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Abstract: This paper defines a methodology to compare different offshore renewable energy 

(ORE) mooring configurations in terms of the risk of entanglement they present to marine 

megafauna. Currently, the entanglement of large marine animals is not explicitly considered 

in environmental impact studies. Recommendations need to be developed, assessing the risk 

of entanglement of ORE mooring configurations at the beginning of their design process. 

Physical parameters of the mooring system affecting the relative risk of entanglement have 

been identified as tension characteristics, swept volume ratio and mooring line curvature. 

These have been investigated further through six different mooring configurations: catenary 

with chains only, catenary with chains and nylon ropes, catenary with chains and polyester 

ropes, taut, catenary with accessory buoys, taut with accessory buoys.  

Results indicate that the taut configuration has the lowest relative risk of entanglement, while 

the highest relative risk occurs with catenary moorings with chains and nylon ropes or with 

catenary moorings with accessory buoys. However, the absolute risk of entanglement is 

found to be low, regardless of the mooring configuration. This methodology can also be 

applied to other mooring configurations, arrays or power cables.  

 

Keywords Entanglement, Mooring system, Offshore renewable energy, Marine 

megafauna, Environmental impact assessment 

 

Highlights 

 Comparison of the risk of entanglement of marine megafauna for ORE mooring 

systems  

 Parameters: tension characteristics, swept volume ratio and mooring line curvature 

 Case study with 6 mooring configurations commonly used for floating ORE devices 

 Catenary moorings and moorings using accessory buoys: higher risk of entanglement 

 The overall risk of entanglement is low 

 

 

 

 

mailto:V.Harnois@exeter.ac.uk
mailto:H.C.M.Smith@exeter.ac.uk
mailto:L.Johanning@exeter.ac.uk
mailto:Steven.Benjamins@sams.ac.uk


1. Introduction  

Floating offshore renewable energy (ORE) technologies, which include most wave and some 

tidal devices, are undergoing extensive development and testing but are yet to reach full 

commercialisation. The offshore wind industry is also moving towards the deployment of 

floating turbines to enable a move into deeper water. A number of individual full-scale 

devices have been successfully deployed and the number of floating offshore renewable 

energy projects, and the array sizes proposed, are growing. One of the many challenges 

facing developers wishing to test a single device or to deploy an array is the need to ensure 

that these devices do not adversely impact the marine environment, or, where this is 

unavoidable, that such impacts are minimised and mitigated against. Although requirements 

differ slightly between countries, most proposed deployments require environmental impact 

studies. Guidelines for the implementation of such environmental impact assessments for 

marine energy are detailed for example in the EquiMar protocols [1]. With so few devices 

having undergone testing at sea, it will only be possible to validate the predicted 

environmental effects once devices have been in place for a number of years. 

This paper considers one aspect of environmental impact assessment: the potential for 

entanglement of marine megafauna (e.g.  cetaceans, pinnipeds, sea turtles, large sharks, etc.), 

between mooring lines of floating offshore renewable energy devices. Entanglement can be 

defined as the inadvertent capture or restraint of marine animals by strong, flexible materials 

of anthropogenic origin. Bycatchs by lost or discarded fishing gears entangled in moorings 

are not considered in this study.  

The consequences of entanglement are loss of animal life - possibly from endangered 

species- and negative public opinion. Entanglement has been observed (albeit infrequently) 

for large whales in stationary trap fisheries [2] and in aquaculture [3-4]. It could be noted that 

no entanglement has been reported in oil and gas moorings (which however does not mean it 

did not occur). Smaller animals are more likely to become entangled in fishing gears, for 

example pinnipeds (seals and sea lions) [5], or large sharks and rays [6-7]. It should be noted 

that entanglement is difficult to detect because it occurs offshore and underwater in remote 

locations with few, if any, observers.  

 

At present, entanglement is not addressed as standard in environmental impact assessment 

(EIA) studies, and there are currently no records of such entanglement occurring at any 

offshore renewables site; however the risk of entanglement of marine mammals and turtles in 

moorings for wave energy devices has been raised [8]. An additional consequence of 

entanglement in the case of an ORE device would be a possible damage to an ORE device 

leading to a change in the performance of the mooring or the device. 

In addition to requirements for environmental impact assessments, ORE moorings have their 

technical requirements, which have certain commonalities with conventional mooring 

systems, used, for example, for oil and gas platforms [9]. The key aspect is the need to keep 

the floating structure in position. In some cases, the restraint of the dynamic motion of the 

floating structure is additionally required, for example for floating wind or overtopping wave 

energy devices. In other cases, such as point absorber wave energy devices, the mooring 

system must leave the floating structure to move “freely” at the wave frequency in order to 

maximise energy production. In both cases, the slow and large horizontal motion of the 

floating structure should be restrained because a) the power cable, exporting energy, should 

not become tensioned, and b) in an array configuration, collisions must be avoided between 

devices.  

This paper presents a methodology developed to evaluate the relative risk of marine 

megafauna entanglement with different mooring systems, focussing on the physical 



characteristics of mooring lines that will influence this risk. It is not intended to be a 

quantitative assessment of risk; this is unfeasible given the scarcity of data available. 

