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Modelling sewer discharge via displacement of manhole covers during 

flood events using 1D/2D SIPSON/P-DWave dual drainage simulations 

In urban areas, overloaded sewers may result in surcharge that causes surface 

flooding. The overflow from sewer systems mainly starts at the inlets until the 

pressure head in the manhole is high enough to lift up its cover, at which stage 

the surcharged flow may be discharged via the gap between the bottom of the 

manhole cover and the ground surface. In this paper, we propose a new approach 

to simulate such a dynamic between the sewer and the surface flow in coupled 

surface and sewer flow modelling. Two case studies are employed to demonstrate 

the differences between the new linking model and the traditional model that 

simplifies the process. The results show that the new approach is capable of 

describing the physical phenomena when manhole covers restrict the drainage 

flow from the surface to the sewer network and reduce the surcharge flow and 

vice versa. 

Keywords: coupled 1D/2D modelling, displacement of manhole cover, manhole 

surcharge, urban flooding  

Introduction 

Urban drainage systems are fundamental components of flood risk management in 

modern cities. Like all structural measures, the designed capacities of drainage systems 

limit their performance such that, when the system capacity is exceeded, flooding may 

occur during heavy rainfall events. With the rapid advances of computational methods 

and computer technology, numerical models have become the most popular solution for 

flood risk analysis. A numerical model can produce enough information to help 

engineers evaluate flood risk effectively.  

Among the numerical models, one-dimensional (1D) sewer hydraulic models are 

the most commonly used because of the relatively low complexity in the model 

construction, with high efficiency and short runtime during simulation. Many 1D 

software packages are currently available for simulation of hydraulics of urban drainage 
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systems. For example, the Storm Water Management Model (SWMM), developed by 

the US Environmental Protection Agency (Rossman 2010), is generally applied to 

analyse the hydrodynamics of sewer systems (Campbell and Sullivan 2002; Denault et 

al. 2006). The comprehensive functions and the public availability of SWMM have 

made it widely adopted as computing engine in commercial software such as MIKE 

SWMM (DHI Software 2012a), XP-SWMM (XP Solutions 2013) and others. 

However, when flooding is considered, most of those models use water stage-

volume curves for determining flood depths on the ground surface, whereby excess 

water that discharges from sewer systems is assumed to be stored above the manhole at 

which the discharge occurs. This approach is capable of reproducing the flow conditions 

in the sewer network, but fails to accurately represent the movement of the surcharged 

flow over the ground surface. Emphasis is now given to the dual drainage concept 

where the flow interactions between the above ground and the below ground systems 

are described in the form of major and minor systems (Blanksby et al. 2007; Djordjević 

et al. 2005; Maksimović et al. 2009; Nasello and Tucciarelli 2005). Natural flow paths 

and retention basins are regarded as the major drainage system for routing the surface 

flow, whilst sewer pipes, manholes and inlets are considered as the minor drainage 

system for conveying the sub-surface flow.  

For surface flow modelling, two approaches are commonly used in dual 

drainage models for different purposes: (1) assuming the surface runoff only flows 

along drainage channels or streets and flooding occurs at the areas with lower 

elevations; the surface system is described as a series of links and ponds and the 1D 

hydraulic models are adopted to simulate the surface flooding (Bolle et al. 2006; 

Leandro et al. 2009; Mark et al. 2004; Schmitt et al. 2005); (2) assuming that the 

surface runoff will not be restricted by streets and channels; the overland flow is no 
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longer confined to predetermined flow paths and two-dimensional (2D) overland flow 

models need to be applied. Coupled 2D overland flow and 1D sewer modelling is 

considered a better tool to predict the movement of surface flows and the interaction 

between the surface and sub-surface systems. Hsu et al. (2000) adopted SWMM to 

predict the surcharge hydrographs at each manhole in sewer system and used the 

discharge calculated by SWMM as inputs to a 2D overland flow model for surface 

flooding modelling. In this approach, the assumption of uni-directional flow movement 

from the sewer system to the ground surface failed to describe the phenomena when 

surface runoff re-enters the drainage system. Hence, the flood extent and depths tended 

to be over-estimated. Subsequently, Hsu et al. (2002) attempted to describe the return of 

the flow to the sewer system but did not take into account the interaction of the manhole 

discharge and its magnitude and the depth of the surface flow. 

