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Abstract 

This study presents the results of vibration suppression of a walkway bridge structure with a single 

actuator and sensor pair by using a proportional-integral (PI) controller and observer-based pole-

placement controllers. From the results of experimental modal analysis (EMA), reduced order models 

of the walkway are identified. These are used for the design of a PI controller as well as for state 

estimation procedures that are necessary for development of reduced-order observer controllers. The 

respective orders of the latter are dependent on the number of plant modes used for their designs. 

They are formulated from plant and observer feedback gains that are obtained from specification of 

desired floor closed-loop eigenvalues and observer eigenvalues. There are numerous solutions 

possible with the observer-based controller design procedures whereas the PI controller defaults to a 

particular solution. There is also the flexibility for isolation and control of target vibration modes with 

the observer-based controllers for higher controller orders from a purely single-input single-output 

controller scheme as demonstrated in the analytical and experimental studies presented. Further, in 

this work, a design space of potential feedback gains is specified, where only a single plant mode has 

been used for the observer-based controller design process, and a multi-objective genetic algorithm 

optimisation scheme is used to search for an optimal solution within some pre-defined constraint 

conditions. The best solution here is regarded as one that offers the greatest vibration mitigation 

performance amongst the solutions identified. 
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1. Introduction 
The assessment of vibration serviceability performance of civil engineering structures, for example, 

floors and footbridges often requires some fundamental questions to be answered. For example; 

What are the sources of vibration? Where does the objection to excessive vibration arise from? What 

are the typical responses expected? (Hanagan, 2003). For these pedestrian structures, humans 
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present the dominant source of excitation. Their dynamic forces from activities such as walking 

changes in time and space and also varies considerably not only between people of different ages, 

weights, stride lengths, speeds etc. but also for a single individual who often cannot repeat two 

identical steps (Racic et al, 2009). With typical walking frequencies ranging from 1.0 – 3.0 Hz, the 

walking forces also contain harmonics at these frequencies which have the potential to excite 

resonance in these structures.  

Contemporary complaints or failures in vibration serviceability performances of the above structures 

is often attributed to advancements in design and materials technologies and architectural trends that 

result in longer span, more lightweight and open plan systems with low modal frequencies and 

damping ratios. For footbridges, vibration serviceability limits and loading patterns under pedestrian 

excitation are specified in various design guidelines: BD37/01, BS5400, HiVoSS, and Setra. In BD37/01, 

as an example, bridges with vertical and horizontal natural frequencies greater than 5 Hz and 1.5 Hz, 

respectively, are deemed to be okay. Otherwise, the limiting vibration levels are defined by 𝑎𝑚𝑎𝑥 =

0.5√𝑓𝑜, in which 𝑓𝑜 is the fundamental frequency of the footbridge. As pertains to floors, there are 

also many guidelines (Smith et al, 2009, BS 6841, ISO 10137, BS6472) that specify desirable vibration 

serviceability performances. BS6472, for example, uses frequency weighted accelerations, in which 

there are various curves relating to permissible acceleration limits in different floors with respect to 

usage.  

Vibration mitigation measures are often introduced either into the mainstream design phase of civil 

structures when vibration serviceability problems are anticipated or as a fix for an existing problem, 

the latter being more widespread in past studies. Amongst the measures available include passive, 

active, semi-active and hybrid technologies. These external devices for absorbing excessive structural 

vibrations vary in size, reliability, performance, installation and running costs. For footbridge 

structures, the use of tuned mass dampers (TMDs) is quite popular, with many trials and installations 

considering single and multiple units that are optimally designed to control a single or a series of 

problematic resonant frequencies (Carpineto et al, 2010, Bandivadekar et al, 2012, Li et al, 2010, 

Caetano et al, 2010). Considering a wide spectra of human loading patterns, the devices in these 

studies have been successfully tuned to offer desirable vibration mitigation performances amidst the 

challenges imposed by off-tuning. 

Other studies have investigated the potential of using active vibration control (AVC) systems. For 

example, there have been trials with an active mass damper (AMD) system on a stress-ribbon 

footbridge at FEUP, Porto (Moutinho et al, 2007) for which approximately 37 % reduction in structural 

response to pedestrian walking induced load was achieved. There have also been comparisons of 

vibration mitigation performances between TMDs and AMDs in some trials (Casado et al, 2011). This 

study comprised of the implementations of a TMD and AMD unit in the Valladolid Science Museum 

footbridge in Spain. Vibration mitigation performances of between 60 - 80 % were realised for both 

systems. The AVC systems in both of these studies made use of the velocity feedback control scheme, 

for which control gains can easily be tuned. AMD units were found to be robust to off-tuning problems 

and single units can effectively control multiple vibration modes simultaneously. Numerous other 

studies can be found in the literature but only a few extracts from some case studies have been 

presented here. Field trials of AMD units for floor vibration control have yielded considerable 



 

enhancement to their vibration serviceability performances (Diaz et al, 2010, Nyawako et al, 2013), 

with most studies implementing direct output feedback approaches like DVF. The benefits of these 

systems for this application is their ability to tackle a wide array of frequencies simultaneously whilst 

making use of much smaller units, all potentially with minimal disruptions to in-service facilities. 

The use of other advanced AVC schemes like the modal control approaches in civil engineering 

applications has mainly been for the control of earthquake and wind excited structures. One such 

study comprises of the design of an optimal controller in modal space and the use of fuzzy control to 

tune the modal control gains (Park et al, 2004). In other studies, pole placement and optimal control 

(LQR, LQG) techniques have also been used (Chung et al, 1998, Wu et al, 1998) with some degree of 

success. Some challenges concerning design freedoms that guarantee both closed-loop stability and 

controller stabilities have been addressed, for example, in the works of Liu and Daley, 1998 and Liu et 

al, 2000 for observer-based and polynomial pole assignment controllers. 

