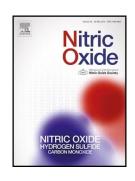
Accepted Manuscript

Title: Ageing modifies the effects of beetroot juice supplementation on 24-hour blood pressure variability: an individual participant meta-analysis

Author: Siervo M., Lara J., Jajja A., Sutayoko A., Ashor A.W., Brandt K., Qadir O., Mathers J.C., Benjamin N., Winyard P.G., Anning C., Shore A., Gilchrist M.


PII: S1089-8603(15)00209-8

DOI: http://dx.doi.org/doi:10.1016/j.niox.2015.04.007

Reference: YNIOX 1492

To appear in: Nitric Oxide

Received date: 8-1-2015 Revised date: 21-4-2015 Accepted date: 25-4-2015

Please cite this article as: Siervo M., Lara J., Jajja A., Sutayoko A., Ashor A.W., Brandt K., Qadir O., Mathers J.C., Benjamin N., Winyard P.G., Anning C., Shore A., Gilchrist M., Ageing modifies the effects of beetroot juice supplementation on 24-hour blood pressure variability: an individual participant meta-analysis, *Nitric Oxide* (2015), http://dx.doi.org/doi:10.1016/j.niox.2015.04.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Title: Ageing modifies the effects of beetroot juice supplementation on 24-hour blood
2	pressure variability: an individual participant meta-analysis
3	
4	Authors: Siervo M ^{1*} , Lara J ¹ , Jajja A ¹ , Sutayoko A ¹ , Ashor AW ¹ , Brandt K ² , Qadir O ^{2,3} ,
5	Mathers JC ¹ , Benjamin N ⁴ , Winyard PG ⁴ , Anning C ⁴ , Shore A ⁴ , Gilchrist M ⁴
6	
7	¹ Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University,
8	Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
9	² Human Nutrition Research Centre, School of Agriculture, Food & Rural Development,
10	Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
11	³ Food Science Department, Faculty of Agricultural Science, University of Sulaimani, Iraq-
12	Kurdistan Region-Sulaimani, Iraq
13	⁴ NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science,
14	University of Exeter Medical School (previously Peninsula College of Medicine and
15	Dentistry), University of Exeter, Exeter EX2 5AX, UK
16	
17	Running title: Beetroot juice and 24-hour blood pressure variability
18	
19	
20	*Corresponding author: Dr Mario Siervo. Email: mario.siervo@ncl.ac.uk
21	.0
22	The material presented in this manuscript is original and it has not been submitted for
23	publication to any other journal while under consideration for Nitric Oxide
24	
25	Abstract word count: 263
26	Main text word count: 4262
27 28	References: 42 Tables: 5
29	Online Supplementary Material: 1

30	Highlights
31	• The effects of beetroot juice supplementation on BP variability have not been
32	investigated.
33	• Beetroot juice decreased nocturnal systolic BP variability in subjects aged less than
34	65y.
35	Greater changes in nitrite concentrations decreased nocturnal mean and variability of
36	systolic BP.
37 38 39	Abstract
40	Objectives: Abnormal circadian oscillations of blood pressure (BP) and nocturnal-diurnal BP
41	differences (i.e., dipping) increase cardiovascular risk. Whether inorganic nitrate
42	supplementation influences 24-hr BP variability is currently unknown. We studied the effects
43	of high-nitrate beetroot juice supplementation on BP variability measured by 24-hr
44	ambulatory BP monitoring (24-hr ABPM) in older subjects.
45	Methods: Data from four independent randomised clinical trials were collated. Eighty-five
46	older participants (age range: 55-76 years) were included in the final database. Two trials had
47	an open-label, parallel design and two trials had a cross-over, double-blind design.
48	Participants were randomised to either beetroot juice or placebo. Changes in 24-hr ABPM
49	(daily, diurnal, nocturnal), variability (weighted-SDs), night-dipping, morning surge for
50	systolic and diastolic BP were measured. Meta-analysis was conducted to obtain pooled
51	estimates of the effect size for each BP outcome. Sub-group analyses were conducted to
52	evaluate the influence of age, BMI, gender, BP status and changes in nitrite concentrations on
53	the effect size.
54	Results The pooled effect of beetroot juice on all BP outcomes was not significant. Beetroot
55	juice ingestion determined a significant decrease in nocturnal systolic BP variability in

subjects aged less than 65y (2.8mmHg, -4.5 -1.0, p=0.002) compared to the older group
(≥65y; 1.0mmHg, -2.2 4.2, p=0.54). A greater change in NO ₂ concentrations after beetroot
supplementation was associated with significant differences for nocturnal mean (-3.4mmHg,
0.6 -2.4, p=0.02) and variability (-0.8mmHg, -1.5 -0.06, p=0.03) of systolic BP.
Conclusions: The vascular responsiveness to inorganic nitrate may be modified by
mechanisms of vascular ageing influencing the reducing capacity to convert inorganic nitrate
into nitrite and tissue-specific responses to dietary nitrate supplementation.
Keywords: ageing, ambulatory blood pressure, beetroot juice, inorganic nitrate, hypertension
Accelied Marinis

65	1. Introduction
66	Raised blood pressure (BP) is a leading cause of cardiovascular diseases and main contributor
67	to the global burden of non-communicable diseases[1]. The haemodynamic effects of raised
68	BP are responsible for the remodelling of cardiac ventricles[2] and intima-media
69	thickening[3], which increase the risk of cardiovascular diseases such as heart failure or
70	stroke[4]. There is a continuum of cardiovascular risk that increases as BP rises, and the
71	theoretical minimum threshold of risk associated with systolic BP has been estimated to be
72	approximately 115mmHg[5]. For each 2 mmHg rise in systolic BP there is a 7% increased
73	risk of mortality from ischaemic heart disease and a 10% increased risk of mortality from
74	stroke[6]. These statistics emphasise the importance of small reductions in BP for the
75	effective management and prevention of hypertension-related comorbidities.
76	
77	Effective nutritional and lifestyle interventions are key to prevent hypertension and related
78	cardiovascular complications[7]. The reduction of salt intake is an example of a nutritional
79	intervention with immediate benefits on BP regulation[8]. More recently, inorganic nitrate
80	(NO ₃ ⁻) supplementation has been advanced as a potential, effective nutritional strategy to
81	control BP[9; 10]. A recent meta-analysis showed a decrease in resting systolic BP of
82	4.4mmHg after either inorganic NO ₃ or beetroot juice supplementation[11]. In addition,
83	dietary patterns rich in inorganic NO ₃ -, such as the Dietary Approach to Stop Hypertension
84	(DASH diet), have been associated with a reduction in resting systolic and diastolic BP of
85	5.2mmHg and 2.2mmHg, respectively[12].
86	
87	Twenty-four hour ambulatory BP monitoring (24-hr ABPM) is a reference method for the
88	diagnostic assessment of hypertension and monitoring of anti-hypertensive treatments[13;
89	14]. This method provides information on circadian BP rhythm such as mean diurnal and
90	nocturnal BP, BP variability, night dipping and morning surge[15]. Abnormal values of any
91	of these indexes are independently associated with a greater haemodynamic load and CVD
92	risk[16]. The effects of inorganic NO ₃ supplementation on measures of 24-hr BP variability
93	have not been investigated. We hypothesised that inorganic NO ₃ supplementation may
94	increase nitric oxide (NO) bioavailability[9], via an NO-synthase independent NO generation,
95	and influence both mean values and variability of systolic BP. We also predicted that these
96	effects were more significant on nocturnal BP, which may be explained by the diminution of
97	the putative, confounding effects of physical activity and mental stress on BP regulation.

98

99	To address these hypotheses, we collated 24-hr ABPM data originally collected in four
100	independent randomised clinical trials testing the effects of beetroot juice supplementation, as
101	a rich source of inorganic NO ₃ -, for a minimum of one week on 24-hr ABPM variability,
102	diurnal and nocturnal BP, night dipping, morning surge and ambulatory arterial stiffness
103	index (AASI) in older subjects (≥55 years). The individual data included in each trial were
104	entered in a meta-analytical model to calculate the pooled effect size for each 24-ABPM
105	systolic and diastolic outcome. Finally, we investigated whether the efficacy of inorganic
106	NO ₃ on 24-hr ABPM outcomes was modified by ageing, gender, obesity, high BP and
107	magnitude of post-supplementation rise in nitrite (NO ₂ ⁻) concentrations.
108	
109	2. Methods
110	2.1 Study Design:
111	All trials were conducted in the UK and recruited older men and women aged 55 years and
112	older. A description of the trial protocols has been previously reported for Trial-1[17] and
113	Trial-3[18]. A description of the protocols of Trial-2 and Trial-4 is provided in the Online
114	Supplementary Material. Briefly, two trials were conducted in Newcastle upon Tyne
115	(Newcastle University, Trial-1, Trial-2) and two trials were conducted in Exeter (Exeter
116	University, Trial-3, Trial-4). Both Newcastle-led trials had a two-arm, parallel study design.
117	Trial-1 had a duration of three weeks and included blackcurrant juice as control (200 ml/day)
118	and supplementation of 70 ml/day of concentrated beetroot juice (~4.5 mmol nitrate/day).
119	Trial-2 had a duration of one week and included a negative control (diet only) and
120	supplementation of 140 ml/day (~9.0 mmol nitrate/day) of concentrated beetroot juice. Both
121	Exeter-led trials had a cross-over, double-blind, placebo controlled study design. Trials 3 and
122	4 had both a duration of two weeks and included alternate, random supplementation of 250
123	ml/day of NO ₃ -rich beetroot juice (7.5mmol nitrate/day active) or 250 ml/day of NO ₃ -
124	depleted beetroot juice (0.002mmol nitrate/day, placebo). All beetroot juice supplements
125	were provided by the same company (James White Drinks Ltd., UK).
126	
127	2.2 Subjects:
128	A total of 85 non-smoking men and women (M/F: 50/35), aged 55–76 years old with body
129	mass index (BMI) between 20.2 and 39.5 kg/m ² were recruited at the Newcastle and Exeter
130	research centres. Trial-1 was approved by the Newcastle University - Faculty of Medical
131	Sciences Ethics Committee (Application No. 00628/2013). Trial-2 was approved by the
132	North East - Northern & Yorkshire Research Ethics Committee (Study No. 12/NE/0134).