However, it provides a tool that will enable developers to assess whether their proposed 

mooring configurations will pose a higher or lower entanglement risk to marine life than 

alternative systems, and this can then be highlighted in the EIA with appropriate monitoring 

programmes proposed to mitigate any risk if required. The general methodology, using the 

hydrodynamic modelling software OrcaFlex, is described in Section 2, with the detailed 

physical parameters and their specific mode of assessment presented in Section 3. Results are 

presented for each of the physical parameters, and combined in order to assess the overall 

relative risk of a particular mooring configuration in Section 4, followed by a discussion of 

these results and their implication for the industry in Section 5. 

 

2. Modelling methodology  

2.1. OrcaFlex model 

This investigation utilises OrcaFlex, a 3D time-domain finite element method (FEM) 

modelling program, to predict the response of the various mooring configurations to wave 

loading. OrcaFlex is one of the leading software packages for the dynamic analyses of 

mooring systems and is well validated for this purpose (e.g. [10]). It is widely used in the 

wave energy sector, both in device development ([11-12]), and in specific wave energy 

moorings research ([13-14]). Applications also exist for floating wind turbines, for example, 

a specific coupling module, FASTlink, has been developed in OrcaFlex to integrate the 

aerodynamic loads, the turbine control system and the flexure of the turbine [15]. 

 

2.2. Numerical set-up 

Within the model, each mooring line is divided into segments with visco-elastic behaviour, 

connected by nodes with a given mass (Figure 1). OrcaFlex models are built using a 

combination of components such as buoys or lines, and environmental conditions (wave, 

wind or current) are provided as model input. 

 



 

Figure 1. Representation of lines using a finite element model in OrcaFlex [16]. 

Reproduced with the kind permission of Orcina.  

 

The environmental conditions used in this study are intended to be typical of an ORE 

installation location. Environmental conditions for the Wave Hub offshore test site in the 

South West UK have been taken as a reference for this paper. The water depth at the Wave 

Hub site is approximately 50 m, and OrcaFlex calculations have been run for this water 

depth. 

According to van Nieuwkoop et al. [17]), the 100-year return period significant wave height 

HS at Wave Hub is estimated at 9.6 m, and the corresponding wave energy period Tm-1,0 can 

be estimated at approximately 12 s according to the provided scatter diagram. The 

relationship between Tm-1,0  and the mean zero up-crossing period TZ is : a) for a 

Bretschneider spectrum, Tm-1,0 = 1.206 TZ and b) for a Jonswap spectrum with γ = 3.3, Tm-1,0 = 

1.18 TZ [18]. This means that at Wave Hub, the 100-year return period mean zero up-crossing 

period TZ is approximately 10 s. Based on these results, the mooring configurations in this 

study have been designed for an extreme sea state with a significant wave height HS = 10 m 

and a mean period TZ = 10 s.  

Operational sea states, i.e. the conditions likely to be encountered by the device as part of its 

normal operation, are defined as regular waves with height H below 10 m and period T below 

10 s. Regular waves were used in preference to irregular sea states to observe behaviour at a 

given frequency and wave steepness, and to reduce the computation time. To limit the 

number of calculations, only sea states with H of 1, 5 and 10 m are assessed. The wave 

periods that are too short for a particular wave height, leading to breaking, are not analysed. 

The regular wave parameters used to analyse operational sea states are summarised in Table 

1.  

Currents and wind are not considered in this study for simplification, as the intention is to 

focus only on the main loading forces with the potential to affect entanglement, i.e. those due 

to wave action. 

 

 



Table 1. Extreme and operational sea states used in this study 

Extreme sea state Operational sea states 

HS (m) TZ (s) H (m) T (s) 

10 10 1 3-10 

5 6-10 

10 7-10 

 

 

The floating structure used for this study is intended to be representative of an ORE device. 

In order to estimate the typical dimensions of a ORE device, the properties of several existing 

ORE devices (Table 2) were examined. Based on these properties, the floating structure 

chosen for analysis is a cylinder with a diameter of 15 m, a height of 10 m, a draft of 8 m 

(without moorings) and a weight of 1449.1 tonnes. The system extracting energy was not 

modelled in order to simplify the simulation. 

 



 

Table 2. Example of dimensions of full-scale floating offshore renewable energy devices  

Device (Company) Type Shape Length (m) Height (m) Weight (tonnes) Draft (m) Reference 

Pelamis P2 (Pelamis 

Wave Power) 

Wave energy: Attenuator Horizontal cylinders 180  4  1350   [19] 

Ocean Energy Buoy 

(Ocean Energy Ltd) 

Wave energy: Oscillating water 

column 

Cuboid 24   1800   [20][21] 

Bolt 2 LifeSaver 

(Fred. Olsen) 

Wave energy: Point absorber Square toroid 16  1  55   [22] 

CETO (Carnegie 

Wave Energy 

Limited) 

Wave energy: Point absorber Vertical cylinder 11   200   [20][23] 

OPT Mark 3 (Ocean 

Power Technologies) 

Wave energy: Point absorber Vertical cylinders 11 43.5  180  32 [24] 

Langlee (Langlee 

Wave Power) 

Wave energy: Oscillating wave 

surge converter 

Square frame and flaps   1600   [20] 

Penguin (Wello Oy) Wave energy: Kinetic energy 

absorber 

Boat hull shape 30 9 1600  7 [25] 

Hywind (Statoil) 

 

Floating wind energy Vertical cylinder 6 at water line    10 [26] 

WindFloat (Principle 

Power, Inc) 

 

Floating wind energy Triangular frame    <20 [27] 

BlueTEC 

(Bluewater) 

Floating tidal energy Horizontal cross 24 x 40    [28] 

 



ORE mooring system configurations are based on traditional mooring configurations. Harris 

et al. [9] highlight that the most suitable moorings for wave energy devices are single or 

multi-catenary moorings, catenary anchor leg moorings (CALMs) or single anchor leg 

moorings (SALMs). Floating wind designs can use tension leg platforms (TLPs), a spar buoy, 

or a barge [15]. Catenary or taut mooring lines typically connect these platforms to the sea 

bed. 

