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Abstract

In a class of informed principal problems with common values often used in
applications we de�ne a particular mechanism which we call the assured allocation.
It is always undominated, i.e. e¢cient among the di¤erent types of the principal.
We show it is a perfect Bayesian equilibrium allocation of the three-stage game
studied in Maskin and Tirole (1992) that coincides with the Rothschild-Stiglitz-
Wilson allocation when the latter is undominated. Under familiar conditions on
hazard rates we show that the assured allocation is a neutral optimum in the sense
of Myerson (1983).
Keywords: Neutral optimum, mechanism design, informed principal
JEL classi�cation: D82, D86

1 Introduction

Informed principal problems are adverse selection problems where the principal, who
proposes a contract to an agent, has private information. Important examples are given
by �rms with private information about projects who seek �nance from competing lenders
or by managers with private information who have bargaining power when dealing with
shareholders. Informed principal problems are conceptually harder to understand than
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Game Theory World Congress 2008 for comments and helpful discussions prior to this draft. The usual
disclaimer applies.
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models where only the agent has private information because the contract proposed by
the principal could potentially be a signal about the principal�s knowledge.
The purpose of this paper is to draw connections between two major contributions

on this subject, namely the work by Myerson (1983) and by Maskin and Tirole (1992).
Myerson characterizes a �neutral� optimum, which is constructed in such a way that
no private information can be revealed by the proposal itself. His approach is in part
cooperative. In a more restrictive setting Maskin and Tirole (1992) and Maskin and
Tirole (1990) characterize the perfect Bayesian equilibria of a contract-proposal game
where the agent does not have any private information.
We are primarily interested in the case of common values. We will work here with

the framework of Maskin and Tirole (1992), assuming, in addition, quasi-linear payo¤s
and certain sorting conditions. We construct in an inductive fashion, resembling the
construction of the RSW (Rothschild-Stiglitz-Wilson) allocation in Maskin and Tirole
(1992), Proposition 2, a unique mechanism which we call the assured allocation. The
mechanism can be understood as a solution to a principle-agent problem where the outside
option varies with the type, as in Jullien (2000). In our case the outside options are,
however, de�ned endogenously.
The assured mechanism is shown to weakly Pareto dominate for the di¤erent types

of the principal the RSW allocation. In consequence, it is always a perfect Bayesian
equilibrium outcome of their contract-proposal game. When the RSW is undominated,
i.e. e¢cient among the di¤erent types of the principal, the assured mechanism is the RSW,
otherwise it is one of many perfect Bayesian equilibrium outcomes.
When the RSW is undominated it is a strong solution in the sense of Myerson (1983),

and, hence, strong solution, neutral optima, the RSW allocation and the assured mech-
anism all coincide. We also show that the assured mechanism is undominated (in the
terminology of Myerson) or interim e¢cient (in the sense of Maskin and Tirole).
We do not know how the assured mechanism and neutral optima relate in the presence

of bunching. If bunching occurs then our iterative approach may possibly be inappropriate
to capture neutral optima, which are de�ned as solutions to limits of rather involved �xed
point problems. However, under familiar conditions on hazard rates that rule out bunching
or generally if there are only two types, we can show that the assured mechanism is indeed
a neutral optimum. Whether there are other neutral optima when there are more than
two types is an open question.
Assured mechanisms may not be robust as they rely on the principal knowing the

prior beliefs of the agent about the principal�s type. In this paper the emphasis is,
following Myerson, on the e¢ciency properties of the mechanisms studied. Obviously an
understanding of the robustness properties of mechanisms and how this interacts with
e¢ciency is very important. However, it is out of the scope of the current work and must
be left for future research. It is worth emphasizing that such a task may not be merely
a direct application of the results recently derived in Bergemann and Morris (2005),
Bergemann and Morris (2008) and the literature they cite. The reason is that in our
framework the designer herself has private information. Therefore, on the one hand, an
o¤ered mechanism may have some informational content and, on the other hand, the type
space of the agent will include her prior beliefs about the principal�s payo¤ type, and the
type space of the principal will include the prior beliefs of the principal about the agent�s
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prior beliefs.
In the case of independent values (see Maskin and Tirole (1990)) it is typically possible

