondary stars for the binaries are uniformly distributed be-
tween the primary star mass and the lowest mass available in the
DAM97 models. This is equivalent to assuming the mass-ratio dis-
tribution is flat. Whilst there are many claims for structure in the
distribution, after selection effects have been taken into account it
is hard to argue that a flat distribution is inconsistent with the data
(e.g. Mazeh et al. 2003). In addition, as we will show later the binary
fraction, and by implication mass ratio distribution, has little effect
on the parameters derived from the fits. The presence of a low-mass
cut-off in the DAM97 isochrones leads to the empty wedge between
the single-star sequence and the more equal-mass binaries visible
below V = 9 in Fig. 2. Stars in the wedge would represent binaries
where the secondary star lies below the lowest mass available in the
models, and hence no stars can be placed in this region. We will
show in Section 7.3 that the wedge has a negligible effect on our
derived parameters.

Fig. 2 shows the same model, but this time used to generate many
more objects, creating a surface density in colour–magnitude space.
(For the ease of display, we have it renormalized such that the inte-
gral along each horizontal row is one, but will ignore this renormal-
ization in what follows). Were there no uncertainties in each data
point, the relative probability of there being a data point at some
point i at (ci , mi ) is simply the value of Fig. 2 at (ci , mi ), which we
refer to as ρ(ci , mi ). Thus each data point has an associated value of
ρ, and if we multiply all these together, the resulting product, D can
be used as a fitting statistic. However, in analogy with χ2 we use
−2 ln D, which we call τ 2. One can then consider moving the model
around the plane in colour and magnitude (or perhaps distance and
reddening), until the value of D is maximized, or τ 2 is minimized.

Introducing uncertainties for each data point does not have a large
impact on the method. We introduce a two-dimensional uncertainty
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Fitting CMDs 1253

Figure 2. The expected distribution of data points underlying the simulation
in Fig. 1.

function for each data point, which we call Ui (for definiteness,
one could consider this to be a two-dimensional Gaussian). One
must now consider an uncertainty function centred at (ci , mi ), and
then integrate the product of U and ρ (the probability distribution of
Fig. 2), to obtain a probability Pi . We then calculate τ 2 as −2

∏
ln Pi .

In fact, probably the most difficult problem is introduced by the
nature of the astronomical data; since the uncertainties in, say V
and V − I are correlated, we must actually integrate under two-
dimensional Gaussians whose axis is skewed with respect to the
colour–magnitude grid (see Section 6.2).

It should be obvious from the above that this is a maximum-
likelihood method. As such it can be viewed as either Bayesian, or
conventional frequentist statistics. As we discussed in Section 1 it
can be viewed as generalizing the method of Tolstoy & Saha (1996)
to a model which provides a continuous distribution. As we will
show in Section 5.1, it can also be viewed as a generalization of χ 2.

3 A N U M E R I C A L E X P E R I M E N T

Our numerical experiment was to find the age and distance modulus
of the artificial cluster described in Section 2 from the simulated
observation we described. We followed the classical statistical path
of finding the best fit to the data, and hence derived estimated pa-
rameters (Section 3.1). We then assessed whether this was a good
fit (Section 3.2), and then on the assumption it was, derived uncer-
tainties in our fitted parameters (Section 3.3).

3.1 Fitting and parameter estimation

We compared our 100 data point simulated observation with a series
of model distributions with ages around 40 Myr. The model distri-
butions we tested against used the same binary fraction (50 per cent)
as the original simulation, and the same uniform mass-ratio distri-
bution. We could have also used the same mass function as we used
for the simulation. However, to do so would make this a highly
unrealistic simulation of fitting real data. In practice, for deriving
ages and distances the mass function is a nuisance parameter. Whilst
one may think that a simple power law could be assumed over the
mass-range of interest, this would then have to be convolved with
the (often unknown) mass-dependent membership selection criteria.
For example, in Section 7 we will use an X-ray selected sample to

Figure 3. The τ 2 space resulting from fitting the simulated observation in
Fig. 1 (see Section 3.3). The values of τ 2 are linearly scaled, and the white
lines are contours at the 67 per cent (τ 2 = 317.3) and 95 per cent (τ 2 =
322.8) confidence levels.

determine the age of NGC 2547, and the precise effect of X-ray se-
lection is unclear. We therefore normalize our model distributions to
have a constant number of stars per unit magnitude (e.g. Fig. 2). We
refer to this procedure as ‘normalizing-out’ the mass-function, and
will discuss its implications in detail in Section 6.3.3. For data sets
with well-understood membership selection criteria our procedures
can, in principle be simplified by removing the normalizing-out
of the mass-function, allowing the mass function to be derived as
well.

We tested several different offsets in magnitude for each age,
which yielded the τ 2 space shown in Fig. 3. There is a minimum at
42.5 Myr, a distance modulus of −0.0195 and τ 2 = 311.9, which
is close to the values of 40Myr and 0.0 mag of the artificial cluster
from which the simulated observation was drawn.

3.2 Goodness-of-fit

In the case of χ 2 fitting one uses the F-test, which in essence is a
prediction of the cumulative distribution of χ 2. We reject fits with
Pr(χ2) below some critical value, e.g. 5 per cent. [We use Pr(x)
throughout the paper to signify the probability that a statistic ex-
ceeds the value x. The subscript r differentiates it from P, the prob-
ability density in the colour–magnitude plane after applying the
uncertainty function.] It turns out that numerical integration allows
us to predict, after the fit is complete, the expected distribution of
τ 2 (Section 6.3.1), and thus assess the goodness of fit. Such a dis-
tribution is the smooth curve in Fig. 4. For the example given we
expect our value of τ 2 = 311.9 to be exceeded in 34 per cent of fits.
We can also normalize τ 2 in a similar way to χ2 (for a large number
of degrees of freedom) by dividing by the value we expect to be
exceeded 50 per cent of the time, which in this case gives a reduced
τ 2, of τ 2

ν = 1.02.
We can check that this is correct by creating a further 100 sim-

ulated observations, and examining the range of τ 2 this produces.
Fig. 4 shows (as a histogram) the distribution of τ 2 for from the 100
simulations. The simulations suggest that 21 per cent of observa-
tions would exceed τ 2 = 311.9; clearly smaller than the 35 per cent
our theory yields. The reason for the difference is our normalizing
out of the mass-function (see Section 6.3.3). Despite this (which is
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1254 T. Naylor and R. D. Jeffries

Figure 4. The smooth curve is the expected distribution of the probability
of obtaining a given τ 2 calculated for the simulated observation (using the
best-fitting model) in the way described in Section 6.3.1. The histogram is
the distribution of τ 2 obtained by fitting 100 further simulated observations
generated in the same was as the first.

a fundamental limit of the data, not of the τ 2 test), our method of
calculating τ 2 is good enough to show that the fit is good, and of
course relative values remain useful for testing different models.

