
1 

 

Classifying and Identifying Negative Poisson's Ratio. 

An Examination of the Auxeticity in Zeolitic Materials 

 

Volume 1 of 1 

 

Submitted by Mark James Siddorn to the University of Exeter 

 as a thesis for the degree of 

Doctor of Philosophy in Engineering 

In November 2014 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

I certify that all material in this thesis which is not my own work has been 

identified and that no material has previously been submitted and approved for the 

award of a degree by this or any other University. 

 

 

Signature……………………………………………………… 

 

 



2 

 

Abstract 

The aim of this thesis is to advance the understanding of auxeticity. This is 

achieved by developing a more accurate way to classify materials exhibiting the 

property, by carrying out high-throughput atomistic simulations of framework 

materials based on the SiO2 and GeO2 chemistries, and by exploring mechanistic 

models and possible correlations with directional density variations. At first this thesis 

outlines the development of a typographic system for negative Poisson's ratio. 

Materials are given classifications based on the degree to which auxetic behaviour is 

observed along specific axes of deformation and the frequency of occurrence of 

these axes. A systematic study is then performed on the elastic properties of zeolitic 

silicon dioxide and germanium dioxide structures. The typology is applied to these 

materials to better understand their auxetic behaviour. The JST framework is 

identified as isotropically auxetic, the first crystal to exhibit such general negative 

Poisson's ratios. An exploration into the effects of local density variations between 

parallel planes on Poisson's ratio is undertaken, but no clear correlation is found. 

Finally, software for systematically creating and evaluating two dimensional networks 

of triangles is produced. The geometrical analysis of these rotating structures 

predicts a high level of auxeticity and further work into three dimensional equivalents 

is recommended.  
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Chapter 1: Introduction 

This thesis describes the search for crystalline materials with extreme 

auxeticity (negative Poisson’s ratio –PR–), based on atomistic simulations, geometric 

considerations and meta-analyses of previously published experimental studies. In 

the context of anisotropic auxeticity, extreme can relate to different quantities such 

as minimum values of PR, minimum average (where different definitions are 

available) or even range of angular distribution of negative PR. A major result of this 

work has therefore been the development of a completely novel classification of 

auxetic materials which brings much clarity to the field. The other major success is 

that I have identified a structure which is more auxetic (as in auxetic for more 

directions) than α-cristobalite, the previously best candidate; the cubic zeolite JST 

shows a negative PR in every direction, which had never been observed for a 

crystalline material. 

For non-isotropic materials, elastic properties are complex. They are best 

described by tensors of order four with up to 21 independent values (only 2 in the 

isotropic case). Even cubic symmetries with “only” 3 independent elastic constants 

can give rise to a variety of very different Poisson’s ratio behaviour. In fact, it has 

only been recently discovered that negative Poisson’s ratio (NPR) is not as rare and 

exotic as previously thought and that the simplest form of auxeticity is present in 

37% of crystals. The two descriptors, auxetic and NPR, are simply not precise 

enough to convey important differences and the community needs a way to describe 

the property more accurately, a useful yet manageable intermediate between 

simplistic adjectives and almost impossible to grasp four dimensional isosurfaces. 
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Many applications for auxeticity have been proposed, ranging from nano-

actuators and sensors to blast mitigation curtains. A key requirement for systematic 

materials selection using Ashby indices and charts is that materials properties are 

available in tabulated forms; it is likely that different types of auxeticity will be 

required for different applications. For example and somewhat tentatively, strain 

amplification will require PR as large as possible, however the range of directions will 

not matter much, assuming of course that mono-crystals can be produced and 

aligned accurately. For stress-controlled molecular sieves, the ability to deform in 

many directions will be important, and a more generic auxeticity will be the relevant 

property. Isotropic, quasi-isotropic or average auxeticity is also likely to be useful in 

situations where the production method creates polycrystalline devices with no 

texture1. 

While materials with some limited auxeticity are quite common, materials with 

some sort of “average” auxeticity (often ill defined) are significantly more scarce, 

especially crystals. Auxetic foams created by crushing and based on re-entrant ribs 

are essentially isotropic, and therefore their PR is negative in all directions. But only 

one crystal has been shown to have NPR for a wide range of directions, the silicate 

α-cristobalite. The mechanism responsible for such generalised NPR has not been 

fully elucidated, in part because it had not been realised widely how unique α-

cristobalite is. It would be very useful to have access to other crystals with 

generalised auxeticity to help understand the mechanism(s) responsible. As the 

obvious route of collating experimental data has already been explored, few options 

remains to expand the database of elastic constants of crystals. A first option 

consists in simulating families of crystals with reputable models to extract elastic 

                                                           
1
 Otherwise, the negative directions would be swamped by the positive ones, resulting in an isotropic, 

positive Poisson’s ratio. 
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constants and corresponding auxetic typologies. The zeolite family is an attractive 

starting point for many reasons: it is large with more than 200 frameworks (with new 

structures regularly identified), it is based on the same chemistry as α-cristobalite for 

which numerous models of quality are available, and it has been suggested than the 

porous nature of zeolites might be conducive to NPR. The second option is more 

powerful, but much more complex: it consists of generating networks and optimising 

them (still using an underlying potential energy model) for energetic stability and 

auxeticity. Finally, it is well worth trying to correlate NPR with simpler quantities. For 

crystals it is generally difficult to measure NPR experimentally (either directly or 

through elastic constants), but were a positive correlation with NPR to be identified, it 

would at best allow direct identification and at worst narrow the field of search. 

Chapter 2 reviews the current literature on auxeticity and the simulation of 

zeolites with an emphasis on elastic properties. For coherence, no chapter is 

devoted solely to collating methodological considerations and the relevant methods 

specific only to an individual chapter are described there. The new typology of 

auxeticity is developed and tested against a database of materials in Chapter 3. This 

has also the benefit of establishing a base-line of auxeticity for crystals. The search 

for actual crystals with extreme auxeticity starts in Chapter 4, where classical 

simulations with semi-empirical potentials explore all silica zeolites. Chapter 5 

focuses on trying to establish whether features of directional density can be used to 

identify NPR. Chapter 6 sees a return to direct exploration of auxeticity, and an 

approach similar to the one used in Chapter 4 is applied to zeolitic networks of 

germanium dioxide. Chapter 7 describes an algorithm to automatically generate 

networks of 2D triangles for NPR optimisation. Finally in Chapter 8 I summarise the 
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main results from the thesis and suggests possible ways to expand the tools I have 

developed. 
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Chapter 2: Literature Review 

2.1 Negative Poisson's Ratio 

2.1.1 Introduction to auxeticity 

The elastic properties of a material are described in terms of its strain (ε) 

relative to an applied stress (σ), where ε is the ratio of extension (ΔL) to original 

length (L0), and σ is the applied force (F) per cross sectional area (A) 

 𝜀 =  
𝛥𝐿

𝐿0
 (2.1)  

 𝜎 =  
𝐹

𝐴
  . (2.2)  

 

There are multiple stresses and strains found within a material corresponding to the 

different cross sectional areas or axes which may be examined. For example, under 

the same stress a material will experience longitudinal strain (εL) in the same 

direction as the applied force, and also transverse strain (εT) in directions 

perpendicular to the force. The relationship between these stresses and strains in 

isotropic materials are known as the elastic moduli, with the most commonly used 

being Young's modulus (E), bulk modulus (K), shear modulus (G), and Poisson's 

ratio (ν). The following equations describe E and ν in terms of the stress and strain of 

an isotropic material, with K and G being described in terms of their relationship to 

both E and ν 

 𝐸 =  
𝜎

𝜀
 (2.3)  
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 𝜈 =  
−𝜀𝑇
𝜀𝐿

 (2.4)  

 
𝐾 = 

𝐸

3(1 − 2𝜈)
 

(2.5)  

 
𝐺 =  

𝐸

2(1 + 𝜈)
  . 

(2.6)  

The Poisson's ratio has historically been the least explored,[1] though it is associated 

with some interesting and unusual properties particularly when in a range not 

normally encountered. Defined as the ratio of lateral to axial strain in a structure or 

material, the Poisson's ratio contributes to both G and K.[2] It has been accepted 

theory that ν can have negative values for over 150 years[3] and in 1991 the term 

auxetic was first used to describe materials with this property.[4] Auxetic materials 

may prove beneficial to current materials technology with potential improvements to 

mechanical properties such as hardness, indent resistance, fracture toughness, 

shear strength, and sound absorption,[1, 5–7] or by exploiting geometrical properties 

such as maintaining the shape of pores within molecular sieves, or allowing for a 

double curvature within a honeycomb panel.[8–10] 

For a material with any degree of anisotropy these four scalar constants, 

which can be derived from any two, are no longer sufficient to fully describe its 

elastic properties. Instead, a 4th order tensor is used to express stress in terms of 

strain (stiffness), or strain in terms of stress (compliance).[11] It is often convenient 

to represent these tensors as 6x6 matrices, using the well-established Voigt[12] 

notation, in order to aid visualisation and allow for easier manipulation. The 

maximum number of coefficients used to fully define the elastic properties of a 

material is 21,[11] but this number decreases with increased crystal symmetry. As a 

consequence, the Poisson’s ratio of anisotropic materials is a complex function 
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(dependant on three directional parameters, two angles describing the axial vector, 

one describing the perpendicular lateral vector). The prevalence or even simply the 

existence of auxeticity depends on the complex interplay between the tensor 

elements. 

To simplify analysis of anisotropic materials, their elastic properties can be averaged 

to simulate how they may behave whilst part of an isotropic polycrystalline structure. 

The four main ways in which these properties are averaged are the Voigt,[12] 

Reuss,[13] and Hill[14] schemes along with a direct averaging method. Both the 

Voigt and Reuss averaging schemes provide values for the bulk modulus K and the 

shear modulus G, Voigt deriving these from the stiffness matrix (with coefficients Cij) 

and Reuss from the compliance matrix (with coefficients Sij). The Voigt averages are 

given by 

 
𝐾𝑉 =

𝐴 + 2𝐵

3
 

(2.7)  

 
𝐺𝑉 =

𝐴 − 𝐵 + 3𝐶

5
 

(2.8)  

where 

 
𝐴 = 

𝐶11 + 𝐶22 + 𝐶33
3

 
(2.9)  

 
𝐵 = 

𝐶23 + 𝐶13 + 𝐶12
3

 
(2.10)  

 
𝐶 =  

𝐶44 + 𝐶55 + 𝐶66
3

 
(2.11)  

and the Reuss averages are given by 

 
𝐾𝑅 =

1

3𝑎 + 6𝑏
 

(2.12)  

 
𝐺𝑅 =

5

4𝑎 − 4𝑏 + 3𝑐
 

(2.13)  
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where 

 
𝑎 =  

𝑆11 + 𝑆22 + 𝑆33
3

 
(2.14)  

 
𝑏 =  

𝑆23 + 𝑆13 + 𝑆12
3

 
(2.15)  

 
𝑐 =  

𝑆44 + 𝑆55 + 𝑆66
3

. 

. 

(2.16)  

The Hill scheme uses the arithmetic mean of the Voigt and Reuss values and the 

direct method takes a numerical average of the properties found on a sample of 

axes.  

By rearranging Equations (2.5) and (2.6) to get the following 

 
𝐸 = (

1

3𝐺
+
1

9𝐾
)
−1

 
(2.17)  

 
𝜈 =

1

2
× (1 −

3𝐺

3𝐾 + 𝐺
)  , 

(2.18)  

 

the bulk and shear modulus (found with any of the averaging schemes) can be used 

to find an averaged value for both the Young’s modulus E and the Poisson’s ratio ν. 

2.1.2 Examples of auxeticity 

Although materials such as iron pyrites,[3] bone,[15] and cat skin[16] had 

been found to be auxetic at various times in the mid-20th Century, it was not until the 

manufacture of auxetic re-entrant foams in 1987[17] that interest in negative 

Poisson's ratio materials began to increase. With additional studies the occurrence of 

auxetic properties was found to be much more prevalent than previously expected; 

69% of cubic metals were found to exhibit a negative Poisson's ratio,[18] and 25% of 

monoclinic crystals.[19] The SiO2 polymorph α-cristobalite has been shown to have a 
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high level of auxeticity[20] compared even with other materials with a negative 

Poisson's ratio, causing much interest in α-cristobalite itself, and also in other similar 

materials. Complex silicates and zeolites such as the all-silica zeolite MFI (ZSM5-

Si96O192) have been predicted with a negative Poisson's ratio.[21] It is hoped that 

these materials, if exhibiting a negative Poisson's ratio, could be used as tuneable 

molecular sieves, giving rise to an active interest within the academic community. 

2.1.3 Applications of auxeticity 

There are many applications for auxetic materials which, due to their unusual 

and somewhat unobserved properties, have only recently become apparent. Highly 

negative Poisson's ratios (ν < −0.5) can produce large values for indent 

resistance,[1] a desirable property in foam mattresses where increased support 

could be produced without a reduction in comfort as a consequence. The increased 

acoustic absorption of auxetic foams leads to their potential use as damping 

materials for use in audio recording.[7] The increased hardness of auxetic 

materials[6] or the properties of auxetic warp knit textile structures[22] could allow for 

use in the defence or sporting industries as light but strong personal protection 

equipment. Auxetic fabrics also hold much potential as blast curtains, capable of 

preventing glass or other small pieces of debris from passing through.[23] There is 

interest in auxetics as the passive phase of piezoelectric composites,[24] where their 

negative Poisson's ratio is not used for direct mechanical benefits but instead as a 

way of reducing large-scale strains whilst allowing the small-scale strains necessary 

for producing the desired electrical current. 

Of all commercial applications of these special materials perhaps the most 

promising comes with their use as molecular sieves.[21, 25, 26] By utilising the 
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conservation of pore shape under external pressures, the size of the molecules that 

are allowed through can be dynamically altered, allowing for greater control in 

chemical systems where porosity is involved. 

2.1.4 Mechanisms in auxetic materials 

The mechanisms behind auxetic behaviour can be found at almost every size 

scale with many larger mechanisms being analogous to smaller ones (e.g. replacing 

electrostatic bonds at the molecular level with beams at the macro level). These 

mechanisms occur due to many different structural concepts possibly suggesting 

why so many different classes of materials have been found with auxetic behaviour. 

The two dimensional re-entrant foam structure,[27] that can be seen in Figure 2.1, 

was one of the earliest structural arrangements shown to have auxetic properties. 

 

Figure 2.1 – Auxetic, two-dimensional, re-entrant foam structure. Elongation in the longitudinal direction will cause 

the 'middles' of the re-entrant hexagons to separate, causing expansion in the transverse direction. 
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Since then many structures exhibiting a negative Poisson's ratio have been 

identified as; chiral, where a central unit is rotated and the material is 'wrapped' 

around it;[28] rotating units with squares,[29] triangles,[30] and tetrahedra[31] as well 

as rigid, or semi-rigid units within a material;[32, 33] angle-ply laminates with stiff 

inclusions and a compliant matrix;[34] hard molecules in arrangements to give 

negative Poisson's ratio when modelled with intermolecular potentials;[35] micro-

porous polymers of interconnected nodules and fibrils, where 'tightening'  fibrils 

cause expansion in the system;[36] and liquid crystalline polymers with chains of 

rigid rod molecules connected by flexible spacer groups.[37] Figure 2.2 shows a few 

examples of auxetic mechanisms, all following a central theme of rotating units within 

a structure. Shown are the mechanisms for a) chiral structure, b) rotating square 

structure, and c) rotating triangle structure. All three of these structures deform 

isotropically and have Poisson's ratios of −1. 
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Figure 2.2 – Demonstration of the mechanisms for a selection of auxetic structures. The left hand side of parts a), b), 

and c) shows the structure in a more compressed form; the right hand side shows an expanded form of the same 

structure, when a force (F) is applied and the mechanical constraints are maintained. The expanded form exhibits 

elongation in both the longitudinal and transverse directions indicating a negative Poisson's ratio. a) a chiral 

structure, where rotation of the central unit wraps material around itself; b) corner connected squares which form 

larger vacant regions when rotated; c) corner connected triangles for which the distance between units depends solely 

on the angle of rotation. 

 

The elastic properties of the crystal paratellurite, found by examination using 

resonant ultrasound spectroscopy with a piezoelectric tripod, show a negative 

Poisson's ratio in the (110) plane.[38] This auxeticity has been explained as being a 

result of its star shaped arrangement shown in Figure 2.3, where the stars are 

formed when the atoms are projected onto the (001) plane. For this example, dilation 

of the stars is the cause of auxetic behaviour, and not rotating units. 
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Figure 2.3 – A star arrangement as can be found in the (001) plane of paratellurite. The negative Poisson's ratio is 

caused by dilation of the stars under an applied force (F) and results in expansion in both the lateral and transverse 

directions. 

 

2.1.5 Relationship between auxetic behaviour and other elastic 

properties 

As discussed in Section 2.1.1, the Poisson's ratio of a material depends 

entirely on the tensors of elastic stiffness or compliance. As a result, it is closely 

linked to other elastic properties such as the bulk modulus, shear modulus, or 

anisotropy. In this section, I describe previous attempts to find an explicit link 

between auxetic behaviour and other, simpler, properties: at first elastic properties, 

then density. 

For isotropic materials, ν can be expressed as a function of two other elastic 

constants, as follows: 

 

 𝜈(𝐺, 𝐾) =  
3𝐾−2𝐺

2(3𝐾+𝐺)
 . (2.19)  

 

 Auxetic materials, with a negative value for ν, must therefore have a shear 

modulus greater than 3/2 times that of their bulk modulus.[39] For anisotropic 
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materials the relationship between G, K and ν is more complicated, but negative 

Poisson's ratios in particular directions are still associated with high shear strengths 

in others.[40] 

 Highly anisotropic materials have been found to have increased likelihood of 

experiencing extreme highs and lows for Poisson's ratio.[41] Various measures for 

the anisotropy of a material have been developed which aim to describe the extent to 

which elastic properties vary. Two such measures are the Zener[42] anisotropy index 

(Z), which applies only to cubic symmetries, and the Ledbetter and Migliori[43] ratio 

(A*) which is a more general quantity determined by the maximum and minimum 

velocity of sound waves passing through the material (vmax and vmin). The following 

equations define Z and A* respectively: 

 

 

 
𝑍 =

2(𝐶44)

𝐶11 − 𝐶12
 

(2.20)  

 
𝐴∗ =

𝑣𝑚𝑎𝑥
2

𝑣𝑚𝑖𝑛
2  . 

(2.21)  

 

 The absolute maximum and minimum Poisson's ratio exhibited by a material 

are correlated to the A* measure for anisotropy for both cubic and non-cubic 

structures. Furthermore, this correlation was found to be independent on the scale of 

mechanism responsible for the auxetic behaviour.[41] 

 The density of silica glass has been linked to its Poisson's ratio. Glasses with 

loosely packed atoms exhibit smaller values for ν, whereas those with more tightly 

packed atoms tend to have higher values for ν.[44] This is believed to be due to 
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empty space within the loosely packed structures allowing for longitudinal 

deformation of the material without causing as much lateral deformation. It should be 

noted that this phenomenon can only explain different extents of positive Poisson's 

ratios, and does not result in auxetic properties being linked with low density. When 

examining auxetic structures of two-dimensional, re-entrant honeycombs, it was 

found that the density variation between axes (altered by changing thickness of 

selected ribs in the honeycomb but not others) has an effect on the Poisson's 

ratio.[45] The study showed that, when the density in a particular axis was altered, 

the auxetic properties remained constant in some directions, but changed in others. 

2.1.6 Classification of auxeticity 

As complicated a property as auxeticity is, attempts have been previously 

made to distinguish between different materials with varying levels. Acknowledging 

that the term 'auxetic' is often used as a substitution for 'completely auxetic',[46] 

Brańka outlines three distinct classifications of materials based on the directions of 

longitudinal (m direction) and transverse (n direction) strains. These classifications 

are limited to positive values for all combinations of m and n, negative for all 

combinations of m and n, and negative for some but not all combinations of m and 

n.[46] Whilst this auxetic classification is able to distinguish between materials with 

no auxetic properties, fully auxetic materials, and 'others', it is the 'other' category in 

which the majority of materials with auxetic properties fall. There are several degrees 

to which a material can exhibit a negative Poisson's ratio, which existing 

classification systems fail to distinguish between. A new system of typology is 

developed and explained in Chapter 3 to enable these distinctions between 

auxeticity levels.  
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2.1.7 Experimental determination of auxeticity 

Experimental techniques capable of determining the elastic properties of a 

material fall essentially into two categories, mechanical or acoustic. Mechanical 

testing, such as a tensile test to obtain Young's modulus, involves placing a sample 

of a material inside a specifically designed piece of machinery, applying forces to the 

sample to create stress, and then measuring the strain within the sample. These 

techniques require a minimum size of sample to be available, which may be difficult 

to obtain for single crystals, and the tests are often destructive. An alternative 

method of discovering the elastic properties of a material is through Brillouin 

scattering. This is an non-destructive technique which uses direct measurements of 

sound velocities along general directions[47] and can accurately measure the 

properties of a material with samples greatly smaller than those needed for 

mechanical testing. Both mechanical and Brillouin scattering methods require a 

sample of a material to be first obtained and then prepared in order to measure its 

elastic properties. 

2.2 Silica polymorphs 

2.2.1 Introduction 

Silicon dioxide is one of the most abundant materials on the planet, 

accounting for over 60% of the earth's continental crust by weight[48] much of which 

is in the form of α-quartz. As well as being extremely abundant, silica can also exist 

in a large number of polymorphs. The structure of the majority of crystalline silica 

polymorphs can be described as three dimensional networks of corner sharing 

tetrahedra. These tetrahedra are able to rotate and dilate.[31] Within these networks 

the silicon atoms are at the centre of each tetrahedron and the oxygen atoms at the 
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connection between them. The Si-O-Si bond angle in silica is more flexible than the 

O-Si-O bond angle.[49] Therefore, mechanisms which include rotating tetrahedra, 

where the Si-O-Si bonds are allowed more freedom, are likely to represent the 

deformations that are occurring within all-silica crystals. A change in the bond 

distance between silicon and oxygen is represented by a dilation of the tetrahedra, 

and mechanisms which allow for this dilation can model bond length changes. As all 

the bonds in SiO2 materials are silicon to oxygen there is no area where we might 

expect increased or decreased bond extension when compared with the other bonds 

within a structure. 