This paper focuses on suppression of human-induced vibrations in a walkway bridge using AVC. It 

compares vibration mitigation performances of two sets of controller schemes: (1) a proportional-

integral (PI) controller based on measured walkway bridge acceleration response, and (2) a series of 

reduced-order observer-based (dynamic) controllers formulated from a single and three structural 

vibration modes, respectively, and also implemented on measured walkway bridge acceleration 

response. As dynamic compensator forms can have multiple solutions, depending on various choices 

of the plant and observer eigenvalues, a multi-objective genetic algorithm optimisation and some 

simulation studies are used to identify what might be regarded as the ‘best’ solution for these case 

studies. All of the controllers designed in Matlab were implemented in dSPACE hardware: ACE1103 

consisting of a DS1103 PowerPC GX/1 GHz controller board and CLP1103 connector/LED panel.  

2. Walkway bridge and actuator dynamics 
The structure used in these studies is a walkway bridge within the Forum Building at the University of 

Exeter. Figure 1a shows a plan view and Figure 1b is a sectional elevation. It comprises of two 

500x300x16 mm rectangular hollow section (RHS) primary beams of approximately 14.5 m and 14.7 m 

in length and spaced at 2.7 m centre to centre, with tapered 300x200x16 mm RHS beams welded 

underneath. Additionally, secondary beams of 80x80x8 mm RHS run at 1800mm centre to centre 

perpendicular to the primary beams. The flooring comprises a 130 mm thick concrete on RLSD Holorib 

S350 profiled metal deck, 0.9 mm gauge with A193 mesh. Ceramic tiles form the final floor finishing. 

 
a) Plan view (dimensions in mm) 



 

 
b) Section A-A 

Figure 1. Walkway bridge structure in Forum building at the University of Exeter 
 

The test grid in Figure 2 was used for the EMA to evaluate the dynamic properties of the structure. 

These comprised of frequency response function (FRF) measurements using an array of 13 Honeywell 

QA750 servo accelerometers mounted on levelled Perspex plates, and two APS Dynamics Model 400 

electrodynamic shakers that were sited at TPs 4 and 7. The shakers were driven by statistically 

uncorrelated random signals and their forces were measured using Endevco 7754A-1000 

accelerometers that were attached to the inertial masses. As there were more test points than 

accelerometers, it was necessary to use roving response measurements; the shakers were left in 

position and served as references whilst the accelerometers were roved along grid lines 1-13, 14-26 

and 27-39. Data acquisition was carried out using a Data Physics Mobilyzer II digital spectrum analyser. 

The force and vibration response data were sampled using a baseband setting of 80 Hz on the 

spectrum analyser. Each data acquisition window was 32s in length, and the acquisitions were made 

using a Hanning window and 75% overlap, which were averaged to calculate the uncontrolled FRFs. 

 
Figure 2. Test grid for modal testing 

The point accelerance FRF measurements at TPs 4 and 7 (magnitude and phase) are shown in Figures 

3a and 3b. The FRF data from all excitation and response points were analysed using the ME’scopeVES 

parameter estimation software to determine the modal properties of the walkway bridge, i.e. the 

natural frequencies, modal damping ratios and mode shapes. The key results of the modal parameter 

estimation are summarised in Table 1.  



 

 
a) FRF Magnitude – TPs 4 and 7 

 
b) FRF Phase – TPs 4 and 7 

Figure 3. FRF Magnitude and Phase at TPs 4 and 7 
 

Table 1.  Summary of estimated modal properties from EMA 

Mode Natural Frequency [Hz] Damping Ratio [%] 

1 6.34 1.0 

2 10.5 0.9 

3 14.6 2.2 

4 20.5 2.6 

5 26.1 0.7 

6 26.9 1.1 

7 34.3 2.3 

 

TP7 is selected for siting an actuator and sensor pair in the AVC studies in this work as it is close to the 

antinode of the two lowest modes of vibration that are prone to excitation from walking. The transfer 

function at TP7 for controller design, considering the ‘approximate’ collocated case between the 

acceleration (output) and the force (input) is obtained in the Laplace domain using the modal 

expansion approach in Equation 1. This comprises of a finite set of modes within the frequency 

bandwidth of interest. 𝜇𝑖 ≥ 0 is the inverse of the ‘effective mass’ corresponding to TP7, 𝜁𝑖 is the 

modal damping ratio and 𝜔𝑖 is the modal frequency, all being associated with the mode 𝑖. 

𝐺𝑝(𝑠) = ∑
𝜇𝑖𝑠2

𝑠2 + 2𝜁𝑖𝜔𝑖𝑠 + 𝜔𝑖
2

𝑛

𝑖=1

 

(1) 

The actuators used in this research work are APS dynamics, model 400 electro-seis shakers. They have 

an inertial mass of 30.4 kg and a maximum stroke of 15 cm. The peak drive voltage to the shaker 

amplifier, APS Dynamics Model 124-EP, is 2.0 V. Figures 4a and 4b show the experimental force-

voltage characteristics for the current drive mode in which the actuators are used here, within the 

frequency span 0 - 40 Hz. Also within these plots are the traces of the derived analytical model in 

Equation 2a, with parameters determined as: 𝐾𝑎𝑐𝑡 = 300 N/V, 𝜁𝑎𝑐𝑡 = 0.10 and 𝜔𝑎𝑐𝑡 = 8.17 rad/s. 

Equation 2b shows the displacement-voltage (m/V) characteristic, and 𝐾𝑎𝑐𝑡_𝑑 = 10. 



 

 
a) FRF Magnitude 

 
b) FRF Phase 

Figure 4. Actuator dynamics  – FRF magnitude and phase (EMA – experimentally measured trace, 
Est –analytically derived trace) 

 

𝐺𝑎𝑐𝑡(𝑠) =  
𝐹(𝑠)

𝑉(𝑠)
=

𝐾𝑎𝑐𝑡𝑠2

𝑠2 + 2𝜁𝑎𝑐𝑡𝜔𝑎𝑐𝑡𝑠 + 𝜔𝑎𝑐𝑡
2  

(2a) 

  

𝐺𝑎𝑐𝑡_𝑑(𝑠) =  
𝐷(𝑠)

𝑉(𝑠)
=

𝐾𝑎𝑐𝑡_𝑑

𝑠2 + 2𝜁𝑎𝑐𝑡𝜔𝑎𝑐𝑡𝑠 + 𝜔𝑎𝑐𝑡
2  

(2b) 

3. Controller schemes 
Two controller schemes are selected for the studies presented here. They include: 

a) A proportional-integral (PI) controller on measured structural acceleration – this optimizes the 

controller to derive benefits of DVF at low frequency and those of direct acceleration feedback 

at higher frequencies. 

b) A series of observer-based (dynamic) controllers – these are designed to meet various design 

objectives, which include both global control (the control of all structural resonant frequencies 

observable) and targeted control (isolation and control of specific resonant frequencies). 