to �nd undominated mechanism which are also ex-post e¢cient, at least when utilities
are quasi-linear. For this case we refer to the recent work of Mylovanov and Troeger
(2007) and the literature they cite. We know only of a few other applications of the
neutral optimum (Myerson (1983)) or the neutral bargaining solution (Myerson (1984)).
Both the discussion of the lemon problem in Myerson (1985) and the extended liability
problem discussed in Balkenborg (2006) are common value problems. Both problems
do not fall into our framework. Applications to bargaining problems with two-sided
incomplete information are given in Myerson (1984) and Darrough and Stoughton (1989).
The organization of the paper is as follows. In Section 2 we provide in a representative

example a simple geometric analysis of the RSW, the neutral optimum and the assured
allocation for the case of two types. In Section 3 we describe the general model and the
weakest assumptions for which we know our analysis to hold. Section 4 discusses a number
of central concepts, including interim e¢ciency, the Rothschild-Stiglitz-Wilson allocation,
the neutral optimum and the assured allocation. The �rst part of Section 4 is devoted to
a detailed study of assured allocations, in particular their uniqueness. In the second part
we state our main results. Section 5 provides the proof that the assured allocation is a
neutral optimum under no-bunching conditions. Section 6 concludes.

2 An illustration for the two-types case

Wewill be focusing on a model of bilateral trade between a producer and a buyer, when the
producer�s cost-e¢ciency is her private information. While being seemingly very special,
this model is representative of a wide range of models used in the literature to investigate
the problems of monopoly regulation (see Baron and Myerson (1982)) and nonlinear pric-
ing (see Maskin and Riley (1984)), and study �nancial contracts (see, for instance, Freixas
and La¤ont (1990)) and quality and price discrimination (see, for instance, Mussa and
Rosen (1978)). Maskin and Tirole (1992) also give many examples of informed principal
problems. The modeling used here �ts for their case of managerial compensation. It is, in
principle, the model used in the textbook La¤ont and Martimort (2002), except that we
also consider the case of common values. The de�ning characteristics of the framework
that encompasses our and the aforementioned models will be outlined shortly.
For concreteness, let us consider here the example of an uninformed �rm owner and an

informed manager. For this section only, we assume speci�c revenue and cost functions
to �x ideas. However, the analysis remains valid for arbitrary revenue and cost functions
satisfying the assumptions in Section 3.
The owner and the manager are assumed to be risk neutral. The manager produces

an output q � 0 which yields to the owner a revenue

S (q; �) =

q

��q

where � � 0 and � > 0 are scalars. The production cost, incurred by the manager, is

C (q; �) =
1

�
q:
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Thus, � denotes the cost-e¢ciency of the manager, which is private information to him.
� = 0 captures the case of private values, while � > 0 captures the case of common values.
In the latter case, cost-e¢ciency is positively related with the owner�s valuation.
Assume that there are only two types � 2 f�1; �2g with �2 > �1; and let si = Pr(� = �i)

be the prior probability of type �i. s1 (and hence s2 = 1� s1) is assumed to be common
knowledge. We denote the surplus from producing q when the cost-type is �i (i 2 f1; 2g)
by

Wi(q) = S (q; �i)� C (q; �i) :

Let the �rst-best production level for type � = �i be

qoi � argmax
q�0

Wi(q) =
1

4
�2+�i :

The owner and the manager have to agree on a compensation t � 0 and a production level
q. Because of the concavity assumptions we are making we can ignore randomization in
the contract. It su¢ces hence to consider only option contracts where the owner and the
manager agree on a pair of options ((t1; q1) ; (t2; q2)). Hereby ti denotes the compensation
to the manager for producing output qi; i = 1; 2: Once the contract is agreed, the manager
can select any of the two options: either the option (t1; q1) designed for type 1 or the option
(t2; q2) designed for type 2. We assume that the owner cannot renege on the contract after
he has observed which option the manager takes. Under such a contract, if both types
select the option designed for them, then the payo¤ of the owner upon facing a manager
of type �i will be

�i = S(qi; �i)� ti;

and the payo¤ of the manager of type �i will be

Ui = ti � C(qi; �i):

We will assume that the owner and all types of the manager have the same outside option,
which is normalized to zero.1