3.3 Uncertainties for the parameters

The simplest method of estimating the uncertainties would be to
create simulated data sets starting with the parameters derived from
the observation. However, our normalizing out of the mass-function
precludes us from doing this. We therefore produce bootstrap data
sets by moving each data point at constant magnitude on to the
best-fitting isochrone, and then adding to the two magnitudes a ran-
dom offset drawn from a population with the appropriate Gaussian
distribution for the error bars associated with the data point. Since
there is not a unique isochronal colour associated with each mag-
nitude (because of the effects of binarism), we have to assign the
data point to a position in colour using the relative likelihood of
each colour drawn from the model. Hence, we have assumed that
the probability of any given combination of parameters being the
correct one is identical to the probability of obtaining those parame-
ters if the underlying model was actually the best-fitting model. We
then make 100 bootstrap data sets, and examine the resulting values
of the derived parameters, using the rms about the mean value as the
uncertainty. This gives uncertainties in distance modulus and age of
0.012 mag and 1.1 Myr, respectively.

We can test these estimates of the uncertainties using the 100
simulated observations we created for Section 3.2.1 These give a
scatter in distance modulus and age of 0.011 mag and 0.9 Myr,
in good agreement with our bootstrap method for determining the
uncertainties.

1 The situation becomes unavoidably confusing at his point, as we now have
two simulated groups of observations, each of 100 realizations. We refer to
the 100 simulated observations created for Section 3.2 in the same way as our
original simulated observation, as ‘simulated observations’. The 100 simu-
lated data sets created in Section 3.3, which in a real case would be derived
from the observation by forcing all the data back on to the isochrone and
then scattering them according to their uncertainties we refer to as ‘bootstrap
data sets’.

In practice, we are interested in more than the simple uncertain-
ties, as there is a correlation between distance modulus and age.
We deal with this in an analogous way to χ2 fitting by drawing a
contour in the τ 2 space which encloses a given fraction of the prob-
ability of where the solution lies. We take the values of the distance
modulus and age derived from each bootstrap data set, and find the
corresponding value of τ 2 in our τ 2 space derived from the first
simulated observation (Fig. 3). (Not the value of τ 2 given by the
fit to the bootstrap data sets.) This allows us to draw the contour at
constant τ 2 (317.3) which encloses 67 per cent of the derived values,
i.e. a ‘1σ ’ confidence limit. This is plotted in Fig. 3 and shows the
expected correlation between age and distance modulus.2

Again we can test this using our simulated observations from
Section 3.2. We take the values of the distance modulus and age
derived from each simulation, and find the values associated with
them from the τ 2 space derived from the first simulated observation.
67 per cent of them lie below τ 2 = 317.9. Given that we have 100
simulations, we actually require the τ 2 below which 67 per cent of
some large parent population lies, which we estimate is between
317.2 and 318.1. This range which includes the value derived using
our proposed technique, implying that technique is correct.

We also tried using a more traditional bootstrap method (e.g. Wall
& Jenkins 2003). For such a bootstrap to work the values of the
data points (or in our case the values calculated from them) must be
identically distributed (see e.g. section 15.6 of Press et al. 1992). It is
quite clear that the ages and distance moduli derived from each data
point are not identically distributed, but the traditional bootstrap
often works sufficiently accurately even when this assumption is
quite strongly violated. To see if this was the case, we created 100
new data sets by randomly selecting 100 points from the original
data. (Thus, as is normal in such a bootstrap method, a significant
fraction of the data points in each realization are the same.) We
found the rms for each parameter using this data set, which yields
uncertainties of 1.2 Myr and 0.011 mag. Again, these are consistent
with those calculated using our method. However, we found that the
suggested 67 per cent confidence contour for τ 2 is too low (314.7).
To check that this failure of the traditional bootstrap was not due
to our normalizing out the mass function we performed a similar
simulation using models which retained the mass function. Again we
found our bootstrap gave a similar confidence interval to that implied
by many simulated observations of the same ‘cluster’, but in this case
the traditional bootstrap overestimated the uncertainties. Clearly the
derived parameters from each data point are not sufficiently close
to identically distributed for the traditional bootstrap to work.

3.4 Conclusion

In this section, we have validated the τ 2 test by simulating a data set
and recovering the original parameters. We have also shown that we
can estimate reliable uncertainties in the measured parameters by
creating bootstrap data sets. The ‘base’ for the simulations is created
by moving each point in colour space until it lies on the isochrone.
By examining the range of τ 2 the values of the parameters derived
from these data sets, we can estimate confidence intervals analogous
to those used in χ 2 analysis.

2 Note that the τ 2 for the 67 per cent confidence contour is not given by 1 −
Pr(τ 2) = 0.67. The analogous case for χ2 is that for one free parameter one
uses the minimum χ2 + 1 as the confidence contour.
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Figure 5. A schematic showing a sequence S, an observed data point i and
a point M which may be its position unperturbed by observational error.

4 F O R M A L D E F I N I T I O N

Having shown by numerical experiment that τ 2 can work, we must
now put it on a formal mathematical footing. Fig. 5 shows a colour–
magnitude plane, with a sequence S and an observed data point i
at (ci , mi ). The data point will have an associated two-dimensional
probability distribution, which we will assume is Gaussian. This
allows us to calculate the probability that the true values of c and m
lie within any specified range. Thus if the data point lies at (ci , mi ),
the probability that the true value lies within an elemental box of
area dc dm about M at (c, m) can be written as Ui (c − ci , mi − m)
dc dm, where U is a 2D function which represents the uncertainty
for a given data point.