 

Fitzgerald and Bergdahl [14] investigated catenary moorings and found that the addition of a 

surface buoy or of a clump weight in the mooring line may improve its performance because 

it absorbs the motion of the floating structure and consequently reduces the excitation of the 

mooring cable. Johanning and Smith [12] investigated two catenary configurations using a) 

chains only, b) chains and nylon ropes and c) one S-shape configurations using nylon ropes 

only and compared the different mooring behaviours with load-excursion diagrams. They 

observed that the stiffer configuration (a) experienced higher mooring loads than the more 

compliant ones (b-c).  

 

Four mooring system configurations have been chosen for this study. The mooring systems 

used for this study have three equally spread mooring lines attached at the mean water level 

of the floating structure. In the numerical model, the waves were equally spread between the 

two front mooring lines, and were aligned with the backward line. The four mooring 

configurations are described below and illustrated in Figure 2: 

 Catenary mooring configuration (Figure 2a) 

Mooring lines are connected to the floating structure, freely hanging in the water column and 

lying on the seabed, applying horizontal loads on the anchor. The part of the mooring lying 

on the seabed provides the restoring forces with its weight when lifted as shown in Figure 3, 

which keep the floating structure around its equilibrium position.  

This configuration is assessed with different materials: chains only, chains and nylon ropes, 

and chains and polyester ropes. The aim of using synthetic fibre ropes is to reduce the weight 

of the mooring on the floating structure and to damp mooring loads with the elasticity of such 

materials. For the same diameter, Nylon ropes are generally more elastic than polyester ropes. 

Fibre ropes do not resist abrasion well and should avoid contact with the seabed, which is 

why they are used only in the water column. 

 Taut mooring configuration (Figure 2b) 

Mooring lines are connected to the floating structure and are tightly attached to their anchor, 

forming an angle between the seabed and the mooring line. The taut configuration requires a 

large pre-tension to avoid the mooring lines becoming slack in wave troughs or at low tide. If 

a mooring line becomes slack, extreme snap loads may occur when the mooring line becomes 

re-tensioned. The restoring forces are provided directly by the internal stiffness of the 

mooring line, as shown in Figure 3. 

 Catenary mooring configuration with accessory buoys (Figure 2c) 

This configuration is similar to the catenary mooring configuration, but a small accessory 

buoy is added at the top of each catenary line, and a connecting line is added between this 

accessory buoy and the floating structure. This aims to reduce the weight of the mooring line 

on the floating structure and to reduce the mooring loads by smoothing the excitation at the 

top end of the mooring line. However, with this configuration, the excursion of the floating 

structure – its maximum surge motion - is more difficult to control.  

 Taut mooring configuration with accessory buoys (Figure 2d) 

This configuration is similar to the taut mooring configuration, but a small accessory buoy is 

added at the top of the taut line, and a connecting line is added between this accessory buoy 



and the floating structure. The reasoning is the same as for the catenary mooring with 

accessory buoys, but the same challenges are also present.  

Other mooring configurations are possible for ORE devices, for example configurations using 

accessory clump weights. The same methodology can be applied to these other 

configurations; this paper focuses more on the methodology than on particular mooring 

arrangements.  

 

  
a) b) 

  
c) d) 

Figure 2. Mooring configurations: a) Catenary mooring configuration with the top lines 

being chains or synthetic ropes, b) Taut mooring configuration, c) Catenary mooring 

configuration with accessory buoys, d) Taut mooring configuration with accessory 

buoys 

 

Figure 3. Change in the shape of a taut (left) and catenary (right) mooring lines due to 

surge of the floating structure  



A preliminary assessment was carried out with the extreme sea state (HS = 10 m and TZ = 10 

s) for each mooring configuration to assess the order of magnitude of the maximum mooring 

loads and ensure that the mooring strength is correctly defined. This means that the maximum 

load multiplied by a factor of safety is below the minimum breaking load (MBL) of the 

weakest element of the mooring system. This leads to mooring system materials and 

dimensions as described in Table 3. The material properties (displacement, MBL, axial 

stiffness and mass per unit length) were taken as calculated by OrcaFlex. It should be noted 

that for a more accurate design, the manufacturer specific properties should be considered. A 

more detailed analysis would also be required to design these mooring systems for a real 

device.  



 

Table 3. Mooring properties for this study. All chains are Grade 3 and studlink. 