TP 7 in Figure 2 that captures the two lowest vibration modes of the walkway bridge that are prone 

to pedestrian excitation is used for siting the collocated sensor and actuator pair. 

The PI controller takes the form of Equation 3, in which 𝐾𝑔, 𝑎1 and 𝑏1 are the compensator, 𝐺𝑐(𝑠), 

parameters to be evaluated. It can be assumed that 𝑏1 = 1. As noted above, the addition of the 

proportional term to the integral term is mainly to enhance the vibration mitigation performance of 

the PI controller over a broader frequency bandwidth as well as offering better stability margins.  

𝐺𝑐(𝑠) =  𝐺𝑝𝑖(𝑠) = 𝐾𝑔 (
𝑎1𝑠 + 𝑏1

𝑠
) 

(3) 

 

Observer-based controller sets, 𝐺𝑐(𝑠), are designed from Figure 5 below and considering reduced 

order walkway bridge models from Equation 1 for 𝑖 = 1 and 𝑖 = 3. From Figure 5, (𝐴𝑝, 𝐵𝑝, 𝐶𝑝) and 

(𝐴𝑝𝑜, 𝐵𝑝𝑜, 𝐶𝑝𝑜) are the existing walkway bridge dynamics and its reduced-order model (ROM). 𝑥 are 

estimated modal states of the observer, 𝐾𝑝 are the modal feedback gains required to achieve desired 

closed-loop eigenvalues of the walkway bridge and 𝐾𝑒 are the observer gains.  



 

 

Figure 5. Shortened form of dynamic regulator (Xue et al, 2002) 

The feedback signal 𝐾𝑝�̂�(𝑡) is driven by 𝑢(𝑡) and 𝑦(𝑡) in Equations 4 and 5. 𝑥1(𝑡) and 𝑥2(𝑡) are only 

used to distinguish modal states driven by 𝑢(𝑡) and 𝑦(𝑡). These are expressed in the Laplace domain 

as the two subsystems 𝐻𝑢(𝑠) and 𝐻𝑦(𝑠) in Equations 6 and 7. Equation 8 shows the resultant dynamic 

controller from merging these two equations. From Equation 1, for n = 1 and n = 3, the controller 

orders evolve as shown in Equations 9a and 9b. 𝑘𝑖𝑗 , 𝛼𝑖𝑗 and 𝛽𝑖𝑗 represent the compensator 

coefficients. Checks are made to ensure the controllability, 𝑄𝑐, and observability, 𝑄𝑜, matrices in 

Equations 10a and 10b have full rank. 

�̇�1(𝑡) = (𝐴𝑝𝑜 − 𝐾𝑒𝐶𝑝𝑜)𝑥1(𝑡) + 𝐵𝑝𝑜𝑢(𝑡)          𝑦𝑎1(𝑡) = 𝐾𝑝�̂�1(𝑡) (4) 
  

�̇�2(𝑡) = (𝐴𝑝𝑜 − 𝐾𝑒𝐶𝑝𝑜)𝑥2(𝑡) + 𝐾𝑒𝑦(𝑡)            𝑦𝑎2(𝑡) = 𝐾𝑝𝑥2(𝑡) (5) 
  

𝐻𝑢(𝑠) =
𝑌𝑎1(𝑠). �̂�1(𝑠)

�̂�1(𝑠). 𝑈(𝑠)
=  𝐾𝑝(𝑠𝐼 − (𝐴𝑝𝑜 − 𝐾𝑒𝐶𝑝𝑜))

−1
𝐵𝑝𝑜 

(6) 

  

𝐻𝑦(𝑠) =
�̂�2(𝑠). 𝑌𝑎2(𝑠)

𝑌(𝑠). �̂�2(𝑠)
=  𝐾𝑝(𝑠𝐼 − (𝐴𝑝𝑜 − 𝐾𝑒𝐶𝑝𝑜))

−1
𝐾𝑒 

(7) 

  

𝐺𝑐(𝑠) =
𝐻𝑦(𝑠)

1 + 𝐻𝑢(𝑠)
 

(8) 

  

𝐺𝑐1(𝑠) =  
𝑘11(𝑠 + 𝛼11)

(𝑠2 + 𝛽11𝑠 + 𝛽21)
 

(9a) 

  

𝐺𝑐3(𝑠) =  
𝑘13(𝑠 + 𝛼13)(𝑠2 + 𝛼23𝑠 + 𝛼33)(𝑠2 + 𝛼43𝑠 + 𝛼53)

(𝑠2 + 𝛽13𝑠 + 𝛽23)(𝑠2 + 𝛽33𝑠 + 𝛽43)(𝑠2 + 𝛽53𝑠 + 𝛽63)
 

(9b) 

  

𝑄𝑐 = [𝐵𝑝𝑜  𝐴𝑝𝑜𝐵𝑝𝑜  𝐴𝑝𝑜
2 𝐵𝑝𝑜  ⋯ 𝐴𝑝𝑜

𝑛−1𝐵𝑝𝑜] (10a) 

𝑄𝑜 =  [𝐶𝑝𝑜  𝐶𝑝𝑜𝐴𝑝𝑜 ⋯  𝐶𝑝𝑜𝐴𝑝𝑜
𝑛−1]

𝑇
 (10b) 

 

Figure 6 shows the control scheme for implementation of the above controller schemes. 𝐺𝑝(𝑠), 

𝐺𝑎𝑐𝑡(𝑠), 𝐺𝑏𝑝(𝑠), 𝐺𝑛𝑜𝑡(𝑠) and 𝐺𝑐(𝑠) are the walkway bridge, actuator, band pass filter, notch filter and 

controller dynamics. For mitigation of human induced vibrations, the disturbance rejection property 

in Equation 11 is the key objective as human walking forces cannot directly be measured. 