133	Trials 3 and 4 were both approved by the Devon and Torbay Research Ethics Committee
134	(Study No. 09/H0202/43). Written informed consent was obtained from all participants prior
135	to participation in each trial.
136	
137	2.3 Study Protocol
138	Newcastle: A telephone screening interview was conducted to ensure eligibility of
139	participants. Participants attended the research facilities at Newcastle University in fasting
140	conditions. Anthropometric measurements (weight, height and waist circumference) were
141	performed and body mass index (BMI) calculated. Participants were then randomized to one
142	of two interventions (Trial 1: beetroot or blackcurrant juice; Trial 2: beetroot or diet only) and
143	baseline measurements including resting BP, collection of saliva (Trial-1) and plasma (Trial-
144	2) samples, and completion of the International Physical Activity Questionnaire (IPAQ) for
145	the assessment of physical activity. At the end of the visit participants were fitted with a 24-
146	hour AMBP monitor to continuously assess BP over the next 24-hour period. Saliva samples
147	were transferred to a $-20~^{\circ}\text{C}$ freezer within 2 hours of collection. Fasting blood samples were
148	collected in lithium heparin tubes and centrifuged within 30min from collection. Plasma
149	samples were then immediately transferred to a -80 °C freezer.
150	The intervention phase started immediately after the completion of the 24-hour BP
151	monitoring period and lasted for 21 and 7 days for Trial-1 and Trial-2, respectively. During
152	this phase, each participant was expected to comply with the assigned nutritional intervention
153	and dietary plan to standardise NO ₃ intake. At the end of the intervention, participants
154	returned to the research unit to repeat the same set of measurements performed at baseline.
155	Exeter: Subjects were recruited from the Exeter 10000 (EXTEND) bio-resource[18]. Eligible
156	participants were randomized to begin, in either order, a 2-week period of supplementation
157	with 250 ml of beetroot juice daily or 250 ml of NO ₃ -depleted beetroot juice, followed by a
158	4-week washout period before entering the second arm of the study. Subjects were instructed
159	to consume the juice along with their evening meal to minimize any potential glycaemic
160	excursion, typically between 1800 and 2000 hours. Participants continued their usual
161	antihypertensive medication and their usual hypoglycaemic medications including
162	metformin. Hypoglycaemic agents were omitted on visits for which subjects were fasted.
163	Twenty-four-hour blood pressure monitoring was performed from 0900 on day 13 of each
164	supplementation arm. Fasting blood samples for NO ₃ and NO ₂ were collected into lithium
165	heparin collection tubes. Samples were centrifuged immediately and plasma was immediately
166	separated and flash-frozen in liquid nitrogen before transfer to a -80 °C freezer.

167	2.4 Nutritional Supplementation:
168	Newcastle: Participants enrolled in Trial-1 and randomised to the intervention group were
169	asked to every morning drink 70 ml of concentrated beetroot juice (Beet-It Sport Shot, James
170	White company Ltd, Ipswich UK, 71 kcal). Each bottle (70 ml) provides approximately 300-
171	400 mg of inorganic NO ₃ ⁻ . Participants randomised to the control group were asked to every
172	morning drink 200 ml of blackcurrant juice (Capri-Sun Blackcurrant Juice, 100kcal), 2.7 ± 0.1
173	$mg\ NO_3^-$ per bottle. Participants enrolled in Trial-2 and randomised to the intervention group
174	were asked to drink 70 ml of concentrated beetroot juice in the morning and 70 ml in the
175	evening. Participants randomised to the control group were asked to follow the diet only.
176	Participants in both trials were required to follow a diet to standardize NO_3^- intake during the
177	period of study. A description of the diet has been previously reported[17]. Participants were
178	also asked not to change daily physical activities, to avoid the use of mouthwash during the
179	study and to limit alcohol and caffeinated drink consumption during the study period.
180	Exeter: Participants were given either 250 ml beetroot juice (active) or 250 ml NO_3 -depleted
181	beetroot juice (placebo) for two weeks. The untreated juice used in the active arm of the trial
182	provided approximately 480 mg of NO_3^- per day and the placebo juice provided 0.15 mg of
183	NO ₃ per day. Throughout the study patients were asked to maintain their normal diet apart
184	from the juices given and not to change any other lifestyle factors. They were asked to
185	continue their usual physical activity levels. Diet and activity levels were not monitored in
186	the study.
187	
188	2.5 Resting Blood Pressure
189	Newcastle: Resting BP was measured in triplicate using an automated BP monitor (Trial 1:
190	Omron M2 Basic, Omron Healthcare, UK; Trial 2: CARESCAPE V100 monitor, GE
191	Healthcare, UK) with the patient seated comfortably for 15 min prior to measurement and the
192	arm supported at the level of the heart. The final value was calculated as the mean of the
193	lowest two measurements. A large cuff was used for obese subjects.
194	Exeter: Resting BP was measured using an automated BP monitor (Omron M6, Kyoto,
195	Japan) with the patient seated comfortably for 15 min prior to measurement and the arm
196	supported at the level of the heart. Five measurements were taken in total and the mean of the
197	last three was recorded. A large cuff was used for obese subjects.
198	
199	<u>2.6 24-hrABPM</u>
200	Newcastle: A validated device approved by the British Hypertension Society was used to

201	monitor 24-hr systolic and diastolic BP (Mobil-O-Graph NG, I.E.M. GmbH). All participants
202	were instructed with respect to the use and the way the device operates. During
203	monitoring BP was measured every 30min at daytime (between 0700 and 2200) and every
204	60min at night (between 2200 and 0700). Patients were advised to continue their normal
205	activity during the monitoring period. All of the valid recordings were analysed to obtain
206	average 24-hour systolic and diastolic BP.
207	Exeter: Each participant was fitted with a TM-2430 ambulatory blood pressure monitor
208	(A&D Medical, Draycott, Gloucestershire, UK) (validated by the British Hypertension
209	Society). The device was programmed to record BP every 15min between the hours of 0700
210	and 2200 and every 30min from 2200 to 0700. Participants were advised they could carry out
211	their usual activities but to avoid strenuous exercise. All of the valid recordings were
212	analysed to obtain average 24-hour systolic and diastolic BP.
213	
214	2.7 24-hr Blood Pressure Outcomes
215	The same protocol was applied to the raw BP data to derive the ambulatory BP outcomes for
216	both systolic and diastolic BP. 24-hr ABPM profiles were checked and systolic BP readings
217	>250 or $<$ 70 mmHg, diastolic BP $>$ 150 or $<$ 40 mmHg were excluded. 24-hour mean BP is the
218	average of the BP values recorded over 24-hours. Mean BP values were also calculated for
219	diurnal (0715to 2145) and nocturnal (2200 to 0700). Weighted standard deviation (SD) for
220	24-hour, diurnal and nocturnal BP values was calculated as a measure of BP variability.
221	Night BP dipping was calculated as the difference between nocturnal and diurnal BP.
222	Morning surge was calculated as the difference between post-awakening BP (0715 to 0900)
223	and nocturnal BP. The ambulatory arterial stiffness index (ASSI) was calculated as 1 minus
224	the regression slope of DBP on SBP from ABPM[19].
225	
226	2.8 Nitrate and Nitrite Concentrations
227	Newcastle: A modified version of the method proposed by Tsikas et al[20] was used to
228	determine NO_3^- and NO_2^- concentrations in saliva (Trial-1) and plasma (Trial-2) samples
229	using gas chromatography mass spectrometry (GC-MS). The validation and protocol of the
230	modified GC-MS method has been described elsewhere[21]. This method showed a good
231	repeatability, as coefficients of variation for replicate analyses of samples were 7.8%, 8.6%
232	and 12.0% in saliva, urine and plasma samples, respectively.
233	Exeter: Before analysis, samples were deproteinized using a modification of the technique
234	described by Higuchi and Motomizo[22]. Plasma NO ₃ and NO ₂ concentrations were

235	determined using a Sievers nitric oxide analyzer (Sievers NOA 280; Analytix Ltd, Durham,
236	UK) using the methods described by Bateman et al.[23]. The between-batch coefficient of
237	variation for NO ₃ was 13% and for NO ₂ was 8%.
238	
239	2.9 Statistical Analysis
240	All statistical analyses were completed using SPSS for Windows (SPSS, version 17.0; SPSS
241	Inc, Chicago, Ill, USA). Summary data are presented as mean (SD or 95%CI). P values<0.05
242	(2-tailed) were considered as statistically significant.
243	Newcastle: A general linear model was used to test differences in BP outcomes between the
244	two nutritional interventions (beetroot, control). Analyses were adjusted for baseline values
245	of the selected outcome. Post-intervention means and 95%CI are reported for each trial.
246	Exeter: Paired t-test was used to compare differences in BP outcomes between the two
247	nutritional interventions (beetroot, placebo). Post-intervention means and 95%CI are reported
248	for each trial.
249	Meta-analysis: A two-step meta-analysis of individual data was performed to pool together
250	the summary statistics of each trial[24]. Meta-analysis was performed by using
251	Comprehensive Meta-Analysis software (version 2, Biostat, Englewood, New Jersey, USA).
252	The post-intervention least-squares means and SD values of each 24-hr ABPM outcome for
253	both intervention and control groups were extracted and used in the analysis of parallel trials.
254	The end of intervention mean differences and SD values of the differences between
255	intervention and control were used for the analysis of cross-over trials. Data synthesis,
256	including calculation of effect sizes with 95%CI, was accomplished by employing fixed or
257	random-effect models. Random effects models were employed when a substantial
258	heterogeneity between trials was observed ($I^2 > 50\%$)[25]. Heterogeneity was evaluated by the
259	Cochran's Q test and I ² calculated. Subgroup analyses were undertaken to investigate the
260	variables which influenced the effects of beetroot juice supplementation on 24-hr ABPM
261	outcomes. These factors included: age (<65y, ≥65y), gender (male, female), BMI (<30.0
262	kg/m^2 , $\geq 30.0 \ kg/m^2$), resting BP status (high, normal) and percent changes in saliva (Trial 1)
263	and plasma (Trial 2, 3, 4) NO ₂ concentrations after supplementation. Percent changes
264	relative to baseline were calculated for salivary and plasma changes in NO2 concentrations
265	after beetroot supplementation. The median (50^{th} centile) of the distribution was calculated to
266	compare the effects between subjects with lower (<50 th centile) vs higher (≥50 th centile)
267	changes in NO ₂ concentrations on 24-hr ambulatory BP outcomes. Meta-regression analysis
268	was performed to evaluate whether changes in NO ₂ concentrations were associated with