Chen et al. (2007) considered the surface flow condition when determining the 

interacting flow between surface and sub-surface systems, and developed the coupled 

Urban Inundation Model/Simulation of Interaction between Pipe flow and Surface 

Overland flow in Networks (UIM/SIPSON) model. An adaptive time step was also 

implemented in the 2D UIM and carefully synchronised with the 1D SIPSON to 

improve the modelling efficiency. Jahanbazi and Egger (2014) also demonstrated that 

the coupled HYSTEM-EXTRAN 2D model predicted the urban flooding better than the 

other conventional dual drainage model. Nowadays, coupled 1D/2D modelling has been 

widely implemented in commercial software. XP-SWMM (XP Solutions 2013) was 

developed by adding the TUFLOW 2D module with the XP-SWMM 1D model to 

enhance the capability for urban flood modelling. The latest version of MIKE Urban  

(DHI Software 2012b) has seen the integration of MIKE 11, MOUSE and MIKE 21 

models to simulate combined river, sewer and floodplain modelling. Similarly, the 
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InfoWorks ICM has integrated the InfoWorks CS and InfoWorks RS for 1D/2D 

modelling in both sewers and rivers (Innovyze 2012). However, the model linkages 

between the above and below ground flow components are usually simplified and in 

many cases remain unexplained, e.g. Carr and Smith (2006) and Dey and Kamioka 

(2006), or only consider the discharge through the multiple-inlets (Leandro et al. 2007). 

In general, the surface and sub-surface systems are modelled separately and 

linked via the discharge through manholes or inlets. For the drainage condition, the 

surface runoff is collected by inlets and drained into manholes, and the flow rate from 

the surface to the subsurface system can be calculated using the rectangular weir 

equation. Shepherd et al. (2012) measured the discharge collected by road gullies to 

determine the efficiency of inlet collection. Bazin et al. (2014) studied numerically and 

experimentally (in laboratory conditions) the exchanges between surface flow and 

surcharged flow in pipes. Galambos (2012) and Djordjević et al. (2013) compared 

experimental measurement to the numerical modelling results obtained by a 3D 

Computational Fluid Dynamics (CFD) model to evaluate the typical UK gully flow 

during drainage and surcharge conditions. Lopes et al. (2013) and Martins et al. (2014) 

used OpenFoam to numerically study the discharge and surcharge from a typical 

Portuguese gully and verified the results in the Multiple-Linking-Element (MLE) 

experimental facility.  

When the piezometric head in a manhole reaches the ground elevation, most 

linking models assume that the surcharge immediately occurs from the manhole and use 

the orifice equation to determine the discharge. In reality, the weight of the manhole 

cover itself may delay the process of surcharging and details of the dynamics of this 

process have not been discussed much in the literature. This is a phenomenon highly 

relevant from the practical point of view because a displaced manhole cover may be a 
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serious hazard, as illustrated e.g. in the “sewer explosion” event (YouTube 2007). 

Despite the extensive literature on drop manholes (Carvalho and Leandro 2011; Granata 

et al. 2014) and manhole junctions (Hager and Gisonni 2005; Saldarriaga et al. 2012), 

there is very little research on manhole cover displacement. Walski et al. (2011) 

investigated the behaviour of surcharged manholes and the equations to describe the 

flow discharge. When the manhole cover is lifted by the pressure in the sewer, the flow 

through the gap between the cover and the casting behaves like orifice flow. When the 

pressure is high enough to remove the manhole completely, then the flow regime will 

change to weir flow. They concluded that the pressure head in a manhole may lift the 

manhole cover allowing the water to overflow via the lifted gap. However, a high 

enough pressure to remove the manhole cover completely is unlikely to occur such that 

the transition from orifice flow to weir flow seldom happens.  

In this paper, we develop a new linkage model to simulate the flow exchange 

between the surface and the sewer systems, which includes the discharge from the 

connected inlets and the lifted manhole cover. The methodology applied in this paper is 

described in the next section, followed by the applications that include a hypothetical 

and a real case study. The results will be discussed and the last section will conclude the 

work. 