 

 

Figure 6. Controller scheme for both PI controller and observer based controller 

𝑌𝑎(𝑠) =
𝐺𝑝(𝑠)

1 + 𝐺𝑝(𝑠)𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡(𝑠)𝐺𝑐(𝑠)𝐺𝑏𝑝(𝑠)
𝐷𝑖(𝑠) 

(11) 

 

Equation 12 shows the transfer function between the actuator displacement and the disturbance 

input. This is used to study the sensitivity of the actuator reactive mass displacement to the 

disturbance input mainly around the actuator resonant frequency which, coincidentally falls within 

the range of human walking frequencies. Notch filters in Equation 13 (𝑘𝑛𝑜𝑡 > 1) are designed to 

compensate for the low damping of the actuator in the current drive mode and thereby reduce the 

above sensitivity. 𝐺𝑎𝑐𝑡_𝑑(𝑠) is given in Equation 2b. 

𝑌𝑎𝑐𝑡_𝑑(𝑠) = −
𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡_𝑑(𝑠)𝐺𝑐(𝑠)𝐺𝑏𝑝(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡_𝑑(𝑠)𝐺𝑐(𝑠)𝐺𝑏𝑝(𝑠)𝐺𝑝(𝑠)
𝐷𝑖(𝑠) 

(12) 

  

𝐺𝑛𝑜𝑡(𝑠) =  
𝑠2 + 2𝜁𝑛𝑜𝑡𝜔𝑛𝑜𝑡𝑠 + 𝜔𝑛𝑜𝑡

2

𝑠2 + 2𝑘𝑛𝑜𝑡𝜁𝑛𝑜𝑡𝜔𝑛𝑜𝑡𝑠 + 𝜔𝑛𝑜𝑡
2  

(13) 

 

4. Controller parameters and analytical and experimental studies 
The governing requirements to be met by all controllers are set out as: 

a) To meet minimum stability margins, i.e. Gain Margin of 3dB and Phase Margin of 30 degrees. 

b) The peaks of Equation 12 around the actuator resonance, i.e. 𝑠 = 𝑗𝜔𝑎𝑐𝑡, should not exceed 

the threshold of 8 mm/N. This is a dynamic quantity that reduces the potential for stroke 

saturation from the harmonics of walking around the actuator resonant frequency. 

The optimum PI controller here is defined by the maximum gain achievable without exceeding 

condition (b) above, since the minimum stability margins requirements for condition (a) are met as 

shown in Table 2. The design here comprises of inclusion of a notch filter with parameters in Equation 

13 chosen as: 𝜔𝑛𝑜𝑡 = 8.2  rad/s, 𝑘𝑛𝑜𝑡 = 5.2, and 𝜁𝑛𝑜𝑡 = 0.12. A second order Butterworth band pass 

filter with cut-off frequency 1.0 – 27.5 Hz is also implemented and saturation voltage is set to 2.0 V. 

This yields 𝐾𝑔 = 900, 𝑎1 = 0.0025 and 𝑏 = 1.0 in Equation 3. Figures 7a, 7b and 7c show a root locus 

plot of the closed-loop system in Figure 6, the Nyquist contour of 𝐺𝑝𝑖(𝑠)𝐺𝑎𝑐𝑡(𝑠)𝐺𝑛𝑜𝑡(𝑠)𝐺𝑏𝑝(𝑠)𝐺𝑝(𝑠), 

and a trace of the absolute value of the actuator displacement to disturbance input force within the 

critical frequency span 0 – 6 Hz, i.e. around the actuator resonant frequency. The traces labelled (A) 



 

and (E) in Figure 7b represent the ROM and EMA measurement at TP7. In Figure 7c, PI – A, PI – E and 

PI – Comp A, PI – Comp E refer to the closed-loop systems without and with notch filter inclusion for 

the analytical and experimental traces. It highlights the need for inclusion of the notch filter to satisfy 

requirement (b) above. Figures 9a and 9b show the magnitude and phase plots of the band pass, 𝐺𝑏𝑝1, 

and notch filter, 𝐺𝑛𝑜𝑡1, implemented with the PI controller. 

 

a)  

 

b)   

 

c)  
Figure 7. (a) Root locus plot. (b) Nyquist contour of 𝐺𝑝𝑖(𝑠)𝐺𝑎𝑐𝑡(𝑠)𝐺𝑛𝑜𝑡(𝑠)𝐺𝑏𝑝(𝑠)𝐺𝑝(𝑠). (c) 

Actuator displacement to input force characteristic in Equation 12 with PI controller 

The acronyms PP are used to refer to the observer-based compensator sets. Desired closed-loop 

eigenvalues of selected modes of vibration are chosen using the gain terms in Table 3. Using PP1 as 

an example, it is desired to have a closed-loop damping of 𝑘𝑧𝑒𝑡𝑎1 ∗ 𝑧𝑒𝑡𝑎1, where 𝑧𝑒𝑡𝑎1 is the open-

loop damping of mode 1. PP1 takes the form of Equation 9a, whilst PP2, PP3 and PP4 all take the form 

of Equation 9b. The observer-based compensators, 𝐺𝑐1(𝑠), 𝐺𝑐2(𝑠), 𝐺𝑐3(𝑠) and 𝐺𝑐4(𝑠) in Equations 14a 

to 14d are designed to realise the design objectives set out in Table 3 for PP1, PP2, PP3 and PP4. 