269	changes in 24-hr ambulatory BP outcomes. High BP was defined as having a systolic BP
270	\geq 140 mmHg or diastolic BP \geq 90 mmHg. A mixed-effect model was used to evaluate within-
271	factor (p_{within}) and between-factor $(p_{between})$ significant differences in effect size for each 24-hr
272	ABPM outcome.
273	
274	3. Results
275	Participants' Baseline Characteristics
276	A total of 50 males and 35 females older participants (63.8±5.2 years) were included in the
277	final analysis. Seventeen healthy normal weight participants (BMI: 25.6±2.5 kg/m²) were
278	included in Trial-4; 21 and 20 overweight and obese participants were included in Trial-1
279	(BMI: 30.1±4.2 kg/m²) and Trial-2 (BMI: 29.8±4.5 kg/m²), respectively. Trial-3 included 27
280	obese type 2 diabetic participants (BMI: 30.7±3.1kg/m²). The average resting systolic and
281	diastolic BP were 138.7±16.4 mmHg and 79.5±9.6 mmHg, respectively and 36 subjects had a
282	high resting systolic (154.1±11.2 mmHg) and diastolic (85.7±8.3 mmHg) BP. Baseline
283	characteristics of the two parallel trials were not significantly different between interventions.
284	Table 1 shows the baseline characteristics of the subjects included in each trial. BP
285	medications were prescribed only in 26 type 2 diabetic patients (Trial 3) whereas participants
286	in the other three trials were free of anti-hypertensive medications. Additional baseline
287	characteristics for each trial are reported in Table S1 of the Online Supplementary
288	Material.
289	
290	3.1 Individual Trials
291	Systolic BP: Overall, each trial showed no significant effect of beetroot juice
292	supplementation on all 24-hr ambulatory BP outcomes. Only Trial-1 showed a significant
293	increase in morning surge (11.0mmHg, 0.1, 22.9, p=0.04) which was not observed in the
294	other trials (Table 2).
295	Diastolic BP: Overall, trials showed no significant effect of beetroot juice supplementation on
296	all 24-hr ambulatory BP outcomes. Only Trial-1 and Trial-3 showed a significant increase in
297	morning surge (9.0mmHg, -1.7 16.3, p=0.02) and night dipping (2.6 mmHg, -0.3 4.8,
298	p=0.02), respectively. However, these results were not confirmed in the other trials (Table 3).
299	AASI: Beetroot juice supplementation was not associated with significant changes in AASI
300	in each trial (Table S2, Online Supplementary Material).
301	
302	3.2 Main Meta-Analysis

303 Beetroot juice supplementation was not associated with significant changes in systolic and diastolic 24-hrABPM outcomes when results from the four trials were pooled together. Fixed 304 models were applied to all BP outcomes because of the non-significant heterogeneity (I²) 305 range: 0 - 41%) with the exception of morning surge (systolic BP, I²=61%; diastolic BP, 306 $I^2=74\%$) which employed a random model to derive the pooled estimates (**Table 4**). Beetroot 307 juice supplementation was not associated with significant changes in AASI (Table S3, 308 309 **Online Supplementary Material**). 310 311 3.3 Sub-group Meta-Analysis Age: Beetroot juice supplementation determined a significant decrease in nocturnal systolic 312 BP variability in subjects aged less than 65y (2.8 mmHg, -4.5 -1.0, pwithin=0.002) compared to 313 the older group (≥65y; 1.0mmHg, -2.2 4.2, p_{within}=0.54) and a significant difference between 314 the two age groups was observed (p_{between}=0.04). In addition, beetroot juice had a 315 significantly lower effect on night dipping in older subjects (3.3mmHg, 0.2 6.4, p_{within}=0.03) 316 compared to younger subjects (-1.4mmHg, -4.2 1.4, p_{within}=0.33; p_{between}=0.02). No significant 317 between-group differences were observed for diastolic BP (Table 5). 318 Gender: We did not observe significant differences for all 24-hr ambulatory systolic BP 319 320 outcomes between male and female subjects. A marginal effect was observed for nocturnal diastolic BP variability with lower variability observed in female compared to male subjects 321 322 $(p_{between}=0.05)$ (**Table 5**). BMI: Body size had a marginal effect on both systolic and diastolic BP outcomes. Normal 323 324 weight and overweight subjects appeared to have a significant lower nocturnal systolic BP variability (-1.9 mmHg, -3.6 -0.2, p_{within}=0.03) compared to obese subjects (**Table 5**). 325 Resting BP: Overall, we did not observe significant differences for all 24-hr ambulatory 326 systolic BP outcomes between subjects with normal or raised BP. A marginal effect was 327 observed for nocturnal systolic BP variability in subject with normal BP (-2.1 mmHg, -4.2 328 0.08, p_{within}=0.06) (**Table 5**). 329 $\Delta\%[NO_2^-]$: The median (50th centile) of the percent change in NO_2^- concentrations after 330 beetroot juice supplementation in the four trials was 30.9%. Subjects with greater changes in 331 NO₂ concentrations (≥50th centile) showed a significant difference for nocturnal mean 332 systolic BP (-3.4 mmHg -0.6 -2.4, p_{between}=0.02), nocturnal systolic BP variability (-0.8 333 mmHg, -1.5 -0.06, p_{within}=0.03) and night dipping (-2.5 mmHg, -3.4 -1.9, p_{within}=0.01) (**Table** 334 5). Meta-regression showed a significant association between percent changes in NO₂ 335 concentrations with nocturnal mean systolic BP (β =-0.01±0.006 mmHg, p=0.04) (**Figure S1**, 336

337	Online Supplementary Material). The association was not significant with other 24-hr BP
338	outcomes (data not showed). Percent changes in NO2 concentrations were not associated
339	with a significant effect on AASI (Table S4, Online Supplementary Material).
340	4. Discussion
341	This meta-analysis of individual participant data presents the most comprehensive evaluation
342	to date on the effects of beetroot juice supplementation on 24-hr ABPM in older subjects. Our
343	results showed that the main effect of inorganic NO ₃ on 24-hr ABPM outcomes was not
344	significant. However, sub-group analyses revealed ageing and post-supplementation changes
345	in NO ₂ concentrations as potential factors influencing the association between inorganic
346	NO ₃ and vascular responses. The latter highlights the clustering of the population into two
347	distinct phenotypes, named as "reducers" and "non-reducers", discriminated by their
348	efficiency in reducing inorganic NO_3^- into NO_2^- , which is closely correlated with the vascular
349	response. The mechanisms underpinning these individual differences are still largely under-
350	investigated and they may involve the oral microbiota, gastric redox environment, oxygen
351	tension and pH in the peripheral circulation or efficiency of enzymatic reductase activity (i.e.,
352	deoxy-haemoglobin, aldehyde dehydrogenase, xanthine oxido-reductase)[9; 26]. In addition,
353	the ageing process may play a role in all these mechanisms. Ageing is associated with
354	changes in oral microflora which may influence the efficiency of bacterial reductase activity
355	in the conversion of NO ₃ into NO ₂ [27]. In addition, gastric acid production declines with
356	age[28] and this process may affect the formation of NO in the acid stomach from the acid-
357	mediated disproportionation of NO ₂ [29]. Hence, it is currently not known whether greater
358	doses of inorganic NO ₃ are required in older people to account for the decline in redox
359	potential and augment NO bioavailability. Ageing may also be associated with diminished
360	sensitivity of vascular smooth muscular cells (VSMCs) to the dilatory effects of NO, thus
361	higher doses may be required[30]. This reduced sensitivity causes an impaired NO-dependent
362	vasodilation as demonstrated by a reduced in vitro response of VSMCs to NO with
363	ageing[31], which may contribute to explain the reduced vascular responses in older
364	participants.
365	The effects of beetroot juice supplementation mainly influence nocturnal systolic BP. A
366	diminished nocturnal fall in BP is an independent risk factor for arterial stiffness and recent
367	findings have identified mean nocturnal BP as a sensitive predictor of cardio- and
368	cerebrovascular morbidity and mortality[32; 33]. Cardiovascular risk decreased by 17% for
369	every 5 mmHg decrease in nocturnal systolic BP in both hypertensive and non-hypertensive
370	populations even after adjusting for sex, age, diabetes, baseline BP and hypertension