 

 

 1) Catenary 2) Taut 3) 

Catenary 

& 

accessory 

buoy 

4) Taut 

& 

accessory 

buoy 

T
o

p
  

Material  a) Chains b) Nylon 

ropes 

c) 

Polyester 

ropes 

Nylon 

ropes 

Nylon 

ropes 

Nylon 

ropes 

Length (m) 57.5 52.8 54.25 64.8 28.5 46.6 

Diameter (m) 0.045 0.140 0.200 0.19 0.140 0.19 

Displacement (te/m) 
1
 0.0058 0.011 0.024 0.021 0.011 0.0084 

MBL
2
 (kN) 1603 2731 6818 5030 2731 2007 

Axial stiffness (kN) 204525 2313 43600 4260 2313 4260 

Mass per unit length 

(te/m) 
0.044 0.013 0.032 0.023 0.013 0.0093 

Distance (m) between 

nodes for swept 

volume assessment 

10 10 10 2.6 4.5 2.3 

B
o

tt
o

m
  

Material  Chains Chains Chains - Chains - 

Length (m) 175 175 175 - 175 - 

Diameter (m) 0.064 0.064 0.064 - 0.064 - 

Displacement (te/m) 0.012 0.012 0.012 - 0.012 - 

MBL (kN) 3121 3121 3121 - 3121 - 

Axial stiffness (kN) 413696 413696 413696 - 413696 - 

Mass per unit length 

(te/m) 
0.090 0.090 0.090 - 0.090 - 

Distance (m) between 

nodes for swept 

volume assessment 

12.5 12.5 12.5 - 12.5 - 

C
o

n
n

ec
to

r
 

Material  - - - - Chains Chains 

Length (m) - - - - 25 25 

Diameter (m) - - - - 0.05 0.04 

Displacement (te/m) - - - - 0.0072 0.0046 

MBL (kN) - - - - 1960 1279 

Axial stiffness (kN) - - - - 252500 161600 

Mass per unit length 

(te/m) 
- - - - 0.055 0.035 

Distance (m) between 

nodes for swept 

volume assessment 

- - - - 1.25 1.25 

O
th

er
 p

ro
p

er
ti

es
 

Accessory buoy 

volume (m
3
)  

- - - - 3 5.3 

Accessory buoy mass 

(te)  
- - - - 0.05 0.05 

Distance centre 

floating structure-

anchor (m) 

220 220 220 50 220 50 

MBL mooring (kN) 1603 2731 3121 5030 1960 1279 

Pre-tension (kN) 50 50 50 1000 50 50 

Pre-tension/MBL % 3.1% 1.8% 1.6% 19.9% 2.6% 3.9% 
 

1
 The displacement is the weight of the volume of water occupied by the mooring line. 

2
 Minimum Breaking Load 



3. Parameters relating to entanglement risk 

Three key parameters were considered to assess the relative risk of entanglement for the 

selected mooring systems. These parameters were investigated with the OrcaFlex numerical 

models described in the previous section. The first parameter evaluates the stiffness of the 

mooring system using the tension characteristics, because slack moorings are more likely to 

cause entanglement than taut moorings. If an animal comes into contact with a loosely 

hanging mooring line, the risk of being entangled is higher than with a taut line. The second 

parameter evaluates the volume of water occupied by the mooring line in a particular sea 

state. If this volume is high, then it means that the mooring lines are moving significantly, 

and that the risk of contact between a marine animal and a mooring line is higher. The third 

parameter assesses the curvature of the mooring line. The higher the potential curvature of a 

mooring line, the greater the risk, if an animal comes into contact with it, that the line could 

form a loop around the body of the animal from which it would be unable to extract itself. 

The three different parametric studies are described below. 

 

3.1. Tension characteristics 

The tension characteristics were estimated by slowly surging the floating structure forward 

and backward with no environmental loads (i.e. wave, wind or current forces). The floating 

structure was moved from a minimum distance of -100m to a maximum distance of +100m in 

the alignment of the backward line. Mooring loads in the three mooring lines as well as 

horizontal surge were used to plot the tension characteristics. For comparison purposes, 

dimensions were removed by dividing the mooring load by the MBL of the mooring system, 

and the surge position by the water depth. 

Johanning and Smith [12] investigated tension characteristics in order to compare different 

mooring configurations in terms of restoring forces for a range of excursions of a floating 

structure. It was found that the increase in tension is non-linear relative to the excursion for a 

catenary mooring for a moderate excursion while the chains are lifted, but is linear for a taut 

configuration because of the internal line stretching. A simplified version of these results is 

presented in Figure 4.  

For the mooring configurations considered in this study, the tension characteristics curve is 

expected to be asymmetrical. When the floating structure is moving in one direction, two 

lines are tensioned and the other one is slackened, while when the floating structure is 

moving in the other direction, only one line is tensioned and two are slackened.  

 

 

 

 

 

 



  
a) b) 

Figure 4. Examples of tension characteristics for different a) catenary and b) taut 

mooring configurations with two opposite lines (adapted from Johanning and Smith 

[12]).  