𝐺𝑐1(𝑠) =  
677.5(𝑠 + 6.8)

(𝑠2 + 24.6𝑠 + 107.7)
 

(14a) 

𝐺𝑐2(𝑠) =  
386.6(𝑠 + 622.7)(𝑠2 + 3.5𝑠 + 4368)(𝑠2 + 11.3𝑠 + 4.6𝑒4)

(𝑠2 + 155.4𝑠 + 4134)(𝑠2 + 16.8𝑠 + 4174)(𝑠2 + 49.3𝑠 + 5.6𝑒4)
 

(14b) 

𝐺𝑐3(𝑠) =  
276.7(𝑠 + 1111)(𝑠2 + 4.1𝑠 + 1604)(𝑠2 + 11.3𝑠 + 4.6𝑒4)

(𝑠2 + 10.8𝑠 + 1560)(𝑠2 + 154.3𝑠 + 8130)(𝑠2 + 51.9𝑠 + 5.6𝑒4)
 

(14c) 



 

𝐺𝑐4(𝑠) =  
627.3(𝑠 + 598.2)(𝑠2 + 23.5𝑠 + 2688)(𝑠2 + 11.3𝑠 + 4.6𝑒4)

(𝑠2 + 37.9𝑠 + 1772)(𝑠2 + 157.6𝑠 + 8849)(𝑠2 + 49.2𝑠 + 5.5𝑒4)
 

(14d) 

𝐺𝑐1(𝑠) possess lossy-integrator type characteristics and attenuates both the first and second modes 

of vibration. 𝐺𝑐2(𝑠) is designed to isolate and control mainly the first vibration mode, 𝐺𝑐3(𝑠) is 

designed to isolate and control mainly the second vibration mode, whilst 𝐺𝑐4(𝑠) is designed to control 

both the first and second vibration modes of the walkway bridge. All the compensators are closed-

loop stable and Figure 8 shows their FRF magnitude and phase characteristics. A second order 

Butterworth band pass filter, 𝐺𝑏𝑝2, with cut-off frequency 0.75 – 28.5 Hz in Figure 9a is included with 

all the dynamic compensators to prevent potential spillover from higher frequencies. A notch filter, 

𝐺𝑛𝑜𝑡2, in Figure 9b with parameters optimised at 𝜔𝑛𝑜𝑡 = 8.2 𝑟𝑎𝑑/𝑠, 𝑘𝑛𝑜𝑡 = 1.6, and 𝜁𝑛𝑜𝑡 = 0.12 

ensures requirement (b) above is met. The minimum stability margins with implementations of these 

controllers in Figure 6 is shown in Table 2. Desired and the achieved closed-loop eigenvalues with 

these observer-based controllers are reflected in Table 3. 

 
a) FRF Magnitude 

 
b) FRF Phase 

Figure 8. Compensator magnitudes and phases: 𝐺𝑐1(𝑠), 𝐺𝑐2(𝑠), 𝐺𝑐3(𝑠), 𝐺𝑐4(𝑠)  

 
a) FRF Magnitude 

 
b) FRF Phase 

Figure 9. Band pass and Notch filter magnitudes and phases for PI and PP compensators 
(subscripts 1 refer to PI controller and subscripts 2 refer to PP controllers) 

 

Root locus plots, Nyquist contour plots of 𝐺𝑐(𝑠)𝐺𝑎𝑐𝑡(𝑠)𝐺𝑛𝑜𝑡(𝑠)𝐺𝑏𝑝(𝑠)𝐺𝑝(𝑠), and traces of the 

absolute values of the actuator displacement to disturbance input force relationships similar to those 

in Figure 7 can also be derived for the reduced order observer controllers. These are, however, not 

shown here. 

 



 

Table 2. Stability margins and displacement-force characteristics for all controllers 

Controller GM - dB PM - degrees Displacement to input force ratio 
around actuator resonance (mm/N) 

𝐺𝑝𝑖(𝑠) 9.8 58.5 0.080 

𝐺𝑐1(𝑠) 14.3 59.1 0.075 

𝐺𝑐2(𝑠) 10.9 52.7 0.070 

𝐺𝑐3(𝑠) 9.5 42.6 0.060 

𝐺𝑐4(𝑠) 9.5 43.1 0.075 

 

Table 3. Desired and achieved eigenvalues of modes 1 and 2 of the walkway bridge structure 

  Gain parameters Desired closed-loop 
eigenvalues 

Achieved closed-loop 
eigenvalues 

PP1 Mode 1 𝑘𝑧𝑒𝑡𝑎1 = 25.5 −11.2 ± 39.2𝑖 −10.5 ± 33.9𝑖 
PP2 Mode 1 

Mode 2 
Mode 3 

𝑘𝑧𝑒𝑡𝑎1 = 16.5 
𝑘𝑧𝑒𝑡𝑎2 = 2.5 
𝑘𝑧𝑒𝑡𝑎3 = 1.0 

−7.4 ± 40.2𝑖 
−1.5 ± 65.9𝑖 

−5.6 ± 215.4𝑖 

−7.7 ± 38.1𝑖 
−1.4 ± 66.2𝑖 

−5.6 ± 215.4𝑖 

PP3 Mode 1 
Mode 2 
Mode 3 

𝑘𝑧𝑒𝑡𝑎1 = 5.5 
𝑘𝑧𝑒𝑡𝑎2 = 15.5 
𝑘𝑧𝑒𝑡𝑎3 = 1.0 

−1.9 ± 40.7𝑖 
−9.0 ± 62.0𝑖 

−5.6 ± 215.4𝑖 

−1.3 ± 40.2𝑖 
−7.0 ± 60.1𝑖 

−5.6 ± 215.4𝑖 

PP4 Mode 1 
Mode 2 
Mode 3 

𝑘𝑧𝑒𝑡𝑎1 = 16.5 
𝑘𝑧𝑒𝑡𝑎2 = 17.5 
𝑘𝑧𝑒𝑡𝑎3 = 1.0 

−9.9 ± 56.8𝑖 
−8.0 ± 48.9𝑖 

−5.6 ± 215.4𝑖 

−8.8 ± 58.8𝑖 
−6.9 ± 46.0𝑖 

−5.6 ± 215.4𝑖 

 