371	medications[34]. These results may suggest a putative role played by either physical activity
372	or emotional stress in confounding the effects of inorganic NO ₃ on diurnal BP measured by
373	24-hr ABPM. These two factors are known for modifying the reliability of the technique as
374	well as cardiovascular responses and, therefore, potentially introducing a bias in the
375	measurement of diurnal BP[35]. In addition, inorganic NO ₃ plays a role in skeletal muscle
376	energetics[36] and it may contribute to the non-significant effect of inorganic NO_3^- on diurnal
377	BP. A recent study has also suggested that skeletal muscle may serve as a nitrate reservoir,
378	for direct formation of nitrite and NO, and for determining levels of nitrate in other
379	organs[37]. We hypothesise that inorganic NO_3^- supplemented during the more active diurnal
380	hours may be utilised by the skeletal muscle and channelled towards metabolic functions,
381	which may reduce its availability for vascular regulatory mechanisms. Rassaf et al.[38] have
382	demonstrated that physical activity may unmask endothelial dysfunction and impaired
383	cardiovascular function by enhancing a greater conversion of NO ₂ into NO, by virtue of
384	lower PO ₂ and pH in muscular tissue of subjects with major cardiovascular risk factors. The
385	same research group also demonstrated that healthy older subjects failed to adequately
386	increase circulating NO ₂ after exercise[39]. The effects of inorganic nitrate on muscular
387	metabolism and exercise energetics in older subjects and the partitioning of dietary nitrate
388	towards metabolic and vascular functions are a novel area of research and future studies are
389	needed to test these hypotheses.
390	This is the first analysis that has collected individual data from the only four randomised
391	clinical trials that, to date, have investigated the effects of inorganic NO_3^- supplementation on
392	24-hr ABPM. Three other trials have tested the effects of beetroot-based interventions on 24-
393	hr ABPM. Two trials have not been considered for inclusion as they have evaluated the acute
394	effects (i.e., one day) of a single dose of beetroot juice on 24-hr ABPM outcomes[40; 41].
395	The third trial was conducted in patients with hypertension aged 18 to 85 years. The trial
396	reported a significant effect of beetroot juice on 24-hr, daily and nocturnal systolic BP
397	whereas the effect on BP variability has not been reported[42]. An additional strength of our
398	analysis is represented by the sample size which is the largest available dataset testing the
399	effects of inorganic NO ₃ supplementation on 24-hr ABPM outcomes. <i>A posteriori</i> sample
400	size calculations showed a power of 81% to detect differences in BP of ± 3.0 mmHg (SD
401	7.5mmHg) between control and intervention groups. A limitation of the analysis is the
402	difference in study design between trials. However, the heterogeneity of the pooled estimates
403	ranged from moderate to low for all 24-hr ABPM outcomes, which denoted an overall
404	between-study agreement of the effects of beetroot juice on 24-hr ABPM outcomes. Morning

surge was the only BP outcome with high heterogeneity and therefore a random model was
applied to derive the pooled effect size. The trials showed differences in the collection of
biological samples (saliva, blood) to test for changes in NO ₃ and NO ₂ during
supplementation; however, the exclusion of the saliva samples from the analysis did not
modify the association between nocturnal BP outcomes and changes in NO_2 concentrations.
Subjects with type 2 diabetes (Trial 3) were on anti-hypertensive medications during the
beetroot juice supplementation, which may have also influenced the study outcomes.
However, the exclusion of Trial 3 from the meta-analysis did not modify the pooled results as
we still observed a significant influence of ageing and changes in NO2 on nocturnal mean,
variability and dipping of systolic BP. An additional limitation of the analysis was the
inability to test the biological mechanisms that may have explained the significant effects of
beetroot juice supplementation on nocturnal systolic BP as well as the putative role of ageing
in modifying the effects of dietary NO_3^- on vascular function. Biological factors may include
NO ₃ partitioning between vascular and metabolic effects during diurnal activities and the
role of ageing in the influencing the reducing steps converting NO_3^- into NO_2^- and NO_3^-
and/or biological responsiveness of target cells to NO activity. This information was however
not available in the four trials included in the meta-analyses. We therefore advocate for a
careful interpretation of our results until these mechanisms will be tested in future studies.

5. Conclusions

Ageing and changes in NO_2^- concentrations modified the effects of beetroot juice, as a rich source of inorganic NO_3^- , on nocturnal systolic BP variability. The vascular responsiveness to inorganic NO_3^- may be modified by mechanisms of vascular ageing and efficiency of the reductase activity converting inorganic NO_3^- into NO_2^- . If confirmed in future studies, these findings may open novel opportunities to improve personalised nutrition for the management of hypertension.

433	Acknowledgements
434	Newcastle: We thank Lisa Gilder (NU-FOOD Research Facility, Newcastle University) and
435	staff at the NHS Clinical Ageing Research Unit (CARU, Newcastle University) for their
436	assistance during the trial. We thank all the study volunteers. The projects were supported by
437	core funding from Newcastle University. We also thank Dr Gavin Stewart for his valuable
438	comments on the manuscript.
439	Exeter: This project was supported by the NIHR Exeter Clinical Research Facility. The views
440	given in this paper are those of the authors and do not necessarily represent those of NIHR,
441	the NHS, or the Department of Health. We thank all the study volunteers. We are grateful to
442	James White Drinks Ltd. for the donation of juices used in the study and to David Upson of
443	Stoke Farm Orchards for assistance in the production of the placebo juice.
444	Contributions
445	The Corresponding Author (MS) is the guarantor for the manuscript and had full access to all
446	of the data in the study and takes responsibility for the integrity of the data and the accuracy
447	of the data analysis. All authors read and approved the final version of the paper.
448	Conflicts of Interests:
449	Newcastle: All authors have no conflicts of interest to declare
450	Exeter: All authors have no conflicts of interest to declare
451	Exeter. All authors have no conflicts of interest to declare

References

452

- 453 [1] S. Bromfield, P. Muntner, High Blood Pressure: The Leading Global Burden of Disease Risk Factor 454 and the Need for Worldwide Prevention Programs, Current Hypertension Reports 15 (2013) 455 134-136.
- 456 [2] T. Kahan, L. Bergfeldt, Left ventricular hypertrophy in hypertension: its arrhythmogenic potential, 457 Heart 91 (2005) 250-256.
- 458 [3] N. Renna, #xe1, s. F., N. de las Heras, R.M. Miatello, Pathophysiology of Vascular Remodeling in 459 Hypertension, International Journal of Hypertension 2013 (2013) 7.
- 460 [4] J.A. Staessen, J. Wang, G. Bianchi, W.H. Birkenhager, Essential hypertension, The Lancet 361 (2003) 1629-1641.
- 462 [5] J. Perk, G. De Backer, H. Gohlke, I. Graham, Ž. Reiner, W.M.M. Verschuren, C. Albus, P. Benlian, G. 463 Boysen, R. Cifkova, C. Deaton, S. Ebrahim, M. Fisher, G. Germano, R. Hobbs, A. Hoes, S. 464 Karadeniz, A. Mezzani, E. Prescott, L. Ryden, M. Scherer, M. Syvänne, W.J.M. Scholte Op 465 Reimer, C. Vrints, D. Wood, J.L. Zamorano, F. Zannad, European Guidelines on cardiovascular 466 disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the 467 European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in 468 Clinical Practice (constituted by representatives of nine societies and by invited experts), 469 Atherosclerosis 223 (2012) 1-68.
- 470 [6] National Institute for Clinical Excellence (NICE), "Hypertension: clinical management of primary hypertension in adults". Clinical guideline 34., 2006.
- 472 [7] L.J. Appel, M.W. Brands, S.R. Daniels, N. Karanja, P.J. Elmer, F.M. Sacks, Dietary Approaches to 473 Prevent and Treat Hypertension: A Scientific Statement From the American Heart 474 Association, Hypertension 47 (2006) 296-308.
- 475 [8] V. Savica, G. Bellinghieri, J.D. Kopple, The effect of nutrition on blood pressure, Annu Rev Nutr 30 (2010) 365-401.
- [9] J.O. Lundberg, M.T. Gladwin, A. Ahluwalia, N. Benjamin, N.S. Bryan, A. Butler, P. Cabrales, A.
 Fago, M. Feelisch, P.C. Ford, B.A. Freeman, M. Frenneaux, J. Friedman, M. Kelm, C.G. Kevil,
 D.B. Kim-Shapiro, A.V. Kozlov, J.R. Lancaster Jr, D.J. Lefer, K. McColl, K. McCurry, R.P. Patel, J.
 Petersson, T. Rassaf, V.P. Reutov, G.B. Richter-Addo, A. Schechter, S. Shiva, K. Tsuchiya, E.E.
 Van Faassen, A.J. Webb, B.S. Zuckerbraun, J.L. Zweier, E. Weitzberg, Nitrate and nitrite in
 biology, nutrition and therapeutics, Nat Chem Biol 5 (2009) 865-869.
- 483 [10] M. Gilchrist, A.C. Shore, N. Benjamin, Inorganic nitrate and nitrite and control of blood pressure, 484 2011.
- 485 [11] M. Siervo, J. Lara, I. Ogbonmwan, J.C. Mathers, Inorganic nitrate and beetroot juice 486 supplementation reduces blood pressure in adults: a systematic review and meta-analysis, J 487 Nutr 143 (2013) 818-26.
- 488 [12] M. Siervo, J. Lara, S. Chowdhury, A.W. Ashor, C. Oggioni, J.C. Mathers, Effects of Dietary
 489 Approaches to Stop Hypertension (DASH diet) on cardiovascular risk factors: a systematic
 490 review and meta-analysis, Br J Nutr (2014) In Press.
- [13] T.G. Pickering, J.E. Hall, L.J. Appel, B.E. Falkner, J. Graves, M.N. Hill, D.W. Jones, T. Kurtz, S.G.
 Sheps, E.J. Roccella, Recommendations for blood pressure measurement in humans and
 experimental animals: part 1: blood pressure measurement in humans: a statement for
 professionals from the Subcommittee of Professional and Public Education of the American
 Heart Association Council on High Blood Pressure Research, Circulation 111 (2005) 697-716.
- 496 [14] J.R. Turner, A.J. Viera, D. Shimbo, Ambulatory Blood Pressure Monitoring in Clinical Practice: A