2.2.2  "Dense" polymorphs 

2.2.2.1 Quartz 

The most commonly occurring polymorph of silica is quartz, which exists as a 

low temperature trigonal phase (α) and a high temperature hexagonal phase (β).[50, 

51] The structure of quartz follows that of the majority of silica described earlier, with 

corner sharing tetrahedra formed of a central silicon atom bonded to four oxygen 

atoms. Due to its piezoelectric properties[52] quartz is used extensively in electronics 

as a clock timing source. As α-quartz occurs naturally in atmospheric conditions and 

can be grown as large crystals (above 0.1 kg)[53] its elastic properties can be 

obtained mechanically or through Brillouin scattering.[54] These elastic properties 

show that the α-quartz exhibits negative Poisson's ratios for only a small number of 

axes, with a minimum value of −0.1. 

2.2.2.2 Cristobalite 

The silicon dioxide polymorph cristobalite has two crystalline phases. A low 

temperature (α) form and a high temperature (β) form.[55] Brillouin spectroscopy on 
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a single crystal of α-cristobalite showed it to be highly anisotropic and yet still have 

an aggregate isotropic Poisson's ratio of −0.133, −0.191, and −0.163 for the Reuss, 

Voigt, and Hill averages respectively.[20] The spectroscopy showed that the crystal 

had a shear modulus of roughly 2.4 times that of the bulk modulus. Due to the 

instability of β-cristobalite its elastic properties can only be derived through the use of 

computational modelling. A molecular dynamics study showed that the high 

temperature phase of cristobalite remains averagely auxetic.[56] This study also 

showed a change in direction for the maximum negative Poisson's ratio: with ν23 = 

−0.59 being obtained by rotating Sij 42° from the b axis about the a axis in α-

cristobalite at 300K, and ν12 = −0.28 being obtained by rotating Sij 45° from the a axis 

about the c axis in β-cristobalite at 1800 K. 

2.2.3 Low density SiO2 polymorphs – zeolites 

2.2.4 Auxetic aluminosilicates 

The elastic properties of several zeolite structures have been simulated using 

molecular mechanics techniques with various force fields, including NAT (natrolite –

Al16Si24O80), THO (thomsonite Al20Si20O80), APD (Al16Si16O64), and JBW 

(Al12Si12O48).[57] It was predicted that THO and NAT would exhibit auxetic behaviour 

in the (001) plane (though 45° out of phase due to their alignment) and that APD and 

JBW would show auxetic behaviour in the (010) plane. The Poisson's ratio predicted 

in these materials can be explained using the rotating squares mechanism for all but 

JBW, which follows a rotating triangles mechanism. Brillouin spectroscopy produced 

experimental data on NAT which contradicted the atomistic study,[47] however 

further work explained how the experimental values did show auxeticity in certain 

directions, supporting the original prediction of auxeticity in natrolite.[58] An 
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analytical model was produced which further supported the presence of auxetic 

behaviour in natrolite.[59] 

2.2.5 Simulation of silicates 

The many potential uses for silicates, both with and without what we might 

think of as unusual properties, have prompted much interest in the subject area. A 

large proportion of this interest has been in theoretical materials which have not yet 

been synthesised. This is due to the number of possible polymorphs available and 

the impracticalities in manufacturing samples of each to discover their properties. 

Force field potentials for silica have been developed and used to predict the 

elastic constants of materials,[60, 61] model their phase transforms,[62] and explore 

their reactions with organics.[63] Zeolite silica have great potential as molecular 

sieves. The performance of these sieves depends on the way molecules are able, or 

not able, to migrate through the structure. By using molecular dynamic techniques it 

is possible to predict how this mass transfer will occur without synthesis of the zeolite 

in question.[21] The most comprehensive, but also computationally expensive, way 

of predicting the properties of silica (or any material) is through quantum mechanical 

techniques such as density functional theory (DFT). As with other modelling 

methods, the properties of theoretical materials can be predicted without the need for 

synthesis. DFT simulations have been used to predict the structure, elastic 

properties, and reactivity of silica as well as more exotic properties such as negative 

linear compressibility.[64, 65] 
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2.3 Atomistic modelling techniques 

2.3.1 Background 

The experimental methods used to measure elastic properties are discussed 

in section 2.1.7. For practical reasons, chiefly that sizeable monocrystalline samples 

must be available, but also because so many possible materials exist, it is 

impossible to experimentally determine the elastic properties of them all. Atomistic 

modelling techniques offer attractive alternatives, even if one has to be mindful of 

their limitations. Measuring the properties of future, hypothetical, materials, is not 

possible experimentally. It is therefore desirable to be able to calculate, 

computationally or otherwise, the expected elastic properties of a material prior to 

obtaining a physical sample. 

In the early part of the 20th Century, especially with the advent of quantum 

theory, our understanding of the interactions within materials developed 

considerably. However, with such complex systems analytical solutions are 

sometimes impossible and numerical approaches require a great deal of work for all 

but the simplest of cases. When computers, which had been developed during and 

after the Second World War, became available in peace time, the possibility of 

predicting the properties of a material using numerical techniques became more and 

more feasible.[66] As computational power has increased, we are now able to 

simulate bigger structures, with more accurate ways of describing the chemistry 

inside a material. 
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2.3.2 Force field optimisation 

A number of computational methods can be used to obtain the mechanical 

properties of a material. Of these, density functional theory (DFT) is the most 

fundamental that can practically be used to access elastic properties and can be 

used to solve the Schrödinger equation of the electronic structure.[67] However, DFT 

techniques are still computationally expensive and in many cases a good 

approximation of the atomistic energy can produce comparable results at a greatly 

reduced cost. To simplify the problem it can be assumed that the effect of the 

electrons in a material can be combined into effective atoms, and that the energy U 

can then be described as an expansion in terms of interactions between these 

atoms[68] 
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(2.22)  

where N is the total number of atoms, the first term represents the self energies of 

the atoms, and each term thereafter the multiple body interactions. As N is finite, the 

energy is exact if calculated to a high enough order, though this comes at a high 

computational cost. Given that the higher order terms tend to decrease (as they are 

multiplied by increasingly small fractions), we can again simplify our system by 

ignoring these contributions and compensating to a degree with parameterisation of 

the lower order terms used. The Hartree-Fock method[69] is a commonly used 

quantum mechanical first approximation which only includes up to four-body terms, 

justifying our decision to limit the number of terms used. Furthermore, it is also 

possible to ignore interactions between atoms which are further apart than a desired 
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cut off distance. This can be done because, although there is no upper limit on the 

equations governing the force between atoms, the strength of these interactions 

approaches zero as distance increases.  

2.3.3 Potential models 

A potential model is a way of describing a system as a number of functions for 

the internal energy associated with each interaction. By minimising the total energy 

of all interactions, an optimised configuration (which may be only locally optimised) 

can be determined, and from this properties can be calculated. Energy functions vary 

in form and can represent a multitude of forces within a molecular structure. The 

internal energy of a solid is a many body quantity which depends on all electrons and 

nuclei.[68] Due to this, approximations are made to simplify the energy equations, 

often limiting them to a finite number of terms of a converging sequence. The choice 

of parameters for a potential model is a subtle one, usually chosen to approximately 

match experimental results. However, even with advances in both the hardware and 

software used, potential models still need to minimise computational cost to lower 

the time taken to achieve optimisation. As previously mentioned, by solving the 

Schrödinger equation a system can be accurately modelled. However, whereas ab 

initio calculations are expensive in terms of computer time, empirical methods can be 

used to calculate large molecules and real lattices.[70] 

2.3.4 Coulomb interactions 

It is well known that two oppositely charged objects will be attracted to one 

another. Coulomb's law describes the energy of the interaction between these two 

objects in terms of their charge and the distance between them. It is the dominant 

term within ionic materials, representing up to 90% of the total energy.[68] Coulomb's 
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law is given by Equation (2.23), where qi is the charge on atom i, rij is the distance 

between atoms i and j, and ε0 is the permittivity of free space 

 

 

𝑈𝑖𝑗
Coulomb =

𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
 . 

 

(2.23)  

Despite the simplicity in calculating a single (two body) interaction, with large 

systems the number of calculations which need to be undertaken quickly increases. 

This is because although the energy decreases inversely proportional to the distance 

between atom i and atom j, the number of interactions which need to be considered 

increases proportionally to the square of the distance away from the initial atom. To 

increase the efficiency of this model it is often necessary to use the method of 

Ewald,[71, 72] leading to a convergent series with a well-defined limit.[68] 

2.3.5 Short-range two-body interactions 

When two bodies are close together they experience strong repulsive forces 

which arise from electron repulsion. In combination with the Coulomb interactions 

these repulsive forces describe the strong intramolecular bonds between atoms in a 

covalent structure. There are a number of ways of approximating these forces in 

terms of the potential energy of the bond relative to the distance between the two 

atoms. Common potential models used are the Buckingham potential, where an 

exponential repulsive term is included; the Lennard-Jones potential, where an 

inverse repulsive term is used; and the Morse potential, where the interactions are 

coulomb subtracted.[68] A four range Buckingham potential can be defined where 

the potential has different components depending on the distance between atoms. 

This has a purely repulsive term when rij is below a lower bound and a purely 
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attractive term when rij is between and upper bound and a cut-off distance. The 

function is splined to have continuous first and second derivatives.[73] The following 

equations give the form of the Buckingham, Lennard-Jones, Morse, and four range 

Buckingham potentials respectively. All terms other than rij (sometimes referred to as 

just r) are parameters of the potential models 

 

 
𝑈𝑖𝑗
Buckingham

= 𝐴𝑒
(
−𝑟𝑖𝑗
𝜌
)
−
𝐶6

𝑟𝑖𝑗
6 

 

(2.24)  

 
𝑈𝑖𝑗
Lennard−Jones =

𝐴
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(2.25)  

 
𝑈𝑖𝑗
Morse = 𝐷𝑒 [(1 − 𝑒
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2

− 1] 

 

(2.26)  
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(2.27)  

 

2.3.6 Short-range three-body interactions 

Often, two-body interactions are not enough to describe what is happening 

within a system. Especially in large frameworks, the bond angles, or three-body 

interactions, play a significant part. The most common potential describing three-

body interactions is harmonic, with an ideal bond angle (θ0), and a positive energy 
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associated with any deviation from this angle. The Urey-Bradley potential has a 

positive energy associated with deviations from an ideal bond distance (r23), where 

this distance is between the atoms at either end of the bond. The Vessal potential 

model combines the effect of bond angles and the distances from the central atom to 

the other two. Equations (2.16), (2.17), and (2.18) give the form of the harmonic 

three, Urey-Bradley, and Vessal potentials respectively. All terms, other than the 

bond angle (θ), and the interatomic distances (r) are parameters of the potential 

models 

 

 
𝑈𝑖𝑗𝑘
Harmonic =

1

2
𝑘2(𝜃 − 𝜃0)

2 

 

(2.28)  

 
𝑈𝑖𝑗𝑘
Urey−Bradley

=
1

2
𝑘2(𝑟𝑗𝑘 − 𝑟𝑗𝑘

0 ) 
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𝑈𝑖𝑗𝑘
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)
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(2.30)  

 

 

2.3.7 Electron Shells 

Depending on the potential models being used it is often preferable to 

represent atoms using the shell model.[74] For this model, ions are represented by a 

pair of point charges with a positive core and a negative massless shell connected 

by a harmonic spring. Subsequently, all short-range interactions act on the shell part 
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of the atom rather than the nucleus.[75] The spring potential has the following form, 

where k is a constant, and r is the distance between the centre of the atom core and 

the electron shell 

 

 
U𝑖𝑗
Spring

= 
1

2
𝑘2𝑟

2. 

 

(2.31)  

2.3.8 Fitting potential models 

Once a potential model is decided upon the parameters must be chosen to 

fully define the energy equations. Usually a material is chosen for which the 

distances and angles between bonds is well known. Then, the chosen parameters 

used are fitted to this known material in order to produce a force field model able to 

accurately predict materials with similar chemistry.[61] A great deal of importance is 

placed on the ability of a potential model to simulate a wide range of materials, as 

well as the accuracy associated with each one. This combination of robustness and 

reliability is the ideal for any potential model used in predictive work.[63] 

For this work, force fields are required for calculation of the elastic properties 

of both high density and low density silicon dioxide polymorphs. A total of fourteen 

potential libraries are taken from the work of various authors and are examined in 

detail later in this thesis.[61, 64, 76–87] They each combine a variety of different 

models, including the Buckingham, Morse, and four-range Buckingham models for 

two-body interactions and the harmonic, Urey-Bradley, and Vessal models for three-

body interactions. Seven of the fourteen potential libraries represent oxygen as a 

core-shell atom, with the silicon interacting with the oxygen electron shells, and the 

oxygen cores harmonically linked to the oxygen shells. The other seven libraries do 
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not use oxygen shells, instead directly modelling the interactions between silicon and 

oxygen cores (rigid ions model). 

In addition to the silicon dioxide potentials, three libraries for germanium 

dioxide potentials were also taken from literature.[82, 88, 89] These follow the same 

format as the SiO2 potentials and are composed of atomic charges and Buckingham 

two-body potentials. Only one of the libraries uses a shell model for oxygen atoms, 

with the other two treating both germanium and oxygen atoms as rigid ions.  
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Chapter 3: Typology of auxetics 

3.1 Existing methods of describing auxetic materials 

It has been known for over 100 years that it is possible for a material to exhibit a 

negative Poisson's ratio (ν).  Despite this, the way in which this is described is still 

often limited to a simple binary criterion (does or does not exhibit auxetic behaviour). 

Details may be given on the valule of the minimum and maximum ν, or the 

longitudinal or transverse directions for which these maxima are observed, but rarely 

is the extent of a materials overall auxeticity or in what way it displays auxetic 

behaviour described. Poisson's ratio is defined as the following ratio between strains 

 𝝂 =  −
𝜺𝑻
𝜺𝑳
  , (3.1)  

 

where εT is the transverse strain and εL is the longitudinal strain. As a dimensionless 

constant describing the strains in all perpendicular directions as a result of loading 

strains in all longitudinal directions, the Poisson's ratio is a four dimensional tensor 

and cannot easily be represented graphically. Comparisons between two materials 

traditionally rely overly heavily on extreme data or various bulk averaging 

techniques. The values of minima might misrepresent a crystal's Poisson's ratio as a 

whole, whereas bulk averaging can cause subtleties in the directions distribution to 

be overlooked. 

A crystal which exhibits, due to its particular anisotropy, a negative Poisson's 

ratio in a very narrow range of directions when deformed along a very particular set 

of axes (Figure 3.1 shows how the Poisson's ratio for one such material may look) is 

clearly 'less' auxetic than a completely isotropic foam which exhibits a negative 
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Poisson's ratio in every possible direction. However, currently there exists no clear 

way of quantifying the difference between these two extreme cases, or more similar 

cases where a distinction may be even harder to determine. By assigning the 

'auxetic' tag to both materials the foam’s highly auxetic behaviour is not assigned 

enough weight over the crystals relatively common one, and conversely by using 

bulk averages the crystals unusual properties, which may have applications if 

alignment is possible, will be washed out in the noise of the many 'normal' direction 

properties. 

 

Figure 3.1- The Poisson's ratio in the (111) plane of an auxetic crystal (all silica ATV simulated with the SLC 

potential model). This example shows a radial plot of Poisson’s ratio in a plane, where the value observed in the 

transverse directions are represented by the distance away from the origin. The blue line indicates positive Poisson’s 

ratio values and the red line indicates negative values. In this example, although a negative Poisson’s ratio is present, 

it is only found in a small percentage of transverse directions and has a lower average magnitude than the average of 

positive ratios. 

 

In this chapter a typology of auxetic behaviour is proposed which 

distinguishes between the many different ways a material can display auxeticity. By 

using this typology system we can identify, describe and compare materials with 

auxetic behaviour in the following way:  
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 Identification. 

To aid in identification of auxetic materials the typology system can be seen 

as a series of increasingly auxetic criteria, which must be satisfied by a 

material in order for it to be classified in a particular way. By separating 

different extents of auxeticity, materials which meet higher level classifications 

can be distinguished from those which do not at every degree, and therefore a 

large list of potentially interesting materials can be subdivided into as many 

smaller groups as there are distinct classifications used. These distinctions 

allow for materials to stand out from others even within sets of materials which 

are known to exhibit auxetic behaviour. 

 Description. 

To avoid long, potentially confusing descriptions of a material’s auxetic 

characteristics the typology system can be used to quickly sum up the extent 

to which the Poisson's ratio is negative. There are a total of twelve binary 

indicators which fully describe the auxeticity in terms of this typology, with a 

thirteenth (no auxeticity at all) being the inverse of the very lowest level of 

auxetic behaviour. However due to the inference of lower levels from higher 

levels, the number of indicators to describe auxeticity can be reduced to 4. To 

accompany classifications with appropriate values of Poisson's ratio, twelve 

numbers are still needed, as although a value might be inferred to be 

negative, the extent to which it is would not be known. 

 Comparison. 

If the typology of two or more materials is known, the classifications which 

they satisfy can easily be compared to one another to analyse which material 

exhibits a greater or lesser degree of auxeticity. In the case of materials with 
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identical typology classifications the associated values could be examined 

more closely if needed. This is an improvement of the current system of 

comparing only the average, or extreme values of Poisson's ratio and instead 

allows a comparison at all levels of auxeticity. 

 

In the context of this typology system I use the term 'direction' to refer to the 

transverse direction for which Poisson's ratio is observed and 'axis of deformation' or 

simply ‘axis’ to refer to the longitudinal axis of loading. Figure 3.2 shows a non-

auxetic material under a tensile load in the x-axis. If discussing νxy in this situation, 

the 'transverse direction' is the y-axis (perpendicular to the load) and the 'axis of 

deformation' is the x-axis (parallel to the load). 

 

 

Figure 3.2 – A non-auxetic material under tensile load F in the x-axis. Demonstrating the terminology used to discuss 

Poisson's ratios between different axes. The dotted outline shows the shape of the pre-loaded structure, the solid line 

shows the outline of the structure after the load has been applied. 
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3.2  Description of auxetic typology 

The typology system includes thirteen distinct classifications split into three 

'classes' (A, B, and C) each with four 'types' (1, 2i, 2ii, and 3), plus the additional 

classification of a material without auxetic behaviour. Each axis of deformation has 

its own class of auxetic behaviour, and the extent of which this class is present 

throughout the material determines its type. To satisfy a particular class, the 

Poisson's ratios observed in the transverse directions around an axis must meet 

specific criteria. 

 Class A is the most trivial case and is satisfied if any direction around any axis 

exhibits a negative Poisson's ratio. This corresponds to a single value, the 

minimum Poisson's ratio of all directions around an axis, being less than zero. 

 Class B is satisfied if the average of all Poisson's ratios around any axis is 

negative. Although some transverse directions may have a positive Poisson's 

ratio and others a negative one, by using the average of all directions (again a 

single numerical value), a particular axis can be quantified as being 'averagely' 

auxetic. The number of directions in which auxetic behaviour is displayed 

contributes to the B classification, and the magnitude of the Poisson's ratios in 

these directions also affects the decision. This is advantageous to describe how 

a material is likely to behave in a polycrystalline environment, where single 

crystal directions are unlikely to be aligned.  

 Class C is satisfied if every transverse direction around an axis has a negative 

Poisson's ratio. The magnitudes of the ratios are likely to fluctuate in non 

isotropic materials, but crucially none can have a positive value. Similarly to the 

classification for classes A and B, a single value can be used to determine the 
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satisfaction of class C. In this case it is the maximum Poisson's ratio around an 

axis which must be negative, as opposed to the minimum or mean value to 

satisfy A and B respectively. 

 

To classify a material’s Poisson's ratio entirely we must also consider every 

axis of deformation. The prevalence of axes exhibiting a class is used to determine 

the type of that class, with increasing values for type corresponding to more axes 

being of a particular class. 

 Type 1 classifications are satisfied if there are any axes which are of a particular 

class. They represent the minimum level at which a material could be said to 

have auxetic properties of that class and can only distinguish between materials 

with axes exhibiting classes and those without. A single numerical value may be 

used to determine satisfaction of type 1 classifications during calculation of the 

Poisson's ratios. This value is the minimum of each of the three values used 

when determining an axes' class. For example, if we determine class A by the 

minimum Poisson's ratio in all transverse directions around an axis, the minimum 

of the minimums for all axes can be used to determine if a material is '1A' 

(satisfied if this minimum of minimums is negative). '1B' and '1C' classifications 

are determined by the minimum of averages and the minimum of maximums 

respectively, again satisfied if these values are negative. 

 The classification of type 2 is split into two types: 2i and 2ii. Both types are 

satisfied if the average of axes can be said to be of a particular class; the 

distinction occurs in the averaging method used to determine this. Type 2i uses 

a median average of the class of every axis, if more than half the axes exhibit a 

class then type 2i is satisfied. Type 2ii uses the mean of the value used for 
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determining a class in each axis. It follows that if the average of minimums, 

average of averages, or average of maximums is negative; '2iiA', '2iiB', and '2iiC' 

are satisfied respectively. Classifications of 2ii are perhaps more useful than 

those of 2i in determining the behaviour of a polycrystalline material, as the 

Poisson's ratio magnitude is incorporated. Additionally, the use of a relevant 

value calculated from the combined class definition values to determine the type 

fits more naturally with the other type classifications. However, for the purpose of 

a comparison between materials, or a description of a material, the subtlety 

different method of measuring the average class for type 2i, is worthy of 

inclusion in this typology system. 