The disturbance rejection results from the analytical studies and experimental implementation of all 

the controller schemes are presented in Figures 10 and 11, and Table 4 highlights the attenuations in 

the two lowest vibration modes.  

 
a) 

 
b) 

Figure 10. Uncontrolled and controlled frequency response functions for all controllers (analytical) 



 

 
a) 

 
b) 

Figure 11. Uncontrolled and controlled frequency response functions for all controllers 
(experimental) 

 

Table 4. Attenuations in target modes of vibration for all controllers 

Controller Predicted attenuations (dB) Experimental attenuations (dB) 

 Mode 1 Mode 2 Mode 1 Mode 2 

𝐺𝑝𝑖(𝑠) 26.4 23.1 26.4 23.1 

𝐺𝑐1(𝑠) 24.4 21.4 24.4 21.4 

𝐺𝑐2(𝑠) 29.5 12.8 29.5 12.8 

𝐺𝑐3(𝑠) 21.1 29.5 21.1 29.5 

𝐺𝑐4(𝑠) 28.5 26.8 28.5 26.8 

 

No spillover effects from higher frequencies was observed in the experimental implementation of the 

observer-based controllers as they possess desirable roll-off characteristics as seen in Figure 8 and the 

use of second order Butterworth band pass filters, that were implemented with all compensators.  

The PI controller targets all structural resonant frequencies within a broad frequency bandwidth. 

𝐺𝑐1(𝑠), designed based on only a single plant mode defaults to a second order controller with lossy 

integrator type characteristics and also targets all structural frequencies within a given bandwidth. 

The dynamic compensators, 𝐺𝑐2(𝑠), 𝐺𝑐3(𝑠), 𝐺𝑐4(𝑠), are of sixth order by virtue of the use of three 

plant modes for their design and there is an increase in the design freedom to isolate and target 

specific resonant frequencies within a given bandwidth as can be seen in Figures 10 and 11.  

The question now arises as to what might be regarded as an optimal solution to a given problem. In 

this work, it appears there may be numerous possible compensator solutions from different choices 

of desired closed-loop plant properties and observer eigenvalues, even for the most basic controller 

in Equation 9a. The next section deals with an optimisation scheme that is formulated to select 

appropriate dynamic controller parameters within a given search space that is obtained from various 

choices of plant closed-loop and observer eigenvalues. The optimization scheme here focuses on the 

dynamic compensators derived from the use of only a single plant mode for their design i.e. second 

order compensator types in Equation 9a. 



 

5. Optimisation schemes 
The dynamic compensators designed in the previous section are seen to offer desirable disturbance 

rejection properties as seen in Figures 10 and 11. In Table 4, this subsequently translates to impressive 

attenuations in the walkway bridge responses under human-induced vibrations. It is now desirable to 

determine an optimal solution within some defined scope and a particular approach is pursued here. 

As seen previously, the selection of desired closed-loop eigenvalues of the walkway bridge structure 

and appropriate observer eigenvalues results in plant and observer gains, 𝐾𝑝 and 𝐾𝑒, that are used in 

the formulation of the dynamic compensator, 𝐺𝑐1(𝑠) in Equations 9a,14a. This equation comprises of 

real gains 𝑘11, 𝛼11, 𝛽11 and 𝛽22. Multiple gain sets, 𝐾𝑝 and 𝐾𝑒, can be obtained from the pre-selection 

of various closed-loop plant eigenvalues and associated observer eigenvalues, and these ultimately 

result in multiple sets of parameters 𝑘11, 𝛼11, 𝛽11 and 𝛽22. An example of this is demonstrated here, 

where only the first plant mode is used for the dynamic controller design. 

Some desired closed-loop eigenvalues of the first vibration mode of the walkway structure can be 

selected as shown in Table 5, following a similar procedure to that in Table 3. Appropriate eigenvalues 

of the observers are also determined. The resulting closed-loop eigenvalues of the first mode of 

vibration are also provided. The coefficients of 𝐺𝑐(𝑠), of form in Equations 9a,14a, for the various 

compensators in Table 5 are shown in Table 6. Root locus plots, Nyquist contour plots of 

𝐺𝑐(𝑠)𝐺𝑎𝑐𝑡(𝑠)𝐺𝑛𝑜𝑡(𝑠)𝐺𝑏𝑝(𝑠)𝐺𝑝(𝑠), and traces of the absolute values of the actuator displacement to 

disturbance input force relationships similar to those in Figure 7 can also be developed with these 

reduced order observer controllers: PP1-1 to PP1-7. These are, however, not shown here. Figure 12 

shows typical closed-loop FRFs for closed-loop systems with three of the compensators in Table 6, 

reflecting many potential choices, again with these quick iterations. 

 

Table 5. Desired eigenvalues of mode 1, realised and enhanced eigenvalues of Walkway Bridge  

Controller Desired closed-
loop eigenvalues 

Observer 
eigenvalues 

Achieved closed-
loop eigenvalues 

PP1 – 1 −11.9 ± 45.2𝑖 −16, −2 −12.2 ± 42.4𝑖 
PP1 – 2 −4.0 ± 40.2𝑖 −6.0 ± 8.0𝑖 −4.0 ± 39.2𝑖 
PP1 – 3 −2.7 ± 40.1𝑖 −4.1 ± 5.6𝑖 −2.6 ± 39.3𝑖 

PP1 – 4 −1.7 ± 40.2𝑖 −4.7 ± 6.4𝑖 −1.8 ± 39.7𝑖 
PP1 – 5 −6.5 ± 41.4𝑖 −7.8 ± 1.7𝑖 −6.7 ± 39.1𝑖 
PP1 – 6 −3.1 ± 40.0𝑖 −2.1 ± 3.4𝑖 −3.5 ± 38.9𝑖 

PP1 – 7 −3.3 ± 39.9𝑖 −3.7 ± 5.9𝑖 −3.2 ± 39.1𝑖 

 