3.2. Mooring line swept volume ratio 

The volume of water swept by the mooring lines was estimated for the different sea states 

described in Table 1. An example of swept volume is shown in Figure 5a, with the swept 

volume highlighted in grey. In order to estimate this swept volume, the methodology 

described below was developed and applied. For each simulation, the time series of the 

physical position of 10 alternate nodes from the top of the mooring line was recorded with a 

timestep of 0.1 s. The distance between nodes for these simulations is dependent on the 

mooring configuration and is given in Table 3. However, this method ensured that for all 

configurations, the length of the moving part of the mooring line through the water column 

was considered. This limited resolution was aimed at reducing the computational time and the 

size of OrcaFlex output files. Using these time series, the process to estimate the swept 

volume ratio was the following: 

a) A large rectangular cuboid, containing the maximum and minimum positions of all nodes 

was drawn and then divided into 200 x 200 x 200 small rectangular cuboids. The size of these 

small cuboids varied between simulations because the maximum and minimum node 

positions were dependent on the mooring configuration and sea states. For example, for H = 1 

m and T = 3 s, for the taut configuration, the size of a cuboid was 0.36 m x 0.41 m x 0.25 m 

and for the catenary configuration the size of a cuboid was 1.5 m x 1.7 m x 0.27 m.  

b) Each small cuboid was marked as occupied if the mooring line passed inside it at any time 

during the simulation. The volume of all the occupied small cuboids was summed to obtain 

the total occupied volume. This total occupied volume was then divided by the volume of the 



mooring lines for comparison purposes to calculate a swept volume ratio. The volume of the 

mooring lines was estimated using the displacement of the mooring lines, i.e. the weight of 

the water occupying the same volume than the mooring line. 

Figure 5b shows a simplified low definition two-dimensional example of this process.  

 

 

 
a) 

 

b) 

Figure 5. Swept volume assessment. a) example of swept volume in grey, b) simplified 

process in 2D with low definition to estimate the swept volume. Orange cells are 

occupied cells 

 

3.3. Mooring line curvature 

The curvature was directly estimated by OrcaFlex as the angle change at a node divided by 

the segment length (0.5 m for all mooring configurations in this curvature study). The 

curvature is then expressed in degrees per metre. The curvature was considered only for the 

nodes in the water column, i.e. those not lying on the seabed, and for the main mooring line 

(not the connectors). Examples of curvature values are given in Figure 6. For the catenary 

configuration (Figure 6a), the curvature is higher near the touchdown point (the point of 

contact between the mooring line and the seabed) because the line is forced to become 



horizontal on the seabed. The curvature is also high at the top end of the mooring line, 

because of its dynamic behaviour. The curvature is relatively small in the water column. For 

the taut configuration (Figure 6b), the curvature is low all along the mooring line.  

For this study, the curvature of the backwards line was observed for the maximum excursion 

of the floating structure in a regular sea state with H = 1 m and T = 6 s. The backwards line 

was chosen because this line is the most likely to become slack and to display high curvature 

values because of the drifted position of the floating structure. 

 

 

  
a) b) 

Figure 6. Example of curvature calculation in OrcaFlex a) for a catenary configuration 

and b) for a taut configuration  

 

4. Results 

For each parameter affecting entanglement and for each mooring configuration, the relative 

risk of entanglement was assessed based on the results of the parametric studies. This enabled 

a risk ‘score’ to be assigned to each mooring configurations. Risk scores ranged from 1 to 3, 

with 1 representing a lower risk and 3 a higher risk. It is important to emphasise that this is a 

relative risk score, comparing the different mooring configurations, and is not intended to 

quantify the actual risk. Results were then summarised to give an overall relative risk of 

entanglement for each mooring configuration. The aim is to classify the different mooring 

configurations in terms of entanglement in order to assess which configuration has a 

relatively higher risk of entanglement.  

 

4.1. Tension characteristics 

Tension characteristics for the different mooring arrangements are plotted in Figure 7. As 

expected, the tension characteristics are asymmetrical. Results indicate a low tension to MBL 

slope for small to medium surge for the catenary moorings (Figure 7a-c), allowing a 

considerable flexibility in the mooring. The use of nylon ropes (Figure 7b) even enhances this 

flexibility because of the elasticity and low weight of nylon ropes. Because the polyester line 

has a considerably higher axial stiffness and a higher weight (Table 3) than the nylon lines, 

the catenary mooring using polyester ropes (Figure 7c) behaves very similarly to the catenary 



mooring using chains only (Figure 7a) in terms of tension characteristics. The taut mooring 

system shows a high tension to MBL slope for all ranges of surge (Figure 7d), meaning that 

this mooring system provides large restoring forces for any range of excursion. The addition 

of accessory buoys to the catenary configurations (Figure 7e) makes the configuration 

slightly more flexible, while the addition to the taut configuration (Figure 7f) makes it largely 

more flexible, with a near-constant tension to MBL ratio across the surge range.  

The physical meaning of these results can be observed in Figure 8, with the different mooring 

arrangements for a given excursion. The length of chains lifted is different for each catenary 

configuration (Figure 8a-c), leading to different tensions for the same excursion. A mooring 

line is stretched in the taut configuration (Figure 8d). The accessory buoys and connectors are 

accommodating a portion of the excursion (Figure 8e-f).  

These results mean that with a taut arrangement with accessory buoys, the floating structure 

can move freely for the range of excursion investigated, while for the taut configuration, the 

floating structure motions are restrained. The other configurations provide a range of 

restoring forces between these two extreme conditions.  