We now assume that we have a model ρ which predicts the true
density of stars in the colour–magnitude plane. If that model is, say,
a δ-function at (c, m), then the probability that our data originates
from the model is simply the integral of the product of the δ-function
and Ui . More generally, the likelihood for any given data point i is
given by

Pi =
∫

Ui (c − ci , m − mi )ρ(c, m)dc dm. (1)

If there are N data points, the likelihood that the whole distribution
originates from the model is the product of the probabilities for each
point.

D =
∏

i=1,N

Pi =
∏

i=1,N

∫
Ui (c − ci , m − mi )ρ(c, m)dc dm. (2)

If we now define τ 2 as −2 ln D, then we arrive at the formal defini-
tion of τ 2,

τ 2 = −2
∑
i=1,N

ln

∫
Ui (c − ci , m − mi )ρ(c, m)dc dm. (3)

For most practical applications Ui has Gaussian uncertainties and is
given by

Ui (c − ci , m − mi ) = exp
{−[

(c − ci )
2
/

2σ 2
ci

]
−[

(m − mi )
2
/

2σ 2
mi

]}
, (4)

where σci and σmi are the uncertainties in each measurement.
There are two obvious interpretations of equation (3). The first is

that one has simply taken the model and blurred it by the uncertain-

ties in each data point. The likelihood is then simply the product of
the values of the model at each point. Alternatively, we have inte-
grated model probability under the 2D Gaussian uncertainty surface.
In either interpretation the process of maximizing this function to
obtain the best fit is analogous to maximizing the cross-correlation
function, though one uses the product rather than the sum of the
individual pixel values.

5 S P E C I A L C A S E S

Before using our full two-dimensional implementation of τ 2 it is
useful to reduce equation (3) for three special cases. These show
how (i) τ 2 is related to χ2; (ii) that it gives the standard form for
fitting a straight line to data with uncertainties in two dimensions
and (iii) that it can also reduce to the same approximation as that
of Flannery & Johnson (1982) for curve fitting with uncertainties in
two dimensions.

5.1 Curve fitting for data with one-dimensional uncertainties

The most important special case to derive is that for when the model
predicts that a point whose true value is (c, m) should always have
an observed value of ci = c, but has a range of possible observed
values mi , represented by a Gaussian probability distribution. In this
case τ 2 should behave like χ2. Removing the dependence on c from
equations (3) and (4) yields

τ 2 = −2
∑
i=1,N

ln

∫
exp

{−[
(m − mi )

2
/

2σ 2
mi

]}
ρ(m) dm. (5)

Further, for any single data point ρ(m) is a δ function centred on m,
and with a normalization we choose to be one, thus

τ 2 = −2
∑
i=1,N

ln
(

exp
{−[

(m − mi )
2
/

2σ 2
mi

]}) =
∑
i=1,N

(m − mi )2

σ 2
mi

.

(6)

This is the standard form for χ 2 fitting to a function with uncertain-
ties in one dimension. Thus we have shown that χ2 is a special case
of τ 2, where the model is a curve and the data have uncertainties in
one dimension.

5.2 A linear isochrone

We now wish to examine the special case where the probability dis-
tribution is a linear sequence, but the data now have uncertainties in
both coordinates. We have three aims in presenting this special case.
First, to show that the standard form for fitting a straight line with
uncertainties in two dimensions is a special case of τ 2. Secondly,
we will test our (numerical) implementation of τ 2 by checking it
recovers the same answer as the analytical expression. We find that
if this is to be the case we must use the correct normalization for
ρ, which we derive below. Finally, there is an intuitive interpre-
tation of the analytical expression which is useful for interpreting
the more general case of fitting a curve with uncertainties in both
dimensions.

5.2.1 Analytical form

Formally, we wish to assess the probability that a point i at (ci , mi )
originates from the isochrone

m = dm
dc

c + k, (7)
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1256 T. Naylor and R. D. Jeffries

Figure 6. A linear isochrone which makes an angle θ with axes normalized
by the uncertainties in each dimension. The x and y-axes define a rotated
coordinate system parallel with the isochrone, centred on the data point (ci ,
mi ). Note magnitude axis is reversed.

where k is a numerical constant. We begin by changing to a coor-
dinate system (x, y), a process shown graphically in Fig. 6. We first
normalize by the uncertainties in each axis, then place (ci , mi ) at the
origin, and finally rotate the system through an angle θi such that
the x-axis lies parallel to the sequence. (We use the subscript i to
emphasize that θ depends on the uncertainties and so is potentially
different for each data point.) Thus

m − mi

σmi

= ycosθi + xsinθi , (8)

c − ci

σci

= xcosθi − ysinθi . (9)

Equation (1) then becomes

Pi =
∫

e− x2+y2

2 ρ(x, y) dx dy. (10)

In this coordinate system we denote the y-distance between the x-
axis and the sequence y0. We can now divide ρ(x, y) into ρ(x)ρ(y)
where ρ(x) is constant and ρ(y) = 0 except where y = y0. This allows
us to separate the integrals, and find that

Pi =
∫

e− y2
0
2 e− x2

2 ρ(x)ρ(y) dx dy (11)

= e− y2
0
2 ρ(x)

∫
e− x2

2 dx

∫
ρ(y) dy (12)

=
√

2πe− y2
0
2 ρ(x)

∫
ρ(y) dy. (13)

Now ρ(x)
∫

ρ(y) dy is the number of objects per unit length in x,
and in terms of the number of objects per unit magnitude, ρ(m), is
σmi sin θiρ(m), thus

Pi =
√

2πe− y2
0
2 σmi sinθiρ(m). (14)

Thus, equation (3) becomes

τ 2 =
∑
i=1,N

y2
0 − 2

∑
i=1,N

ln
(
σmi sinθiρ(m)

√
2π

)
. (15)

5.2.2 Intuitive interpretation

This equation has an intuitive interpretation, which is especially
useful for what follows. The probability that a star at (ci , mi ) origi-
nates from a given point on an isochrone is given by the probability
that there is a data point whose true value lies at that point on the
isochrone, multiplied by the probability that the uncertainties could
move it to (ci , mi ). For the whole isochrone, therefore, the probabil-
ity that it will yield a point at (ci , mi ) is given by the line integral
along the isochrone, multiplied at each point by the probability of it
being moved to (ci , mi ). This probability distribution is (in normal-
ized units) simply a two-dimensional Gaussian distribution centred
on (ci , mi ). Any linear cut through such a 2D Gaussian, such as that
made by the isochrone, is itself a 1D Gaussian, but with is peak re-

duced by e− y2
0
2 with respect to the 2D distribution. Thus the integral

along the line is the integral under this 1D Gaussian. The ratio of
the integrals under 1D and 2D Gaussians of equal peak height is
√

2π, but this must also be multiplied by the decrease in peak, e− y2
0
2 ,

explaining the form of equation (13).