 Type 3 classifications require every axis to be of a particular class in order to be 

satisfied. While this classification is extremely hard to satisfy, a material which 

fits type 3 can be said to exhibit the particular auxetic behaviour no matter which 

direction of loading is chosen. By taking the maximum of the associated values 

for the class definitions type 3 satisfactions can be determined. Once again this 

maximum of minimums, averages, or maximums must be below zero for 3A, 3B, 

or 3C to be present respectively 
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Table 3.1 - Description of typology system with the associated values to determine satisfaction of each classification 

Type Class Description of Poisson's ratio for materials of this classification 
Criteria to determine 
classification 

0 N/A Positive for all directions around all axes of deformation Minimum of minimums 

 
1 

A 
Negative for at least one direction around at least one axis of 
deformation 

Minimum of minimums 

B 
Negative when averaged over all directions around at least one 
axis of deformation 

Minimum of averages 

C 
Negative for all directions around at least one axis of 
deformation 

Minimum of maximums 

 A 
Negative for at least one direction around more than half of 
axes of deformation 

Percentage of class A 

2i B 
Negative when averaged over all directions around more than 
half of axes of deformation 

Percentage of class B 

 C 
Negative for all directions around more than half of axes of 
deformation 

Percentage of class C 

2ii 

A 
Negative for at least one direction around a mean average of 
axes of deformation 

Average of minimums 

B 
Negative when averaged over all directions around a mean 
average of axes of deformation 

Average of averages 

C 
Negative for all directions around a mean average of axes of 
deformation 

Average of maximums 

3 

A 
Negative for at least one direction around all axes of 
deformation 

Maximum of minimums 

B 
Negative when averaged over all directions around all axes of 
deformation 

Maximum of averages 

C Negative for all directions around all axes of deformation Maximum of maximums 

 

  



49 

 

Table 3.1 summarises the typology system, with the associated values used to 

determine satisfaction of each classification. With the exception of the values for 2i, 

which satisfy the classifications if they are greater than half, each value corresponds 

to a classification being satisfied when this value becomes negative. 

 The classifications of a particular class or type are not exclusive as each class 

can have many types, and each type can be satisfied by many classes. Lower 

classes and types are implied by higher ones provided the respective type and class 

do not change. That is to say, a '3B' classification implies those with a lower type 

('1B', '2iB', and '2iiB'), and also those with a lower class ('3A'). In this example '2iiC' is 

not implied as although the type is lower the class has been raised (depending on 

the material '2iiC' may be satisfied in its own right). This inheritance comes as the 

result of the cumulative nature of these classifications. If the maximum Poisson's 

ratio around an axis is negative, then the average, and also the minimum Poisson's 

ratio must be negative too. Similarly, if the maximum of all class determining values 

is negative, the average and minimum will also be negative. Of particular interest are 

crystals which can be said to be '2iiB' auxetic. These crystals have a negative value 

for the average for each axis of the average Poisson's ratio for each transverse 

direction. Therefore, if present in a polycrystalline material, and orientated in a truly 

random way, they should exhibit isotropic auxetic behaviour. Further to this it is 

suggested, that any material which satisfies '2iiB' can be used to create a structure 

which is '3C' and any material which does not satisfy '2iiB' cannot. 
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3.3 Modification of ElAM for calculation of typology 

The ElAM (Elastic Anisotropy Measures) software uses the elastic constants 

in the principal axes to calculate the off axis elastic properties, by implementing the 

standard tensor rotation formulae:[90] among these is the Poisson's ratio. Currently a 

user can request a two or three dimensional display of the maximum or minimum 

Poisson's ratio for each axis of loading; a direct, Reuss, Voigt, or Hill measure of 

average Poisson's ratio; and the value, longitudinal axis, and transverse axis of the 

minimum and maximum Poisson's ratio in the crystal. Aside from the graphical 

outputs these values relate to the minimum of the minimums, the average of the 

averages, and the maximum of the maximums of Poisson's ratios in all axes. These 

values alone could be used to distinguish between '3C', '2iiB', '1A', and no auxetic 

behaviour, but do not allow for any further distinction. It is therefore necessary to 

modify the ElAM source code to create this additional data for classification 

purposes. During Poisson's ratio calculations ElAM examines the transverse 

direction at every degree (180 values due to symmetry) for a particular longitudinal 

direction and the maximum, minimum, and average for this direction is calculated. By 

sampling the unit sphere with user defined theta and phi increments many 

longitudinal directions are then used to calculate the maximum of all maximums, 

minimum of all minimums, and average of all averages. Using the data already given 

for each longitudinal direction, and keeping track of the minimum, maximum and 

average of each, the remaining measures relating to auxetic classification can be 

obtained. This calculation of the typology of a material can only ever be an 

approximation due to the continuous nature of Poisson's ratio and the discrete way in 

which sampling is implemented. More accurate typologies can be produced with 
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higher sampling rates but at the cost of increased computational expense. However, 

it is expected that, with the possible exception of those materials close to the 

threshold of a classification, a coarse search may be sufficient to determine the 

typology of most materials. 

 

3.4 Typology system applied to common materials 

To demonstrate the potential use of our typology system a large number of 

materials are classified according to the criteria set out in the previous section. With 

a large and sufficiently varied array of materials used the typology data obtained are 

expected to be a reliable representation of all materials. By including materials from 

many different groups, a single group of materials with unusual properties should not 

skew the results to suggest an auxetic typology of greater or lesser extent than 

actually occurs. With these data, showing 'normal' auxetic typology, a benchmark 

can be created and used as a comparison against any specific group of materials 

chosen to be researched. If particular typologies are more or less prominent in a 

study than in materials as a whole it is reasonable to suggest the studied materials 

have different auxetic behaviour than what might be expected. 

The stiffness matrices from 471 materials, used by Lethbridge et al. to study 

the correlation between anisotropy and auxeticity in materials,[41] were collated into 

an ElAM database file and run through the modified program to output typology (the 

full input file and subsequent typology data for each of the 471 materials can be 

found in the supplementary data for this work). The percentage, and the number of 

the 471 materials that satisfied each classification can be seen in Table 3.2. The 

traditional measure of what is, or is not an auxetic material is represented by this 



52 

 

system’s '1A' classification. As can be seen in Table 3.2, 37.2% of the materials 

studied satisfied the '1A' classification. This supports the work suggesting that a 

relatively high percentage of materials exhibit at least some level of auxetic 

behaviour.[18] However, the percentage of materials which satisfy greater levels of 

auxeticity decrease rapidly, with only 3.2%, 6.6%, and 7.9% considered to be '1B', 

'2iA', and '2iiA' respectively. The silicon dioxide polymorph α-cristobalite is the only 

material studied which satisfies the '2iB', '2iC', '2iiB', and '2iiC' classifications, 

highlighting its unusual properties. The associated values for percentage of class B, 

percentage of class C, average of averages, and average of maximums shown by α-

cristobalite are 99%, 53%, −0.1401, and −0.0022 respectively. There are three 

materials which belong to the '3A' category: α-cristobalite again, and two forms of 

beryllium copper alloy. These have the related auxetic value (maximum of 

minimums) of −0.0626, −0.0026 and 0.0 with the most auxetic of these relating to α-

cristobalite. There are no materials in this study which meet the criteria to satisfy the 

'3B' or '3C' classifications. Whilst these typologies are possible, and can be found in 

isotropic foams with a negative Poisson's ratio, due to the requirement that every 

longitudinal direction must be of a class for satisfaction, they are not expected in 

anisotropic single crystals such as those in this study. 

 

Table 3.2 – The prevalence of auxetic typologies in the sample of 471 typical materials used by Lethbridge et al.[41] 

Type Class Number Percentage of total 

0 N/A 296 62.8 

1 

A 175 37.2 
B 15 3.2 

C 11 2.3 

2i 

A 31 6.6 
B 1 0.2 

C 1 0.2 



53 

 

2ii 

A 37 7.9 
B 1 0.2 

C 1 0.2 

3 

A 3 0.6 
B 0 0.0 

C 0 0.0 

 

3.5 The typology of experimental α-cristobalite 

As shown in section 3.4, α-cristobalite can be considered to be highly auxetic, 

and is unusual even among those materials which exhibit a negative Poisson's ratio. 

It is the only material of the 471 used in the study to satisfy '2iB', '2iC', '2iiB', or '2iiC' 

and the value used to determine '3A' is more negative than other materials which 

satisfy the same criteria. The full classification of α-cristobalite can be seen in Table 

3.3, where negative values for types 1, 2ii, and 3, and a value greater than 50% for 

type 2i, indicate satisfaction of the associated classification. The material is shown 

both to exhibit a highly negative Poisson's ratio (up to −0.51), and also experience 

negative Poisson's ratios in a large number of directions (A in 100%, B in 99%, and 

C in 53%). 

Table 3.3 – Typology of experimental α-cristobalite, the associated values of each typology classification and their 

value present in single crystal α-cristobalite 

Type Class Associated Value Value in α-

cristobalite 1 
A Minimum of 

minimum ν 

−0.5073 

Df 
B Minimum of 

average ν 

−0.2603 

C Minimum of 

maximum ν 

−0.0696 

2i 
A Percentage of 

class A 

100% 

B Percentage of 

class B 

99% 

C Percentage of 

class C 

53% 

2ii 
A Average of 

minimum ν 

−0.2781 

B Average of average 

ν 

−0.1401 

C Average of 

maximum ν 

−0.0022 

3 
A Maximum of 

minimum ν 

−0.0696 

B Maximum of 

average ν 

0.0009 

C Maximum of 

maximum ν 

0.0956 
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Given the unusual nature of α-cristobalite and its highly auxetic properties, 

studying similar materials with similar chemical structure and their elastic behaviour 

would appear justified. These include simple dense polymorphs of silicon dioxide 

such as quartz, but also the more complex and open structures of all-silica zeolites. 

For these, the central atom of each tetrahedron within the structure (known as a T-

site), is occupied by a silicon atom. In the next chapter the elastic matrices of many 

of these polymorphs are calculated and used to obtain typology data for materials 

which bear a better comparison to α-cristobalite. 
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Chapter 4: Properties of siliceous 

zeolites 

4.1 Chapter Overview 

This chapter aims to characterise the Poisson's ratio of all-silica zeolites and 

identify exceptional structures. The motivation to study NPR silicates arises from the 

attention zeolites have received for many years due to their very low density and 

potential use as molecular sieves.[25] These early studies have been far from 

systematic and in light of recent results it is timely to compare the auxeticity of silicas 

(zeolites in particular) with that of crystals in general. Additionally, the SiO2 mineral 

cristobalite has been recognised to have exceptional properties among crystals, and 

it is hoped that by understanding the way in which its polymorphs behave a better 

understanding might be gained of its auxetic properties. By replacing every T-site in 

a number of zeolite frameworks with silicon a large variety of all-silica theoretical 

structures can be created. Potential models for silicon and oxygen are validated and 

then used to calculate the stiffness matrices of these structures allowing us to 

explore their elastic properties. 

 



56 

 

4.2 Input parameters for modelling SiO2 structures 

4.2.1 SiO2 potentials 

Atomistic potentials used to model materials are primarily obtained through 

either ab initio techniques, where intermolecular forces are derived from quantum 

mechanical calculations, or through experimental results, which are used as known 

properties with which to fit parameters of pre-defined functions. Difficulty in finding a 

consistent model for SiO2, which is able to match predicted properties closely with 

real ones, arises as the bonding within SiO2 polymorphs is neither completely ionic, 

nor completely covalent. Therefore, empirical models incorporating both features 

must be used.[91] In addition to this, SiO2 exists as both high density (quartz, 

cristobalite), and low density (zeolites) polymorphs, meaning a potential model which 

has been fitted to a dense form may not be as well suited to a more expanded 

framework. However, it has been shown that potentials derived for α-quartz,[76] 

when coupled with earlier potentials derived for Al2O3, are able to yield excellent 

energy-minimized structural models for a wide range of zeolites.[91] 

A recent review on the modelling of silica zeolites, by Combariza et al.,[92] 

collates a wide range of potential models developed by various other authors. With 

the addition of a force field model developed by Sastre and Gale in 2003,[82] this 

work utilises these libraries for calculations of the elastic properties of all-silica 

zeolites. For clarity the naming convention used by Combariza will be maintained 

throughout this work, with the name of the potential and source publication given 

below in Table 4.1. 
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Table 4.1 - The potential libraries used for the calculation of the elastic properties of all-silica zeolites 

Library Name Reference 

Shell Model   

Gale  Gale[78] 

PMM08  Pedone et al.[80] 

Sastre  Sastre and Gale[82] 

SC1  Sastre and Corma[79] 

SLC  Sanders et al.[76] 

SS96  Schröeder and Sauer[77] 

SS97  Sierka and Sauer[64] 

 Rigid Ion  

 AHCM Auerbach et al.[85] 

 BKS Van Beest et al.[61] 

 JA Jaramillo and Auerbach[84] 

 JC Jackson and Catlow[83] 

 PMM06 Pendone et al.[81] 

 TTAM Tsuneyuki et al.[87] 

 Vessal Vessal[86] 

 

 

The atomic charges, parameters for two-body interactions, and parameters for 

three-body interactions used in these potential models are given in Appendix A. 

Wherever possible the values for cut-off distances were taken from the literature. For 

those where no cut-off was given, a value of 12.0 Å was used with two-body 

potentials, and 2.9 Å for three-body potentials. 

4.2.2 All-silica zeolite crystallography 

In order to model SiO2 structures, crystallographic information files listing the 

atomic arrangement and unit cell parameters for zeolite frameworks are taken from 

the 'Database of Zeolite Structures',[93] which is maintained by the International 

Zeolite Association (IZA) and has crystallographic data for 218 unique zeolite 

frameworks (as of August 2014). The lengths of the unit cell (a, b, and c), internal 

angles of the unit cell (α, β, and γ), space group, and fractional coordinates of atoms 

are listed for each framework. Also included in these crystallographic files are the 
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direct symmetry operations which can be used to map the primitive atoms to 

symmetrically equivalent ones within the periodically repeating unit cell. When 

simulating frameworks all atom locations can be obtained with these direct symmetry 

operations or, if the modelling software is able, the space group given can be used to 

automatically infer the crystal symmetry. The zeolite structures used list 'O' sites (for 

oxygen atoms) and 'T' sites (for the centre of the tetrahedra formed by a central atom 

surrounded by four evenly spaced oxygen atoms). Each framework is modelled as 

all-silica with every 'T' site being populated by a silicon atom. 

 

4.3  Methodology for the calculation of the elastic 

properties of SiO2 zeolites 

The elastic constants of all-silica zeolites were calculated using energy 

minimization techniques with the potential models previously discussed in this 

chapter. The framework information, combined with a species library and potential 

library, is used to create an input file for the simulation software GULP (General 

Utility and Lattice Parameter).[68] GULP is an atomistic modelling program with the 

ability to calculate stiffness matrices from initial lattice parameters and a force field 

model. Using the inter-atomic two-body and three-body potential models the 

structures are optimised with respect to total lattice energy under a constant 

pressure. Several iterations of the Broyden-Fletcher-Goldfarb-Shanno[94] algorithm 

are implemented until the lattice energy stabilises and a minimum has been found. 

Once this optimisation has been achieved, the final lattice parameters and elastic 

constants are collated into a database. ElAM is then used to produce the full 
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Poisson's ratio from each of the stiffness matrices found. This allows for the 

identification of interesting properties such as a highly negative Poisson's ratio in a 

particular, possibly off-axis, direction. 

 

4.4 Validation of the SiO2 potential models 

To ensure that the results obtained are reasonable and accurate, validation of 

the methods and potential models used is critical. A high correlation between 

existing experimental results and those simulated allows theoretical predictions, for 

materials which may not have been examined experimentally, to be more readily 

trusted. Additionally, conclusions gathered from these simulations are likely to be 

more representative of real systems. To validate the potential models used simple, 

dense polymorphs of SiO2 were simulated and their elastic moduli compared to 

those obtained through Brillouin scattering.[47] Unfortunately due to the difficulties in 

experimenting on small single crystals there are relatively few SiO2 crystals for which 

experimental data exist. In addition to this, most of the frameworks used in this 

study, which are populated solely by silicon and oxygen, are entirely theoretical and 

therefore impossible to obtain experimental data on. Whilst it is technically possible 

for these structures to exist naturally, in practise most will have sites populated with 

other elements, changing their chemical makeup and consequently their elastic 

properties. However, it has been shown to be possible to produce all-silica forms of 

some zeolites with careful control of the crystallization time and various other 

parameters.[95] For the validation of the fourteen potential models discussed earlier 

in this chapter, experimental results for the dense silica polymorphs α-quartz[54] and 

α-cristobalite[20] along with the all-silica zeolite version of the MFI structure[96] will 
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be used for comparison with simulated results. Figure 4.1 shows the simulated 

values for the stiffness coefficients, for all fourteen potential models, plotted against 

the experimental values. The solid black line represents the ideal case where the 

simulated value matches exactly that of the experimental. It can be seen that the 

AHCM, JA, JC, and Vessal potentials perform poorly, with the majority of points lying 

away from the equality line. The PMM06 and PMM08 both match experimental 

results closely, but only PMM06 has results for the MFI crystal. As many of the 

coefficients of the stiffness matrices are either zero or dependant on other values, 

the ones used for validation in each case vary. For the trigonal crystal α-quartz, C11, 

C12, C13, C14, C33, C44, and C66 are used; for the tetragonal crystal α-cristobalite C11, 

C12, C13, C33, C44, and C66 are used; and for the orthorhombic crystal MFI C11, C12, 

C13, C22, C23, C33, C44, C55, and C66 are used.  
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Figure 4.1 – A comparison between the simulated stiffness coefficients, when using fourteen potential models, and the 

experimental results for known crystals. Blue crosses represent the stiffness coefficients for α-quartz, red circles those 

of MFI, and green triangles those of α-cristobalite. The solid black line is the line of equality where the simulated 

results exactly match experimental ones. 
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Comparison of the stiffness matrices to experimental results also allows for a 

distinction to be made between different potential models, and for these models to 

be rated in terms of their performance in modelling all-silica zeolites. A root mean 

squared error (RMSE) value can be obtained by finding the square root of the 

average of all squared errors, where the error is the difference between the 

experimental and calculated value. By performing this test, a single value can be 

used to compare the performance of each force field. This RMSE test was performed 

on the data for each inter-atomic potential, when compared to the experimental data 

which are available, giving a picture of which models could most likely be trusted to 

give accurate results. Table 4.2 lists the RMSE values for the potential models 

calculating the elastic properties of the crystals.  

 

Table 4.2 – The RMSE (in GPa) of the stiffness coefficients for each potential when compared with the experimental 

value for α-quartz, α-cristobalite, and all-silica MFI. 

Potential Model α-Quartz α-Cristobalite MFI 

AHCM 31.10 28.27 65.11 

BKS 13.53 5.59 20.55 

Gale 14.41 14.40  

JA 27.31 351.22 71.82 

JC 70.32 84.41 42.24 

PMM06 13.60 2.53 14.61 

PMM08 14.50 5.27  

Sastre 15.53 12.25  

SC1 14.20 15.30  

SLC 13.86 13.69  

SS96 14.82 10.15  

SS97 16.47 13.09  

TTAM 15.88 6.39 19.06 

Vessal 135.54 164.79 89.25 
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Among those potentials which are able to model all three experimental 

crystals, PMM06 has a consistently low RMSE of 13.6, 2.53, and 14.61 for α-quartz, 

α-cristobalite, and MFI respectively. Simulations using PMM06 also give the closest 

match to the stiffness components of a set of experimental results (2.53 for α-

cristobalite) whilst the other two sets of results are also reasonable. As can also be 

seen in Figure 4.1, the errors found using the AHCM, JA, JC, and Vessal potentials 

are the highest of all those used, with some RMSE values greater than 100, 

indicating they are perhaps not suited to modelling all-silica zeolites. The remaining 

ten potentials appear to produce somewhat reasonable correlation to experimental 

results. It is important to note that the extremely low number of crystals with 

experimental results does not allow for a more substantial conclusion, whilst the 

ideal potential will model silica in all frameworks, with such a small sample a single 

erroneous value is likely to skew the results substantially. 

4.5 Results and Discussion 

Comparison of the minimum and maximum calculated Poisson's ratio to the 

structure's anisotropy (A*) bears good relation to previous work carried out by 

Lethbridge et al.[41] It was found that the extreme Poisson's ratio all lie on two 

curves approximately symmetrical around a single point of intersection at A* = 1. 

Figure 4.2 shows the graph of minimum and maximum Poisson's ratio plotted 

against the anisotropy of the structure, where crosses represent minimum and 

maximum Poisson's ratio of all-silica zeolites studied in this thesis, and squares the 

materials from the Lethbridge et al. case study.[41] Due to their poor correlation with 

experimental results, the AHCM, JA, JC, and Vessal potential models have not been 

included in this analysis. 
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Figure 4.2 - Min and max Poisson's vs Anisotropy for all-silica zeolites and other materials. Crosses represent silica 

structures from this work, squares represent those from the Lethbridge et al.[41] study of general materials. The 

maximum Poisson’s ratio found is shown in blue and the minimum is shown in red. 

 

It was suggested by Lethbridge that there was no relationship between crystal 

symmetry and the distribution of points and also that there is no relationship between 

the direction at which extreme Poisson's ratios occur and all crystal systems. The 

results obtained in this study support this hypothesis and suggest that zeolite 

frameworks behave no differently from other more dense materials. It can also be 

seen that, in general, the extreme values for SiO2 polymorphs fall within those of 

general materials. This suggests that for a similar level of symmetry within a crystal, 

there exists less variation between the extents to which Poisson's ratio is observed. 
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4.5.1 Typology of α-Cristobalite 

In the Chapter 3 the typology of α-cristobalite was explored to demonstrate 

the extent of its auxeticity. To compare how each of the potential models represents 

the typology classification for α-cristobalite the different stiffness matrices, obtained 

using the different force fields, can be run through the typology software. By 

examining the classifications satisfied by each model of cristobalite it is possible to 

identify which potentials are likely to predict more auxeticity than others. 

Table 4.3 shows the associated values from the typology classifications for α-

cristobalite when modelled using the fourteen potential models, alongside the same 

values when calculated from the experimental stiffness matrix. The PMM06, PMM08, 

and TTAM potentials best represent the auxeticity of α-cristobalite, being the only 

ones to show the crystal as having typology classifications of 3A, 2iB, and 2iiB, as is 

the case with the experimental results. The BKS potential also shows a reasonable 

match with experimental α-cristobalite by matching the 2iB and 2iB classifications. 