Methodology 

In the study, we coupled the 2D Parallel Diffusive Wave (P-DWave; Leandro et al. 

2014) and the 1D SIPSON models as a new dual-drainage model for urban flood 

modelling. The two models are linked via the discharge from manholes and inlets at 

each time step, considering the flow conditions in the surface and sub-surface systems 

simultaneously.  
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P-DWave overland flow model 

The P-DWave model neglects the initial terms in 2D Shallow Water Equations (SWE) 

such that the governing equations are written as: 

𝑑ℎ

𝑑𝑡
+ ∇(𝒖ℎ) = 𝑅 (1) 

𝑔∇(ℎ + 𝑧) = 𝑔𝑺𝒇 (2) 

where, ℎ = water depth [m]; 𝑡 = time [s]; 𝒖 = [𝑢𝑥 𝑢𝑦]𝑇  is the depth-averaged flow 

velocity vector [-]; 𝑢𝑥 =flow velocity in x direction [ms
-1

]; 𝑢𝑦 = flow velocity in y 

direction [ms
-1

]; 𝑅= source/sink term [e.g. rainfall, inflow, surcharge, drainage, etc.] 

[ms
-1

]; 𝑔 = gravity acceleration [ms
-
²]; 𝑧 = bed elevation [m]; 𝑺𝒇 = [𝑆𝑓𝑥 𝑆𝑓𝑦]𝑇is the 

bed friction vector [-]; 𝑆𝑓𝑥 = bed friction slope in x direction [-]; 𝑆𝑓𝑦 = bed friction 

slope in y direction [-]. The bed friction can be approximated using Manning’s formula:  

[
𝑆𝑓𝑥

𝑆𝑓𝑦
] =

[
 
 
 
 
𝑛2|𝒖|𝑢𝑥

ℎ
4

3⁄

𝑛2|𝒖|𝑢𝑦

ℎ
4

3⁄ ]
 
 
 
 

 (3) 

where, 𝑛 = Manning’s roughness [m
–1/3

s]. The modulus of the depth-averaged flow 

velocity vector is given by: 

|𝒖| =
ℎ

2
3⁄ (𝑆𝑤𝑥

2 + 𝑆𝑤𝑦
2)

1
4⁄

𝑛
 (4) 

where, 𝑆𝑤𝑥 = 𝑑(ℎ + 𝑧) 𝑑𝑥⁄  is the water level gradient in x direction [-]; 𝑆𝑤𝑦 =

𝑑(ℎ + 𝑧) 𝑑𝑦⁄  is the water level gradient in y direction [-]. 

P-DWave adopts the first order finite volume explicit discretization scheme to 

solve water depth for next time step in Equation (1) on a regular grid. Equation (2) is 
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then applied to determine the velocity between grid cells. Readers are referred to 

Leandro et al. (2014) for details of the numerical scheme used by P-DWave. 

SIPSON sewer model 

SIPSON is a 1D sewer network model that simultaneously solves continuity equations 

for network nodes, energy equations for nodes and pipe/channel ends, the complete 

Saint Venant equations for flow in conduits and streets, and equations for other link 

types (pumps, weirs, etc.). The node continuity equation can be written as 

𝐴𝑚

𝑑(ℎ𝑚 + 𝑧𝑚)

𝑑𝑡
= 𝑄𝑒𝑥 + ∑𝑄𝑖

𝑁

𝑖=1

 (5) 

where, 𝐴𝑚 = horizontal cross-sectional area of node [m
2
]; ℎ𝑚 = water depth at the node 

[m]; 𝑧𝑚 = bottom elevation of the node [m]; 𝑄𝑒𝑥 is the external inflow, when positive, 

to the node (drainage form ground surface, surface runoff, wastewater etc.) or the 

surcharged outflow, when negative, from the node [m
3
s

-1
].  𝑖 = index of node [-]; 𝑁 = 

number of links joining a node [-]; 𝑄𝑖 = discharge flowing from the link to the node 

[m
3
s

-1
]. Details of the governing equations and the solution procedures are described in  

(Djordjević et al. 2004). SIPSON can accommodate multiple-inlets in a single manhole 

by applying the Multiple-Linking-Element (Leandro et al. 2007). 