5.2.3 Testing the linear isochrone

Equation 15 gives us a practicable way of fitting a linear isochrone,
by minimizing τ 2 as a function of y0 and the gradient of the isochrone
(which is related to θi ). First, if we wish τ 2 to reduce to χ2 we must
choose the normalization ofρ in equation (15). Since y0 is distributed
as a Gaussian with a standard deviation of one, this means we must
ensure the second term is zero. Thus∑
i=1,N

ln
(
σmi sinθi

√
2π

) +
∑
i=1,N

ln[ρ(m)] = 0, (16)

giving

ρ(m)−N =
∏

i=1,N

(
σmi sinθi

√
2π

)
. (17)

From Fig. 6, it is clear that θ is related to the gradient of the isochrone
by

dm
dc

= σmi

σci

tanθi . (18)

The value of y0 can be found using the above equation, and setting
x = 0 in equations (8) and (9), and substituting into equation (7) to
obtain

y0 = ci

σci

sinθi + k − mi

σmi

cosθi . (19)

For a given linear isochrone and set of simulated data points this
means we can calculate analytically a value for τ 2. We can then use
this to test the 2D numerical code we describe below.

5.2.4 Comparison with a straight line fit with 2D uncertainties

Clearly the best-fitting straight line will be obtained by minimizing
the sum over all data points of y2

0 in equation (19). We can rewrite
the equation such that

y2
0 = ci

dm
dc + k − mi

2

σ 2
mi

+ σ 2
ci

dm
dc

. (20)

This is the standard expression to be minimized for fitting a straight
line to data with uncertainties in both coordinates (e.g. Nerit et al.
1989), which demonstrates that such fitting is a special case of τ 2.
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5.3 A real isochrone

We can use the interpretation of equation (15) presented in
Section 5.2.2 to visualize the limit in which the approximation that
the isochrone is linear is no longer valid. Once the curvature of the
isochrone becomes large compared with the typical uncertainties
for a data point, then it cannot be approximated to a straight line
when the line integral is performed. However, for the case where
the curvature is small, one might still be able to use equation (15),
interpreting y0 as the distance of closest approach of the line to the
data point, and θi referring to the gradient of the isochrone at closest
approach. Although a rather different derivation, such a technique
would be identical, save some normalization factors, to the near-
point estimator of Flannery & Johnson (1982).

6 T H E T WO - D I M E N S I O NA L A P P ROAC H

6.1 Implementation

We can gain our first insights into the 2D case by reproducing the
results from the 1D-linear and 1D-real isochrones of Sections 5.2
and 5.3 using the 2D algorithm.

We evaluate the integral in equation (3) using a 2D grid. We
represent ρ(c, m) as a grid and, for reasons we will discuss later,
populate this grid by a Monte Carlo method. For these 1D isochrones
we begin by randomly selecting a magnitude, and then assigning a
colour according to the isochrone. The value of the appropriate pixel
of ρ(c, m) is then incremented by one. At the end of the Monte Carlo,
we then ensure that ρ(m) is one by dividing each pixel by the sum
of all pixels at that magnitude. This means that in practice the initial
distribution in magnitude used by the Monte Carlo is unimportant,
provided it is smooth.

For each data point we can now evaluate equation (1). We multiply
each pixel of ρ(c, m) by equation (4). In principle, before using ρ

we should correct it by the normalization given in equation (17). In
practice it is simpler to apply a correction to the ρ used for each data
point, which when the probabilities for each data point are multiplied
together gives the same effect. Thus for each data point we divide
ρ by the normalization factor σmi sinθi

√
2π. To evaluate sin θi we

require the gradient at each pixel, which we evaluate and store at
the same time as we calculate ρ(c, m), by differencing the c and
m values of the most extreme valued points from the Monte Carlo
which lie within the pixel. Of course the gradient is only defined on
the isochrone, and we need it for a general point in the CMD. We
can be arbitrary about how we make this generalization, since our
normalization is only there to ensure that if we have a straight line
(where the gradient is obviously always the same) we obtain a τ 2 of
one per data point. We therefore choose the gradient for an arbitrary
pixel to be that of the isochrone at the magnitude of the pixel. At
this point, one can test the code is functioning correctly by using a
linear isochrone and testing the result for τ 2 against the analytical
result given in equation (15).

To move to the more general 2D case one fills the array for ρ

by selecting stars randomly according to some mass function. They
are assigned companions (or not) according to the preferred binary
frequency and mass functions, and then one uses isochrones to place
the resulting systems in colour–magnitude space. The remainder of
the procedure is as before for the linear isochrone.

6.2 Correlated uncertainties

A significant issue with any CMD is that the uncertainties are cor-
related, since a change in, say V also results in a change in V −

I. Perhaps the most obvious change in formalism to deal with this
is that suggested by Tolstoy & Saha (1996), where the actual fit-
ting is carried out in a magnitude–magnitude space. We have found
it simpler (and therefore more robust against coding errors) to use
colour–magnitude space throughout our code. However, at the point
of evaluating equation (4) one can calculate the argument of the ex-
ponential in magnitude–magnitude space, reconstructing the uncer-
tainty in the second magnitude using the uncertainties in magnitude
and colour. In principle this allows considerable flexibility, including
the ability to deal correctly with data which have been created using
a colour term in the transformation from instrumental to apparent
magnitude, and a co-efficient other than unity in the transformation
from instrumental to apparent colour.

6.3 The distributions of τ 2

Once we have fitted our data, to calculate whether it is a good fit
we need to know Pr(τ 2). To calculate this we must first calculate
the distribution for a single point, and then calculate the expected
distribution for the whole ensemble of data points.