 

  
a) b) 

  
c) d) 

  
e) f) 

 

Figure 7. Tension characteristics for the different mooring arrangements: a) Catenary, 

b) Catenary with chains and nylon ropes, c) Catenary with chains and polyester ropes, 

d) Taut, e) Catenary with accessory buoys, f) Taut with accessory buoys  

 



  
a) b) 

  
c) d) 

  
e) f) 

Figure 8. Example for an excursion of 20m of the layout of the different mooring 

configurations: a) Catenary, b) Catenary with chains and nylon ropes, c) Catenary with 

chains and polyester ropes, d) Taut, e) Catenary with accessory buoys, f) Taut with 

accessory buoys 

 

The risk score for each mooring configuration was established through a 3-step process: 

 1. The plots in Figure 7 are horizontally and vertically divided into cells, and the 

axes are correspondingly divided into surge and tension scores, as shown in the example in 

Figure 9. Each cell can therefore be associated with a risk, which is its surge score multiplied 

by its tension score. If this number is below or equal to 5, the risk is relatively low; if this 

number is between 6 and 10 then the risk is medium; and if the risk is equal to or over 11 

then the risk is relatively high.  



 2. The number of low, medium and high risks cells intersected by the tension 

characteristics curve are counted and input in Table 4. A weighted average surge/tension 

score is calculated. A score of 1 is associated with each low-risk cell intersected, two for each 

medium-risk cell and 3 for each high-risk cell. The final surge/tension score is calculated by 

dividing the summed total by the total number of intersected cells. 

 3. If the final surge/tension score is below 1.75, the mooring system is assumed to 

be low risk and given a risk score of 1 for its tension characteristics. A surge/tension score 

between 1.75 and 2 is given a risk score of 2, and for surge/tension  scores greater than 2, a 

risk score of 3 is allocated, indicating that there is a relatively higher risk of entanglement for 

that mooring configuration. The final results are summarised in Table 4.  

 

Results indicate that when considering only the tension characteristics, the relative risk of 

entanglement is higher for the catenary with chains and nylon ropes, the catenary with 

accessory buoys and the taut with accessory buoys arrangement. The lowest risk is seen for 

the taut configuration.  

 

Figure 9. Example of parameterised risk pattern for the tension characteristics. The 

surge and tension scores are multiplied. Light colour indicates relatively low risk while 

darker colours indicate increasing risk.  

 

 

 

 

 



Table 4. Summary of risk assessment for the tension characteristics  

 Number 

of low 

risk cells 

Number 

of 

moderate 

risk cells 

Number 

of high 

risk cells  

Total 

number 

of cells 

Average 

surge/tension 

score (AS) 

Final tension 

risk 

parameter 

score 

Example x y z x+y+z 

zyx

zyx
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=1, AS<1.75 

=2, 1.75≤AS<2 

=3,  2≤AS  

Catenary & chains 6 6 3 15 1.80 2 

Catenary & chains & 

nylon ropes 

4 5 4 13 2.00 3 

Catenary & chains & 

polyester ropes 

6 6 4 16 1.88 2 

Taut 9 6 2 17 1.59 1 

Catenary & accessory 

buoys 

4 8 4 16 2.00 3 

Taut & accessory 

buoys 

4 4 4 12 2.00 3 

 

4.2. Swept volume 

The swept volume ratios are plotted in Figure 10 for the different sea states and the six 

mooring configurations considered in this study. For H = 1 m and H = 5 m, the swept volume 

ratios tend to decrease when the wave period increases, because the steepness of the wave 

decreases. However, this is not the case for H = 10 m because the sea states are highly 

energetic. 

Catenary moorings, with (Figure 10e) or without (Figure 10a-c) accessory buoys, have large 

swept volume ratios and exhibit similar behaviours. In contrast, the taut configurations, with 

(Figure 10f) and without (Figure 10d) accessory buoys, have significantly lower swept 

volume ratios, especially with the accessory buoys.  

 

 

 

 

 

 

 



 

  
a) b) 

  
c) d) 

  
e) f) 

Figure 10. Swept volume ratio (Vswept/Vlines) occupied by the different mooring 

configurations at different sea states: a) Catenary, b) Catenary with chains and nylon 

ropes, c) Catenary with chains and polyester ropes, d) Taut, e) Catenary with accessory 

buoys, f) Taut with accessory buoys 

 

Figure 11 gives more insight into the mooring line contributions to the swept volume ratio. 

For the catenary configurations (Figure 11a-c and e), the mooring lines are significantly 

sweeping and the swept volume Vswept is then high. However, the line volume Vlines is also 



relatively high because of the long length of the mooring lines and this minimises the swept 

volume ratio. For the taut configurations (Figure 11d and f), the swept volume Vswept is low 

but the line volume Vlines is also relatively low because of the short length of the mooring 

lines and this increases the swept volume ratio. The line volume Vlines is higher for the 

configuration with accessory buoys which explains why the swept volume ratio is lower with 

the accessory buoys than without.  

 

  
a) b)  

 
 

c) d) 

 
 

e) f) 

Figure 11. Example for H = 5 m and T = 9 s of trails showing the swept volume occupied 

by the different mooring configurations: a) Catenary, b) Catenary with chains and 

nylon ropes, c) Catenary with chains and polyester ropes, d) Taut, e) Catenary with 

accessory buoys, f) Taut with accessory buoys 

 

In order to provide a risk score, graphs in Figure 10 are horizontally and vertically divided 

into cells, with each assigned an indicative score defining the relative entanglement risk 

(Figure 12): for a swept volume ratio below 100, the score is 1; for a volume ratio between 

100 and 200, the score is 2; and for a volume ratio over 200, the score is 3. These numbers 

are averaged and rounded for the different sea states, giving a final swept volume score 

(Table 5). 