However, none of the potentials reflect the true extent to which cristobalite exhibits a 

negative Poisson's ratio, with the 2iC and 2iiC classification only being found in the 

experimental results, and not in any of the fourteen sets of simulated results. The JA, 

JC, and Vessal potentials are again among the furthest away from experimental 

results, with none of the models successfully giving a 2iA or 2iiA auxetic 

classification. This is to be expected given the high RMSE for the stiffness 

coefficients of α-cristobalite these potentials have.  
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Table 4.3 – The associated values for the typology classifications of α-cristobalite when using the elastic constants 

calculated with the fourteen potential models and from experimental results. The values which indicate a 

classification has been satisfied are highlighted in a bold font. 

Type Class Experimental AHCM BKS Gale JA 

1 

A -0.5073 -0.7297 -0.4629 -0.3660 0.1454 

B -0.2603 -0.1072 -0.1660 -0.1099 0.2264 

C -0.0696 -0.1053 0.0232 0.0315 0.2264 

2i 

A 100.00% 55.38% 82.81% 58.57% 0.00% 

B 99.00% 5.66% 60.69% 39.64% 0.00% 

C 53.00% 0.40% 0.00% 0.00% 0.00% 

2ii 

A -0.2781 -0.0509 -0.1925 -0.0914 0.2266 

B -0.1401 0.3132 -0.0352 0.0243 0.2760 

C -0.0022 0.6774 0.1220 0.1401 0.3254 

3 

A -0.0696 0.6131 0.0344 0.1316 0.3155 

B 0.0009 0.6131 0.1267 0.1396 0.3379 

C 0.0956 1.3461 0.2268 0.2161 0.4160 

  JC PMM06 PMM08 Sastre SC1 

1 

A 0.0411 -0.5308 -0.4820 -0.3352 -0.3496 

B 0.1957 -0.2514 -0.2286 -0.0390 -0.1053 

C 0.2010 -0.0702 -0.0508 0.0199 0.0570 

2i 

A 0.00% 100.00% 100.00% 50.84% 61.93% 

B 0.00% 88.83% 88.31% 8.04% 42.30% 

C 0.00% 43.28% 40.32% 0.00% 0.00% 

2ii 

A 0.1788 -0.2900 -0.2512 -0.0114 -0.0947 

B 0.2584 -0.1267 -0.1110 0.1284 0.0145 

C 0.3380 0.0365 0.0293 0.2682 0.1238 

3 

A 0.3090 -0.0702 -0.0508 0.2794 0.1142 

B 0.3090 0.0344 0.0301 0.2794 0.1164 

C 0.4287 0.1691 0.1177 0.4106 0.1748 

  SLC SS96 SS97 TTAM Vessal 

1 

A -0.3358 -0.3710 -0.3361 -0.4850 -0.0627 

B -0.1045 -0.0853 -0.0325 -0.1867 0.2374 

C 0.0461 0.0160 

 
0.0448 -0.0032 0.2489 

2i 

A 62.61% 54.06% 46.63% 100.00% 11.19% 

B 43.90% 26.82% 8.58% 76.23% 0.00% 

C 0.00% 0.00% 0.00% 8.68% 0.00% 

2ii 

A -0.0924 -0.0572 -0.0099 -0.2202 0.1818 

B 0.0115 0.0728 0.1287 -0.0548 0.3276 

C 0.1154 0.2028 0.2672 0.1106 0.4733 

3 

A 0.1090 0.2051 0.3030 -0.0032 0.3848 

B 0.1112 0.2051 0.3030 0.1161 0.3848 

C 0.1642 0.3105 0.3996 0.2377 0.6647 
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4.5.2 Auxetic Typology of all SiO2 structures 

Using the typology system developed in the previous chapter a small number 

of structures were found to be type '2B' auxetic which are thought to have not been 

identified previously. Due to the variations in the potential models, the frameworks 

which are shown to meet this criterion are different for each data set. However, there 

are a few structures which are shown to be consistently auxetic with the majority of 

potential models used. The frameworks of NPO and JST are suggested to exhibit a 

negative Poisson's ratio when averaged over all directions, a property shared with 

cristobalite, when simulated with seven and nine of the potential models used 

respectively. These structures might have applications if their negative Poisson’s 

ratio nature could be coupled with other properties, rendering them suitable for 

specific functions, such as in piezoelectric devices or as molecular sieves. This 

thesis is unable to provide a link between the structures exhibiting auxetic behaviour 

which could point at ways of identifying future materials or the fabrication of 

structures to fit specifications. Whilst the Poisson's ratios of 210 all-silica structures 

were examined in this study only one is suggested to have increased auxetic 

performance over α-cristobalite. As well as being found to be 2iiB by the majority of 

potentials, JST is also predicted to have 3A classification by eight of the fourteen 

potentials, these being Gale, PMM06, JC, SC1, SLC, SS96, SS97, and TTAM. Of 

the remaining six potentials, half of them (AHCM, JA, and Vessal) were among the 

least reliable when validated against experimental results. 

After calculation of the off axis elastic properties of 204 all-silica zeolite 

frameworks and 6 dense silica polymorphs, the typology of auxeticity was calculated. 

By collating the results from each individual potential, a percentage of the structures 

that satisfy each degree of auxetic behaviour can be calculated. Table 4.4 shows the 
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percentage of siliceous materials that exhibit a certain type of auxeticity, for the 

elastic constants produced using the fourteen potential models. It can be seen that 

the differences in the potential models give rise to varied percentages, with the JA 

and AHCM potentials simulating on average more auxetic properties. The extremely 

low percentage of auxeticity shown by crystals modelled with the JC potential is 

suspicious when compared to the percentages calculated with other models. 

However, it is perhaps less surprising when we consider JC's poor performance in 

matching the elastic constants of experimental results. 

Table 4.4 - Percentages of auxetic typology for SiO2 zeolites using the fourteen potential models in this study 

Type Class AHCM BKS Gale JA JC PMM06 PMM08 

1 

A 76.2% 49.7% 25.7% 81.5% 7.1% 44.7% 65.6% 

B 50.3% 23.0% 8.2% 63.5% 0.5% 17.9% 37.4% 

C 19.5% 8.6% 2.3% 31.5% 0.5% 5.8% 14.1% 

2i 

A 50.8% 23.5% 7.0% 64.6% 0.5% 19.5% 33.7% 

B 7.0% 3.7% 1.2% 9.6% 0.5% 3.7% 5.5% 

C 0.5% 1.1% 0.6% 1.7% 0.5% 0.5% 0.6% 

2ii 

A 53.0% 26.2% 9.9% 68.0% 0.5% 21.1% 39.3% 

B 12.4% 3.7% 1.8% 14.0% 0.5% 3.7% 7.4% 

C 0.5% 0.5% 0.6% 1.1% 0.5% 0.5% 0.6% 

3 

A 1.6% 1.1% 0.6% 2.8% 0.5% 1.6% 1.2% 

B 0.5% 0.5% 0.6% 0.6% 0.5% 0.5% 0.6% 

C 0.0% 0.0% 0.6% 0.6% 0.5% 0.0% 0.6% 

  Sastre SC1 SLC SS96 SS97 TTAM Vessal 

1 

A 25.0% 33.1% 28.5% 18.3% 45.0% 50.6% 11.5% 

B 9.5% 10.8% 8.1% 2.4% 18.5% 25.0% 0.5% 

C 1.2% 0.6% 1.7% 0.6% 1.3% 8.5% 0.5% 

2i 

A 10.1% 13.9% 7.6% 4.3% 15.2% 27.8% 1.1% 

B 1.2% 1.2% 1.2% 0.6% 1.3% 5.1% 0.5% 

C 0.6% 0.6% 0.6% 0.6% 0.7% 1.1% 0.5% 

2ii 

A 11.3% 14.5% 8.7% 4.9% 21.9% 30.7% 1.1% 

B 1.8% 1.2% 1.2% 0.6% 2.6% 3.4% 0.5% 

C 0.0% 0.6% 0.6% 0.6% 0.7% 1.1% 0.5% 

3 

A 0.0% 0.6% 0.6% 0.6% 0.7% 1.7% 0.5% 

B 0.0% 0.6% 0.6% 0.6% 0.7% 0.6% 0.5% 

C 0.0% 0.6% 0.6% 0.6% 0.7% 0.6% 0.5% 
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Type 1A auxetic behaviour bears the most relevant comparison to previous 

studies, as this type represents a material exhibiting at least some negative 

Poisson's ratio. In general the percentages of 1A structures is perhaps lower than we 

might have expected when we consider that this figure for cubic metals is closer to 

69%.[18] However, when compared with the 471 materials from the case study, with 

a 1A percentage of 37.2% we find a much closer correlation. On average all-silica 

zeolites appear to have a marginally higher level of auxeticity than the materials from 

the case study, with an increased percentage satisfying '2iiA' and '1B', but follow the 

same trend of decreasing rapidly above these classifications, with few if any 

materials displaying type 3 or class C auxeticity. 

4.5.3 Auxeticity of all-silica JST 

Despite the wide range of auxetic properties simulated with the fourteen 

different potential models, JST is consistently shown to have a high degree of 

auxeticity. Ten potentials simulate JST as having some auxetic properties (1A), of 

those nine calculate it has being averagely auxetic (2iiB), and eight predict it to be 

completely auxetic in every direction (3C). This level of completeness in the 

structure’s auxeticity surpasses that of all other siliceous polymorphs, including α-

cristobalite. 

Pure silica JST is cubic (space group PA-3, number 205), its primitive cell, 

shown in Figure 4.3, contains 96 oxygen and 48 silicon atoms. Due to this 

complexity it can be described in many ways. The following description is especially 

relevant to its auxeticity and helps understand the underlying mechanism. It is first 

useful to abstract the bent Si-O-Si bonds by straight Si-Si segments as in Figure 4.4. 
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Figure 4.3 - The primitive cell of all-silica JST 

 

 

Figure 4.4 - Abstracted structure of the JST framework where bent Si-O-Si bonds are represented by straight Si-Si 

segments 

 

JST can then be seen as having a face centred cubic structure, where the 

motifs are four three-dimensional 6 sided stars. These stars (12 silicon each), are 

composed of a quasi-planar central hexagon surrounded by 6 sides alternating 
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pointing up and down at angles of ±60.4°. The central hexagons lie in the four {111} 

planes, and connect to each other through connecting triangles; in other words, each 

silicon belongs to a single star. If one assumes very stiff Si-Si connection, a tensile 

deformation flattens the stars, and makes them larger, leading to in-plane NPR. This 

simple mechanistic analysis is confirmed by studying the deformation of a unit cell. 

Under a 1% (100) strain, the Si-Si bonds remain largely unchanged, most bonds 

deforming by 0.02% with a maximum of 0.18%, while the out-of-plane side angle 

varies from 60.4° to 58.9°, a change of 2.4%. At this stage, JST has only been 

recently produced, and in a complex gallogermanate form with cationic templates in 

its pore.[97] While pure silica JST has not been synthesised yet, it might be 

necessary to obtain further confirmation of its framework’s extraordinary auxeticity by 

mechanistic methods such as finite element analysis or fabrication of macro-scale 

models. 

The lattice parameters and elastic constants for all-silica JST were optimised 

successfully (an energy minima was found) by thirteen of the potential models, with 

the Sastre potential running into an error during optimisation. With no known 

experimental results the properties obtained with different potentials can only be 

compared with one another, though the large number of models used should 

highlight any erroneous data. Table 4.5 gives the single lattice parameter, a, and the 

stiffness coefficients C11, C12, and C44 for each potential used. 
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Table 4.5 – The lattice parameters and elastic properties of all-silica JST when simulated with thirteen potential 

models 

Potential a(Å) C11(GPa) C12(GPa) C44(GPa) 

AHCM 12.17 −102.17 63.80 14.30 

BKS 13.47 89.93 7.98 25.53 

Gale 15.29 33.19 −6.08 20.74 

JA 11.11 105.79 116.76 60.84 

JC 15.77 40.77 −3.01 22.43 

PMM06 13.55 91.58 16.78 26.56 

PMM08 15.43 25.36 −3.98 16.43 

SC1 15.41 40.10 −4.69 22.91 

SLC 15.24 36.77 −5.49 21.37 

SS96 15.59 32.21 −1.42 17.42 

SS97 15.62 30.20 −1.52 16.81 

TTAM 15.71 14.12 −9.75 12.62 

Vessal 15.79 34.64 −3.83 22.14 

 

It can be seen that the results obtained with the AHCM, JA, and PMM06 

potentials vary significantly from the remaining data sets. These differences could 

have been caused by errors in the geometrical optimisation, and are not necessarily 

true representations of JST’s properties. Ignoring these suspicious models gives a 

unit cell length of a little over 15 Å and stiffness coefficients of ~30 GPa for C11, 

~ −6 GPa for C12, and ~20 GPa for C44. The potentials which are largely in 

agreement for the elastic properties of JST are the same as those which predict high 

levels of auxeticity. The potentials which are inconsistent (with both the general 

consensus and among the outliers themselves) are those which predict less auxetic 

properties for JST. 

To fully explore the extent of auxeticity predicted for JST by each potential the 

typology system is applied to the stiffness matrices obtained. Table 4.6 shows the 

associated values of typology, described earlier, for each potential. 

From the associated typology value for the 1A classification found using the 

JA potential it is clear that the simulation of the structure has failed to optimise 
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successfully. The rest of the potentials (with the exception of AHCM) give a very 

narrow range of minimum Poisson's ratio (associated value for 1A) to maximum 

Poisson's ratio (associated value for 3C), with the largest of just 0.25 with BKS. This 

suggests an extremely isotropic material where the Poisson's ratio varies very little 

when examined in different axes. Excluding AHCM and JA, there are no potentials 

which predict JST to exhibit a small amount of auxeticity without also simulating a 

complete 3C auxetic classification. Nine of these thirteen potentials predict JST to be 

isotropically auxetic with a 3C classification. These repeatedly auxetic calculations 

are sufficient to expect a real sample all-silica JST to have a high chance being 

auxetic, and to exhibit this auxeticity over a large proportion of directions. 
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Table 4.6 – The associated values for the typology classifications of all-silica JST when using the elastic constants 

calculated with thirteen of the fourteen potential models. Values which correspond to a classification being satisfied 

are highlighted in a bold font. 

Type Class AHCM BKS Gale JA JC 

1 

A −1.6631 0.0614 −0.2501 −195.3931 −0.0919 

B −1.6631 0.0815 −0.2448 −21.3500 −0.0885 

C −1.6631 0.0815 −0.2442 0.4848 −0.0882 

2i 

A 100.00% 0.00% 100.00% 50.81% 100.00% 

B 100.00% 0.00% 100.00% 4.16% 100.00% 

C 60.38% 0.00% 100.00% 0.00% 100.00% 

2ii 

A −0.6723 0.0994 −0.2394 −1.587 −0.0867 

B −0.4963 0.1548 −0.2349 0.5355 −0.0843 

C −0.3203 0.2101 −0.2303 2.658 −0.0819 

3 

A −0.0560 0.2022 −0.2243 0.5246 −0.0798 

B −0.0404 0.2085 −0.2243 9.3742 −0.0798 

C 0.1821 0.3080 −0.2243 152.6934 −0.0798 

  PMM06 PMM08 SC1 SLC SS96 

1 

A 0.1253 −0.2401 −0.1437 −0.1812 −0.0638 

B 0.1549 −0.2284 −0.1409 −0.1799 −0.0585 

C 0.1549 −0.2271 −0.1406 −0.1798 −0.0580 

2i 

A 0.00% 100.00% 100.00% 100.00% 100.00% 

B 0.00% 100.00% 100.00% 100.00% 100.00% 

C 0.00% 100.00% 100.00% 100.00% 100.00% 

2ii 

A 0.1589 −0.2175 −0.1390 −0.1789 −0.0561 

B 0.2013 −0.2078 −0.1369 −0.1778 −0.0525 

C 0.2436 −0.1981 −0.1348 −0.1768 −0.0489 

3 

A 0.2323 −0.1863 −0.1326 −0.1756 −0.0462 

B 0.2373 −0.1863 −0.1326 −0.1756 −0.0462 

C 0.3160 −0.1863 −0.1326 −0.1756 −0.0462 

  SS97 TTAM Vessal 
  

1 

A −0.0820 −2.3375 −0.1929   

B −0.0735 −2.3149 −0.1760   

C −0.0727 −2.2937 −0.1744   

2i 

A 100.00% 100.00% 100.00%   

B 100.00% 100.00% 100.00%   

C 100.00% 100.00% 100.00%   

2ii 

A −0.0695 −2.2050 −0.1635   

B −0.0636 −2.1872 −0.1505   

C −0.0577 −2.1694 −0.1375   

3 

A −0.0531 −1.000 −0.1243   

B −0.0531 −1.000 −0.1242   

C −0.0531 −1.000 −0.1240   
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Chapter 5: Local Density Variations 

5.1 Chapter Overview 

There have been hints in the past that negative Poisson’s ratio behaviour 

might be associated with low density, with “more space” for unusual mechanisms to 

unfold. But whereas a crystal structure usually has many different Poisson's ratios (ν) 

in different directions, its density is unique. However, the local density, and in 

particular the way it varies along a specific axis, can also be directionally dependent. 

This chapter attempts to establish a link between the density variation in a given axis 

and the Poisson's ratios arising in directions relating to this axis. 

To measure the density variation for a particular axis within a crystalline array, 

the area densities on planes normal to the axis are measured. The intersection area 

between each atom and these planes is calculated, and the changes in these areas 

are a measure of density variation. Only rational Miller vectors can be used for 

density variation calculations as the intersection area is assumed to be periodic 

within the structure. Sampling planes from an irrational Miller vector results in a 

quasi-crystalline pattern where the intersection area cannot be calculated exactly. 

The stiffness matrices of a structure (here obtained from GULP and the SLC 

potential model)[68, 91] can be used to calculate the Poisson's ratio in the chosen 

directions through standard tensor rotation techniques. From this, the density 

variation in the same direction can be compared with the relevant Poisson's ratios. 

These are those caused by a longitudinal deformation along this axis, those for a 

transverse response on this axis caused by deformations which are perpendicular, 
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and finally those where both longitudinal deformation and transverse response are 

perpendicular to the axis.  

By analysing a large number of siliceous zeolite crystals, for a wide range of 

Miller vectors, it is anticipated that some form of correlation between the density 

variations and Poisson's ratios associated with any chosen axis will be found. A 

correlation of this nature could help suggest future materials which may have auxetic 

properties, or uncover trends which may be used to tailor materials to have particular 

Poisson's ratios in designed directions. 

After brief background notes on anisotropy and functional programming 

languages, the methodology and implementation are detailed. The last section 

discusses the results from this work, first on body central cubic structure, then on 

siliceous zeolites. 

 

5.2 Background 

5.2.1 Anisotropy and Density 

Since all the siliceous zeolites examined in the previous chapter are 

chemically identical it is clear that the differences in their elastic properties are likely 

to arise from purely structural variations. In 2010 it was shown that the anisotropy of 

a crystal is highly correlated to its elastic properties, in particular the minimum and 

maximum Poisson's ratio,[41] and siliceous zeolites follow the same pattern. 

Although it is possible that the anisotropy of the different crystals is the major 

contributing factor to their varied Poisson’s ratio, the correlation between the two 

properties does not imply causation, and both could occur as a result of an additional 

property of the structure. It is perhaps self-evident that those crystals which are less 
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symmetric will have a greater range of inherent Poisson's ratios, as they occur within 

a more varied set of geometrical conditions. A more fundamental relationship could 

exist between the density of a crystal and its range of Poisson's ratios. However, due 

to the highly directional nature of Poisson's ratio, a more directionally relevant 

measure of density may be required.  

5.2.2 Body centred cubic crystals – preliminary hypothesis 

To look for correlation and produce hypotheses between Poisson's ratio and 

density variations the body centred cubic (BCC) crystals can be considered first. 

From analysis of the mechanisms involved in BCC deformation the minimum and 

maximum Poisson's ratios have been shown to be 𝜈(110,11̅0) =  −1, and 

𝜈(110,001) =  2 respectively.[18] The three axes of interest inferred from this are the 

[110] direction, the [001] direction, and the [110] direction. As the minimum and 

maximum Poisson's ratios share a deformation axis ([110]) it is proposed that the 

properties relating to this axis are responsible for the existence of Poisson's ratio 

extremes. It is also suggested that the directional properties of the [110], and [001] 

axis may be linked to negative or positive ratios respectively. Due to the symmetry of 

the cubic system the Miller indices used in the directions discussed will directly 

correspond to the Miller indices of the planes for which these directions are the 

normal vectors; however, this is not the case for all crystal symmetries. Before 

calculating directional density a hypothesis can be drawn that more extreme 

Poisson's ratios can be found when the axis of deformation has properties similar to 

those found in the [110] axis of BCC, more negative Poisson's ratios can be found 

when the transverse direction has directional properties similar to those found in 

[110] of BCC, and more positive Poisson's ratios can be found when the transverse 
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direction has directional properties similar to those found in [001] of BCC. It is 

unclear whether these predictions will hold true in the case of more complex 

symmetries and structures, such as zeolites. 

5.2.3 Functional programming 

In order to access this density directionality, dedicated software had to be 

produced to calculate the way in which the density varies along specific axes (albeit 

restricted to those with rational Miller indices). Initially a preliminary script in the 

Python programming language was created to test the principles and functions to be 

used. Whilst this prototype software was able to produce the desired information, the 

code produced was too computationally expensive to be used for the large data set 

intended. Although proven computationally efficient languages such as FORTRAN 

were considered for the software, the highly functional quality of the problem 

(repeated use of mathematical functions for calculating intersection areas etc.) 

meant a functional language was more suitable.  

Functional programming languages offer a few key advantages over 

imperative ones and often are more suited to highly modular problems, such as in 

this case, where the result can be derived from the repeated use of many smaller 

functions. Most functional languages make use of lazy evaluation (where operations 

are only implemented at the point at which they are needed,[98] rather than when 

the program loop reaches them as is the case in most imperative languages) and 

referential transparency (where each function, given the same inputs, will always 

return the same result, with no side effects on any other part of the program).[99] 

Lazy evaluation allows the program to run faster without taking up excessive 

memory when working with large data sets, allowing for more directions to be 
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analysed within an acceptable time frame. Through the use of referential 

transparency the problem of finding the density variations along an axis can be split 

into more modular functions, allowing the software to be written in terms of what is 

mathematically true rather than the more conceptually difficult task of creating an 

order of execution. The functional language Haskell[100] was chosen as a purely 

functional language with both lazy evaluation and referential transparency as 

features. 