6.3.1 The τ 2 distribution for one data point

To understand the form of the τ 2 distribution it is useful to begin
by considering a classical χ2 fitting problem, but solved as though
it were suitable for τ 2. In such a problem the model isochrone is a
curve in colour–magnitude space, and the uncertainties are treated
as 2D Gaussians which are infinitely thin in the colour dimension,
and have the correct width in magnitude space to represent the 1D
uncertainty. We can calculate the chance that a star at a given point
on the sequence actually appears, due to observational error, at a
given position on the CMD. If we integrate this along the entire
sequence we obtain the probability of there being a data point at any
given position on the CMD. Since our uncertainties are Gaussian,
and the line is a form of δ-function, the distribution of probabili-
ties in the plane is itself Gaussian. Thus, the likelihood of finding a
data point at given probability, say P, is proportional to the fraction
of the CMD covered by pixels with that probability, multiplied by
P. Assuming all pixels have the same area, this can be calculated
numerically by summing the values of all pixels for which P lies
within a given (infinitesimal) range. Strictly speaking this should
only be interpreted in the cumulative sense, i.e. that the probability
of finding a data point with a probability of P or less is propor-
tional to the fraction of the area covered by each probability less
than P, multiplied by that probability, and then integrated over all
probabilities less than P. We, of course, have chosen not to work
in probability P, but in χ 2 = −2 ln P. Thus we have not quoted the
chance of a data point being at a probability P or less, rather the
chance of it lying at a given χ 2 or more.

Of course when we perform this sum over the plane, the resulting
distribution will be that of χ2. We can still retain a χ2 distribution in
the plane if we make the uncertainties two dimensional, provided we
restrict the isochrone to be a straight line. But if the model is to be a
curve, and/or include binaries, the distribution of probability in the
plane will no longer be Gaussian, and the probability of exceeding
a given value will no longer behave like χ2. We can still accu-
rately predict the distribution of values of −2 ln P we expect to get.
That is obtained by simply creating a histogram of the probabilities
from an image such as that in Fig. 7. But, this will no longer be dis-
tributed as χ 2, and to emphasize this fact we will now refer to −2 ln P
as τ 2.
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1258 T. Naylor and R. D. Jeffries

Figure 7. A model created using the DAM97 isochrones, and a binary frac-
tion of 0.5. The uncertainties used are 0.01 mag in each filter.

Figure 8. The τ 2 distribution (the probability of exceeding a given τ 2 from
the DAM97 isochrones using two different values of the uncertainty). A χ2

distribution for one degree of freedom is shown for comparison.

In Fig. 8 we show the cumulative distribution for the value of τ 2

taken from Fig. 7, where the uncertainties are 0.01 magnitudes in
each filter. When compared with the χ 2 distribution for one degree
of freedom, there are two major differences between τ 2(σ = 0.01)
and χ 2. First τ 2(σ = 0.01) has no values below about 1, and sec-
ondly it falls much more slowly. The slow fall is the effect of the
‘plateau’ region between the single and binary star sequences, which
contributes a large area of low probability, and hence high τ 2. The
absence of values below about one is the result of our requirement
that ρ(m, c) at a given magnitude integrates to one over all colours.
This imposes a maximum value on P, and hence a minimum on
τ 2. As one moves to larger uncertainties [τ 2 (σ = 0.1) in Fig. 8],
these differences become less pronounced. The change from τ 2 (σ =
0.01) to τ 2 (σ = 0.1) shows that as the uncertainties become larger,
τ 2 tends to χ2. The reason for this is clear if one compares Fig. 7
with Fig. 9. As the uncertainties become large compared with the
distance between the single and binary star sequences, we can ap-
proximate them to a single sequence.

6.3.2 The τ 2 distribution for many data points

Having calculated τ 2 for a single data point, it would appear straight-
forward to calculate it for an ensemble. We will do this by compar-
ison with the case for χ2.

Figure 9. A model created using the DAM97 isochrones, and a binary frac-
tion of 0.5. The uncertainties used are 0.1 mag in each filter. The feature at
bright magnitudes is caused by the upper cut-off in mass for the DAM
isochrones. At this cut-off the binary sequence rises to brighter magni-
tudes than the single star sequence. When the single-star sequence ends,
the smoothed sequence moves redwards.

Figure 10. The two-dimensional differential probability distribution of χ .
The contours are evenly spaced starting at a probability of zero. Note that
the axes are in χ not χ2.

The standard proof for the χ2 distribution for many data points
is a generalization of the proof for just two (e.g. Saha 1995). One
considers a two-dimensional space, with χ 1 (not χ2

1) as one axis and
χ 2 as the other. At each point in the space one evaluates the prob-
ability of obtaining simultaneously values of χ1 between χ1 and
χ 1 + dχ1 and of χ2 between χ2 and χ2 + dχ2. This probability
is simply (dPr/dχ1)(dPr/dχ2), or in more familiar terms of the dif-
ferential probability distribution of χ 2, 4χ1χ2(dPr/dχ2

1 )(dPr/dχ2
2 ).

This function is plotted in Fig. 10 using Pr(χ2) for one degree of
freedom. The figure shows that the probability of obtaining any
given value of χ 2 = χ2

1 + χ2
2 is independent of the value of either

χ 2
1 or χ 2

2. This allows the proof for χ2 to proceed to its conclusion
that the probability of obtaining any given value of χ2 is propor-
tional to χ1(dPr/dχ 2

1 ) times the length of the arc at a radius χ2 (or
more generally the area of the N-dimensional surface). The crucial
point here is the interpretation that the probability of obtaining a
given χ 2 is simply the line integral of the probability along a line
of constant χ 2. For χ2 the integral can be performed analytically,
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Fitting CMDs 1259

Figure 11. A two-dimensional differential probability distribution of τ for
the DAM97 isochrones and uncertainties of 0.01 mag (horizontal axis) and
0.1 mag (vertical axis). The contours are evenly spaced starting at a proba-
bility of zero. Note that the axes are in τ not τ 2.

because the probability is the same along a line of constant χ2; this
is not the case for τ 2, and in this case the integral must be evaluated
numerically.