 

 



 

Figure 12. Example of parameterised risk pattern for the swept volume ratio. Light 

colour indicates relatively low risk while darker colours indicate increasing risk. 

 
 Highest score associated with: 

Average score (AS) across 

sea states 

Final Swept 

Volume score 

Wave period 

T (s) between 

Wave height H (m) 

Mooring type  1 5 10 

Example 3-6 x1 y1 z1 

6

222111 zyxzyx 
 

Round(AS) 

 7-10 x2 y2 z2 

Catenary & 

chains 

3-6 1 2 - 1.6 2 

7-10 1 2 2 

Catenary & 

chains & nylon 

ropes 

3-6 1 2 - 1.6 2 

7-10 1 2 2 

Catenary & 

chains & 

polyester ropes 

3-6  2 2 - 1.6 2 

7-10 1 1 2 

Taut 
3-6 1 1 - 1.0 1 

7-10 1 1 1 

Catenary & 

accessory buoy 

3-6 1 2 - 1.4 2 

7-10 1 1 2 

Taut & 

accessory buoy 

3-6 1 1 - 1.0 1 

7-10 1 1 1 

Table 5. Summary of risk assessment for the swept volume ratio 

 

 



Results indicate that the relative risk of entanglement relating to the swept volume ratio of the 

mooring lines is moderate for all catenary configurations, with or without accessory buoys, 

and low for both taut configurations. 

 

4.3. Curvature 

The range of curvature values along the mooring line during its maximum horizontal 

excursion are plotted in Figure 13. For each box plot, the red central line represents the 

median value and the edges of the box are the 25
th

 and 75
th

 percentiles. The whisker extends 

to the most extreme data points not considered outliers, and outliers are plotted individually 

with red crosses. Due to the logarithmic scale, the lower whisker of the box is not shown.  

Catenary mooring configurations (Figure 13a-c) have the highest value of curvature because 

of their low pre-tension and curved shape in the water column. The use of nylon ropes in the 

catenary line (Figure 13b) produces a decrease in the curvature values. The use of polyester 

ropes also gives a slightly smaller decrease (Figure 13c). Taut configurations (Figure 13d) 

have significantly lower values of curvature than any other configurations, although these 

increase with the addition of accessory buoys (Figure 13f). The catenary configuration with 

accessory buoys (Figure 13e) has a smaller curvature than the catenary configuration without 

accessory buoys (Figure 13a).  

An understanding of the physical meaning of these curvatures can be obtained from Figure 14 

which shows the different mooring configurations at maximum excursion. The left line was 

the one used for curvature analysis, excluding the connector. Between the different catenary 

configurations (Figure 14a-c), the touchdown point is at slightly different positions because 

of the difference in weight of the mooring lines, leading to differences in curvature. For the 

catenary mooring with chains, the touchdown point of the mooring line is the closest to the 

buoy; this configuration also shows the highest curvature values, and all curvature values are 

high. For the taut configuration (Figure 14d), the lines are straight because of their high pre-

tension, which explains the small values of curvature. For the catenary configuration with 

accessory buoys (Figure 14e), the curvature is lower than without accessory buoys, because 

part of the excursion of the buoy is compensated by the connectors. For the taut configuration 

using accessory buoys (Figure 14f), the pre-tension is lower in the taut section than in the 

case without accessory buoys, and this leads to higher values of curvature, with the mooring 

line being slightly bent. 

Graphs in Figure 13 are vertically divided into three and assigned indicative scores to enable 

the assessment of risk, as shown for example in Figure 15. For a median curvature value 

below 10
-2

, the score is 1; for a median curvature value below 10
0
, the score is 2; and for a 

median curvature value over 10
0
, the score is 3. The results are summarised in Table 6.  

 

 

 

 



  
a) b) 

  
c) d) 

  
e) f) 

 

Figure 13. Boxplots of modelled mooring curvatures of the six configurations 

considered in this report. a) Catenary, b) Catenary with chains and nylon ropes, c) 

Catenary with chains and polyester ropes, d) Taut, e) Catenary with accessory buoys, f) 

Taut with accessory buoys 

 



  
a) b) 

  
c) d) 

  
e) f) 

Figure 14. Curvature analysis at the maximum excursion for the different mooring 

configurations: a) Catenary, b) Catenary with chains and nylon ropes, c) Catenary with 

chains and polyester ropes, d) Taut, e) Catenary with accessory buoys, f) Taut with 

accessory buoys 

 



 

Figure 15. Example of parameterised risk pattern for the curvature. Light colour 

indicates relatively low risk while darker colours indicate increasing risk. 

 

Mooring type 

Median curvature 

(degrees per m) at 

maximum excursion 

of the buoy 

Curvature score 

Catenary & chains 0.4062 2 

Catenary & chains & nylon ropes 0.1364 2 

Catenary & chains & polyester 

ropes 

0.2292 
2 

Taut 0.0013 1 

Catenary & accessory buoy 0.0441 2 

Taut & accessory buoy 0.0360 2 

Table 6. Summary of risk assessment for the curvature 

4.4. Overall relative risk  

The entanglement risk based on the three investigated physical characteristics of the mooring 

is summarised in Table 7 for the different mooring configurations. These results show that 

the taut configuration is associated with low risks for the three different risk parameters and 

consequently presents the lowest entanglement risk. The total score is comparable for the 

other mooring arrangements.  