- 497 Review, The American Journal of Medicine.
- 498 [15] #xf6, C. cht, Blood Pressure Variability: Prognostic Value and Therapeutic Implications, ISRN 499 Hypertension 2013 (2013) 16.
- [16] J. Boggia, K. Asayama, Y. Li, T. Hansen, L. Mena, R. Schutte, Cardiovascular Risk Stratification and
 Blood Pressure Variability on Ambulatory and Home Blood Pressure Measurement, Current
 Hypertension Reports 16 (2014) 1-10.
- [17] A. Jajja, A. Sutyarjoko, J. Lara, K. Rennie, K. Brandt, O. Qadir, M. Siervo, Beetroot
 supplementation lowers daily systolic blood pressure in older, overweight subjects, Nutrition
 Research (2014).
- 506 [18] M. Gilchrist, P.G. Winyard, K. Aizawa, C. Anning, A. Shore, N. Benjamin, Effect of dietary nitrate 507 on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes, Free Radic 508 Biol Med (2013).
- [19] Y. Li, J.-G. Wang, E. Dolan, P.-J. Gao, H.-F. Guo, T. Nawrot, A.V. Stanton, D.-L. Zhu, E. O'Brien, J.A.
 Staessen, Ambulatory Arterial Stiffness Index Derived From 24-Hour Ambulatory Blood
 Pressure Monitoring, Hypertension 47 (2006) 359-364.
- [20] D. Tsikas, A. Schwarz, D.O. Stichtenoth, Simultaneous Measurement of [15N]Nitrate and
 [15N]Nitrite Enrichment and Concentration in Urine by Gas Chromatography Mass
 Spectrometry as Pentafluorobenzyl Derivatives, Analytical Chemistry 82 (2010) 2585-2587.
- [21] Qadir OK, Teh J, Siervo M, Seal C, B. K, Method using gas chromatography mass spectrometry (GC-MS) for analysis of nitrate and nitrite in vegetables. in: K. D'Haene, (Ed.), NUTRIHORT Nutrient management, innovative techniques and nutrient legislation in intensive horticulture for an improved water quality. September 16-18, 2013, Ghent, Belgium, Institute for Agricultural and Fisheries Research, September 16-18, 2013, Ghent, 2013.
- [22] K. Higuchi, S. Motomizu, Flow-Injection Spectrophotometric Determination of Nitrite and
 Nitrate in Biological Samples, Analytical Sciences 15 (1999) 129-134.
- [23] R.M. Bateman, C.G. Ellis, D.J. Freeman, Optimization of Nitric Oxide Chemiluminescence
 Operating Conditions for Measurement of Plasma Nitrite and Nitrate, Clinical Chemistry 48
 (2002) 570-573.
- [24] M.C. Simmonds, J.P.T. Higginsa, L.A. Stewartb, J.F. Tierneyb, M.J. Clarke, S.G. Thompson, Meta analysis of individual patient data from randomized trials: a review of methods used in
 practice, Clinical Trials 2 (2005) 209-217.
- [25] J.P.T. Higgins, S.G. Thompson, Quantifying heterogeneity in a meta-analysis, Stat Med 21 (2002)
 1539-1558.
- [26] N. Castiglione, S. Rinaldo, G. Giardina, V. Stelitano, F. Cutruzzolà, Nitrite and Nitrite Reductases:
 From Molecular Mechanisms to Significance in Human Health and Disease, Antioxidants &
 Redox Signaling 17 (2012) 684-716.
- 533 [27] R.S. Percival, S.J. Challacombe, P.D. Marsh, Age-related microbiological changes in the salivary 534 and plaque microflora of healthy adults, Journal of Medical Microbiology 35 (1991) 5-11.
- [28] E. Britton, J.T. McLaughlin, Ageing and the gut, Proceedings of the Nutrition Society 72 (2013)
 173-177.
- 537 [29] J.L. Zweier, A. Samouilov, P. Kuppusamy, Non-enzymatic nitric oxide synthesis in biological 538 systems, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1411 (1999) 250-262.
- [30] D. Lyons, S. Roy, M. Patel, N. Benjamin, C.G. Swift, Impaired nitric oxide-mediated vasodilatation
 and total body nitric oxide production in healthy old age, Clin Sci (Lond) 93 (1997) 519-25.

- [31] T. Minamino, I. Komuro, Vascular Cell Senescence: Contribution to Atherosclerosis, Circulation
 Research 100 (2007) 15-26.
- [32] E. Muxfeldt, C. Cardoso, G. Salles, PRognostic value of nocturnal blood pressure reduction in resistant hypertension, Archives of Internal Medicine 169 (2009) 874-880.
- [33] H.-Q. Fan, Y. Li, L. Thijs, T.W. Hansen, J. Boggia, M. Kikuya, K. Björklund-Bodegård, T. Richart, T.
 Ohkubo, J. Jeppesen, C. Torp-Pedersen, E. Dolan, T. Kuznetsova, K. Stolarz-Skrzypek, V.
 Tikhonoff, S. Malyutina, E. Casiglia, Y. Nikitin, L. Lind, E. Sandoya, K. Kawecka-Jaszcz, Y. Imai,
 H. Ibsen, E. O'Brien, J. Wang, J.A. Staessen, o.b.o.t.I.D.o.A.b.p.i.r.t.C.O. Investigators,
 Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711
 individuals from 10 populations, Journal of Hypertension 28 (2010) 2036-2045
 10.1097/HJH.0b013e32833b49fe.
- [34] R.C. Hermida, D.E. Ayala, A. Mojón, J.R. Fernández, Decreasing Sleep-Time Blood Pressure
 Determined by Ambulatory Monitoring Reduces Cardiovascular Risk, Journal of the American
 College of Cardiology 58 (2011) 1165-1173.
- [35] M.E. Ernst, G.R. Bergus, Noninvasive 24-Hour Ambulatory Blood Pressure Monitoring: Overview
 of Technology and Clinical Applications, Pharmacotherapy: The Journal of Human
 Pharmacology and Drug Therapy 22 (2002) 597-612.
- [36] F.J. Larsen, T.A. Schiffer, S. Borniquel, K. Sahlin, B. Ekblom, J.O. Lundberg, E. Weitzberg, Dietary inorganic nitrate improves mitochondrial efficiency in humans, Cell Metab 13 (2011) 149-59.
- 560 [37] B. Piknova, J.W. Park, K.M. Swanson, S. Dey, C.T. Noguchi, A.N. Schechter, Skeletal muscle as an endogenous nitrate reservoir, Nitric Oxide 47 (2015) 10-16.
- [38] T. Rassaf, C. Heiss, S. Mangold, T. Leyendecker, E.S. Kehmeier, M. Kelm, T. Lauer, Vascular
 Formation of Nitrite After Exercise Is Abolished in Patients With Cardiovascular Risk Factors
 and Coronary Artery Disease, Journal of the American College of Cardiology 55 (2010) 1502 1503.
- [39] T. Lauer, C. Heiss, J. Balzer, E. Kehmeier, S. Mangold, T. Leyendecker, J. Rottler, C. Meyer, M.
 Merx, M. Kelm, T. Rassaf, Age-dependent endothelial dysfunction is associated with failure
 to increase plasma nitrite in response to exercise, Basic Research in Cardiology 103 (2008)
 291-297.
- [40] L. Coles, P. Clifton, Effect of beetroot juice on lowering blood pressure in free-living, diseasefree adults: a randomized, placebo-controlled trial, Nutr J 11 (2012) 106.
- [41] D.A. Hobbs, N. Kaffa, T.W. George, L. Methven, J.A. Lovegrove, Blood pressure-lowering effects
 of beetroot juice and novel beetroot-enriched bread products in normotensive male
 subjects, British Journal of Nutrition 108 (2012) 2066-2074.
- [42] V. Kapil, R.S. Khambata, A. Robertson, M.J. Caulfield, A. Ahluwalia, Dietary Nitrate Provides
 Sustained Blood Pressure Lowering in Hypertensive Patients: A Randomized, Phase 2,
 Double-Blind, Placebo-Controlled Study, Hypertension (2014).

578

. .

	Trial 1 ^{PL}			Trial 2 ^{PL}			Trial 3 ^{CO}	Trial 4 ^{CO}		
	Beetroot	Control	p	Beetroot	Control	p	All	p	All	p
N	10	11		10	10		27	-	17	-
M/F	7/3	5/6	0.38	4/6	5/5	0.87	18/9	-		-
Age (years)	62.7±4.9	61.4±4.3	0.54	64.9±6.1	61.4±3.4	0.13	67.2±4.9	-	60.5±3.6	-
Height (m)	1.74±0.11	1.69±0.11	0.28	1.69±0.08	1.69±0.11	0.86	1.68±0.08	-	1.74±0.10	-
Weight (kg)	92.5±15.4	84.2±14.6	0.21	84.3±16.4	86.5±13.4	0.76	87.1±11.5	-	78.7±12.3	-
BMI (kg/m ²)	30.5±4.4	29.4±4.1	0.55	29.7±4.9	30.0±4.2	0.89	30.7±3.1	-	25.6±2.5	-
WC (cm)	103.8±12.8	100.7±10.1	0.55	103.0±11.9	97.8±24.5	0.77	106.1±8.0	-	93.3±10.5	-
Resting SBP	135.1±14.8	131.1±14.8	0.54	146.9±19.8	143.8±20.3	0.73	142.8±13.9	-	131.6±16.0	-
Resting DBP	77.4±9.5	76.1±10.9	0.78	79.3±8.5	77.8±12.7	0.66	81.1±9.1	-	80.0±9.57	-

...7 0
...=body mass in
...dy design; CO= cr
...allel trials, (Trial 1,2: Ne Data are presented as mean±SD; N= number of subjects; M/F=male/female; BMI=body mass index; WC= waist circumference; SBP= systolic blood pressure; DBP= diastolic blood pressure; PL= parallel study design; CO= cross-over study design. T test for independent samples was used to compare the two groups in parallel trials (Trial 1,2: Newcastle) and (Trial 3,4: Exeter)