Fig. 11 shows the equivalent plot to Fig. 10, but instead of χ2 =
χ 2

1 + χ2
2 we have τ 2 = τ 2(σ = 0.01) + τ 2(σ = 0.1), for the DAM97

isochrones. Before embarking on how to use this plot to determine
the probability of obtaining a given τ 2 or greater, it is useful to
understand the differences between Figs 10 and 11. The most likely
value of χ is zero, simply because the most probable position for
a data point to lie at its value before perturbation by observational
error. For τ this is not the case. At any given value of (say) V,
there are a range of actual V − I values it could have originated
from. Furthermore, the large area of the CMD covered by binaries
(albeit at a low probability), gives a very large chance that a star
will yield a high τ . This point can be emphasized in two ways. First,
collapsing the plot on to the y-axis gives the differential version of
the upper curve in Fig. 8, with its emphasis on high values of τ 2.
Secondly, collapsing the curve on to the x-axis yields a distribution
more strongly skewed to low values, as one would expect because
the larger value of σ causes the distribution to tend towards that for
χ 2.

The problem with Fig. 11, from the point-of-view of evaluat-
ing Pr(τ 2) is that (d2 Pr)/(dτ1dτ2) along a line of constant τ 2 is
not independent of either Pr [τ 2 (σ = 0.01)] or Pr [τ 2 (σ = 0.1)].
This precludes us using the analytical χ 2-method to evaluate Pr(τ 2).
However, this does not stop us undertaking a numerical line integra-
tion along fixed curves of τ 2 to evaluate the probability of exceeding
that value of τ 2. The route we have followed to perform this numer-
ical integration relies on the fact that the arc length is proportional
to the number of pixels. One can calculate a grid of the differen-
tial probability (i.e. the probability of obtaining a certain τ 2, not of
exceeding it), akin to Fig. 11 by simply multiplying the two dif-
ferential distributions together. A simple histogram of the number
of pixels with a given value of τ 2 is then (dPr/dτ 2). Unfortunately,
when one generalizes this to say, the 100 dimensions needed for a
100-point data set, the calculation becomes intractable in reasonable
computation times. We therefore perform the calculation dimension
by dimension. We take the first two τ 2 distributions, and multiply
each point in one distribution by every other point in the other. We
then bin the result into bins of τ 2 = τ 2

1 + τ 2
2 to produce a new, one-

dimensional distribution. This can then be multiplied by the next

dimension, and the process repeated until all dimensions have been
allowed for. We then integrate this to change from a differential to
a cumulative distribution.

6.3.3 τ 2
ν and practicalities

The method described thus far is very general, with little tailoring to
the specific problems of CMDs. In calculating the expected distribu-
tion of τ 2, however, we must return to the subject of normalizing-out
the mass function, a procedure first discussed in Section 3.1. If the
model for Fig. 2 included a mass function with increasing numbers
of stars at fainter magnitudes, we would expect to see a much higher
probability density in the bottom part of the plot than in the top part.
Since we expect the majority of our data points to lie at faint magni-
tudes, this is perfectly correct. The best τ 2 values will be found by
placing the majority of the points in the regions of highest proba-
bility density; thus the mass function is a driving force in the fitting
procedure. Note, however, that the distribution of τ 2 is different for
bright and faint magnitudes, due largely to the change in slope of
the pre-main-sequence. This means that the distribution of τ 2 for a
single data point is different for different mass functions. For the
observational reasons explained in Section 3.1 it is not desirable to
introduce the mass function as a set of free parameters, and so we
have normalized-out the mass function in our models by setting the
integral of ρ(m, c) over all colours at a given magnitude to one. This
has the additional advantage that the distribution of τ 2 reduces to
that for χ2 for data with uncertainties in two dimensions fitted to a
straight line (Section 5).

Given that we are not interested in determining the mass function,
just the age and distance of clusters, how are we to calculate a τ 2 dis-
tribution in the case of a normalized-out mass function? Our method
is to calculate the distribution of τ 2 for each data point using only
the region of the CMD within ±3σ m of its measured magnitude.
Thus the ensemble of individual τ 2 probability distributions, and
hence the distribution for the fit as a whole reflects the actual distri-
bution of data points in V-band magnitude. This has the incidental
advantage of greatly speeding the calculation, the limiting factor
being smoothing the image by the uncertainty for the data point, for
which the run-time-scales linearly with the magnitude range used.

This ‘bootstrapping’ of the mass function leads to a fundamental
limit on how well we can predict Pr(τ 2). Consider the hundred
simulated observations of Section 3.2. Because the data points are all
slightly different, then for each data set we have a different prediction
for the distribution Pr(τ 2). This situation is illustrated in Fig. 12
where the solid curve shows the mean of all 100 predictions. To
assess the range of predictions we sorted the distributions by the
value of τ 2 at a probability of 0.5, and then plotted (as a dotted lines)
the distributions that enclosed in middle 50 per cent of these values,
i.e. the 25th to the 75th percentiles of the distribution. These cover
a range of about 1 per cent in τ 2. This indicates that the prediction
for Pr(τ 2) from a single observation (such as the solid line in Fig. 4)
is uncertain at the ±1 per cent level in τ 2 which corresponds ±0.1
in Pr(τ 2).

There is a final complication which adds a further uncertainty to
the absolute value of τ 2. The method outlined above only calculated
the distribution Pr(τ 2) for matching the data directly to a model, with
no free parameters. In the χ2 case, for large values of the number of
degrees of freedom (i.e. the number of free parameters n subtracted
from the number of data points N), Pr(χ2) scales with the number
of degrees of freedom. This implies that we need to multiply our
Pr(τ 2) by (N − n)/N. We have no formal proof for this, but the
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1260 T. Naylor and R. D. Jeffries

Figure 12. The distribution of τ 2 obtained by fitting 100 simulated ob-
servations (histogram), compared with the mean of the predictions for the
distribution of τ 2 for each data set (line). The dotted lines enclose the
50 per cent of the τ 2 predictions with values at Pr(τ 2) = 0.5 closest to
the mean, i.e. the 25th to the 75th percentiles of the distribution. The his-
togram is the same as that in Fig. 4.

following numerical experiment supports this view. If one takes a
simulated observation and compares it with the underlying model
one obtains a value for τ 2. If it is now compared with a grid of
models with a range of distance moduli and ages, the best-fitting
model will have a smaller value of τ 2. Over many realizations we
find the mean change is a factor of (N − n)/N.