 

 



Table 7. Summary of risk assessment for the different mooring parameters 

Mooring type \ risk parameters 
Tension 

characteristics 

Swept volume 

ratio 
Curvature 

Total score 

 

Catenary & chains 2 2 2 6 

Catenary & chains & nylon ropes 3 2 2 7 

Catenary & chains & polyester ropes 2 2 2 6 

Taut 1 1 1 3 

Catenary & accessory buoy 3 2 2 7 

Taut & accessory buoy 3 1 2 6 

5. Discussion 

This paper has presented a method to enable comparison of the relative entanglement risk of 

different mooring configurations. Results indicate that the taut configuration considered in 

this study has a significantly lower relative entanglement risk than all the other investigated 

configurations. The catenary configuration using chains and nylon ropes and the catenary 

configuration using accessory buoys have the highest relative risk. However, the other 

catenary configurations, with chains only or with chains and polyester ropes, and the taut 

configuration with accessory buoys also have high relative entanglement risks.  

Although these results are in no way intended to quantify the risk of entanglement, they do 

indicate that specific features of mooring systems may increase or decrease the risk. This 

paper gives a method which can be used to compare particular mooring systems but does not 

mean for example that all taut configurations always have a lower relative entanglement risk. 

It should also be highlighted that the risk calculated in this report is a relative risk, and high 

relative risk does not mean a high and frequent actual risk.  

Entanglement could be taken into account from the early design stage of the mooring; 

furthermore, the parameters required for entanglement assessment are also required for the 

other technical or financial considerations required for mooring design. A way to integrate 

entanglement into the early stage of the design system is to include it in EIA reporting 

process, as suggested by Stefanovich and Fernández Chozas [29] or Equimar [1]. EMEC [30] 

introduces a list of parameters that developers should provide for the EIA, including 

entanglement. These parameters encompass the full dimensions of the device, its weight, its 

draft, the mooring area of coverage, the mooring materials, and the movement of device 

around mooring. Some of these parameters are required by the methodology proposed in this 

paper. In order to apply the methodology described in this paper, the following parameters 

are required: 

 

Moorings  
-Mooring layout: number of lines, distance between the centre of the floating 

structure and the anchor 

 -Length of each mooring line section 

 -Line material properties: displacement, mass per unit length, axial stiffness 

 -If accessory buoys are used: volume, mass 

Floating structure 

-Hydrodynamics properties: for a small structure, data to apply Morison theory; for 

a large structure, data to apply the potential radiation-diffraction theory 

Environment 

 -Water depth 

 -Operational and extreme sea states 



These results can be extended to an array of devices or to power cables. However, power 

cables are less critical than mooring lines. Unlike mooring lines, marine megafauna are likely 

to be able to break a power cable which has a lower MBL than mooring lines since it is not 

intended to play any role in keeping a device on station.  

The method developed in this paper does not consider derelict fishing gears which can add a 

potentially significant risk of entanglement, especially in a dense array configuration. If a lost 

or discarded net, moving freely in the water column with the ocean currents, were to become 

entangled in one or more mooring lines, the entanglement risk, not only to marine megafauna 

but also to smaller species such as fishes and diving birds, would increase significantly with 

the size and surface area of the net. This scenario would also be detrimental to the mooring 

itself, and further investigation is needed to quantify the likelihood of such an event occurring 

in areas where ORE devices are likely to be deployed. 

The method presented here focuses on three different risk parameters. Other risk parameters 

could have been added to this study. For example, the volume and mass of the floating device 

may be considered because it can be of similar size and weight to marine megafauna. In 

addition to the physical properties of the mooring, it is equally important to consider the 

biological characteristics and behaviours of different species of marine megafauna to assess 

which species present a higher risk of entanglement. This work has been performed as part of 

a wider study in parallel with the moorings assessment [31].  

Due to the large degree of uncertainty because of the limited experience with the operation of 

ORE moorings, the rarity of entanglement events and the fact that they are not always 

detected, these results need to be updated if entanglement is actually observed. From an 

engineering point of view, this means that mooring systems need to be able to handle the 

additional weight and volume of a carcass until entanglement can be efficiently monitored or 

avoided.  

 

 

6. Conclusion  
A methodology has been presented to estimate the relative entanglement risk of marine 

megafauna with a given mooring configuration. Six different mooring configurations have 

been used for this study: catenary with chains only, catenary with chains and nylon ropes, 

catenary with chains and polyester ropes, taut, catenary with accessory buoy, taut with 

accessory buoy. The parameters which have been used to estimate entanglement risk are 

tension characteristics, swept volume ratio and mooring line curvature. Taut mooring systems 

represent the lowest relative risk of entanglement.  

The methodology presented in this paper can be used by ORE device developers at the early 

stage of the mooring design if it is integrated in EIA reporting process. It can also be used for 

analysis with other mooring configurations, or for power cables or array configurations. 

There are still uncertainties about the relative importance of the risk parameters, and as 

projects are deployed and empirical evidence is collected, this uncertainty can be refined.  
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