1D/2D coupling 

We simulate the flow dynamics on overland surface and in sewer networks 

simultaneously by coupling SIPSON and P-DWave models. The two models are 

executed individually and linked by exchanging information obtained at proper 

locations and times for appropriate linkages (Chen et al. 2007). In this study, we assume 

that the grid elements containing manholes are the locations where interactions occur, 

and the time step used in SIPSON is regarded as the timing for the model linkage. 
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The bidirectional interacting discharge is calculated according to the water level 

difference between sewer network and overland surface. The following considers the 

manhole bottom elevation as the referencing datum: ℎ1𝐷 is the pressure head at manhole 

[m],  ℎ2𝐷  is the water depth at ground surface [m], and 𝑧2𝐷  is the ground surface 

elevation above the datum [m].  

Model Linking via Manholes (Model L-M) 

The sewer and surface model are coupled via the flow through manholes, where the 

discharge is calculated using weir or orifice equations. 

 Drainage condition 

When the water level on the ground surface is higher than the water head at the 

manhole, the runoff from the surface flowing into the manhole is determined by either 

the weir equation (Equation (6)), if the pressure head in the manhole is below ground 

surface elevation, or the orifice equation (Equation (7)), if the pressure head in the 

manhole is above the ground elevation. 

𝑄 = 𝑐𝑤𝑃𝑖ℎ2𝐷√2𝑔ℎ2𝐷 (6) 

 

𝑄 = 𝑐𝑜𝐴𝑖√2g(ℎ2𝐷 + 𝑧2𝐷 − ℎ1𝐷) (7) 

 

where, 𝑄  is the interacting discharge, whose positive value means that the flow 

exchange is from surface to sewer (drainage flow) and negative value means that the 

flow from sewer towards overland (surcharge flow) [m
3
s

-1
]; 𝑐𝑤 =  weir discharge 

coefficient [-]; 𝑃𝑖 = weir crest width [m]; 𝑐𝑜 = orifice discharge coefficient [-]; 𝐴𝑖 = 

net area of inlet gaps [m
2
]; 𝑧2𝐷 = ground surface elevation above the datum [m]; ℎ1𝐷 = 

pressure head at manhole [m].  
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 Surcharge condition 

When the hydraulic head in the manhole is higher than the water level on the ground 

surface, the flow in the sewer surcharges to the ground surface via the manhole and the 

discharge is determined by the orifice equation (Equation (8) ). 

𝑄 = −𝑐𝑜𝐴𝑚√2g(ℎ1𝐷 − 𝑧2𝐷 − ℎ2𝐷) (8) 

Model Linking via Manhole and Inlet (Model L-MI) 

The sewer and surface model are coupled via the flow through inlets or pressurized 

manholes. The inlet discharge is calculated using weir or orifice equation and the 

manhole discharge is explained as following. 

 

 Drainage condition 

Same as the drainage condition of Model L-M. 

 Surcharge condition 

For the surcharge condition, the L-MI approach for surcharge condition is improved by 

adding the influence of the manhole cover displacement in the overall flow surcharge. 

In this case, the water head at the manhole is more complex and the details are 

described as following: 

(1) Figure 1a shows the condition that the water level in the manhole is below the 

bottom of the manhole cover, no surcharge is happening. 

(2) Figure 1b shows the condition when the water level in the manhole reaches the 

bottom of the manhole cover, no surcharge is happening but the pressure head 

within manhole will continue to increase. 

(3) Figure 1c shows the case where the pressure head in the manhole reaches the top 

of the manhole cover. The pressure is not high enough to lift the manhole cover, 

but surcharge starts from the connected inlets, if any, which results in the 
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increase of water depth on the ground surface, as shown Figure 1d. The 

surcharge flow is determined by orifice equation (Equation (9)). 