In summary, therefore, we calculate the expected distribution of
τ 2 by first considering one data point at a time, after the fitting pro-
cess is complete. We smooth the best-fitting distribution in colour–
magnitude space according to the uncertainties for that point, and
then extract the distribution of probability P as a function τ 2 =
−2 ln P. We then multiply all the distributions together, using the
method described above, to find the expected distribution of τ 2 for
our data set. Finally, we can divide our fitted value of τ 2 [and the
values of τ 2 in Pr(τ 2)] by the expected value of τ 2 at Pr(τ 2) = 0.5.
In analogy with χ 2

ν this gives us τ 2
ν , that has an expected value of

unity for a good fit.

7 N G C 2 5 4 7 – A WO R K E D E X A M P L E

An important test of any algorithm is whether it will work with
real, as well as simulated data. We have chosen as our test data set
the X-ray selected sample of members of the young open cluster
NGC 2547, which we first fitted in Naylor et al. (2002). We have
chosen this cluster as the data set has already been fitted by one of
the authors using traditional ‘by eye’ methods, allowing us to make
a direct comparison of the methods.

7.1 Soft clipping

The main practical problem which must be solved is that some of
the data points lie in regions of the CMD to which our model assigns
probabilities [ρ(c, m)] of zero. Of course, in principle no point on
the CMD has zero probability, once it is blurred by the uncertainties
and becomes P. Practically, however, once one is a few σ from the
sequence numerical rounding ensures that taking the logarithm of
this probability causes a numerical error. The underlying philosoph-
ical issue here is that these data points are probably not described
by our model (they are background or foreground contamination)

and at some point these data should be removed from the fitting
process. The classical way of dealing with such a situation is an
N σ clipping scheme, removing data points from the calculation of
τ 2 once they lie at very low probabilities (Nσ from the expected
value). Simple clipping would be a recipe for numerical instability,
so instead we use a soft clipping scheme. To achieve this we simply
add a small probability (e−0.5×20) to Pi for each data point, the value
we use amounting to a maximum τ 2 of 20 for each data point. We
then search for the minimum in τ 2 space using the full data set,
but once the best fit has been found, we clip out all the data points
whose τ 2 exceeds half the maximum τ 2 set. It this subset for which
we then calculate the expected value of τ 2 (see Section 6.3).

7.2 Magnitude-independent uncertainty

In addition to the statistical uncertainty given for each data point,
Naylor et al. (2002) also point out that there is a magnitude-
independent uncertainty for each data point, due to uncertainties
in the profile correction. Essentially this is the uncertainty due to
correcting the magnitude measurements back to the large apertures
required for standard stars. This should be clearly distinguished from
the error in the transformation from the natural to the standard sys-
tem, which has the effect of shifting all the data points in the same
direction. We use a magnitude-independent uncertainty of 0.01 mag
for each filter (thus 0.01 mag in V and 0.014 in V − I) as a good
approximation to the magnitude-independent uncertainty given by
Naylor et al. (2002). This is added in quadrature with the statistical
uncertainties. As we will see below, this value is also justified by
the fact that we obtain a reasonable value for Pr(τ 2). For data sets
where this is not the case, one has the possibility of adjusting the
magnitude-independent uncertainty until a Pr(τ 2) of approximately
50 per cent is obtained.

7.3 Extreme mass-ratio binaries

A second issue is the absence from our models of extreme mass-
ratio binaries. This was first pointed out in Section 2, and is due to
the fact that the isochrones do not reach sufficiently low masses to
allow us to model the most extreme binaries. In the simulations we
have performed thus far this is not an issue as both the simulated data
and the models suffer from the same cut-off. To simulate the case of
real data, we therefore created a new set of models where the lowest
mass stars available for the binaries were 0.25 M� (compared with
0.017 M� in the isochrones). We then fitted these models to sim-
ulated data sets with the underlying parameters used in Section 3,
which therefore contained binaries created using the full range of
masses available in the isochrones. The mean parameters from 30
simulated observations were 40.07 ± 0.16 Myr and a distance modu-
lus of − 0.002 ± 0.001, where the uncertainties are standard errors.
Thus the effect on the parameters of a low-mass cut-off for the
binaries is undetectable in our simulation, and certainly an order-
of-magnitude below our statistical uncertainties.

7.4 Results

As in Naylor et al. (2002) we used the models of DAM97, and
extinctions of E(V − IC) = 0.077 and AV = 0.186. We began by
assuming 50 per cent of the unresolved images are binaries, 50 per
cent single stars, and assumed (even when we changed the binary
fraction) that the masses for the secondary stars were uniformly
distributed between the mass of the primary and the lowest mass
available in the models. The best fit gives Pr(τ 2) = 0.41 and is shown
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Fitting CMDs 1261

Figure 13. The X-ray selected members of NGC 2547 (green circles with error bars) and best-fitting model (background image), for a binary fraction of 0.5.

in Fig. 13. Considering this is a new technique, finding an acceptable
value of τ 2 (equivalent to finding a reduced χ2 of approximately
one) is very encouraging both in terms of the verisimilitude of the
models, and of the accuracy of our observations. The best-fitting
values and 67 per cent confidence limits are 38.5+3.5

−6.5 Myr and a
true distance modulus of 7.79+0.11

−0.05. Although the fit is good, close
examination shows that between V = 13.5 and 15 the model seems
to lie systematically below the data. First, it should be made clear
that this effect is small (0.02 mag in V − I). Secondly, it might
be thought that by decreasing the distance modulus one could fit
these points, and fit the lower pre-main-sequence by choosing a
slightly greater age. In fact, the models show that the region at V =
14 is moving bluewards with age faster than the lower part of the
sequence, and the τ 2 test has chosen a reasonable compromise.
The systematic residuals are, therefore, real differences between
the shape of the model isochrones and observed sequences.