	Trial 1 ^{PL}				Trial 2 ^{PL}				Trial 3 ^{CO}			Trial 4 ^{CO}				
	Beetroot	Control	Δ	p	Beetroot	Control	Δ	P	Beetroot	Control	Δ	p	Beetroot	Control	Δ	p
24-hour Mean	126.3	127.9	-1.5	0.72	127.6	124.7	2.9	0.26	135.1	134.5	0.6	0.72	131.0	129.8	1.1	0.46
	(119.9, 132.7)	(121.8, 134.0)	(-10.4, 7.3)		(123.9, 131.4)	(120.9, 128.4)	(-2.4, 8.3)		(132.0, 135.8)	(131.2, 137.8)	(-2.7, 3.9)		(124.3, 137.8)	(124.5, 135.2)	(-2.1, 4.5)	
24-hour SD	14.7	15.4	-0.7	0.75	16.5	14.6	1.9	0.38	20.9	21.2	-0.3	0.68	18.8	19.3	-0.5	0.64
	(11.4, 17.9)	(12.3, 18.5)	(-5.2, 3.8)		(13.3, 19.7)	(11.4, 17.8)	(-3.8, 5.2)		(19.7, 22.1)	(19.6, 22.8)	(-1.7, 1.2)		(16.6, 21.0)	(16.8, 21.8)	(-2.6, 1.6)	
Diurnal Mean	130.5	131.2	-0.7	0.88	132.2	128.3	3.8	0.29	138.8	138.9	-0.2	0.93	135.5	134.3	1.2	0.45
	(123.6, 137.5)	(124.5, 137.9)	(-10.4, 9.0)		(127.0, 137.3)	(123.2, 133.5)	(-3.5, 11.1)		(135.0, 142.6)	(135.0, 142.9)	(-3.8, 3.5)		(129.2, 141.7)	(129.1, 139.4)	(-2.0, 4.3)	
Diurnal SD	13.1	14.8	-1.6	0.52	14.6	13.4	1.2	0.58	19.7	19.8	-0.1	0.88	17.6	17.9	-0.3	0.82
	(9.4, 16.9)	(11.2, 18.4)	(-6.9, 3.6)		(11.5, 17.6)	(10.4, 16.4)	(-3.2, 5.5)		(18.3, 21.1)	(18.2, 21.4)	(-1.5, 1.4)		(15.2, 20.3)	(15.1, 20.6)	(3.0, 2.4)	
Nocturnal Mean	115.6	121.2	-5.5	0.22	111.1	115.4	-4.3	0.17	123.3	121.2	2.1	0.26	117.4	116.1	1.3	0.59
	(109.0, 122.3)	(114.8, 127.6)	(-14.8, 3.6)		(106.5, 115.7)	(110.8, 120.0)	(-10.8, 2.1)		(120.2, 126.4)	(116.9, 125.5)	(-1.6, 5.8)		(107.9, 126.9)	(109.2, 123.0)	(-3.8, 6.4)	
Nocturnal SD	11.1	13.4	-2.3	0.22	11.5	11.8	-0.3	0.85	16.9	16.6	0.3	0.75	13.0	15.4	-2.4	0.17
	(8.3, 13.9)	(10.7, 16.1)	(-6.2, 1.5)		(8.6, 14.3)	(9.0, 14.7)	(-4.3, 3.6)		(14.8, 19.1)	(14.4, 18.7)	(-2.0, 2.8)		(11.0, 15.1)	(12.2, 18.7)	(-6.0, 1.2)	
Dipping	-14.9	-9.9	-4.9	0.15	-18.7	-15.1	-3.6	0.39	-15.4	-17.7	2.3	0.26	-18.0	-18.1	0.1	0.94
	(-20.0, -9.8)	(-14.7, -5.1)	(-12.0, 2.1)		(-24.8, -12.7)	(-21.1, -9.0)	(-12.2, 5.0)		(-20.1, -10.8)	(-22.9, -12.5)	(-1.8, 6.3)		(-23.4, -12.6)	(-22.2, -14.1)	(-3.9, 4.2)	
Morning Surge	15.5	4.0	11.0	0.04	17.1	12.0	5.0	0.41	16.2	20.8	-4.5	0.58	14.2	12.4	1.8	0.14
	(7.1, 23.8)	(-3.8, 12.0)	(0.1, 22.9)		(8.4, 25.7)	(3.4, 20.0)	(-7.5, 17.6)	30	(11.6, 20.9)	(15.9, 25.8)	(-10.7, 1.6)		(7.7, 20.8)	(7.6, 17.3)	(-5.1, 8.7)	

Data are presented as mean (95%CI). SD= standard deviation. PL= parallel study design; CO= cross-over study design; Δ= difference between beetroot and control group. Significant results are highlighted in bold. (Trial 1,2: Newcastle) and (Trial 3,4: Exeter)

	Trial 1 ^{PL}				Trial 2 ^{PL}				Trial 3 ^{CO}				Trial 4 ^{CO}			
	Beetroot	Blackcurrant	Δ	p	Beetroot	Control	Δ	p	Beetroot	Control	Δ	p	Beetroot	Control	Δ	p
24-hour Mean	79.4	80.1	-0.7	0.81	78.2	76.6	1.6	0.28	75.1	76.4	-1.2	0.17	79.9	79.5	0.4	0.74
	(74.9, 83.9)	(75.8, 84.4)	(-6.9, 5.5)		(76.1, 80.4)	(74.4, 78.8)	(-1.4, 4.7)		(73.0, 77.2)	(74.2, 78.6)	(-3.1, 0.6)		(76.3.3, 83.5)	(76.1, 82.9)	(-2.1, 2.9)	
24-hour SD	11.8	11.0	0.8	0.53	11.4	10.9	0.5	0.63	15.7	16.5	-0.8	0.40	15.1	14.3	0.8	0.46
	(9.9, 13.8)	(9.2, 12.9)	(-1.8, 3.5)		(9.7, 13.1)	(9.1, 12.6)	(-1.8, 2.9)		(14.1, 17.2)	(14.7, 18.2)	(-2.8, 1.2)		(12.9, 17.3)	(12.3, 16.3)	(-1.4, 2.9)	
Diurnal Mean	82.9	82.8	-0.1	0.97	81.8	79.6	2.1	0.29	77.2	79.3	-2.1	0.06	83.0	82.6	0.4	0.76
	(77.9, 88.0)	(78.1, 87.6)	(-6.0, 7.0)		(78.9, 84.7)	(76.7, 82.5)	(-2.0, 6.3)		(74.8, 79.6)	(76.7, 81.9)	(-4.2, 0.1)		(79.7, 86.3)	(79.2, 85.9)	(-2.6, 3.5)	
Diurnal SD	10.5	9.4	1.1	0.37	9.1	9.1	-0.08	0.93	15.7	16.4	-0.7	0.50	14.7	13.8	0.9	0.45
	(8.7, 12.2)	(7.8, 11.0)	(-1.3, 3.4)		(7.6, 10.5)	(7.7, 10.6)	(-2.1, 1.9)		(14.0, 17.4)	(14.5, 18.4)	(-3.0, 1.5)		(11.9, 17.4)	(11.4, 16.0)	(-1.6, 3.5)	
Nocturnal Mean	70.5	74.1	-3.6	0.27	66.0	68.5	-2.5	0.38	68.3	67.8	0.5	0.51	70.4	69.9	0.5	0.71
	(65.6, 75.4)	(69.5, 78.8)	(-10.3, 3.1)		(61.7, 70.2)	(64.3, 72.7)	(-8.5, 3.4)		(66.0, 70.3)	(65.1, 70.5)	(-1.1, 2.1)		(65.0, 75.8)	(65.4, 74.5)	(-2.2, 3.1)	
Nocturnal SD	9.5	10.2	-0.7	0.67	9.1	10.5	-1.4	0.43	11.9	11.6	0.3	0.74	10.0	10.1	-0.1	0.93
	(7.0, 12.0)	(7.8, 12.5)	(-4.1, 2.7)		(6.4, 11.7)	(7.9, 13.1)	(-5.1, 2.3)		(10.4, 13.5)	(9.7, 13.4)	(-1.9, 2.7)		(8.5, 11.6)	(8.1, 12.1)	(-2.4, 2.2)	
Dipping	-11.9	-9.1	-2.8	0.36	-14.4	-12.5	-1.9	0.48	-8.8	-11.4	2.6	0.02	-12.5	-12.6	0.1	0.97
	(-16.4, -7.4)	(-13.4, -4.8)	(-9.0, 3.5)		(-18.3, -10.5)	(-16.4, -8.6)	(-7.5, 3.6)		(-11.6, -6.0)	(-14.6, -8.2)	(-0.3, 4.8)		(-16.1, -8.9)	(-15.8, -9.3)	(-3.1, 3.2)	
Morning Surge	14.6	5.6	9.0	0.02	12.2	8.5	3.7	0.29	10.0	14.9	-4.8	0.06	12.5	12.7	-0.2	0.92
	(9.6, 19.7)	(0.9, 10.4)	(-1.7, 16.3)		(7.3, 17.2)	(3.6, 13.5)	(-3.4, 10.8)	CO	(6.3, 13.0)	(10.6, 19.1)	(-9.9, 0.2)		(6.9, 18.0)	(9.3, 16.1)	(-5.3, 4.8)	

Data are presented as mean (95%CI). SD= standard deviation. PL= parallel study design; CO= cross-over study design; Δ= difference between beetroot and control group. Significant results are highlighted in bold. (Trial 1,2: Newcastle) and (Trial 3,4: Exeter)

	Systolic BP (mmF	Hg)		Diastolic BP (mmHg)					
	Effect Size	95%CI	P	Effect Size	95%CI	P			
24-hour Mean	1.0	-0.9, 3.0	0.28	0.2	-1.4, 1.0	0.76			
24-hour SD	0.2	-0.8, 1.3	0.65	0.2	-0.8, 1.3	0.65			
Diurnal Mean	0.08	-0.1, 0.3	0.44	-0.6	-2.0, 0.8	0.41			
Diurnal SD	-0.1	-1.2, 1.0	0.84	0.3	0.7, 1.3	0.58			
Nocturnal Mean	0.1	-2.3, 2.5	0.91	0.2	-1.0, 1.4	0.80			
Nocturnal SD	-0.8	-2.3, 0.7	0.30	-0.2	-1.4, 1.0	0.72			
Dipping	0.1	-2.5, 2.2	0.90	1.0	-0.6, 2.5	0.23			
Morning Surge ^R	2.3	-4.0, 8.7	0.47	1.6	-4.0, 7.2	0.57			

SD= standard deviation; 95%CI= 95% Confidence Intervals. Fixed-effect models were applied to derive pooled estimates for BP outcomes expect for Morning Surge (R) which was derived using a random-effect model (see methods section for more details).