𝑄 = −𝑐𝑜𝐴𝑖√2g(ℎ1𝐷 − ℎ2𝐷 − 𝑧2𝐷) 
(9) 

(4) Figure 1e shows the situation when the pressure head in a manhole reaches 

(ℎ2𝐷 + ℎ𝑐𝑒 + 𝑧2𝐷 − ℎ𝑐); the pressure is about high enough to lift the manhole 

cover up; ℎ𝑐𝑒 =  equivalent head of manhole cover [m]; ℎ𝑐 =  thickness of 

manhole cover [m].  

(5) Figure 1f shows that enough pressure is built-up to lift the manhole cover up by 

a vertical displacement   ℎ𝑉 = ℎ1𝐷 − ℎ𝑐𝑒 − ℎ2𝐷 − (𝑧2𝐷 − ℎ𝑐). Apart from the 

surcharge from the connected inlets, the overflow along the manhole edge, from 

the gap between manhole cover and resting, is also occurring. The total 

surcharge discharge can be determined by Equation (10):  

𝑄 = −𝑐𝑜(𝐴𝑖 + 𝐴𝑔)√2g(ℎ1𝐷 − ℎ2𝐷 − 𝑧2𝐷) 
(10) 

For a manhole cover (without surface carving or keyholes), ℎ𝑐𝑒 can be expressed 

as a function of the cover thickness (Equation (11)) or the cover weight and area 

(Equation (12)).  

ℎ𝑐𝑒 =
𝜌𝑐

𝜌𝑤
ℎ𝑐 (11) 

ℎ𝑐𝑒 =
𝑊𝑐

𝜌𝑤g𝐴𝑐
 (12) 

where, 𝜌𝑐 = density of manhole cover material [kg/m
-3

]; 𝜌𝑤 = density of water 

[kg/m
-3

]; 𝑊𝑐 = weight of manhole cover [N]; 𝐴𝑐 = area of the manhole cover 

[m
2
]. Equation (11) is only applicable for a simple manhole cover plate so the 

equivalent head is in proportion of the manhole cover thickness and the density 

ratio of cover material to water. Often the manhole covers are designed with 
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surface carving or with structural support under the cover, which will change the 

weight of manhole cover significantly and invalidate the assumption of Equation 

(11). Hence, Equation (12) is more generally applicable since it considers the 

manhole weight is uniformly distributed over the cover area regardless of the 

thickness, while both weight and area information are available in the product 

description. 

In theory, the velocity of the surcharge from manhole edge can be determined by 

the orifice equation, assuming the cross-sectional area of flow is the gap 

between the manhole cover and its frame. The discharge is the velocity 

multiplied by the cross-sectional area of the gap. Walski et al. (2011) found that 

the orifice discharge from the gap is very small, and therefore we regard this 

surcharge as a portion of the flow from inlets and neglect the computation of this 

orifice flow.  

(6) Figure 1g shows that the pressure head is high enough to lift the manhole cover 

up by a vertical displacement larger than the thickness of the manhole cover. In 

other words, the gap between the ground elevation and the bottom of the 

manhole cover (i.e., ℎ𝑉 − ℎ𝑐 ) will allow more surcharge from the manhole 

directly and potentially cause horizontal movement of the cover if there is a 

strong surface flow (which is discussed later), or vertical ejection in case of 

strong pressure oscillations due to transient flow in pipes. 

The total surcharge discharge can be determined by Equation (13), where  

𝐵𝑐(ℎ𝑉 − ℎ𝑐) is the cross section area of flow from manhole:  

𝑄 = −𝑐𝑜[𝐴𝑖 + 𝐵𝑐(ℎ𝑉 − ℎ𝑐)]√2𝑔(ℎ1𝐷 − ℎ2𝐷 − 𝑧2𝐷) (13) 

where, 𝐵𝑐 = perimeter of manhole cover edge [m].  
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Case studies 

We implemented the two linkage modelling approaches in two case studies to determine 

the interacting flow between the surface and the sewer systems: 

 Model L-M: ignores the existence of inlets and considers that the manhole cover has 

been removed; it allows the manhole to collect surface runoff and to surcharge 

freely. 

 Model L-MI: considers the inlet and the manhole cover in the linking model, and 

calculates the discharge based on the methodology described in the previous section. 