5.3 Methodology 

5.3.1  Directional density variation: geometric principles 

To calculate the density variations along an axis in a crystal structure the 

individual atoms are represented as spheres, described by atom locations and 

atomic radii (taken as those for quartz where r is 0.65 Å and 1.17 Å for oxygen and 

silicon respectively).[101] Axes are systematically chosen, by iterating Miller indices, 

along which to measure density variation, and planes along these axes are sampled 

for their area of intersection with the atoms. This area is defined as the total area of 

intersection between the plane and each atom, per unit cell in the structure. Although 

discussing density variations and calculating intersection areas, the area found is 

equivalent to a local volume when expressed as a percentage of total area of the 

plane per unit cell, and then multiplied by the distance between samples. Figure 5.1 

shows how the intersections between atoms and a plane form a measurable area, 

where a simple cubic structure is being intersected by the (101) plane. By moving 

the planes along the axis (the same normal vector), and examining the variation in 

intersection area (and therefore plane density), a function for density variation is 

obtained. 
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Figure 5.1 – The intersection of atoms, modelled as spheres, with a selected plane on the chosen axis. A) The (101) 

plane intersecting a simple cubic structure intersecting the atoms at [100], [110], [001], and [011]; B) The projection 

of the (101) plane, the grey areas shown represent the total intersection area between the plane and a primitive cubic 

unit cell. 

 

To select axes for examination, Miller indices are produced by looping through 

valid combinations of integers (arbitrarily limited to those with a magnitude less than 

6 to reduce computation cost). The Miller indices are forced to be both unique and 

rational by checking that the greatest common factor is one in each case. Each Miller 

index describes a lattice plane, with a normal vector of the axis for which density 

uniformity will be measured. This axis will only be identical to the Miller vector with 

the same index in cubic systems. As the chosen axis must have rational Miller 

indices, the atoms within the unit cell suffice to find the intersection area of a plane 

for the entire periodic structure. This can be shown in the following way: if a primitive 

lattice plane is represented by a normal vector and a displacement from the origin 

(equivalent to the shortest reciprocal lattice vector), integer factors of this 

displacement (d) will intersect the unit cell in N distinct ways (where N is equal to the 

sum of the Miller indices) before becoming periodic. Figure 5.2 shows how the (320) 
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plane intersects any unit cell 4 distinct times, and how this is equivalent to four offset 

planes intersecting just one unit cell. The intersection at zero displacement, also 

equivalent to a displacement of 5 times the offset distance (d) in this case, has no 

intersection area associated with it as it passes through the origin. This explains why 

only four offset planes are needed rather than five, which is the sum of Miller indices 

(in Figure 5.3, an offset reveals the 5 planes).  

 

 

Figure 5.2 - The different ways the (320) plane intersects the unit cell. A) A continuous plane intersecting four 

different periodic cells at integer factors of d (the displacement of the primitive lattice plane); B) Four different 

representations of the same plane intersecting a single unit cell, each with a separation of d. The intersection area 

associated with both A and B will be identical. Note the different line types. 

 

If the Miller indices of the lattice plane were irrational, it would intersect the 

unit cell in an infinite number of ways, and be impossible to evaluate. The atoms in 

the unit cell do not need to be replicated in order to establish the intersection area. 

Instead, the intersection areas for all parallel planes, which intersect the atoms within 

just one unit cell, can be summed to give an area of intersection for this whole plane. 
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After choosing a set of Miller indices, the Cartesian equation for the plane can 

be obtained in terms of a vector (a b c) normal to the plane, and a displacement d 

from the origin. This can be achieved by satisfying the following equations, where the 

intercepts between the plane and the unit cell are (x1 y1 z1), (x2 y2 z2), and (x3 y3 z3).  

 
𝑎 =  

−𝑑

𝐷
|

1 𝑦1 𝑧1
1 𝑦2 𝑧2
1 𝑦3 𝑧3

| (5.1)  

 

 
𝑏 =  

−𝑑

𝐷
|
𝑥1 1 𝑧1
𝑥2 1 𝑧2
𝑥3 1 𝑧3

| 
(5.2)  

 

 
𝑐 =  

−𝑑

𝐷
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| 
(5.3)  

 

where the non-zero term D, is the determinant of the coordinates: 

 

 
𝐷 =  |

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3

| 
(5.4)  

 

The values for a, b, and c give a Cartesian vector normal to the Miller plane 

and are initially found by setting d to equal one. By dividing all four values by the 

magnitude of the normal vector, a Cartesian equation for the initial lattice plane is 

produced, where the vector (a b c) has been normalised (has a magnitude of 1) and 

the d value is equal to the distance from the origin to this primitive plane. The 

intersection area of a plane can now be calculated using the above method, by 
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substituting integer factors of d into the plane equation with constant values of a, b, 

and c. 

To calculate the variation of densities along the chosen axis it is necessary to 

examine planes at different displacements other than those with integer multiples of 

d. The same logic used earlier when dealing with the initial lattice plane, also applies 

with offset planes. Therefore, the atoms within only one unit cell are sufficient to 

solve the intersection area for any plane parallel to the initial (provided the 

separation between the planes examined equals d). Figure 5.3 shows how the 

intersection areas of planes with an offset displacement of 0.25d, 0.5d, and 0.75d 

from the initial Miller plane can be calculated from the unit cell atoms. This allows the 

intersection area of any plane offset from the initial lattice plane to be calculated. 

 

 

Figure 5.3 – The values of d needed to find the intersection area for the initial, 0.25d displacement, 0.5d displacement, 

and 0.75d displacement lattice planes. Each plane can be evaluated by incrementing the desired displacement by 

whole multiples of d. A) The initial plane with d, 2d, 3d, and 4d as displacement values in the plane equation; B) The 

0.25 offset plane with 0.25d, 1.25d, 2.25d, 3.25d, and 4.25d as displacement values; C) The 0.5d offset plane with 0.5d, 

1.5d, 2.5d, 3.5d, and 4.5d as displacement values; and D) The 0.75d offset plane with 0.75d, 1.75d, 2.75d, 3.75d, and 

4.75d as displacement values. 

 

Unlike simpler elastic properties like Young's modulus which relates to a 

single axis, the Poisson's ratio describes the relative strains between two 

perpendicular axes. Therefore, when examining the density variation along a chosen 

axis, a number of different Poisson's ratios could be considered as relevant; they fall 

into three categories. Firstly, the Poisson's ratios resulting from deformations along 

the same axis as that used for density variation calculations. Secondly, the Poisson's 
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ratios with a transverse direction the same as the axis used in the density variation 

calculations, which arise from perpendicular deformations. Thirdly, the Poisson's 

ratios for which both the longitudinal and transverse directions are perpendicular to 

the axis used in the density variation calculations. As there is a one-to-many 

relationship between the density variation and each of the three classes of Poisson's 

ratios the minimum, maximum, and average Poisson's ratio are considered for each 

case. Figure 5.4 shows the directions used for determining the Poisson's ratios, 

where the first direction, a(i), is the axis used for density variation calculations; the 

second direction, a(ii), is perpendicular to a(i) and found by varying the angle γ; and 

the third direction, a(iii),  is perpendicular to both a(i) and a(ii). 

 

Figure 5.4 – The three axes used for Poisson's ratios calculations. a(i), the axis for which density variation is 

calculated; a(ii), the axis perpendicular to a(i) created by sampling different values of γ between 0 and π; and a(iii) 

the axis perpendicular to both a(i) and a(ii), found by taking the cross product of the two others. 

 

If γ is sampled between 0 and π, the three sets of Poisson's ratio data will be 

calculated from a deformation in a(i) and a transverse direction a(ii), a deformation in 
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a(ii) and a transverse direction a(i), and a deformation in a(ii) and a transverse 

direction a(iii).  

5.3.2 Directional density variation: software implementation 

For the reasons discussed in Section 5.2.3, the functional programming 

language Haskell was used to create the directional density software. Haskell is 

a statically typed, lazy, purely functional language, quite different from most other 

programming languages.[102] Its lazy evaluation of code allowed for a fast and error 

free way of producing the required results, as well as ensuring a low level of 

computational cost. The functional aspect of Haskell also allowed for extremely 

flexible code, which could be quickly changed to examine a different aspect of the 

density variations. 

The software consists of various functions used to obtain local density results 

for a series of planes along an axis through the crystal structure. The primary 

function takes three Miller indices and a set of atom locations as its input and 

produces the standard deviation for density variation within this family of planes. The 

Cartesian plane equations are produced in the form given in Equation (5.5), where 

the coefficients a, b, and c are found using Equations (5.1), (5.2), (5.3), and (5.4). 

The displacement, d, is sampled from 0 to 1 to examine different planes, and added 

to increasing factors of the plane separation (the distance from the origin to the 

primitive plane) to scan the entire unit cell without using periodic atoms (as outlined 

earlier) 

 

  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 𝑑 = 0 . (5.5)  

 

http://www.haskell.org/haskellwiki/Typing
http://www.haskell.org/haskellwiki/Lazy_evaluation
http://www.haskell.org/haskellwiki/Functional_programming
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The distance between each atom and the plane is calculated using Equation 

(5.6), where x, y, and z are the atom coordinates; a, b, c, and d are the normal vector 

and distance from the origin to the plane; and R is the minimum distance from the 

atom centre to the plane. Equations (5.5) and (5.6) are closely related (a, b, c, and d 

are the same), this simply implies that the plane equation holds true whilst the point 

(x, y, z) lies on the plane, and therefore there is a separation of zero. Equation (5.7) 

gives the area of the intersecting circle between an atom and the plane, assuming 

the two intersect, where r is the atomic radius and A is the area of intersection 

  

 
𝑅 =  (

𝑎
𝑏
𝑐
) . (

𝑥
𝑦
𝑧
) −  𝑑 

(5.6)  

 

 𝐴 =  2𝜋 × √𝑟2 − 𝑅2 . (5.7)  

 

By summing the combined areas of all atoms which intersect each instance of 

the measured plane, the total intersection area for this plane is calculated. By 

normalising, according to the number of plane samples taken (fractions of the plane 

separation), and the known absolute density of the structure, a measure of local 

density is assigned to each plane. Once all plane samples are taken, and a local 

density is acquired for each one, the standard deviation is calculated for the set of 

Miller indices originally passed to the software. 

This standard deviation for an axis is used to compare minimum, maximum, 

and average Poisson's ratios which can be found in the first, second, and third 

families. The code used for density variation calculations can be found in the 

supplementary material of this thesis.  
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5.3.3 Elastic properties: Implementation 

To compare the minimum and maximum Poisson's ratios of siliceous zeolites 

to the density variations within the crystal structures, a script was written in the 

Python programming language. This script cycles through a compiled list of zeolite 

structures, and produces data for a number of axes for each one. Rational Miller 

indices are chosen by looping through three integer values ranging within a specified 

minimum and maximum size. The values are filtered to be both unique and have a 

greatest common divisor of 1. To calculate the density variations of a zeolite crystal 

the atom locations, listed as fractions of the crystal cell parameters, are taken from 

crystallographic files found in the international database of zeolite structures,[93] and 

atomic radii, taken as the distance from the atomic centre to the valence electron 

pair, with oxygen and silicon having an atomic radius of 0.65 Å, and 1.17 Å 

respectively.[101] This information is passed into the density variation code 

described earlier, to calculate a standard deviation of density for a particular zeolite 

structure within a specified Miller plane family. 

Once the Miller plane indices have been chosen, the intercepts (produced by 

taking the reciprocals) are converted into Cartesian coordinates and used to find the 

normal vector of the defined plane. This Cartesian vector is expressed as Z'', a 

transformation of the Z axis after it has undergone a rotation of α degrees around the 

original Z axis, followed by a rotation of β degrees around X' (the transformed X 

axis). By performing a final rotation of γ degrees around Z'', a perpendicular vector 

X''' can be produced which is used as the a(ii) direction for Poisson's ratio 

calculations. By taking the dot product of Z'' and X''' (a(i) and a(ii)) a third vector, 

perpendicular to both, can be found which is used as a(iii) to calculate Poisson's 
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ratios. This vector a(iii) is equivalent to the transformed Y axis, following the same 

ZXZ rotation to give Y'''. 

The compliance matrix for each crystal structure is calculated using 

GULP[68], with the crystallographic files and the SLC (Sanders et al.) [76] potential 

library. If the longitudinal axis (k), transverse axis (v), and compliance matrix (S) are 

written in Voigt notation as in Equation (5.8), where 𝐴𝐵𝐶 = 𝐴𝐵 × 𝐴𝐶 

 

 

[
 
 
 
 
 
𝑘1
𝑘2
𝑘3
𝑘4
𝑘5
𝑘6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑘11
𝑘22
𝑘33
𝑘23
𝑘13
𝑘12]

 
 
 
 
 

  , 

(5.8)  

 

then Equations (5.9) and (5.10) describe the value of S'11 and S'12 respectively, 

where S' is the rotated compliance matrix. 

 

 
𝑆′11 =∑∑𝑆𝑖𝑗 × 𝑘𝑖 × 𝑘𝑗

6

𝑗=1

6

𝑖=1

 
(5.9)  

 

 
𝑆′12 =∑∑𝑆𝑖𝑗 × 𝑘𝑖 × 𝑣𝑗

6

𝑗=1

6

𝑖=1

  . 
(5.10)  

 

 

The Poisson's ratio can now be simply calculated between the axes k and v 

by the negative ratio between transverse and longitudinal strain 
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𝜈 =  

−𝑆12
𝑆11

  . 
(5.11)  

 

 

By repeating this process for each crystal structure, sets of Miller indices, γ 

rotations about Z'', and family of Poisson's ratio, an extremely large set of data is 

produced. In order not to discriminate between different crystal structures only the 

standard deviation data for each axis will be compared with Poisson's ratio 

information. This is to try to establish a link between density variations which do not 

depend on the structure being examined. 

 

5.4 Results and Discussion 

5.4.1 BCC crystals 

Due to the symmetry of the BCC structure the density variation for both the 

[110] axis and the [110] axis are identical, and have a standard deviation of 0.12. 

This is a larger variation than that of the density in the [001] axis which has a 

standard deviation of 0.08. The symmetry in the crystal means that the only valid 

comparison between the axes, relating to the maximum and minimum Poisson's 

ratios in the structure, are between [110] (or [110]) and [001]. As both the extremes 

for Poisson's ratio have [110] as an axis of deformation it is possible that a higher 

variation in the density results in a more varied Poisson's ratio in the first family of 

ratios. It could also be suggested that a low variation in density results in a more 

negative Poisson's ratio found in the third family of ratios. However, both of these 

conclusions are only supported by a single datum value and any conclusions drawn 
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are self-fulfilling. To better understand whether the density variation has some 

significance to the Poisson's ratio in general materials, the Miller indices of a large 

number of materials, in this case silica zeolites, will be systematically examined. 

5.4.2 Siliceous zeolites 

The following figures show the results for minimum, maximum and average 

Poisson's ratios, when plotted against the standard deviation for density found in the 

relative axis. Data are shown for the first, second, and third family of Poisson's ratios 

respectively. 

 

Figure 5.5 – The minimum, maximum, and average Poisson's ratio, when compared with the standard deviation of 

the density, for the first family of Poisson's ratios. 
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Figure 5.6 – The minimum, maximum, and average Poisson's ratio, when compared with the standard deviation of 

the density, for the second family of Poisson's ratios. 

 

Figure 5.7 – The minimum, maximum, and average Poisson's ratio, when compared with the standard deviation of 

the density, for the third family of Poisson's ratios. 

The data appear to suggest an increased likeliness of very large positive or 

negative Poisson's ratios when the standard deviation of density is low. However, 

due to the high proportion of Miller indices which would normally be considered 'off-
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axis' being chosen, there is a large concentration of data points at the lower end of 

the standard deviation scale. This can be shown with the histogram in Figure 5.8 

which plots the number of data points within a range of standard deviations.  

 

Figure 5.8 – The histogram of data points for the standard deviation of density. 

 

This suggests that most axes examined have very little repeating crystal 

structure and their density approaches an even distribution. As the skew may lead to 

misinterpretation of the spread of Poisson's ratio values, the following figures smooth 

the distribution by plotting the data on a log scale in the x-axis. 
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Figure 5.9 – The minimum, maximum, and average Poisson's ratio, when compared with the standard deviation of 

the density on a log scale, for the first family of Poisson's ratios. 

 

Figure 5.10 – The minimum, maximum, and average Poisson's ratio, when compared with the standard deviation of 

the density on a log scale, for the second family of Poisson's ratios. 
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Figure 5.11 – The minimum, maximum, and average Poisson's ratio, when compared with the standard deviation of 

the density on a log scale, for the third family of Poisson's ratios. 

 

The new histogram shows how, after plotting on a log scale in the x-axis, the 

skewed distribution of the data has been successfully altered to give a smoother 

range of points, which appear to be roughly normally distributed between the 

minimum and maximum of the range. 
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Figure 5.12 – The histogram of data points for the standard deviation of density when plotted on a log scale. 

 

5.4.3 Discussion 

When examining the log scale figures, there does not appear to be any 

correlation between the standard deviation and either the minimum, maximum, or 

average for any of the three families of Poisson's ratios. This is supported by the 

Pearson product-moment correlation coefficient (PPMCC) of each of the nine data 

sets used for comparison (minimum, maximum, and average for each of the three 

Poisson's ratio families). The PPMCC gives a measure of linear correlation between 

two variables and is defined in Equation (5.12), where E(x) is the expectation of x 

 

 
𝑃𝑃𝑀𝐶𝐶𝜈,𝜎 =

𝐸(𝜈𝜎) − 𝐸(𝜈)𝐸(𝜎)

√𝐸(𝜈2) − 𝐸(𝜈)2 × √𝐸(𝜎2) − 𝐸(𝜎)2
  . 

(5.12)  
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A PPMCC value of 1 indicates a perfect correlation and a value of 0 indicates no 

correlation at all. 

Even the largest PPMCC value for the data sets found is below 0.01, strong 

evidence suggesting that there exists no correlation between direction density 

variation and the Poisson's ratios associated with this axis. It is suggested that more 

complex factors are contributing to the specific Poisson's ratio values other than the 

way in which density changes along specific axes in the crystal. It may be that 

specific arrangements and mechanisms are responsible for the maxima we see 

present which vary relatively unpredictably as the structure changes. In itself, it is 

interesting to note that there exists no link between the periodicity of an axis and the 

way in which the Poisson's ratios related to it vary, as the initial justification for this 

work, with similar chemistry the reasons for varied elastic properties must be 

geometric, is still valid. It is still unknown which other contributing factor, and not the 

local density variations, account for this behaviour. Further work into the reasons 

why structure can play such a pivotal role should be undertaken, with an emphasis 

on discovering what it is about a structure which creates an interesting set of elastic 

properties, given the chemical similarities in a crystal group such as zeolites. 
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Chapter 6: Properties of GeO2 

zeolites 

6.1 Chapter overview 

The modelling of silica zeolites structures performed in chapter three 

produces elastic properties of one group of materials, and focuses on one chemical 

makeup. However, the open tetrahedral frameworks which they form can also be 

formed by other classes of materials with similar chemistry, such as germanium 

oxides (GeO2), aluminium phosphates (AlPO4), or gallium phosphates 

(GaPO4).[103–105] Of these the most chemically similar to SiO2 is GeO2, which also 

forms tetrahedra of oxygen atoms, but with germanium in place of silicon at the 

centre of each tetrahedron. 

The elastic properties of GeO2 crystals can be compared with their SiO2 

equivalent, allowing a distinction to be made between extreme Poisson's ratios 

resulting from interesting chemistry, and those due to purely structural factors. If an 

arrangement of tetrahedra behaves differently when constructed from GeO2 rather 

than SiO2, this suggests the properties are a result of chemical interactions. 

Conversely, similar elastic properties resulting from arrangements which are 

identical, except for the central element in each tetrahedron, point to structures 

which are geometrically interesting. 

To validate the germanium oxide potentials used a case study will be carried 

out on α-GeO2, the quartz equivalent structure, which occurs naturally and has been 

experimentally studied.[106] The lattice cell parameters and components of the 
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stiffness matrix can be compared with those produced by each potential to measure 

the accuracy of each. Ideally more GeO2 crystals would be used for the validation of 

potential models. However, experimental data are limited due to a lack of stable 

polymorphs. 

Particular attention will be given to the GeO2 equivalent of α-cristobalite, a 

crystal known to have an unusual Poisson's ratio, and to JST, a framework shown to 

be isotropically auxetic in previous chapters. If these structures exhibit a strong 

negative Poisson's when composed of either SiO2 or GeO2, they are likely to have 

similar properties for other tetrahedral chemistries (AlPO4, GaPO4 etc.). As well as 

comparisons with previously studied families, this chapter enables a wider range of 

crystals to be examined. With more theoretical materials being studied, there is an 

increased chance in finding a crystal with unusual elastic properties, or with a 

combination of chemical and elastic properties which could be useful.  

This chapter provides a background to molecular modelling using germanium 

and oxygen potentials, as well as a brief discussion on real GeO2 materials and their 

properties. A methodology is then given for the process of finding the stiffness 

matrices of theoretical materials. This explains how germanium and oxygen are 

substituted into initial tetrahedral framework structures, followed by a description of 

the use of potential models to perform force field optimisation. The experimental 

values for α-GeO2 are compared with those calculated and the validity of future 

elastic properties is considered. Finally, the results from a large number of 

tetrahedral frameworks are presented, with particular attention on the GeO2 forms of 

α-cristobalite and JST, along with a discussion of their properties. 
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6.2 Background 

Germanium oxide is a naturally occurring mineral which can exist in a 

crystalline form as connected tetrahedra. The only GeO2 polymorph which is found 

un-synthesised in atmospheric conditions is argutite,[107] which shares a structural 

topology with the tetragonal titanium dioxide crystal rutile,[108] although it can also 

exist in a hexagonal from (with the structure of α-quartz), and a cubic form (with the 

structure of low temperature cristobalite).[107] The quartz like structure, known as α-

GeO2, has been suggested to have a greater piezoelectric effect than the SiO2 

equivalent[109] and studies have been performed to calculate its properties.[107] 

Some tetrahedral frameworks which are formed by zeolites, such as ACO and 

AST,[110] can be observed in both silica and germania forms. However, there are 

those, such as LTA, which have inter tetrahedral angles (the tetrahedra-oxygen-

tetrahedra angle or TOT)[111] suitable only for SiO2, or those with TOT angles which 

can exist only in GeO2, such as ASV.[111] This suitability is due to the stable TOT 

angles being smaller for Ge-O-Ge bonds than for Si-O-Si bonds, which limits the 

arrangements of tetrahedra which can be synthesised.[112] Whether these 

structures are physically possible or entirely theoretical has an impact on the 

significance of the elastic properties calculated if a real material is intended to be 

synthesised. However, for the purpose of examining a wide range of structures, all 

frameworks will be considered. 