Table 6. Optimal controller parameters of 𝐺𝑐1(𝑠) in Equation 13a corresponding with selected 

closed-loop eigenvalues 

Gain parameters 

Controller 𝒌𝟏𝟏 𝜶𝟏𝟏 𝜷𝟏𝟏 𝜷𝟐𝟏 
PP1 – 1 392.5 65.0 39.6 415.6 

PP1 – 2 239.1 20.2 18.9 182.8 

PP1 – 3 162.8 16.0 12.9 87.2 

PP1 – 4 91.8 28.2 12.0 86.4 



 

PP1 – 5 344.8 36.0 27.8 251 

PP1 – 6 225.7 9.3 9.6 40.7 

PP1 – 7 200.7 12.9 12.8 89.8 

 

 
Figure 12. Typical closed-loop FRFs 

 

By making use of the coefficients derived in Table 6, a search space is proposed as shown in the pole-

zero maps in Figure 13. This is unique to the present work. The question that arises now is how to 

derive an optimal controller gain solution within this search space. This is addressed in this paper using 

a multi-objective genetic algorithm (GA) optimisation scheme. Equation 9a can be re-expressed as 

shown in Equation 15. Table 7 highlights the selected envelopes of the compensator coefficients for 

the present study which would provide a solution that lies within this search space. These are 

minimum and maximum values from the gain parameters in Table 6. 

 

Figure 13. Pole-zero maps of the compensators in Table 6 

 



 

𝐺𝑐1(𝑠) =  
𝑘11(𝑠 + 𝛼11)

(𝑠2 + 𝛽11𝑠 + 𝛽21)
 =  

𝑘11𝑠 + 𝑘21

(𝑠2 + 𝛽11𝑠 + 𝛽21)
                                                                                 (15) 

 

Table 7.  Selected envelopes of coefficients 𝑘11, 𝑘21, 𝛽11, 𝛽21 

Parameter 𝒌𝟏𝟏 𝒌𝟐𝟏  𝜷𝟏𝟏 𝜷𝟐𝟏 
Min. 400 9000 9 30 

Max. 1000 50000 50 450 

 

This is a nonlinear programming problem in which the objective function and most of the constraint 

conditions are nonlinear functions of the design variables. The multi-objective optimization problem 

is set out as the minimization of the objective function in Equation 16, i.e. the disturbance rejection 

property, whose magnitude and phase properties are considered over the entire frequency 

bandwidth, 𝜔𝑖 , 𝑖 = 1,2, … , 𝑛, 𝑠 = 𝑗𝜔. This represents the frequency range 0.5 – 80.0 Hz in this work. 

𝐺𝑐(𝑗𝜔𝑖) = 𝑓{𝑘11, 𝑘21, 𝛽11, 𝛽21} is the only variable which represents the controller term whose gain 

parameters are to be determined from the envelopes outlined in Table 6. The aim of the objective 

function in Equation 16 is to attenuate the resonant peaks of the dominant frequencies whilst realising 

a bounded closed-loop solution of Equation 11 over the frequency bandwidth of interest noted above 

subject to some constraint terms which are introduced. This also aims to mitigate the potential for 

spill over instabilities over the frequency range of interest to be controlled. The non-linear constraint 

conditions are set out in Equations 17 to 22 and explained.𝐺𝑝𝑑(𝑗𝜔𝑖) in Equation 17 is a desired closed-

loop trace. 

 

Objective function:  minimize 

   𝐻𝑐(𝑗𝜔𝑖) =
𝐺𝑝(𝑗𝜔𝑖)

1 + 𝐺𝑝(𝑗𝜔𝑖)𝐺𝑏𝑝(𝑗𝜔𝑖)𝐺𝑛𝑜𝑡(𝑗𝜔𝑖)𝐺𝑎𝑐𝑡(𝑗𝜔𝑖)𝑮𝒄(𝑗𝜔𝑖)
 ,     𝑖 = 1,2, … , 𝑛                             (16) 

Subject to constraint conditions:  

   |𝐻𝑐(𝑗𝜔𝑖)| ≤ |𝐺𝑝𝑑(𝑗𝜔𝑖)| − |𝜀| , 𝑖 = 0,1,2, … , 𝑛                                                                                         (17) 

   𝑘1𝐿 ≤ 𝑘11 ≤ 𝑘1𝑈, 𝑘2𝐿 ≤ 𝑘21 ≤ 𝑘2𝑈                                                                                                    (18) 

   𝛽1𝐿 ≤ 𝛽11 ≤ 𝛽1𝑈, 𝛽2𝐿 ≤ 𝛽22 ≤ 𝛽2𝑈                                                                                                     (19) 

max {−real (Nyquist (𝐺𝑝(𝑗𝜔𝑖)𝐺𝑏𝑝(𝑗𝜔𝑖)𝐺𝑎𝑐𝑡(𝑗𝜔𝑖)𝐺𝑛𝑜𝑡(𝑗𝜔𝑖)𝑮𝒄(𝑗𝜔𝑖)))} ≤ 1.0                               (20) 

   
𝑘1𝛼11

𝑘1
> 0.5𝛽11 + 0.5 ∗ abs(sqrt(𝛽11𝛽11 − 4𝛽21))                                                                                (21) 

   |
𝐺𝑝(𝑗𝜔𝑖)𝐺𝑏𝑝(𝑗𝜔𝑖)𝐺𝑛𝑜𝑡(𝑗𝜔𝑖)𝐺𝑎𝑐𝑡𝑑(𝑗𝜔𝑖)𝑮𝒄(𝑗𝜔𝑖)

1 + 𝐺𝑝(𝑗𝜔𝑖)𝐺𝑏𝑝(𝑗𝜔𝑖)𝐺𝑛𝑜𝑡(𝑗𝜔𝑖)𝐺𝑎𝑐𝑡𝑑(𝑗𝜔𝑖)𝑮𝒄(𝑗𝜔𝑖)
| ≤ 𝜇1                                                                  (22) 



 

Equation 17 aims to enforce the disturbance-rejection solution in Equation 11, i.e. the magnitude of 

the closed-loop FRF with the optimised gains to be bounded within the desired closed-loop trace, 

𝐺𝑝𝑑(𝑗𝜔𝑖), thus mitigating potential for out-of-bounds resonances. Equations 18 and 19 are the search 

spaces for the controller gain parameters in Table 7. Equation 20 is formulated to ensure the Nyquist 

contour of the closed-loop system for the optimized controller gains does not encircle the -1 point in 

the s-plane and Equation 21 aims to maintain similar pole-zero maps of the resultant dynamic 

controller to those in Figure 16. This ensures appropriate interlacing properties within the closed-loop 

root locus for this case study and thereby meeting appropriate closed-loop stability properties for the 

selected dynamic controller coefficients. The constraint condition introduced in Equation 22 ensures 

that the actuator displacement to disturbance input relationship remains bounded and thus prevents 

potential for stroke saturation instability under pedestrian excitation. 𝜇1 is set to 0.08 mm/N. 