Each manhole is connected to an inlet that collects the surface runoff and surcharges 

freely until the pressure head lifts the manhole cover up. 

Although multiple-inlets can be considered within SIPSON, for the sake of simplicity 

only single inlets will be applied in this study.  

Hypothetical case study 

The hypothetical study allows us to analyse the subtle differences between the models 

L-MI and L-M in a relatively confined and isolated drainage system with few linked 

manholes. Figure 2a shows the 1500 x 1000 m
2
 surface area consisting of three inclined 

planes each 500m long and with surface slopes 0.002, -0.002 and 0.002 in x-direction, 

respectively, and 0.001 in y-direction. The surface domain was a closed boundary and 

the outlet of the sewer network was the only exit of the flow. A drainage network with 

11 nodes and 10 pipes was designed to cope with the runoff produced by rainfall up to 

10mm/h intensity. The diameters of pipes varied from 0.75 to 1.95m. We applied a 6 

hour rainfall event with rainfall intensity starting from 0 to 20mm/h in the first hour, 

kept constant for four hours, and decreasing to zero in the sixth hour. We simulated 12 

hours with the hydraulic modelling to allow surface inundation to recede. The rainfall-

runoff hydrographs were calculated by the runoff module in SIPSON (Khu et al. 2006) 
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and introduced as inflows at manholes. 

Figure 2b and 2c show the maximum flood depths and extents obtained by 

Models L-M and L-MI, respectively. Figure 2d shows the differences in flood depths 

between both models. The simulated flood depths in L-MI in the area near the 

downstream outlet were about 0.05-0.10 m higher than the ones in L-M. Figure 3 shows 

the discharge hydrograph for each manhole, where positive represents surcharge 

(outflow) and negative represents discharge (drainage). Figure 4 shows the surcharge 

from the inlet or the manhole cover of each manhole in L-MI. 

Real world case study 

The real world case study allows us to analyse the differences between the Models L-

MI and L-M in a real drainage system, where the interplay between multiple surcharged 

manholes is unrestrained and can potentially lead to the amplification of differences 

between the results due to the two linking models. The study area selected is Keighley 

(Bradford, UK), as detailed in Figure 5a, bounded by the River Aire and its tributary in 

the north and the east, respectively, Aire Valley Road (A650) in the south and Bradford 

Road (B6265) in the west. The digital elevation model (DEM) with buildings was 

obtained from the Light Detection and Ranging (LiDAR) data at 1m horizontal grid 

resolution, and 2m x 2m grids were subsequently used for the overland flow 

simulations. Figure 5b indicates that the ground surface elevation varies from 95m in 

the southwest to 83m in the northeast. The top elevation of levees along the River Aire 

was raised to 10 cm above 100 year flood level after a fluvial flooding event in 2000. 

The sewer network, containing 91 nodes and 91 pipes, carries the flow towards the 

waste water treatment plant in the south-east, where a flap valve exists to prevent 

reverse flow from the river channel. The diameters of pipes varied from 0.1 m for 
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upstream gullies to 1.5m for downstream main trunks. The labels represent the index of 

selected manholes that will be further discussed in the later section. Details of manholes 

inside the orange dash-lined area are zoomed-in and shown in the box at the top-left 

corner. 

Two main sewer trunks collect runoff from the north-west and the south-west 

upstream catchments and merge in the area. The discharges from these two main trunks 

were added to the sewer network as upstream inflow boundary condition. Apart from 

the two upstream inflow nodes (the upstream nodes of nodes 25 and 62) and the three 

downstream nodes (the node at the bottom-right and its downstream) that are outside the 

2D modelling domain, 85 nodes are coupled with the 2D grid cells to allow flow 

exchange between surface and subsurface systems. A pluvial event of 20 year return 

period rainfall of 60 minutes duration with a constant intensity 26 mm/h, was applied to 

the catchment to analyse the performance of the 1D/2D model. Since we are dealing 

with a densely urbanized area and a short-duration high-intensity pluvial event, 

interflow and groundwater flow can be neglected deeming the effective rainfall equal to 

the total rainfall. Dry weather flow is also neglected given its reduced significance when 

compared with runoff from a 20 year return period rainfall event. 