SNI_2SOR_m 32 0.09 -3.1, 5.3 -0.2 -2.2, 1.8 -2.2 -2.2, 1.8 -2.2 -2.2,		analysis to evaluate the eff						BP) and percer	nt
N Fifect Size 95%CI P Fifect Size 95%CI P	changes in nitrite c	concentrations ($\Delta[NO_2]$) on t	he poo		•	diastolic		(mmHg)	
24-hour Man			N			Р		` '	Р
Age 265y 39 0.7 3.6, 5.0 0.99 0.2 2.5, 2.0 0.8	24-hour Mean	Age < 65 v							
Malc So O.7 -1.8, 3.3 O.92 O.0 -1.9, 3.2 O.6	2 . 110 W1 1/10 W11	-			· · · · · · · · · · · · · · · · · · ·	0.99			0.28
Female 35 0.5 2.4, 3.5 0.92 -0.01 -1.3, 1.3 0.80 BMI-30kg/m² 32 0.09 -3.1, 3.3 0.95 -0.2 -2.2, 1.8 0.80 Raised Resting BP 49 1.0 -1.1, 3.1 0.88 0.7 -1.3, 2.8 0.60 -1.5, 1.8 0.80 0.7 -1.3, 2.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.8 0.60 -1.5, 1.4 0.79 0.60 -1.5, 1.4 0.79 0.60 -1.5, 1.8 0.78 0.1 -2.7, 2.8 0.47 -1.2, 1.4 0.79 0.60 0.6 0.5, 1.8 0.78 0.1 -1.2, 1.4 0.79 0.60 0.6 0.5, 1.8 0.78 0.1 -1.2, 1.4 0.79 0.60 0.6 0.5, 1.8 0.78 0.1 -1.2, 0.99 0.60 0.6 0.5, 1.8 0.78 0.1 0.78 0.1 0.78 0.1 0.78 0.1 0.78 0.1 0.78 0.1 0.78 0.1 0.78 0.1 0.78									
BMI-30kg/m² 33 0.2 -2.1, 2.5 0.95 0.1 -1.5, 1.7 0.80						0.92			0.66
BME-30kg/m² 32 0.09									
Raised Resting BP 36 1.3 2.3, 5.0 0.88 0.1 1.5, 1.8 0.66						0.95			0.80
Normal Resting BP									
All No.] + So [®] Centile 45 1.1 2.3 4.6 0.58 0.1 2.7 2.8 0.47						0.88			0.66
24-hour SD					-1.1, 3.1				
24-hour SD Age <65y Age ≥65y		$\Delta[NO_2] < 50^m$ Centile				0.58			0.47
Age ≥65y 39 0.2 -0.7, 1.1 0.78 0.4 -1.6, 2.4 0.79									
Age 265y 39 0.2 -0.7, 1.1 0.4 -1.6, 2.4	24-hour SD	-				0.78			0.79
Female						0.70			0.77
Female S3 -0.5 -1.8, 1.1						0.86			0.78
BME30kg/m² 32 0.4 -1.4, 2.2 0.43 0.4 -1.7, 2.5 0.03 Raised Resting BP 49 -0.3 -1.6, 1.0 0.90 0.6 -0.7, 1.9 0.67 A[NO ₃]≤50° Centile 40 0.1 -1.6, 1.8 0.63 0.9 -0.7, 2.5 0.39 A[NO ₃]≤50° Centile 45 -0.4 -1.6, 0.8 0.63 -0.2 -2.0, 1.6 0.8 Age ≤65y 39 -1.2 -4.8, 2.4 0.16 0.8 -1.3, 3.0 0.92 Male 50 -0.2 -2.4, 2.0 0.93 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 BMIS-30kg/m² 32 -0.5 -3.3, 3.0 0.93 -0.04 -0.7 -0.05 BMIS-30kg/m² 32 -0.5 -4.3, 3.1 0.52 -0.5 -3.5, 2.3 -0.64 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -0.6 -2.3, 2.2 -0.6 -2.3, 2.2 -0.6 -2.3			35		-1.8, 1.1	0.80	0.6	-0.5, 1.8	0.76
Bolt-2008gm² 32 0.4 -1.4, 2.2 0.4 -1.7, 2.5 0.4 -1.7, 2.5 0.67 Normal Resting BP 49 0.01 -1.6, 1.0 0.90 0.6 0.7, 1.9 0.67 0.7, 1.9 0.67		$BMI < 30 kg/m^2$	53	-0.5	-1.7, 0.7	0.42	-0.2	-1,2, 0.9	0.62
Raised Resting BP 36 -0.1 -2.6, 2.4 0.90 0.6 -0.7, 1.9 0.67		BMI≥30kg/m ²	32	0.4	-1.4, 2.2	0.43	0.4	-1.7, 2.5	0.03
Normal Resting BP 49 -0.3 -1.6, 1.0 0.90 0.66 -0.7, 1.9 0.07			36	-0.1		0.00	1.1		0.1=
Δ[NO ₂]≤50 th Centile 45 -0.4 -1.6, 1.8 -0.6 -0.2 -2.0, 1.6 -0.8 -0.2 -2.0, 1.6 -0.8 -0.5, 4.4 -0.6 -0.5, 4.4 -0.6 -0.8 -0.3, 0.2 -0.3, 0.2 -0.8 -0.3 -0					· · · · · · · · · · · · · · · · · · ·	0.90			0.67
Diurnal Mean Age <65y 46 1.9 -0.5, 4.4 -0.16 0.08 0.03 -0.2 -2.0, 1.6 0.92 -1.3, 3.0 0.92 -1.3, 3.0 0.92 -1.3, 3.0 0.92 -1.3, 3.0 0.92 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.93 -1.3, 3.0 0.1 -0.4, 0.7 0.57 -1.3, 3.1 0.52 -0.5 -3.5, 2.3 0.54 -3.3, 3.1 0.52 -0.5 -3.5, 2.3 0.64 -1.3, 3.0 0.64 -1.3, 3.0 0.94 -1.3, 3.1 0.52 -0.5 -3.5, 2.3 0.96 -1.7, 2.6 0.92 0.1 -2.5, 2.3 0.96 -1.7, 2.6 0.92 0.1 -2.5, 2.3 0.96 -1.7, 2.6 0.92 0.1 -2.5, 2.3 0.96 -1.7, 2.6 0.92 0.1 -3.2, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.3, 3.0 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.42 -3.4, 3.3 0.43 -3.4, 3.4 0.43 0.43 -3.4, 3.4 0.43 0.43 -3.4, 3.4 0.43 0.43 -3.4, 3.4 0.43 0.43 -3.4, 3.4 0.43 0.43 -3.4, 3.4 0.43 0.43 -3.4, 3.4 0.43 0.43 -3.4, 3.4 0.44 -3.4, 3.3 0.22 -3.3, 3.3 0.7 -3.3, 3.4, 3.4 0.44 -3.4, 3.3 0.22 -3.3, 3.3 0.3 -3.4, 3.4 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.23 -3.4, 3.4 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4, 3.3 0.44 -3.4,									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	0.63		· ·	0.39
Age ≥65y 39 -1.2 -4.8, 2.4 0.16 0.6 -4.1, 5.4 0.92	Diumal Maan								
Male	Diumai Mean	•				0.16			0.92
Female 35 -0.3 -3.7, 3.0 0.93 0.1 -0.4, 0.7 0.57 BMI≥30kg/m² 32 -0.5 -4.3, 3.1 0.52 -0.5 -3.5, 2.3 0.64 Raised Resting BP 36 0.7 -4.7, 6.2 0.92 -0.06 -2.3, 2.2 0.96 Δ NO₂ ≤50 th Centile 40 3.0 -0.1, 6.2 0.89 1.5 -1.0, 4.2 -3.2, 3.0 Age <65y 46 0.08 -0.3, 0.4 -0.5, 1.0 0.1 -0.7, 1.1 BMI≥30kg/m² 35 0.1 -1.8, 2.1 0.83 0.4 -1.7, 2.5 0.85 Raised Resting BP 36 0.7 -3.9, 2.4 0.89 -0.1 -3.2, 3.0 0.60 BMI≥30kg/m² 32 0.1 -1.8, 2.1 0.83 0.4 -1.7, 2.5 0.85 Raised Resting BP 49 0.2 -1.1, 1.5 0.60 0.2 -0.6, 0.9 0.85 Raised Resting BP 49 0.2 -1.1, 1.5 0.60 0.2 -0.8, 1.2 0.7 A[NO₂]≤50 th Centile 40 -0.1 -2.1, 1.9 0.81 0.9 -0.6, 2.4 0.28 A[NO₂]≤50 th Centile 45 -0.4 -1.7, 0.8 0.81 0.9 -0.6, 2.4 0.28 A[NO₂]≤50 th Centile 45 -0.4 -1.7, 0.8 0.81 0.9 -0.6, 2.4 0.28 A[NO₂]≤50 th Centile 40 -0.1 -2.1, 1.9 0.81 0.9 -0.6, 2.4 0.28 A[NO₂]≤50 th Centile 45 -0.4 -1.7, 0.8 0.81 0.9 -0.6, 2.4 0.28 A[NO₂]≤50 th Centile 40 -0.1 -2.1, 1.9 0.81 0.9 -0.6, 2.4 0.28 A[NO₂]≤50 th Centile 40 -1.9 -3.4, -0.4 -1.6 -0.2 -2.3, 1.9 0.92 A[NO₂]≤50 th Centile 40 -1.9 -3.4, -0.4 -1.6 -0.0 -2.3, 1.9 0.92 A[NO₂]≤50 th Centile 40 -1.1 -2.1, 1.9 0.63 -0.2 -2.3, 1.9 0.92 A[NO₂]≤50 th Centile 40 -1.4 -1.8, 4.7 0.04 -1.4 0.0 -1.4 0.0 0.39 A[NO₂]≤50 th Centile 40 -1.4 -1.8, 4.7 0.02 -2.7, 2.2 0.68 0.4 -1.0, 1.9 0.39 A[NO₂]≤50 th Centile 45 -3.4 -0.6, -2.4 -0.0 -0.7 -1.9, 0.6 0.4 -1.2 0.9 0.4 -2.0, 2.8 0.4 -1.2 0.9 0.4 -2.0, 2.8 0.4 -1.2 0.9 0.4 -2.0, 2.8 0.4 -1.2 0.9 0.4 -2.0, 2.8 0.4 -1.2 0.9 0.4 -2.2 0.68 0.4 0.4 -2.2 0.68 0.4 0.4 -2.2 0.68 0.4 0.4 -2.2 0.68 0.4 0.4 -2.2 0.68									
Female 35 -0.5 -3.3, 3.0 0.1 -3.4, 0.7 -3.4, 0.7						0.93			0.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
BMI≥30kg/m 32 -0.5 -4.3, 3.1 -0.5 -2.3, 2.2 0.96 Raised Resting BP 49 0.5 -1.7, 2.6 0.92 0.1 -2.5, 2.3 0.96 Δ[NO₂]≥50 th Centile 40 3.0 -0.1, 6.2 0.89 1.5 -1.0, 4.2 0.42 Δ[NO₂]≥50 th Centile 45 3.7 -4.9, 1.23 0.89 1.5 -1.0, 4.2 0.42 Δ[NO₂]≥50 th Centile 45 3.7 -4.9, 1.23 0.89 0.1 -3.2, 3.0 0.42 Δ[NO₂]≥50 th Centile 45 3.7 -4.9, 1.23 0.89 0.1 -3.2, 3.0 0.42 Δ[NO₂]≥50 th Centile 35 -0.5 -1.8, 0.8 0.51 0.1 -0.7, 1.1 0.62 Female 35 -0.5 -1.8, 0.8 0.51 0.1 -0.7, 1.1 0.62 BMI<30kg/m² 53 0.1 -1.3, 1.1 0.83 0.2 -0.6, 0.9 0.85 BMI≥30kg/m² 32 0.1 -1.8, 2.1 0.83 0.2 -0.6, 0.9 0.85 Raised Resting BP 49 0.2 -1.1, 1.5 0.60 0.2 -0.8, 1.2 0.73 Δ[NO₂]≥50 th Centile 40 -0.1 -2.1, 1.9 0.81 -0.6 -2.8, 1.6 0.28 Nocturnal Mean Age ≤65y 39 0.4 -5.6, 3.5 0.44 1.0 -1.8, 3.8 0.70 Age ≥65y 39 0.4 -5.6, 3.5 0.44 1.0 -1.8, 3.8 0.70 BMI≥30kg/m² 53 -0.6 -3.8, 2.5 0.63 0.4 -1.0, 1.9 0.92 BMI<30kg/m² 53 -0.6 -3.8, 2.5 0.63 0.4 -1.0, 1.9 0.92 BMI<30kg/m² 53 -0.6 -3.8, 2.5 0.63 0.4 -1.0, 1.9 0.92 BMI<30kg/m² 32 -3.3 -13.7, 7.0 0.63 0.4 -1.0, 1.9 0.92 BMI<30kg/m² 32 -3.3 -13.7, 7.0 0.63 0.4 -1.0, 1.9 0.92 A[NO₂]≥50 th Centile 40 1.4 -1.8, 4.7 0.02 -2.7, 2.2 0.68 A[NO₂]≥50 th Centile 40 1.4 -1.8, 4.7 0.02 -2.7, 2.2 0.68 A[NO₂]≥50 th Centile 40 1.4 -1.8, 4.7 0.02 -2.7, 2.2 0.68 A[NO₂]≥50 th Centile 40 1.4 -1.8, 4.7 0.02 -2.7, 2.2 0.68 A[NO₂]≥50 th Centile 40 1.4 -1.8, 4.7 0.02 -2.7, 2.2 0.68 A[NO₂]≥50 th Centile 40 1.4 -1.8, 4.7 0.02 -2.7, 2.2 0.68 A[NO₂]≥50 th Centile 40 -1.7, 4.0 0.36 0.4 -1.0, 1.9 0.92 A[NO₂]≥50 th Centile 40 -1.7, 4.0 0.36 0.4 -1.0, 1.9 0.92 A[NO₂]≥						0.52			0.64
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0.52			0.01
Normal Resting BP					-4.7, 6.2	0.02	-0.06		0.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			49	0.5	-1.7, 2.6	0.92	0.1	-2.5, 2.3	0.90
Diurnal SD Age <65y			40	3.0	-0.1, 6.2	0.90	1.5	-1.0, 4.2	0.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\Delta[NO_2] \ge 50^{th}$ Centile	45	3.7	-4.9, 12.3	0.89	-0.1	-3.2, 3.0	0.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diurnal SD		46	0.08		0.50	0.6		0.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			39	0.24		0.72			0.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.51			0.62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{\text{BMI} \times 30 \text{kg/m}^2}{\text{BMI} \times 30 \text{kg/m}^2}$				0.83			0.85
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.60		-1.1, 2.3	0.73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.81			0.28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nocturnal Mean				· · · · · · · · · · · · · · · · · · ·	0 44			0.70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.11			0.70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					· · · · · · · · · · · · · · · · · · ·	0.42			0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Female	35	-1.3	-4.5, 1.9	0.42	-0.05	-2.1, 2.0	0.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$BMI < 30 kg/m^2$	53	-0.6		0.62	0.4		0.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$BMI \ge 30 \text{kg/m}^2$	32	-3.3	-13.7, 7.0	0.63	-4.0	-14.0, 6.0	0.39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.01			0.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.36			0.68
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Nocturnal SD $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.02			0.44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nocturnal CD								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mociuma SD					0.04			0.41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.04			0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Raised Resting BP Normal Resting BP 49 -2.2 -1.1, 2.4 -0.8 -2.5, 0.9 0.23						0.09			0.82
Normal Resting BP 49 -2.2 -4.2, -0.1 0.04 -0.8 -2.5, 0.9 0.23						0.07			0.02
Normal Resting BP 49 -2.2 -4.2, -0.1 0.04 -0.8 -2.5, 0.9 0.23			36	0.7	-1.1, 2.4	0.04	0.6	-0.9, 2.1	0.22
		Normal Resting BP	49	-2.2		0.04	-0.8		0.23
$ \Delta[NO_2] < 50^{\text{m}}$ Centile 40 -0.6 -1.8, 0.5 0.86 -0.6 -2.5, 1.2 0.56		$\Delta [NO_2] < 50^{th}$ Centile	40	-0.6	-1.8, 0.5	0.86	-0.6	-2.5, 1.2	0.56