A common technique to examine GeO2 materials is to substitute germanium 

into existing SiO2 zeolite frameworks.[113] By varying the percentage of silicon sites 

which are replaced a comparison can be produced between structures with the same 

topology but with different ratios for the types Si or Ge tetrahedra. Some structures 
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produce specific arrangements of tetrahedra (such as double four rings)[114] which 

have been shown to be stabilized by the substitution of germania into the 

framework.[115] 

6.3 Input parameters for modelling GeO2 structures 

6.3.1 GeO2 potentials 

The difficulties that arise with fitting energy potentials to both the ionic and 

covalent behaviour of SiO2 models also hinder the germanium equivalents. In 

addition to this, the smaller Ge-O-Ge bond angle (130° for the germania equivalent 

of α-quartz)[89] when compared to Si-O-Si in silica (141.5° for α-quartz at 

10.6 kbar),[76]  has been thought to create difficulties in modelling without 

introducing many-body terms to simulate positive germanium atom repulsions.[89] 

Potential models for GeO2 found in literature are given in Table 6.1 with the source 

publication references. 

 

Table 6.1 – The potential libraries used for the calculation of the elastic properties of GeO2 equivalent structures 

Library Name Reference Type 

Woodley Woodley et al.[88] Rigid Ion 

Oeffner Oeffner and S. Elliott[89] Rigid Ion 

Sastre Sastre and Gale[82] Shell Model 

 

The atomic charges, two-body interactions, and three-body interactions for 

these potential models are given in Appendix B. Where possible the cut-off distances 

for Buckingham potentials were taken from the literature. Where cut-offs were not 

given 12 Å, a value commonly implemented with similar potentials, is used. The 

Woodley and Oeffner potentials are rigid ion models, where germanium atoms 
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interact directly with the core of oxygen atoms, whereas the Sastre potential uses the 

shell model, with a harmonic spring force between oxygen cores (Oc) and shells (Os). 

6.3.2 GeO2 zeolite crystallography 

The crystallographic files used for the creation of all-silica zeolites in chapter 3 

are also used to create their germanium oxide equivalent. The initial lattice 

parameters and atom sites remain constant for both, with the only difference arising 

from the T-sites being populated with germanium atoms instead of silicon. This is 

achieved with minor alterations to the software for taking the information from the 

crystallographic file and using it to create an input file for GULP. 

 

6.3.3 Validation of the GeO2 potential models 

Unlike SiO2 structures, which exist in many stable polymorphs, GeO2 naturally 

forms very few real polymorphs. Of these α-GeO2 is the only one with experimentally 

measured elastic properties which can be used to validate the germanium oxide 

potential models. The quartz equivalent structure is modelled with the GeO2 

Woodley, Oeffner, and Sastre potentials by performing a force field optimisation with 

the general purpose lattice parameters program GULP.[68] The stiffness coefficients 

and lattice cell parameters obtained from these optimisations are compared to the 

results gained through experimental procedures by Grimsditch,[116] Jorgensen,[117] 

and Balitsky.[107] The parameters for SiO2 α-quartz are included for comparison. 
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Table 6.2 – The properties of experimental silica α-quartz, experimental α-GeO2, and the force field optimisation 

simulations of α-GeO2 from this work. 

Cell Exp. α-quartz Exp. α-GeO2 This work 

Parameters (Å) Bechmann[54] Jorgensen[117] Balitsky[107] Woodley Oeffner Sastre 

a = b 4.91 4.98 4.984 5.49 5.09 4.99 

c 5.41 5.64 5.660 6.06 5.73 5.66 

Stiffness coefficients (GPa) 

(GPa) 

Bechmann[54] Grimsditch[116] Balitsky[107]    

C11 86.74 66.4 64.8 268.42 36.82 55.00 

C33 107.2 118 116 

 

266.15 93.36 86.92 

C44 57.94 36.8 37.4 67.66 23.86 24.04 

C66 39.88 22.53 21.10 57.67 11.91 14.60 

C12 6.99 21.3  153.08 13.00 25.79 

C13 11.91 32  185.90 16.82 26.13 

C14 −17.91 2.2 11.7 0.00 0.07 -0.66 

 

 Figure 6.1 shows the corresponding graphs for the potential validation to aid 

in visualisation. The Sastre potential shows the greatest similarity to the 

experimental values for α-GeO2 with a RMSE (square root of the mean squared 

error) for the stiffness coefficients of 14.06. The Oeffner potential provides a 

reasonable approximation to the real properties of α-GeO2 with a RMSE value of 

17.18. It can be seen both in Table 6.2 and in Figure 6.1 that the Woodley potential 

does a poor job of simulating the experimental lattice parameters and elastic 

properties of α-GeO2, with an extremely large RMSE of 123.06 for the elastic 

coefficients. 
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Figure 6.1 – Comparison of the simulated stiffness coefficients of the GeO2 equivalent of α-quartz with the 

experimental values. The solid black line is the line of equality where the simulated results exactly match the 

experimental ones. 

 

6.3.4 Calculation of GeO2 elastic properties 

The 210 zeolite frameworks used for calculating the SiO2 elastic properties 

(obtained from the international database of zeolite structures)[93] are also used for 

calculations with GeO2. By altering the crystallographic files to replace the silicon at 

each tetrahedra site with germanium, input files giving the locations of each atom 

within the unit cell are produced. Force field optimisation is performed within the 

GULP[68] software, using each potential model, giving a prediction of final lattice 

parameter values and stiffness coefficients. These coefficients are used to find the 

off axis elastic properties of each GeO2 framework, allowing for a comparison of the 
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minimum and maximum Poisson's ratio. As with silica the anisotropy of each 

structure is compared with the minimum and maximum Poisson's ratio to establish 

whether the trend, of more extreme properties arising with less symmetric 

frameworks, follows with the GeO2 equivalent structures. 

The previously developed typology system is employed to distinguish 

between the extents to which each structure exhibits auxetic behaviour and to aid 

identification those which may have interesting elastic properties. Each typology is 

classified in terms of the negativity of an axis and the number of axes which have 

this negativity. By applying these classifications structures with auxetic properties for 

a very small number of specific directions can be distinguished from those which 

may have a large degree of auxetic behaviour in many different directions. By 

making this distinction, potentially interesting structures are highlighted amongst 

those which are more common.  

6.4 Results and discussion 

6.4.1 Properties of the GeO2 equivalent of α-cristobalite 

The auxetic properties of the SiO2 form of α-cristobalite are well known and 

have been explored in depth, both in previous literature, and in Section 2.2.2.2, 

Section 3.5, and Section 4.5.2 of this thesis. The lattice parameters of the GeO2 form 

of α-cristobalite have been measured[118] but, due to difficulties in forming a stable 

crystal, its elastic properties have not. Simulations of the elastic properties of the α-

cristobalite form of GeO2 are calculated using the three potential models outlined 

and the stiffness matrices are obtained. Table 6.3 gives the lattice cell parameters 

and the stiffness matrix coefficients C11, C12, C13, C33, C44, and C66 for the three 
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potentials used. With the lack of experimental results for GeO2 α-cristobalite, the 

properties of the SiO2 form are given for comparison. 

Table 6.3 – The lattice parameters and elastic properties of the GeO2 form of α-cristobalite when simulated with the 

three GeO2 potential models used. The experimental values for SiO2 α-cristobalite are included for reference. 

Cell SiO2 GeO2 

Parameters (Å) Exp. Oeffner Sastre Woodley 

a = b 4.96 5.099 4.922 5.586 

c 6.91 6.444 7.537 7.899 

 
Stiffness Coefficients (GPa)     

C11 59.45 10.50 23.39 272.84 

C12 3.88 64.62 0.78 123.10 

C13 -4.49 18.11 14.64 175.68 

C33 42.47 40.70 61.15 221.25 

C44 67.24 28.94 50.14 74.87 

C66 25.74 14.67 10.04 23.29 

 

Even though there is no experimental form to use as a benchmark, it can be 

seen that the Oeffner and Sastre potentials give values which are in a similar range 

to the stiffness matrix of the SiO2 form. The very high values found by the Woodley 

potential are more unusual which mirrors the poor performance this potential showed 

when modelling GeO2 α-quartz. 

The stiffness matrices can be used to examine the extent to which the 

structure is shown to exhibit negative Poisson's ratio if any. A typological 

examination of the GeO2 form of α-cristobalite can also be used to compare between 

the different potential models. Table 6.4 lists the associated values for auxetic 

typology for each of the potential models.  
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Table 6.4 – The associated values for the typology classifications of the GeO2 form of α-cristobalite. The elastic 

constants used to obtain these values come from the three GeO2 potential models outlined. The values which 

indicated a classification has been satisfied are highlighted in a bold font. 

Type Class Oeffner Sastre Woodley 

1 
A −542.5025 −0.4449 −0.1098 

B −31.5876 −0.1108 0.3261 

C 0.2406 −0.0566 0.3436 

2i 
A 52.66% 69.68% 14.49% 

B 19.98% 30.40% 0.00% 

C 0.00% 4.88% 0.00% 

2ii 
A −2.1277 −0.0098 0.2060 

B 0.6666 0.1713 0.4013 

C 3.4609 0.3524 0.5965 

3 
A 0.3066 0.6059 0.4412 

B 365.6528 0.6059 0.4412 

C 1273.8067 0.6667 0.8763 

 

The results obtained from the Oeffner potential seem very far from the other 

two and include minima and maxima which are extreme. Although the Woodley 

potential predicts values which are within a generally expected range of Poisson's 

ratios, without an experimental form for comparison and with the potential performing 

badly at modelling GeO2 α-quartz it is difficult to know if these values are accurate or 

not. The Sastre potential, the best performing of the potential models used to 

simulate GeO2 α-quartz, predicts the highest level of auxeticity for GeO2 α-

cristobalite. The typology bears a very close resemblance to the auxeticity predicted 

for the regular silica form of α-cristobalite found with the Sastre SiO2 potentials from 

the same literature.[82] This suggests that the different chemistry, when replacing 

tetrahedra sites with germanium instead of silicon, has only a small effect on the 

Poisson's ratio, with more contribution arriving from the geometric structure. 

6.4.2 Properties of the GeO2 equivalent of the JST framework 

A newly discovered structure which could have extremely negative, and even 

isotropically negative Poisson's ratios, is the silica structure of the JST framework. In 
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Chapter 4 it was predicted to be 3C auxetic by nine of the fourteen potential models 

used. To further compare the elastic properties predicted with silicon or germanium, 

the GeO2 form of JST is examined in terms of its lattice parameters, elastic 

properties, and auxetic typology. This also allows for a prediction of the properties of 

the JST framework itself, independent of chemistry, and the auxetic behaviour which 

could be expected from the structure alone. Table 6.5 outlines the lattice parameter 

of the cubic framework, and the components of the stiffness matrix C11, C12, and C44.  

Table 6.5 – The lattice parameters and elastic properties of the GeO2 form of JST when simulated with the three 

potential models used. 

Potential a(Å) C11(GPa) C12(GPa) C44(GPa) 

Oeffner
2
 16.372 15.17 −13.62 10.97 

Sastre 16.374 19.89 −1.62 12.24 

Woodley 17.095 38.73 5.16 16.30 

 

 Somewhat surprisingly, given the differences in modelling the α-cristobalite 

form of GeO2, all three potential models give reasonably similar results, with the 

Woodley being the only potential not to predict a negative value for C12. The elastic 

properties predicted give rise to the following auxetic typology, with the associated 

values listed in Table 6.6. The failed optimisation of the Oeffner potential creates 

unusually large values which causes errors within the typology software. For this 

reason the Oeffner potential has been omitted from the typology results for GeO2 

JST. 

 

 

 

                                                           
2
 The values obtained using the Oeffner potential are from a simulation which failed to find a 

minimum. These results should be treated with suspicion. 
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Table 6.6 – The associated values for the typology classifications of the GeO2 form of JST when using the elastic 

constants calculated with the Sastre and Woodley potential models. 

Type Class Sastre Woodley 

1 
A −0.1525 0.1157 

B −0.1356 0.1176 

C −0.1339 0.1176 

2i 
A 100.0% 0.0% 

B 100.0% 0.0% 

C 100.0% 0.0% 

2ii 
A −0.1251 0.1184 

B −0.1126 0.1220 

C −0.1000 0.1256 

3 
A −0.0888 0.1255 

B −0.0888 0.1260 

C −0.0888 0.1322 

 

The two potential models differ significantly in their prediction of the extent of 

auxeticity in the structure, with the Sastre potential showing isotropic auxeticity and 

the Woodley potential showing none at all. Both potentials have an extremely narrow 

range between the associated values for the 1A and 3C classifications. This implies 

that despite different predictions of the elastic properties, the structure is expected to 

behave isotropically. The A* ratio for JST was found to be 1.30 when modelled with 

the Sastre potential and 1.06 with Woodley, further supporting the prediction of 

largely isotropic behaviour. Given the auxetic prediction by the Sastre model it is 

reasonable to suggest that the negative Poisson's ratios predicted with the SiO2 form 

of JST may be present in the theoretical GeO2 form. It is suggested that the zeolite 

framework JST could exhibit a large degree of auxeticity, independent of its chemical 

makeup. 

6.4.3 Typology of GeO2 forms of the zeolite frameworks 

Using the three potential models for GeO2 the 210 structures, 204 zeolite 

frameworks, and 6 dense polymorphs used earlier with silica, are modelled with 
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germanium at the centre of each tetrahedron. The stiffness matrix of the structures is 

calculated using force field optimisation with the GULP software and these matrices 

are used to predict the respective auxetic typology. By collating the results from each 

potential the percentage of structures which fit specific classifications can be 

obtained. These percentages can then be used to give an overall view of the 

auxeticity of the group of materials, in this case GeO2 zeolites, predicted by an 

individual potential model. The potential models can also be compared with each 

other to identify those which may be more likely to predict a higher or lower level of 

auxetic behaviour. Table 6.7 shows the percentages of all GeO2 zeolites which meet 

each typology classification when using the three potential models chosen. 

 

Table 6.7 – Percentages of auxetic typology for GeO2 zeolites using the three potential models in this study 

Type Class Oeffner Sastre Woodley 

1 
A 80.0% 56.0% 3.9% 
B 59.4% 32.0% 0.0% 

C 30.0% 12.0% 0.0% 

2i 
A 55.6% 29.6% 0.0% 
B 10.6% 4.0% 0.0% 

C 2.5% 1.6% 0.0% 

2ii 
A 60.6% 31.2% 0.0% 
B 16.3% 7.2% 0.0% 

C 1.9% 1.6% 0.0% 

3 
A 3.8% 0.8% 0.0% 
B 1.3% 0.8% 0.0% 

C 1.3% 0.8% 0.0% 

 

It can be seen that the Woodley potential, which produces outlying results for 

the GeO2 equivalent of both α-quartz and α-cristobalite, again gives extreme results 

in this set of calculations. Given the prevalence of auxetic properties in materials (as 

demonstrated in Section 2.1.2) it would be extremely unusual if the percentage of 

auxetic GeO2 zeolite frameworks was as low as suggested by the Woodley potential. 
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The Oeffner potential generally predicts more auxetic crystals than Sastre, with 

almost double the number of materials being predicted as 2iiA auxetic. However, the 

percentages obtained using the Sastre potential, which has been shown to be more 

reliable, are a closer fit to those found using SiO2 structures. Both the Oeffner and 

Sastre potentials continue to follow the trend of the reasonably common occurrence 

of Type 1 or Class A behaviour, with a sharp decline in the number of crystals 

exhibiting higher degrees of auxeticity. Based on the limited number of potentials 

used for GeO2 and the extremely small amount of experimental data available for 

validation it is difficult to make a solid prediction on the auxetic behaviour of GeO2 

zeolites. The data available supports the argument that replacing silicon atoms with 

germanium in the tetrahedral sites of zeolites does not overly affect the crystals 

auxeticity. It is proposed that this modest change in chemistry does not dramatically 

alter the deformation mechanisms of these open frameworks. 

6.4.4 Anisotropy and maxima in GeO2 zeolites 

The maximum and minimum Poisson's ratio found anywhere in each zeolite 

framework are compared to the anisotropy of the crystal. As before the Ledbetter 

and Migliori[43] measure of anisotropy (A*) is used and the results are compared 

graphically with a general cross-section of materials used by Lethbridge et al.[41] 

Figure 6.2 shows the results, where squares represent general materials, crosses 

represent GeO2 polymorphs, blue points show maximum Poisson's ratios, and red 

points minimum Poisson's ratios. 
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Figure 6.2 – The minimum and maximum Poisson's ratio vs the A* measure of anisotropy for both the materials from 

the Lethbridge et al.[41] study and the simulated GeO2 zeolites. Squares represent the Poisson's ratios of general 

materials; crosses represent the Poisson's ratios of GeO2 materials; blue squares give maximum Poisson's ratios; and 

red squares give minimum Poisson's ratios. 

 

The same trend observed before with SiO2 structures, of an increased 

variation for Poisson's ratio at higher degrees of anisotropy, is also present within 

GeO2 structures. However, like SiO2 structures, the majority of extreme data fall 

within that of general materials. This indicates the Poisson's ratios found within GeO2 

structures are less varied than for general materials with a similar degree of 

anisotropy. The results for GeO2 structures follow those for SiO2 reasonably closely. 

This supports the suggestion that the chemistry of the zeolite structures makes very 

little difference to their elastic properties. This is encouraging for recreating these 

properties with similar structures either with a different chemical makeup or at 

different size scales. 
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6.4.5 Comparison between GeO2 and SiO2 structures 

Due to the lack of experimental data for GeO2 structures, along with the 

unreliable nature of some germania potentials, it is difficult to make reliable 

predictions on their general elastic properties. Some encouragement can be taken 

from the similarity between results obtained using the Sastre potential models for 

silicon and germanium. These potentials hold general agreement with specific cases 

and the auxetic typology percentages for all structures are similar. There are still a 

very limited number of auxetic materials identified with GeO2 potentials but JST, the 

most auxetic material found with SiO2 potentials, features prominently among these. 

From the limited data available it is suggested that the chemical composition of 

zeolite structures has much less of an effect on its elastic properties than the 

underlying structure itself, with the trends observed with silica being maintained in 

germania. 

6.4.6 Future development of structures 

As more elastic potentials are developed and more powerful computations 

become commonplace the properties of zeolites can be examined further. The 

structures such as α-cristobalite and JST have been shown to be auxetic with both 

SiO2 potentials and GeO2. However, the basic frameworks these represent can be 

made up of any tetrahedral forming material, and may be found to be auxetic for a 

wide range of chemistry. 

For theoretical purposes it may be possible to construct artificial potential 

models which act on simulated materials which do not exist. Whilst these would hold 

no relevance to the creation of real materials, they could be used to help us 

understand the properties of specific frameworks. Additionally to this, finite element 
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analysis, or mechanical testing could be applied to theoretical structures or macro 

sized models respectively. It is suggested that structures with interesting or auxetic 

behaviour at the microscopic level could have similar properties at a macro scale. 

This assumption is an over simplification of the complicated forces involved at atomic 

scales, but could be valid if the dominant mechanisms of the system are maintained. 
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Chapter 7: Triangular structures 

7.1 Chapter Introduction 

So far in our attempts to understand and explain the elastic properties of 

materials a few mechanisms have provided justifications for negative Poisson's 

ratios. One type of mechanisms which is often associated with zeolite structures is 

that of rigid units which have a fixed (or mostly fixed) size and shape, but which are 

relatively free to rotate within the overall framework. These rotating units are 

represented by geometric shapes, which are connected at corners, and repeated 

periodically to form a framework structure. The angles between units and the 

dimensions of the units themselves are often sufficient to produce analytically a 

measure of Poisson's ratio.[30] 

In this context, a siliceous zeolite can be described as a framework of 

tetrahedra, formed by a central silicon atom surrounded by four oxygen atoms, 

where each tetrahedron connects to its neighbours at the corner oxygen atoms. In 

an idealized zeolite, these tetrahedra are rigid, and the corner-corner joints can 

rotate freely.[119] The tetrahedra are the rigid units which can rotate within the 

structure. These frameworks are clearly three dimensional, but it is sometimes 

possible to simplify the mechanisms to two dimensions. This can help to identify 

simpler explanations of the causes of auxetic behaviour, and also aid visualisation of 

the processes involved. 

A variety of different units have been chosen for analysis in the past, and 

these units can be connected together in many different ways. The number of 

structures which can be produced by combinations of arrangements is particularly 
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well highlighted by the zeolites frameworks. Even though they consist of only 

tetrahedral units, at the time of writing there are known to be 218 unique frameworks 

which are catalogued in an online database,[93] a number which is increasing every 

year. The aim of this chapter is to automate the process of creating a large number 

of two dimensional structures, in order to calculate their Poisson's ratios. In the 

interest of simplicity  (after all this study serves chiefly for concept validation) and 

because they approximate well to two dimensional SiO2 frameworks, only connected 

equilateral triangles are considered to build up the structures; non-equilateral 

triangles, squares and other shapes are not included. 

With a method of producing a large number of structures and analysing their 

Poisson's ratios it should be possible to optimise the structures to find extreme 

values. Using genetic algorithms, a population of structures initially produced 

randomly, can be selected, mutated, and bred to produce new structures with 

possibly more extreme negative Poisson's ratios. The possible use of genetic 

programming techniques requires that each structure have a unique way of 

describing its creation and that breeding is possible between two structures. The 

software created to produce and analyse triangular network structures can then be 

used in conjunction with a genetic algorithm to produce structures with increased 

auxetic properties. 