Figures 5c and 5d show the modelled maximum flood depth and extent obtained 

by L-M and L-MI. Overall the modelled flood extents and depths are similar. Figure 5e 

shows the difference of flood depths between both results. 

Figure 6 shows the discharge hydrographs for the manholes labelled in Figure 

5a, where positive represents surcharge and negative for discharge. Figure 7 shows the 

surcharge from the inlet or the manhole cover of the labelled manhole in Model MI. 
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Discussions 

Hypothetical case study 

For the hypothetical case, the flood extent and depths are almost the same for Models L-

M and L-MI in the upstream depression. L-M had higher surcharge flow for nodes 1, 2, 

4, 8, 9 and 10 because the weight of the manhole cover is not considered. Thus the 

surcharge can overflow directly from the manhole, which has a larger area and 

perimeter than the inlet connected to the manhole. Nevertheless, the built-up pressure of 

manholes in L-MI manages to increase the flow rate to a close range of the ones in L-M. 

So the differences of flow rate between the two models are not as large as perhaps 

expected. 

The surface runoff returns to the sewer via nodes 6, 7, 8 and 9. There is no or 

very little surcharge from nodes 6 and 7. For nodes 8 and 9, which are located in the 

upstream depression area, the runoff drained back to the sewer during the second half of 

simulation. The manhole covers prevent the surface runoff returning to the sewer 

system. Since the water above the crest elevation of the upstream depression can 

overflow to downstream, the maximum flood depth in the depression is limited in both 

models. Therefore, L-MI produces higher flood depths only in the area near the 

downstream outlet. 

Real world case study 

For the real world case, the result of Model L-MI is quite different from Model L-M. 

Model L-MI has higher maximum flood depths near the surcharged manholes close to 

the entrance of upstream trunks. Consequently, the depths in the downstream areas of 

those pipes are lower than the ones from Model L-M because of the reduced surcharge. 

The main differences can be seen in several areas. The orange-coloured areas near 
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nodes 49 and 70, L-MI flood depths are about more than 0.1m, and 0.01-0.05 m higher, 

respectively, than L-M which are due to the slightly higher surcharge at nodes 49 and 

70. Although L-M has higher surcharge at node 47, most of the runoff propagates west 

towards nodes 22 and 46, only limited volume accumulated in the south area next to 

node 47, where has less drainage in L-MI later. Hence, L-MI flood depth is 0.01-0.05 m 

higher. 

For the green-coloured area near nodes 22, L-MI produces 0.01-0.05 m smaller 

flood depths because of the slightly lower surcharge rate at nodes 22, 25, 39, 44, 46 and 

47. Although node 36 has a lower drainage rate in L-M, the order of magnitude is less 

than the reduced surcharged from other nodes, it did not result in the increase of flood 

depth and extent in L-MI.  

In L-M, 54 manholes are surcharged during the simulation, while in L-MI 55 

manholes are surcharged because the rainfall intensity is higher than the designed 

capacity. Most of the surcharged flow ponds are in the low-elevation downstream area 

near the River Aire and cause serious flooding. The inflow from the upstream 

catchment also results in surcharge conditions in the western part of the modelling 

domain and the surface water is ponded in a local depression. 

Out of the 55 surcharged manholes in L-MI, only 44 have a pressure high 

enough to lift up the manhole covers, and most of them are along the two main trunks 

carrying the flow from the upstream catchments into the domain. The higher discharges 

allow the pressure along the main trunks to build up. The pressure in other surcharged 

manholes is only sufficient to push the flow out of the sewer system to the ground 

surface, but not enough to lift the manhole cover up. For nodes 33, 36 and 70, L-MI has 
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a higher surcharge flow rate than L-M because the built-up pressure in the manhole 

increases the flow rate surcharged from inlets. 

Finally it should be added that aside from local reports about recurrent flooding 

in this particular area, we do not have discharge data from manholes and inlets to 

validate the results. Indeed this is often the case because real field observation of inlets' 

discharge is not practiced by the water utilities and overall field observations of intense 

short-duration rainfall is hazardous to obtain (Leandro et al. 2011). 