7.5 Changing the binary fraction

Although Fig. 13 shows that the single-star sequence is broadly cor-
rect, it is harder to assess the fit to the binary stars. The distribution
of τ 2 for the individual data points gives us a useful insight into this.
In Section 6.3 we described how we calculate the probability dis-
tribution of τ 2 for each data point before multiplying them together
to predict the overall value for τ 2 for the fit. Instead of multiplying
them, the sum of the probability distributions gives us the expected
distribution of τ 2 for the data points in the best fit. Before carrying
out a comparison with the NGC 2547 data, we show in Fig. 14 the
comparison between the actual (histogram) and predicted (curve)
distributions of the single-point τ 2 values for the simulated cluster
used in Section 3. This shows the prediction works very well. In
Fig. 15 we show the same plot for NGC 2547. The real distribution
differs from the model in the mid-ranges of τ 2, in particular there
are more points at τ 2 � 4 than the model predicts. High values of
τ 2 correspond to low values of Pi . The majority of the low values
of Pi will occur in the region between the single-star and equal-
mass-binary sequences, implying that we have underestimated the
binary fraction. To test this hypothesis, and to establish whether
one must correctly model the binary fraction to determine reliable
ages and distances, we re-fitted the data with a binary fraction of

Figure 14. The expected distribution of τ 2 (curve) and that obtained from
the data (histogram) for the simulated data set of Section 3.

80 per cent. The actual and predicted distributions of τ 2 shown
in Fig. 16. Increasing the binary fraction has indeed increased the
number of high valued τ 2 points, but in fact the model is now system-
atically lower than the data. Furthermore Pr(τ 2) is now only 0.14.
Clearly a binary fraction of 50 per cent is a better fit to the data than
80 per cent.

There is a strong temptation at this point to attempt to model
the properties of the binaries, and indeed the ability to extract such
information is one of our primary motivations for developing τ 2.
However, it clearly lies outside the scope of this introductory paper
to do so. Furthermore, in this case the data set itself is unsuited to
such an experiment. Aside from the question as to whether an X-ray
selected sample is biased towards binary stars, the reader should also
note that some stars appear above even the equal-mass-binary se-
quence. Although some of these may be multiple systems with more
than two members (which we have ignored in our models), there are
three times more of them than we might expect from Duquennoy &
Mayor (1991). For the majority of these objects, therefore, our result
implies that there is a non-photospheric contribution to their lumi-
nosity, which again would not be surprising for an X-ray selected
sample, or that we have significant contamination from foreground
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Figure 15. The expected distribution of τ 2 (curve) and that obtained
from the data (histogram) for NGC 2547, assuming a binary fraction of
50 per cent.

Figure 16. The expected distribution of τ 2 (curve) and that obtained
from the data (histogram) for NGC 2547, assuming a binary fraction of
80 per cent.

dwarfs. Either case would clearly preclude a photometric determi-
nation of binary parameters. Despite these cautions, it is interest-
ing to note that we obtain a credible value of Pr(τ 2) for a binary
fraction which is close to that determined by Naylor et al. (2002)
(60 per cent), when they too assumed a flat mass-ratio distribution.
Equally importantly, with a binary fraction of 80 per cent we ob-
tained a distance modulus of 7.82 and an age of 37.5 Myr, which
is not significantly different from the result for a binary fraction of
50 per cent. The conclusion that the binary fraction has little effect
on the derived parameters is, in retrospect, unsurprising. It means
that the fit is being driven by the single-star sequence, and not being
dragged to brighter magnitudes by the binaries.

7.6 Comparison with previous work

Although it is easiest to quote our result in terms of single parame-
ters and their uncertainties, the derived age and distance are strongly
correlated. This is summarized in our τ 2 space in Fig. 17. Interest-
ingly there is a second minimum (not as deep as the primary one)
at 53 Myr and a distance modulus of 7.63 mag. This is exactly the
effect discussed in Section 7.4, and when the fit is examined, we

Figure 17. The τ 2 grid for fitting the NGC 2547 X-ray members to a model
with an 80 per cent binary fraction. The minimum value of τ 2 is 697.8 and
the white contours are the 67 per cent (τ 2 = 704.6) and 95 per cent (τ 2 =
711.8) confidence limits. The observed lithium depletion boundary requires
the age and distance to lie between the two green lines.

find that the data at bright magnitudes lie systematically above the
model.

The age/distance-modulus pair of 25 ± 5 Myr 8.05 ± 0.10 de-
rived from the V/V − IC data in Naylor et al. (2002) clearly lie
in the τ 2 valley of Fig. 17. The position within that valley can-
not be directly compared with Naylor et al. (2002) as they used
B/B − V data to constrain the distance. Perhaps most remarkable is
the excellent agreement with the lithium depletion age of Jeffries
& Oliveira (2005). The age derived from the lithium depletion
boundary depends on the distance modulus. Using the data of
Jeffries & Oliveira (2005) and the DAM97 models we derive an
age of 37 ± 3 Myr for our best-fitting distance modulus of 7.8 mag.
However, we can also plot the constraint in Fig. 17, which em-
phasizes the concordance between the lithium and isochronal ages.
Our error bars in distance just fail to overlap at 1σ with those from
Hipparcos (8.18+0.29

−0.26) given by Robichon et al. (1999), but the dis-
tances are clearly not inconsistent. Our conclusion is, therefore,
that when used with real data τ 2 fitting gives credible values and
uncertainties.

8 C O N C L U S I O N S

We have developed a maximum-likelihood method for determining
parameters for an isochronal population which contains binaries,
from its CMD. We have used numerical simulation to demonstrate it
is correct, and used it on a practical example. There is clearly scope
for further development. Most obviously one could search many
more parameters than we have, determining, for example, binary
fraction and mass-ratio distribution, mass function, metallicity, or
extinction. Several of these could be allowed to vary simultaneously.

One could also use this as a search statistic, looking for popula-
tions of a given age in large are surveys. Here the absolute value of τ 2

would measure how likely a given ‘sequence’ is to have occurred by
chance. Furthermore, one could not only search an N-dimensional
colour–magnitude space, but might also wish to use other parame-
ters, such as position on the sky modelled against a clustered distri-
bution. Finally, there is also a range of other problems to which the
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technique might be applied such as modelling mass segregation in
the mass–radius diagram (e.g. Littlefair et al. 2003), and one could
even conceive of a replacement for the 1D Kolmogorov–Smirnov
test where the data points had associated uncertainties.
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