This chapter is essentially methodological. The first section is concerned with 

previously published geometric schemes, and is followed by a detailed exposition of 

the computational method used to generate 2D networks of regular triangles, and to 

extract Poisson’s ratios. As a demonstration of the method, the systems with two, 

four, six, and eight triangles are created systematically in order to examine which 

structures exhibit auxetic behaviour. Finally, I consider evolution of the techniques, to 
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include future integration with genetic optimisation as well as description of 3D 

structures. 

7.2 Background 

7.2.1 Rotating rigid units 

The negative Poisson's ratios found in the elastic properties of certain 

materials have been explained with several different mechanisms. Re-entrant 

honeycombs,[120] keyed brick structures,[1] and nodule-fibril[36] models have all 

been used to successfully identify and explain how particular structures behave, 

which can cause them to be auxetic. Of particular interest to the way in which SiO2 

structures (such as zeolites) deform, is the mechanisms involving the rotation of 

rigid, or semi rigid units.[121] These mechanisms model structures composed of 

units, usually with a fixed size and shape, and connected together periodically, with 

corner-corner joints which are free to rotate.[32] Variations of these mechanisms 

have been shown to exhibit auxetic behaviour for rigid squares,[29] rigid 

triangles,[30] and also semi-rigid units.[33] The Poisson's ratios associated with 

these mechanisms are often as low as −1 and uniform in every direction. The 

restriction in deformation for the units themselves leads to structures which are 

unable to shear,[32] a property associated with real auxetic materials.[122] 

7.2.2 Rotating mechanisms in zeolites 

Silicon dioxide frameworks such as zeolites form as corner-corner connected 

tetrahedra capable of existing in a large number of topological nets.[123] The 

increased flexibility of the Si-O-Si bonds when compared to that of the O-Si-O bonds 

allows for assumptions about the crystal deformations. For the purpose of 
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indentifying mechanisms, the tetrahedra within zeolites can realistically be assumed 

to behave as rigid units, and the corner-corner joints (Si-O-Si bonds) can be treated 

as free to rotate. Whilst this ignores any deformation which may occur within the 

tetrahedra themselves, a mechanism causing auxetic behaviour, due to rotating 

units, is likely to mask other more subtle alterations within the structure. 

7.3 Methodology of 2D Structure Creation 

7.3.1 Software outline 

The programming language Python was chosen to generate triangular 

structures in two dimensional space, and to calculate their Poisson's ratio. These 

structures can be created either randomly, systematically, or according to a pre-

described recipe, with any number of internal triangles and periodic joints. By 

removing translation and rotation of the entire structure (by fixing one of the 

triangles) the Poisson's ratio can be calculated when there is only one free angle 

within the structure. More than one free angle will result in a many to one relationship 

between the angles within the framework and the lattice vectors of the crystal cell, 

and the structure will not be rigid. Conversely, if the structure is completely fixed then 

we must break our model, of rigid triangles connected with flexible joints, in order for 

any deformation to occur at all. To allow the created structures to be systematically 

and computationally analysed a ‘key’ describing each structure is generated. This 

key can be repeatedly used to always create an identical structure, serving as a 

machine readable identifier of a structure as well as a possible 'genome' when used 

in conjunction with a genetic algorithm.  

The two dimensional structures are represented by a list of vertices, having 

either a known, fixed position, or an unknown range of positions. An additional list of 
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triangles is stored as a set of three vertices, with an arbitrary vertex listed first, 

followed by the remaining two listed clockwise. This clockwise listing of vertices 

helps with traversing the structure when determining valid configurations. When a 

vertex is not fixed in space a locus is used to store the possible locations in which 

the vertex may exist whilst maintaining the rules of the structure, such as all triangles 

having unit length sides. For first order loci, where a vertex is attached to a fixed 

point, the locus represents an arc of a circle with unit radius, centred on the 

connected point and with bounds defined on creation. For second order loci, vertices 

with a connected non-fixed vertex between them and a fixed vertex, the locus 

represents a circular area, centred on the fixed vertex with a radius of two unit 

lengths. Other than defining the maximum distance away from a point a vertex can 

be, second or higher order loci do not limit the acceptable structure positions but can 

be reduced to first order or fixed once the structure becomes more defined. Figure 

7.1 shows examples of three fixed vertices A0, B0, and C0; two first order loci of 

vertices D1 and E1, which are connected to vertex A0; and a second order locus of 

vertex F2, which is connected to vertex D1. 
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Figure 7.1 – Example of vertices with varying degrees of freedom, where Nx is the vertex N which has x degrees of 

freedom. The fixed vertices are A0, B0, and C0 (at the corners of the triangle) which will always have this position; the 

loci with one degree of freedom are D1 (blue loci) and E1 (red loci) which can lie anywhere on their respective arcs 

(but are each dependant on the other); and the locus with two degrees of freedom is F2 (green locus), which could lie 

anywhere within this area (provided it does not intersect existing triangles). 

 

7.3.2 Creating a 2D network of triangles 

The creation process begins with three vertices fixed in space as part of a 

central triangle. Two vertices are added to an available corner to simulate joining an 

additional triangle to the structure. Once a vertex is included in two triangles it is no 

longer considered available as a joining vertex, so as to maintain the analogy with 

hinge joints connecting only two triangles together. Further triangles are then added 

either systematically (if a range of structures are being explored), randomly (if a 
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random structure is being created), or according to a pre-determined order (if a 

known structure is being created) until the structure consists of the desired number 

of triangles. When adding two vertices as a triangle the clockwise notation for 

vertices in a triangle is maintained. This is not only used to determine valid joints in 

second order or higher loci, but also affects the range of points which are defined by 

first order loci. As can be seen in Figure 7.1, the first order loci of vertices D1 and E1 

are centred on the fixed vertex A0 and form the triangle ADE. The first corners of 

ADE when moving in a clockwise direction from A0 (clockwise corner) and in an 

anticlockwise direction from A0 (anticlockwise corner) are D1 and E1 respectively. 

Similarly the clockwise and anticlockwise corners from A0 in the triangle ABC are B0 

and C0 respectively. When a first order locus for the clockwise corner D1 is created, 

the limits of its range are defined by the anticlockwise corner of the triangle it is 

connecting to (vertex C0) and a point in space 4π/3 radians (the range of movement 

for two connected equilateral triangles) clockwise from this corner. Conversely the 

locus of the anticlockwise corner E1 has the limits of the vertex B0 (the clockwise 

corner from A0), and a point 4π/3 radians anticlockwise from B0. The vertices 

contained within a triangle are stored clockwise sequentially from an arbitrary 

starting point (usually the first vertex created but not always, due to the possibility of 

later joins). This allows the clockwise corner Vc of a vertex Vn to be determined by 

the following relationship: 

 

 𝑉𝑐 = myTri[ (myTri. indexOf(𝑉𝑛) +  1) % 3 ], 

 

(7.1)  

where % designates a modulo operation to allow the first and last element of the 

triangle to loop around, myTri.indexOf(x) is the index of the value x within the triangle 
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myTri, and myTri[y] is the yth element of the triangle myTri. A similar relationship can 

be used to find the anticlockwise corner Va 

 

 𝑉𝑎 = myTri[ (myTri. indexOf(𝑉𝑛) −  1) % 3 ]. 

 

(7.2)  

7.3.3 Joining triangles to form a framework: motif 

Once the number of triangles reaches a desired value, or an adding sequence 

is finished, the structure is composed of linked chains of various lengths and 

generally has too much freedom for the Poisson's ratio to be found for all but the 

most trivial of cases. In order to reduce the freedom within the structure existing 

vertices must be joined to each other to close loops and reduce the possible range of 

movement. 

To join two vertices, they first must both be determined to be available. This is 

done by checking that the number of triangles in which a vertex is present in is equal 

to one. To maintain the analogy with SiO2 frameworks (where silicon atoms do not 

share more than one oxygen atom), joins will be forbidden between triangles which 

already share a joint at a different vertex. Within the network of triangles it is not 

possible to have a free vertex which can be found in only one triangle. Figure 7.2 

shows the result of attempting to join vertices I3 and C0. As can be seen, if this joint 

were to be allowed vertex E1 (part of the BDE triangle but no other) would be 

internal, and could not join to another triangle in future operations. 
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Figure 7.2 - Arrangement of a triangle structure with a, non-valid, free internal vertex 

 

This free vertex is an analogy of an oxygen atom bonded to only one silicon 

atom, and does not form part of a stable framework. Vertices A0, F2, and H3 are also 

only found within only one triangle, these being ABC, DFG, and GHI respectively. 

However, as these vertices are external3, they are able to be either included in future 

joins, or used for periodical atoms when the structure is repeated, and are therefore 

acceptable.  

The strict clockwise vertex notation within a triangle definition can be used to 

determine whether or not a closed ring contains a free vertex. When traversing a 

clockwise ring, such as in Figure 7.2, the anticlockwise corner from the current 

vertex is used to determine the next triangle to be examined. For this example 

(starting at vertex C0 in triangle ABC) the anticlockwise corner is vertex B0 and the 

next triangle BDE. However, when selecting the anticlockwise corner from B0 within 

BDE, vertex E1 is used, which has no other triangle associated with it to allow the 

                                                           
3
 Although it is impossible in this structure for vertex C to join with vertex I in an anti-clockwise ring 

as well as the clockwise ring shown in Figure 7.2, it is possible to have a chain of triangles with enough freedom 

to join in both directions (thus allowing both sets of vertices to be either internal or external). However, when 

this is the case no more than one of the directions may form a closed loop without internal vertices, and so there 

is never an ambiguity as to which way a join is made. 
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traversing to continue. If this termination of the loop occurs before the end vertex (I in 

this example) is located then the loop is invalid and a different join is attempted. 

It is also possible to disallow joining based on the maximum lengths of both 

chains combined being less than the distance between the fixed points that these 

chains originate from. When each chain is examined, it can be seen that the joining 

loci is connected to another with fewer degrees of freedom. If a chain is followed far 

enough back it will always be found to be connected to a fixed point in space.  The 

distance between the fixed points, associated with each chain, is calculated and 

used as a cut-off value to discriminate against joints that have a maximum length 

(the total number of connected vertices for both chains, multiplied by the length of 

one triangle side) less than that required to join the points with a straight line. 

Once the joining vertices have been identified as valid the process of 

connecting them to form a new structure begins. At this stage it is still a possibility 

that the joint will be found to break specified conditions of the structure which are 

difficult to predict before attempting to create the joint. Because of this, the system 

state is saved and should the algorithm run into any inconsistencies during the 

joining process, the joint creation process will be abandoned and this saved system 

state will be returned. 

The first stage in the joining process acknowledges that, once the joint is 

complete, the structure will have one vertex as a component of two triangles rather 

than two vertices found separately. The choice of which vertex to keep and which to 

remove is largely irrelevant provided the kept vertex has the correct properties once 

connected. The orders of the two loci are used to determine the order of the joint 

vertex where this is initially the lower of the two. If either of the two vertices is a fixed 

point, they have an order of 0, and the joint will be also be fixed. If both vertices are 
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greater than 1, then the most defined point will determine the order of the joint loci. 

The only exception to this is when both loci are first order. When this occurs, the 

intersection between the first order loci is found using trigonometry and then fixed. 

Once the joint has been updated in the structure the change is cascaded down each 

chain. As the order of a locus depends on the number of triangle sides connecting it 

to the nearest fixed point in space, the order of any locus associated with a chain 

originating from the joint's pivot is compared to that of the existing locus order. Again, 

if there is a more restrictive order for this point available, then the definition for the 

locus is changed to match the newer, more restrictive definition. This can be seen in 

Figure 7.3, where vertex A0 and vertex H3 have been joined. The new order of vertex 

F1 is one (pivoting from A0) as this is lower than its original order of two (pivoting 

from D1 and then B0 in turn). The order of vertex D1 remains constant, as a potential 

new order arising from a pivot at F1, would increase its freedom rather than decrease 

it. 

 

 

Figure 7.3 – The cascading of loci orders after a joint has been made. a) The system of triangles before joining vertex 

A0 to vertex H3, where the subscripts given are the order of the loci (i.e. A0 and B0 are fixed and D1, F2, and H3 are 

first, second, an and third order respectively). b) The system of triangles after the joint has been made, where vertex 

H3 has been removed and replaced with vertex A0 in the now FAI triangle, and vertices F1, G1, and I1 have a new 

order of one. 
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Furthermore, if the order of both the existing and new loci are equal to 1, this 

too becomes a fixed point in space, found by calculating the intersection of the two 

loci describing it. This cascading is a recursive process which propagates down each 

chain until the entire structure has been examined, and no further reduction in the 

degrees of freedom can be made. 

Under certain conditions it is possible to create fixed rigid units within a 

structure of triangles which can behave as a single part of the framework. Figure 7.4 

shows an example of an arrangement where, if A0, B0, and C0 are fixed, although 

none of the vertices (D1 to H1) are yet fixed in space, they all depend on the position 

of the others within the unit. In this case, each locus can be represented as first 

order, with at a specified distance from the pivot vertex A0.  

 

Figure 7.4 – An example of a rigid unit within a triangular structure. The larger triangle (AHG) is made up of the 

smaller triangles (ADE), (EFG), and (DHF). The specific arrangement allows no freedom between each of the smaller 

triangles and so the entire unit behaves as a single entity. If any vertex is changed, the entire unit is affected. 
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If a single vertex within a unit changes order, the entire unit will also change. 

In this case, if vertex G1 was joined to a fixed part of the structure, vertices D1, E1, 

F1, and H1 would also become fixed. 

7.3.4 Joining triangles to form a framework: Periodicity 

considerations 

Within a crystalline material some bonds will be formed between atoms which 

are part of different unit cells. This is analogous to two vertices within a single unit 

cell forming a joint, but not having the same position. Instead, they remain a constant 

distance from each other, equal to the value of one of the lattice parameters (vectors 

representing the size of the unit cell). This simulates each vertex being connected to 

the image of the other which can be found in an adjacent periodic cell, but is not 

directly modelled within the structure. For the software to continue adding or joining 

triangles, both the periodically jointed vertices are designated as no longer free, and 

will take no further part in the alterations of the structure. If these are the only 

vertices which have been joined across this particular periodic boundary then the 

lattice parameter remains free to change, and is simply calculated by measuring the 

vector between the two. However, if a periodic joint for the direction in which the 

vertices are being connected already exists, the range of possible values for the 

lattice vector is calculated to identify if both joints can be satisfied by the same 

vector. Once the structure has been produced and the degrees of freedom reduced 

enough for the Poisson's ratio to be calculated, it is these lattice vectors, defined by 

the distance between periodically jointed vertices, which are used to determine the 

size and shape of the unit cell. Figure 7.5 part a) shows and example of periodic 

joints between atoms in the unit cell. The vector between vertex A and vertex C can 



127 

 

be used to find one lattice vector, whilst vertices B and D can be used to find the 

other. Figure 7.5 part b) shows how these periodic vertices fit together to form a 

larger crystal structure. 

 

 

Figure 7.5 – The periodic joints between vertices. a) the lattice vectors defined by the vectors between vertex A and 

vertex C, and between vertex B and vertex D. b) the same structure repeated periodically, with the periodic vertices 

connected to the their corresponding jointed vertex in a neighbouring cell. 

 

7.3.5 Creating structures manually, randomly, or systematically 

Using the adding and joining algorithms it is possible to create two 

dimensional networks of connected triangles in a variety of ways. These methods 

are implemented within the structure creation software and allow a user to create a 

desired structure, or structure set, with relative ease. The three methods of creation 

are described as follows: 

 Manually: A user selects a vertex (or pair of vertices) by index and chooses 

to join or add to the structure. This is useful if the desired structure is known 

and the user wishes to analyse the Poisson's ratio data, or simply view the 

framework orientation. 
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 Randomly: By selecting a target number of triangles to be found within the 

structure, the software is able to create a random arrangement which matches 

this. The process involves randomly adding a triangles to one of the free 

vertices available (until the correct number of triangles are present), then 

joining two random vertices which are able to form a valid link to reduce the 

degrees of freedom within the structure. This technique can be used to create 

complex arrangements of triangles which form valid structures, at a relatively 

low computational expense. 

 Systematically: If every possible structure with a specified number of 

triangles is required then a systematic method of creating frameworks is 

required. This is done with a recursive algorithm which performs one choice of 

a list of possible actions and then continues to create the structure, only 

returning to a new choice once all possibilities have been exhausted further 

down the line. If the current structure passed to the algorithm does not yet 

have the required number of triangles a new one will be added. If it does then 

joints will be made until the degrees of freedom have been reduced 

sufficiently. Valid structures are compared topologically with those already 

created. If a new structure is found to be topologically similar to one found 

previously in the search (this can arise when the structure is identical but the 

triangles are found in a different order) the arrangement is rejected. This 

comparison works with exact copies of existing structures (cis), or with copies 

of flipped versions of existing structures (trans). The systematic algorithm 

quickly becomes computationally expensive with an increased number of 

triangles in the desired systems. To reduce some of the expense, steps are 

made to reduce the occurrences of topologically similar structures being 
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created. For example, the choice of vertex to join the second triangle to is 

irrelevant as all three vertices are identical. Similarly adding or joining to 

vertices which have a lower index than the one previously used is forbidden, 

as any structure created from this will have already been found. 

7.3.6 Poisson's ratio calculations 

For structures with only one degree of freedom the Poisson's ratio can be 

calculated by considering the periodic joints of the structure. By choosing a flexible 

bond angle (θ), and examining it over the extent of its range, the lattice vectors a and 

b can be found. Figure 7.6 demonstrates how the magnitudes of the lattice vectors 

can change dramatically with alterations of θ. Where a1, b1, a2, and b2 are the lattice 

vectors a and b, when θ is equal to 20° (θ1) and 95° (θ2) respectively. 

 

 

Figure 7.6 - The change in latice vectors as a result of a change in internal angle between the jointed triangles. a) The 

positions of the triangles, lattice vectors, and arrangment of the larger periodic structure when θ = 20°. a) The 

positions of the triangles, lattice vectors, and arrangement of the larger periodic structure when θ = 95°. 
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For this particular arrangement of triangles, examined in detail by Grima and 

Evans,[30] the Poisson's ratio can be found to be −1. This can be proved 

algebraically or by examining the geometry of the system. The algebraic proof first 

establishes a coordinate system where the x-axis is aligned with the lattice vector a, 

and the y-axis is perpendicular to this. The infinitesimal strains dεx and dεy, are 

functions of the single variable θ and are identical, thus resulting in a Poisson's ratio 

of −1. The geometric proof arises from the aspect ratio of the unit cell remaining the 

same despite the magnitude of the vectors changing. When a system becomes 

uniformly larger or smaller the Poisson's ratio must be equal to −1. 

With more complicated structures, this analysis becomes less trivial. Whilst it 

is still possible to obtain the Poisson's ratio from examining the geometric constrains 

alone, a more practical method is to directly use the structure creating software. By 

calculating the distance between periodically jointed vertices, and then deforming the 

structure with incremental alterations of θ, an approximation for the strains can be 

calculated at each point, and used to obtain the Poisson's ratio.  

7.3.7 Limits on number of periodic joints 

To calculate the Poisson's ratio for a structure using the above method, at 

least four periodic vertices are necessary (two for each unit cell vector). If there are 

any fewer periodic joints then the unit cell will have an undefined size and would not 

be able to form a periodic structure. It is possible to create structures with more than 

four periodically jointed vertices, provided they occur in pairs and do not conflict with 

other pairs which define the same cell vector. When creating a two dimensional unit 

cell, only two vectors are needed to fully define the unit cell. If a new periodic joint is 

created, the vector between the two jointed vertices must be equal to either of the 
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existing cell vectors. For simplicity only structures with exactly four periodically 

jointed vertices will be considered in this work. This is sufficient for a proof of 

concept, as additional periodic joints can be examined in future iterations of the 

software. 

The number of periodic vertices depends entirely on the number of triangles 

added to the system and the number of joints between triangles. Every joint removes 

two vertices from the list of those which are available to become periodic, whilst 

every additional triangle added to a structure adds one extra free vertex. An added 

triangle can be imagined as a completely detached triangle being entered into the 

system (an extra three vertices) which is then immediately joined with another (a 

reduction of two vertices), resulting in a net gain of one free vertex. Equation 3) 

outlines this relationship, where f, n, and j are the number of free vertices, triangles, 

and joints in the system respectively  

 𝑓 = 3𝑛 − 2𝑗 . (7.3)  

When f is equal to four 𝑗 = 1.5𝑛 − 2, and (as both j and n must be integers) n 

must always be even. 

7.4 Examples of 2D networks 

7.4.1 Structures with two triangles 

The simplest flexible structure which can be constructed from connected 

triangles has two triangles in the unit cell. This structure is the only possible 

arrangement (when limiting the number of triangles to two) and can be seen in 

Figure 7.6. As is discussed in Section 7.3.6, the Poisson's ratio for this structure is 

isotropic and equal to −1. For such a simple case, with an isotropic deformation, it is 
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not necessary to use the created software for either the structure generation or the 

calculation of Poisson's ratio. 

7.4.2 Structures with four triangles 

As explained in Section 7.3.7, due to imposed constraints on the periodic 

joints, the number of triangles in a valid structure must be even. Systems of four 

triangles are realistically simple enough to analyse manually. However, they provide 

a useful validation of the structure generating software, which uses the same 

algorithms to find structures, and the Poisson's ratio of these structures, for more 

complex systems. Figure 7.7 and Figure 7.8 show the only two unique structures 

(named 4a and 4b respectively) which can be constructed with an arrangement of 

four connected triangles. 

 

Figure 7.7 – The first of two possible structures of four connected triangles, with four periodic joints. This 

arrangement is designated as 4a. 
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Figure 7.8 – The Second of two possible structures of four connected triangles, with four periodic joints. This 

arrangement is designated as 4b. 