Future work 

Figure 8a shows the situation that the lifted manhole cover may be pushed aside if the 

surface flow is strong enough. The area is decreased due to the horizontal displacement, 

which in turn reduces the total lift force acting on the manhole cover up till the point 

that the bottom of manhole cover reaches the ground surface (Figure 8b). This condition 

is not considered in this paper because of the complexity of the hydrodynamic 

phenomena involved which requires further research. Future work will sought to 

replicate manhole cover displacement in controlled laboratory experiments to calibrate 

the discharge coefficients  𝑐𝑤 and 𝑐𝑜. We will also consider how to take into account 

any effects of air trapped in a manhole within our methodology.  

Conclusions 

We proposed a new approach to link the sewer network and overland flow for dual-

drainage models and tested it in the 1D/2D SIPSON/P-DWave coupled model. The flow 

interactions via inlet and manhole cover are considered in the proposed Model L-MI, 

and compared to the previous approach (Model L-M) that only adopted manholes to 

link sub-surface and surface systems. In L-MI the surcharge is forced to overflow via 

the inlets which have a smaller cross-sectional area that constrained the discharge, while 
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in L-M the surcharge can freely overflow via the manhole without being obstructed by 

the cover weight. Therefore, and although the built-up pressure head of the manhole in 

L-MI increases the discharge rate momentarily, the surcharge flows in L-MI are still 

slightly lower than the ones in L-M. L-MI predicted lower surface flood depths than L-

M. For the latter, the surface flow entered the sewer system via manholes directly which 

is rather unrealistic because in reality the runoff is mostly drained through the inlets. 

Thus we believe that the new numerical approach L-MI is better able to describe the 

phenomena than the more standard L-M method. 

Implementation of the proposed model in other 1D/2D models (including 

commercial packages) would be relatively straightforward. The importance of the 

proposed approach is not only in terms of more accurate simulation of urban flooding, 

but also with regard to the potential to minimize the impacts on pedestrians and on 

traffic – e.g. by analysing critical manholes that are more likely to be left without a 

cover and when health impacts of flooding are assessed via modelling of concentrations 

of raw sewage on streets. 
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Figure 1 The transition progress for the sewer flow to surcharge from inlet and manhole 

to water level with manhole below the ground surface and to lift the manhole cover 
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Figure 2 (a) The terrain and the sewer network , (b) the maximum flood depth simulated 

by Model L-M and (c) Model L-MI, and (d) the difference in simulated maximum flood 

depth between Model L-M and L-MI  (Model L-MI minus Model L-M) for the 

hypothetical case study 

  



Please cite: A. S. Chen, J. Leandro, S. Djordjević, 2015, Modelling sewer discharge via 
displacement of manhole covers during flood events using 1D/2D SIPSON/P-DWave dual 
drainage simulations, Urban Water Journal. DOI:10.1080/1573062X.2015.1041991 

     

Node 1 Node 2 Node 3 Node 4 Node 5 

     

Node 6 Node 7 Node 8 Node 9 Node 10 

Figure 3 The surcharge (positive) and drainage (negative) hydrograph of nodes from L-

M and L-MI of the hypothetical case study 
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Figure 4 The surcharge from inlet (Qi) or from lifted manhole cover (Qm) in Model L-

MI of the hypothetical case study 
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(e)  

Figure 5 (a) The street map and the boundary, (b) the sewer network system and the 

terrain elevation, (c) the modelled maximum flood depth of 20-year event using Model 

L-M and (d) Model L-MI, and (e) the difference of modelled maximum flood depth 

between two modelling approaches (Model L-MI minus Model L-M) for the real world 

case study  
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Figure 6 The surcharge (positive) and drainage (negative) hydrograph of nodes from 

Model L-M and L-MI for the real world case study 
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Figure 7 The surcharge from inlet (Qi) or from lifted manhole cover (Qm) in Model L-

MI for the real world case study 
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Figure 8 Manhole cover being pushed aside, vertical displacement hV decreases due to 

reduced lifting force  

 

 