The ‘optimal’ dynamic compensator characteristics are determined using the ‘gamultiobj’ 

multiobjective optimization function within the optimization toolbox using a GA search. These are 

based on the objective function and constraint conditions given in equations 16-22. With higher 

penalty functions, this yields 20 solutions of compensator coefficients that satisfy the constraint 

conditions in Equations 17-22. Figures 14a and 14b show the typical pole-zero plots of the derived 

compensators, in which the solutions are now less-sparse than those from the iterative studies in 

Figure 13. 

 
a) 



 

 
b) 

Figure 14. Pole-zero maps of the optimal compensators from the multi-objective optimisation 
procedure 

 

Analytical simulations of controlled walkway responses under a synthesized walking force time history 

in Figure 15a (the associated Fourier spectrum of this force is also shown in Figure 15b) are then used 

to select a robust controller from all the sets of ‘optimal’ dynamic compensators in Figure 14. This is 

considered as a dynamic controller that offers maximum attenuation of the structural acceleration 

response under this synthesized pedestrian excitation force whilst satisfying desired stability margins. 

A typical example of uncontrolled and controlled response time histories, weighted using the BS6841 

Wb weighting function (BSI, 1987), from the simulation studies are shown in Figure 16. Also shown 

within these plots are the 1s running RMS acceleration responses. The peaks of the 1s RMS 

acceleration responses from the implementation of all the controllers arising from the multi-objective 

optimisation process are shown in Table 8. The peaks of the running RMS acceleration responses are 

defined as the Maximum Transient Vibration Value (MTVV) following the recommendation of ISO 

2631:1997. The MTVV of the uncontrolled response is 0.1399 m/s2. From Table 8, vibration 

attenuations of between 88.1% - 92.9% are predicted for all the controllers. A typical controlled FRF 

trace for the derived optimal compensator 10 in Table 8 is shown in Figure 17. The control efforts from 

these simulation studies were pretty similar. 



 

 
a)  

 
b)  

Figure 15. (a) Synthesized walking time history for use in analytical simulations and (b) associated 
Fourier spectrum 

 

 
a) 

 
b) 

Figure 16. Typical (a) uncontrolled and (b) controlled walking time histories 

 

Table 8. Peak of 1s running RMS (MTVV) for BS6841 weighted controlled walking responses and 

percentage reductions from uncontrolled case 

Compensator MTVV value 
(m/s2) 

% 
reductions 

Compensator MTVV value 
(m/s2) 

% 
reductions 

Uncontrolled 0.1399  PI controller 0.0120 91.4 

PP 1 0.0139 90.0 PP 11 0.0100 92.9 

PP 2 0.0133 90.5 PP 12 0.0145 89.6 

PP 3 0.0142 89.9 PP 13 0.0159 88.6 

PP 4 0.0167 88.1 PP 14 0.0123 91.2 

PP 5 0.0116 91.7 PP 15 0.0119 91.5 

PP 6 0.0120 91.4 PP 16 0.0120 91.4 

PP 7 0.0112 92.0 PP 17 0.0145 89.6 

PP 8 0.0129 90.8 PP 18 0.0104 92.6 

PP 9 0.0124 91.1 PP 19 0.0131 90.6 

PP 10 0.0104 92.6 PP 20 0.0123 91.2 

 



 

 

Figures 17. Uncontrolled and controlled FRF trace for compensator referenced as 10 in Table 8  

6. Conclusions 
This paper has been focused on active vibration suppression of human-induced vibrations in a 

walkway bridge structure in the Forum Building, University of Exeter. It has compared the vibration 

mitigation performances of two sets of controller schemes implemented in a SISO set-up: (1) a 

proportional-integral (PI) controller based on measured walkway bridge acceleration response, and 

(2) a series of reduced-order observer controllers formulated from a single and three structural 

vibration modes, respectively, also based on measured walkway bridge acceleration response.  

PI controllers are attractive in the sense that they are quicker to formulate and they do offer 

appropriate enhancement to the damping properties of the walkway bridge structure. Even without 

suitable plant models, the gains can easily be fine-tuned for this application. For purely SISO schemes, 

they attenuate resonant frequencies observable at a particular controller location. 

With the observer-based (dynamic) compensators, the controller design requires both the selection 

of desired closed-loop eigenvalues of selected modes of vibration of the walkway bridge structure as 

well as appropriate observer eigenvalues. This can be quite a rigorous procedure and there is also 

need for appropriate plant models for their design. It is seen that various reduced order compensator 

orders can be designed depending on the number of plant modes included in the design and these 

can be tailored to meet specific objectives. For example, the design of a dynamic compensator based 

on a single plant mode results in a lossy-integrator type controller that attenuates most frequencies 

observable at a particular location. Much higher order dynamic compensators, for example, those 

designed from three plant modes in this work can be tailored for more targeted control, in that control 

energy can be focused on specific resonances. The compensators are seen to be attractive in the sense 

that they possess low gains at low frequencies and also possess appropriate roll-off behaviour at 

higher frequencies. As numerous solutions are possible with this design approach, optimisation 

algorithms can be introduced or formulated to search for solutions within a given search space and 

some additional specifications, for example, simulation studies can then be undertaken to narrow 

down to what might be regarded as the ‘best’ solution as seen in this work. 
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