 

The Poisson's ratio of these two dimensional structures is directionally 

dependant on the axes chosen for the longitudinal and transverse strains. From the 

cell vectors, the length of any axis can be calculated by summing the contribution of 

both a and b in this direction, and hence the axis strain can be found when θ is 

incremented. For initial analysis of the Poisson's ratio, the longitudinal axis (x) and 

transverse axis (y), are chosen to be parallel and perpendicular to the a vector 

respectively.  
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Figure 7.9 – The longitudinal strain δεx (top), the transverse strain δεy (middle), and Poisson's ratio νxy (bottom) of the 

four triangle structure 4a. With incrementally changing values of θ, the free angle within the structure. 
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Figure 7.10 – The longitudinal strain δεx (top), the transverse strain δεy (middle), and Poisson's ratio νxy (bottom) of 

the four triangle structure 4b. With incrementally changing values of θ, the free angle within the structure. 

 

Figure 7.9 and Figure 7.10 show the strain and Poisson's ratio information for 

4a and 4b structures respectively, with the lower section of each figure showing νxy. 

The Poisson's ratio for both structures is entirely negative in the axes examined. 

Structure 4a is isotropically auxetic with a value of −1 throughout the range of θ 

used, as has been previously proved mathematically. Structure 4b however is 

anisotropic, with a maximum Poisson's ratio less than −1.3 when a periodic joint is 

chosen as the deformation axis x. For some values of θ the Poisson's ratios is as low 

as −1.5. These two formations of triangles suggest highly auxetic structures can be 

produced from simple triangular networks. 
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7.4.3 Structures with six triangles 

By increasing the number of triangles included in the network to six, many 

more varied and complex structures can be produced. The vast majority of these are 

excluded as having either too many degrees of freedom, for the Poisson's ratio to be 

calculated from the structure alone, or too many periodic vertices. Given the 

constraints outlined in Section 7.3.7, there are only three unique structures of six 

triangles. These are shown in Figure 7.11, Figure 7.12, and Figure 7.13. 

 

 

Figure 7.11 – The first of the three possible structures of six connected triangles, with four periodic joints. This 

arrangement is designated as 6a. 
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Figure 7.12 – The second of the three possible structures of six connected triangles, with four periodic joints. This 

arrangement is designated as 6b. 

 

Figure 7.13 – The third of the three possible structures of six connected triangles, with four periodic joints. This 

arrangement is designated as 6c. 
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 Similarities can be seen between the third structure (6c) and the simplest 

arrangement of two connected triangles. Each of the rigid units of three triangles, 

which have no movement within them, can be imagined as one larger triangle. By 

doing this the structure reduces to only two triangles, connected in the only possible 

arrangement. This explains the Poisson's ratio of −1, observed in the bottom graph 

of Figure 7.16 which, along with Figure 7.14 and Figure 7.15, describes the 

deformations within the six triangle structures. 

 

Figure 7.14 – The longitudinal strain δεx (top), the transverse strain δεy (middle), and Poisson's ratio νxy (bottom) of 

the six triangle structure 6a. With incrementally changing values of θ, the free angle within the structure. 
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Figure 7.15 – The longitudinal strain δεx (top), the transverse strain δεy (middle), and Poisson's ratio νxy (bottom) of 

the six triangle structure 6b. With incrementally changing values of θ, the free angle within the structure. 
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Figure 7.16 – The longitudinal strain δεx (top), the transverse strain δεy (middle), and Poisson's ratio νxy (bottom) of 

the six triangle structure 6c. With incrementally changing values of θ, the free angle within the structure. 

 

Once more all structures are highly auxetic in the chosen directions; two of 

the structures are isotropically auxetic (those which are more regular), and one is 

anisotropic, exhibiting Poisson's ratios between −0.8 and −0.9. A hypothesis begins 

to emerge that all structures, composed of connected triangles with only one degree 

of freedom and four periodic joints, are auxetic. Whether isotropic or anisotropic, all 

structures so far examined have negative Poisson's ratios in the chosen axes, for all 

values of θ. It remains to be seen if this trend will continue to be displayed with larger 

and more complex structures, or with increased degrees of freedom or periodic 

vertices. 
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7.4.4 Structures with eight or more triangles 

By increasing the solution set to structures with eight or more triangles, the 

permutations involved quickly increase the expense associated with systematic 

creation. Ever more of these structures are rejected on the basis of not meeting the 

specific requirements for degrees of freedom and periodic vertices. An example of a 

valid structure with eight connected triangles is given in Figure 7.17, with the 

associated deformation data given in Figure 7.18. This is one of only six possible 

unique structures with eight triangles. There are nine unique structures with ten 

triangles which fit the criteria for Poisson's calculation. In this work no Poisson’s ratio 

analysis has been attempted on the structures with 10 triangles, and no search has 

been performed to find the structures with 12 or more triangles. 

 

Figure 7.17 – One of six possible arrangements of triangles, when eight triangles are included in the structure. 
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Figure 7.18 – The deformation data for the structure of eight triangles given above. As before the top, middle, and 

bottom graphs represent the δεx, δεy, and νxy data respectively. 

 

Following the familiar trend, this structure can be seen to display a negative 

Poisson's ratio. The Poisson's ratio varies from −0.4 to −0.9 for the x and y axis 

chosen for the calculations. So far no further structures have been used to calculate 

Poisson's ratio. It is thought that, as the complexity increases, the tight restrictions on 

degrees of freedom and periodic joints will force rigid units to be found within the 

valid structures, as in the example of 6c. This is supported by five of the six 

structures with eight triangles having at least one arrangement of three triangles 

connected together to form one larger similar triangle. In order to remain valid for 

Poisson's ratio calculations, it is expected that complex systems will have constraints 

which approximate them to simpler systems. 
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7.5 Conclusion and future development 

The software for creating and examining two dimensional structures has been 

shown to produce meaningful results when limitations on degrees of freedom are 

imposed (all software created is given in the supplementary data for this work). 

Creation of multiple structures with a desired number of triangles is possible, 

enabling Poisson's ratio calculations on a wide range of triangular frameworks. The 

systematic production of structures, with two, four, six, and eight triangles in the unit 

cell, has shown a high level of auxeticity present in frameworks of this type, where 

rigid triangles are connected at perfectly flexible hinged joints. This supports the 

continued use of the software with more complex structures, to further examine their 

auxetic nature.  

The following development suggestions could provide methods of improving 

the range of structures able to be examined, to allow a greater understanding of how 

hinged rotating units behave in a connected framework. 

 Increased number of periodic joints: The limits imposed on number of free 

vertices in the final structure allow for only four periodic joints to be present. 

Whilst this reduces the solution set for the structures examined (thus reducing 

computational expense) this restriction eliminates frameworks for which the 

Poisson's ratio could be calculated. With four periodic joints the choices of 

vertices for the a and b vector are trivial, provided they alternate when 

traversing around the outside of the structure. However, with six or more 

periodic vertices (they must always exist in pairs) there become multiple 

options for the cell vector choices, further increasing the complexity of the 

problem. 
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 More degrees of freedom: There may only be one degree of freedom within 

the structure for the Poisson's ratio to be calculated from geometric analysis 

alone. To increase this freedom, more realistic models of the bonds between 

triangles must be included, moving away from a perfectly flexible hinged 

model, and towards a force field model for optimisation. The simplest method 

of achieving this would be to set optimum bond angles and create a series of 

spring forces within the structure, allowing for the Poisson's ratio to be 

calculated from small deformations around the lowest energy configuration. 

More complex approximations to atomistic bonding could be included to 

describe the repulsive forces between vertices; on the other hand this would 

reduce the value of having a simple geometric model of the structure. 

 Different geometry: the software can be readily modified to follow the same 

process with units of different sizes and shapes. Non-equilateral triangles or 

those with a varying size could be used along with other polygons such as 

squares to create a structure. This diverges from the original analogy to SiO2 

frameworks but could provide value to aid understanding of flexibility in 

complex hybrids such as Metal-Organic-Frameworks. 

 Three dimensional structures: The obvious progression from the two 

dimensional model would be to develop tetrahedral frameworks in three 

dimensions, exactly analogous to SiO2 materials. This is a considerably more 

difficult task than creating the two dimensional software. Furthermore, with 

increased dimensions the freedom within the structure is also increased, with 

the added possibility of rotation around the joints as well as hinging. After the 

freedom of a three dimensional structure has been reduced as much as 

possible, a force field model may still be required for the Poisson's ratio to be 
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calculated. It is unclear at this stage whether the benefits of a purely 

geometrical model of SiO2 structures could be beneficial over existing 

methods of elastic property calculation. However, software to systematically 

suggest tetrahedral networks could well provide new unexplored systems. 

This could work in a similar way to the two dimensional program, adding 

tetrahedra at available vertices (this time in three dimensions) and then joining 

free tetrahedra together. The additional degrees of freedom are likely to 

complicate the majority of the process, with valid positions of intersections, 

validity of loops, and periodic joins no longer trivial problems to overcome. 

 Genetic programming: Through the use of genetic programming it will be 

possible to optimise a structure's Poisson's ratio, and find new frameworks 

which have extremely auxetic properties. The software would use genetic 

techniques to select and breed from a population of structures, with fitness 

functions designed to select structures with highly negative Poisson's ratios. 

Whilst the structures created with the current software are described with 

unique genomes, there is currently no method of mixing two structures and 

ensuring the properties of the parents are passed on to the child. This is a 

fundamental requirement of genetic techniques and without it there can be no 

such optimisation of properties. A possible solution lies in a hierarchical tree 

description of a structure rather than as a sequence of adding and joining. 

This description would ideally map the structure with no differences arising 

from a varied creation order. 
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Chapter 8: Conclusion 

8.1 Synopsis 

In this thesis, I have advanced the understanding of auxeticity: by developing 

a more accurate way to class materials exhibiting the property, by carrying out high-

throughput atomistic simulations of frameworks materials based on the SiO2 and 

GeO2 chemistries, and by exploring mechanistic models and possible correlations 

with the density of plane. 

8.1.1 Typology of auxeticity 

My first effort has been to establish a system of typology to classify the 

auxeticity of materials. This system is outlined in detail in Chapter 3, where the 

criteria for each classification are given. The typology is applied to a large database 

of well-known materials which gives a demonstration of its identifying, descriptive, 

and comparative benefits. The extent to which α-cristobalite's elastic properties differ 

from the 'usual' is highlighted well. Future studies of auxetic materials will be able to 

make good use of the system in order to simplify comparisons and remove ambiguity 

in descriptions. 

8.1.2 Atomistic modelling 

Using a wide range of force-field potential models, the elastic properties of 

many zeolitic silica structures have been calculated, and are discussed in Chapter 4. 

These simulations confirm that there exist a relationship between the extremes of 

Poisson's ratio and the anisotropy of a material. On the other hand, and somewhat 
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unexpectedly, zeolites are not found to be more auxetic than reference materials. 

Although the auxeticity of silica polymorphs is generally less than that of α-

cristobalite, at least one structure, JST, has been suggested as being even more 

auxetic. It is even shown by some potential models as being isotropically auxetic, or 

3C using the typology nomenclature introduced in Chapter 3.  

Following the simulation of silica materials in Chapter 4, the calculated elastic 

properties of their germanium dioxide polymorphs are discussed in Chapter 6. With 

fewer potential models available and a severe lack of experimental results for 

comparison, the validity of these simulations is less conclusive. However, the 

properties predicted for the GeO2 structures appear very similar to that of SiO2 with 

the same framework. This strongly supports the need to identify chiefly “geometric” 

triggers for auxeticity (as opposed to “chemical”, based on the nature of the bonds).  

8.1.3 Mechanistic origins of auxeticity 

The relationship between the varying density of planes through a structure 

and the Poisson's ratios relative to these planes is explored in Chapter 5. Despite a 

thorough examination, for many different longitudinal and transverse directions, with 

both parallel and perpendicular planes, no correlation is found. The differences 

between the Poisson's ratios of materials with identical chemistry is shown to be 

unrelated to the way in which plane density varies, otherwise described as the 

periodicity of the crystal in a specific direction. Although the density variation cannot 

be used as an indicator for interesting auxetic properties, the initial hypothesis, that 

geometric properties (as opposed to a material's chemistry) are the primary 

contributors to Poisson's ratio, remains valid. Currently, explanations for the negative 

Poisson's ratio of some materials have been given using specific deformation 
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mechanisms. If a systematic way to predict these mechanisms were developed, 

without the need for human interpretation, the search for auxetic structures could be 

greatly accelerated. 

In an attempt to isolate the chemical and geometric contributions to Poisson's 

ratio, structures of corner sharing triangles (systematically and exhaustively 

generated) are analysed in Chapter 7. These structures represent a two-dimensional 

approximation to the tetrahedral frameworks of both SiO2 and GeO2 materials. Unit 

cells with increasing number of unique triangles are created and then the cell 

parameters under different deformations are calculated. Previous work had identified 

triangular structures with a negative Poisson's ratio[30] but it is now shown that for all 

structures studied4 this auxeticity is present. The deformations in the structures are 

limited to corner rotations only with no allowed dilation of the triangles which may be 

the origin of the negative Poisson's ratio. I developed a software that can produce a 

number of different structures with 4, 6, and 8 triangles in the unit cell. However, the 

systematic approach employed is capable of creating much larger structures, for 

which there exist more unique arrangements (finding all of these comes at increased 

computational expense). This preliminary work only scratches the surface of the 

systematic production of frameworks.  

8.2 Further work 

Extensions of the work carried out during my PhD could follow three strands: 

 Additional atomistic modelling 

 Further development of the automatic generation of connected 

structures 

                                                           
4
 For simplicity the solution set of structures is limited to a small number (up to 8) of purely equilateral 

triangles and a specific number (2) of periodic joins. 
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 Experimental determination of elastic constants of physical models  

 

8.2.1 Further atomistic modelling 

The JST framework is very intriguing, as its properties, specifically 3C 

behaviour, are unique among crystals. Further examination of the JST structure 

would be desirable, with particular focus on the mechanistic origin of its exceptionally 

auxetic qualities. 

The relationship between different chemistry and its effect on elastic 

properties could be further explored by examining a more varied range of materials, 

both those forming tetrahedral networks, but also those which do not. Among the 

former class of materials, AlPO4 type frameworks would be good first candidates. 

8.2.2 Development of connected structures software 

For comparison with actual materials, three-dimensional structures would 

need to be produced; based at first around tetrahedral. Different rigid bodies, or 

combinations of different rigid bodies, could also be explored. Corner-sharing 

tetrahedra found systematically could be added to the ever expanding list of known 

zeolite structures and, if the right conditions are met, used to approximate elastic 

properties of materials where the dominant mechanisms are rotational. 

One of the main attractions of the scheme I have developed is that it could be 

used to optimise the auxeticity of a starting structure, using methods such as Genetic 

Algorithms or Simulated Annealing. 
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8.2.3 Physical frameworks 

In order to further test the competing effects of geometry vs chemistry, it 

would be possible to produce actual macroscopic models of the most interesting 

structures, chiefly α-cristobalite and JST, and to measure their Poisson’s ratio 

directly. This would require great care. Figure 8.1 displays the early model of α-

cristobalite that I intended to use as such during my PhD. Unfortunately, the data 

were inconclusive and with sufficiently high uncertainty as to preclude their inclusion 

in the final thesis. Actual physical measurement of the elasticity of such structure is 

undeniably difficult but certainly possible given appropriate resources. As an 

intermediate step, Finite Element modelling of the most promising structure would be 

enlightening, but it is also fraught with technical challenges. 

 

Figure 8.1 - A macro scale model of α-cristobalite being tested under compression. 

8.3 Key findings 

I have designed a typology for auxetic materials, classifying materials with 

distinctions in the number of axes where a negative Poisson's ratio can be found, 

and the degree for which each axis is auxetic. The system has been demonstrated 
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as a tool for comparing groups of materials and their auxetic properties, and the 

benefits of distinguishing between levels of auxeticity have also been explored, 

further highlighting the extraordinary properties of α-cristobalite. 

The elastic properties of a large number of pure silica and pure germania 

zeolite frameworks have been calculated and classified with the proposed typology. 

After comparison of the auxetic classifications with a general database of materials, 

the zeolites are shown to be marginally more auxetic, but follow the same trends. I 

found that the JST frameworks has great potential for complete auxeticity, and have 

proposed an explanatory mechanism. 

I have shown that there is no relation between the variation of density and the 

occurrence of auxeticity. 

Finally, I have developed a scheme to generate periodic structures of 

interconnected triangles and calculate their Poisson’s ratio. 
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Appendix A 

Table A 1 – The atomic charges for silicon cores, oxygen cores, and oxygen shells used in the interatomic potential 

models for SiO2. 

Potential Charges 

Sic(e) Oc(e) Os (e) 

Gale +4.0 +0.86902 −2.86902 

PMM08 +2.7226 +1.191981 −3.28111 

Sastre +4.0 +0.870733 −2.870733 

SC1 +4.0 +0.86902 −2.86902 

SLC +4.0 +0.8482 −2.8482 

SS96 +4.0 +1.06237 −3.06237 

SS97 +4.0 +1.22858 −3.22858 

AHCM +2.4 −1.2  

BKS +2.4 −1.2  

JA +2.05 −1.025  

JC +4.0 −2.0  

PMM06 +2.4 −1.2  

TTAM +2.4 −1.2  

Vessal +4.0 −2.0  
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Table A 2 – The parameters of the two-body interactions used by the interatomic potential models for SiO2. 

Potential Buckingham Spring 

A(eV) ρ(Å) C(eV Å
6
) rc(Å) k(eV Å

−2
) 

Gale      

Sic-Os 1277.514 0.32052 5.9062 12.0  

Os-Os 22764.000 0.14900 27.879 12.0  

Oc-Os     79.074 

PMM08      

Sic-Os 8166.2632 0.193884 0.0 12.0  

Os-Os 15039.909 0.227708 0.0 12.0  

Oc-Os     256.71027 

Sastre      

Sic-Os 1315.2478 0.317759 

 

10.141118 12.0  

Os-Os 22764.0 0.149 10.937044 12.0  

Oc-Os     75.96980 

SC1      

Sic-Os 1824.2944 0.289798 0.0 10.0  

Os-Os 2046.0422 0.134015 14.027 12.0  

Oc-Os     74.92 

SLC      

Sic-Os 1283.9073 0.32052 10.6616 10.0  

Os-Os 22764.0 0.1490 27.8790 12.0  

Oc-Os     74.9204 

SS96      

Sic-Os 1550.95 0.30017 0.0 10.0  

Oc-Os     112.7629 

SS97      

Sic-Os 1612.45920 0.29955 0.0 10.0  

Oc-Os     122.47853 

AHCM      

Sic-Oc 17796.1 0.2049 135.4 12.0  

Oc-Oc 1305.9 0.3594 196.1 12.0  

BKS      

Sic-Oc 18003.7572 0.205205 133.5381 12.0  

Oc-Oc 1388.7730 0.362319 175.0 12.0  

JA      

Sic-Oc 17796.1 0.2049 135.4 12.0  

Oc-Oc 1305.9 0.3594 196.1 12.0  

JC      

Sic-Oc 1584.167 0.32962 52.64511 12.0  

Oc-Oc 22764.0 0.149 27.88 12.0  

TTAM      

Sic-Oc 10721.522 0.20851 70.7345 12.0  

Oc-Oc 1756.8710 0.35132 214.7376 12.0  

Sic-Sic 872356662.2 0.0657 23.30007 12.0  
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Vessal      

Sic-Oc
5
 1005.1563 0.3277 25.0 7.6  

Oc-Oc
6
 4978496.9 0.149 52.12 7.6  

 Morse  

 De(eV) a(Å
-1

) r0(Å) rc(Å)  

PMM06      

Sic-Oc 0.340554 2.006700 2.10 12.0  

Oc-Oc 0.042395 1.379316 3.618701 12.0  

 

 

 

Table A 3 – The parameters of the three-body interactions used by the interatomic potentials for SiO2. All cut-off 

values are given in Å. 

Potential Urey-Bradley        

 K(eVÅ
-2

) r0(Å) r12 r12 r12        

Gale             

Os-Sic-Os 2.30273 2.43352 2.8 2.8 2.8        

   

 Harmonic Vessal 

 k(eVrad
-2

) θ0(deg) r12 r13 r32 k(eVrad
−2

) θ0(deg) ρ1 ρ2 r12 r13 r23 

Sastre             

Os-Sic-Os 1.2614 109.47 2.0 2.0 2.4        

SC1             

Os-Sic-Os 2.0972 109.47 1.8 1.8 3.2        

Sic-Os-Sic      729.0189 144.0 0.328 0.328 2.9 2.9 2.9 

SLC             

Os-Sic-Os 2.097 109.47 1.8 1.8 3.2        

SS96             

Os-Sic-Os 0.18397 109.47 1.8 1.8 3.2        

SS97             

Os-Sic-Os 0.144703 109.47 1.8 1.8 3.2        

AHCM             

Oc-Sic-Oc      729.0189 109.47 0.328 0.328 2.9 2.9 2.9 

JA             

Oc-Sic-Oc      729.0189 109.47 0.328 0.328 2.9 2.9 2.9 

JC             

Oc-Sic-Oc 4.5815 109.47 1.8 1.8 3.2        

Vessal             

Oc-Sic-Oc      729.0189 109.47 0.328 0.328 2.9 2.9 2.9 

  
                                                           
5
 The Vessal potential implements a four term Buckingham potential with r1, r2, and r3 having values of 

1.5, 2.5, and 3.5 Å respectively for Sic-Oc bonds. 
6
 The r1, r2, and r3 values for Oc-Oc bonds in the Vessal potential are 2.9, 3.6, and 4.2 Å respectively. 
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Appendix B 

Table B 1 – Potential parameters for the two-body and three-body interactions of the GeO2 potential models 

Potential Charge Buckingham Spring 

 Q (e) A (eV) ρ (Å) C (eVÅ
6
) rc (Å) k (eVÅ

−2
) 

Woodley       

Ge +4.0      

Oc −2.0      

Ge-Oc  3703.725 0.2610 0.0 10.0  

Oc-Oc  25.410 0.6937 32.32 12.0  

Oeffner       

Ge +0.94174      

Oc −0.47087      

Ge-Oc  81989.6607 0.16315 93.2784227 12.0  

Oc-Oc  3032.4815 0.304404 51.665882 12.0  

Sastre       

Ge +4.0      

Oc +1.733957      

Os −3.733957      

Ge-Os  1497.3996 0.325646 16.808599 12.0  

Os-Os  22764.0 0.149 10.937044 12.0  

Oc-Os      180.31577 
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