	$\Delta[NO_2] \ge 50^{th}$ Centile	45	-0.8	-1.5, -0.06		0.1	-1.6, 1.9	
Dipping	Age <65y	46	-1.4	-4.2, 1.4	0.02	-0.3	-2.6, 1.9	0.09
	Age ≥65y	39	3.3	0.2, 6.4	0.02	2.6	0.01, 5.1	0.09
	Male	50	0.03	-2.9, 2.9	0.64	0.3	-2.6, 3,2	0.97
	Female	35	1.2	-3.0, 5.6	0.04	0.4	-2.4, 3.2	0.97
	$BMI < 30 kg/m^2$	53	0.4	-2.4, 3.3	0.31	0.9	-1.8, 3.6	0.49
	BMI≥30kg/m ²	32	-4.4	-13.4, 4.5	0.51	-2.4	-11.9, 6.9	0.49
	Raised Resting BP	36	-3.3	-9.6, 3.9	0.28	-0.2	-3.9, 3.4	0.56
	Normal Resting BP	49	0.4	-2.1, 2.9	0.28	0.9	-1.0, 2.9	0.30
	$\Delta[NO_2]$ <50 th Centile	40	-0.5	-2.6, 1.7	0.15	-0.5	-3.6, 2.6	0.85
	$\Delta[NO_2] \ge 50^{th}$ Centile	45	-2.5	-3.4, -1.9	0.13	-0.1	-3.4, 3.3	0.83
Morning Surge	Age <65y	46	3.6	-1.1, 8.5	0.52	2.0	-1.3, 5.3	0.19
	Age ≥65y	39	-0.7	-13.2, 11.8	0.32	-2.9	-9.6, 3.7	0.19
	Male	50	1.5	-4.2, 7.3	0.95	0.1	-5.2, 5.6	0.38
	Female	35	1.8	-6.4, 10.1	0.93	4.0	-2.6, 10.7	0.36
	BMI<30kg/m ²	53	2.1	-2.5, 6.8	0.87	0.4	-3.4, 4.2	0.56
	$BMI \ge 30 kg/m^2$	32	3.5	-13.6, 20.8	0.87	3.8	-7.3, 15.1	0.50
	Raised Resting BP	36	3.0	-3.9, 10.0	0.69	3.6	-4.0, 11.4	0.47
	Normal Resting BP	49	0.8	-8.0, 9.5	0.05	0.1	-5.4, 5.7	0.47
	$\Delta[NO_2]$ <50 th Centile	40	-1.4	-6.1, 3.2	0.15	-0.1	-4.1, 3.9	0.56
	$\Delta[NO_2] \ge 50^{th}$ Centile	45	7.0	-3.8, 18.0	0.13	1.9	-3.8, 7.8	0.50

SD= standard deviation. 95% CI= 95% Confidence Intervals. Significant results are highlighted in bold. Δ [NO₂]<50th Centile corresponds to the median of the distribution for percent changes in nitrite concentrations in plasma (Trial 1, Trial 3 and Trial 4) and saliva (Trial 2).