Let now ŝi be the posterior probability of type �i as it is perceived by the owner
given the observed behavior of the manager during the negotiation of the contract. To
be (interim) individually rational (given posterior beliefs about the manager�s type), the
agreed contract must satisfy the participation constraints U1 � 0; U2 � 0 and

2
X

i=1

ŝi�i =

2
X

i=1

ŝi(Wi(qi)� Ui) � 0:

That is, the manager and the owner prefer to reach an agreement rather than take up
their outside option, given the posterior beliefs.
The Revelation Principle allows us to restrict attention to incentive-compatible con-

tracts. De�ne
U j
i = tj � C (qj; �i)

1We assume that all types of the manager have the same outside option. Therefore, our model cannot
be used to investigate the problem of a monopolist insurer (see Stiglitz (1977)) or of franchising (see
Maskin and Tirole (1992)). We also assume that the owner is a monopolist and hence our model cannot
be used to investigate the problem of a competitive insurance market (see Rothschild and Stiglitz (1976)).
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for all i; j 2 f1; 2g. Then incentive-compatibility requires

U i
i � U j

i

to hold for any i; j = 1; 2; i 6= j. Equivalently, since U i
i = Ui; this can be expressed as

U1 � U2 �  1(q2); and (1)

U2 � U1 +  1(q1); (2)

where

 1(q) � C(q; �1)� C(q; �2) =
�2 � �1
�1�2

q � ��q

is the cost-gain from being of e¢ciency-type �2 and not of �1: The �rst condition simply
says that the high-cost type prefers the option (t1; q1) - which ensures a payo¤ U1 - over
the option (t2; q2) - which ensures a payo¤ U2 �  1(q2): Similarly, the second condition is
the low-cost type�s incentive-compatibility constraint. We call an option contract feasible
relative to beliefs ŝ if it is individually rational given beliefs ŝ and incentive compatible.
When beliefs coincide with priors, i.e. ŝ = s; then we will be referring to such contracts
simply as feasible contracts.
For later use, let us de�ne here the owner�s ex post individual-rationality constraints

as
�i = Wi(qi)� Ui � 0; for i = 1; 2: (3)

For the analysis it is convenient to work with a �reduced� form of the model where the
transfers ti are eliminated. We rede�ne an option contract as

m � (m1;m2) = ((U1; q1); (U2; q2))

with the implicit understanding that in equilibrium each type selects the contract designed
for himself and obtains the transfer ti = Ui + C (qi; �i).
At this stage, we can highlight why our model is representative of the models we

mentioned above. First, in all these models, the surplus and the �rst-best production
levels are both either increasing or decreasing in the type of the informed party. In our
case, we haveW2(q) > W1(q) for q > 0 and q

o
2 > qo1: Second, if the option contract dictates

�rst-best production for each type and that all types break even, then the informed party
does not have an incentive to mimic a type with higher �rst-best surplus, while she does
have an incentive to mimic a type with lower �rst-best surplus. That is, in terms of our
model here, when U1 = U2 = 0 we have that U2 � U1 <  1(q

o
1) and U2 � U1 �  1(q

o
2):

Note that this is true in our model.
In this paper we analyze the case where one party, namely the manager, has full

bargaining power, and hence o¤ers to the other party an option contract m in a take-or-
leave-it manner. It will be instructive, however, to compare this case with the standard
case where the principal is the uninformed party.
We are hence comparing two versions of the following 3-stage game (see Maskin and

Tirole (1992)). After nature has determined the type of the manager, the principal (the
party with the full bargaining power) proposes an option contract. Then the agent (the
party without bargaining power) can accept or reject the contract. If it is rejected, the
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parties get their outside options. Otherwise the manager chooses an option. In Version 1,
the standard principal-agent model with hidden information (see, for instance, La¤ont and
Martimort (2002) Chapter 2), the principal is the uninformed owner and hence ŝi = si,
i = 1; 2. In Version 2 the principal is the informed manager.
For Version 1, it is well-known that the owner-optimal, full-information contract

mO =
�

(UO
1 ; q

O
1 ); (U

O
2 ; q

O
2 )
�

= ((0; qo1); (0; q
o
2))

is not incentive-compatible. The reason is, as we have seen above, that the manager prefers
to choose the option (0; qo1) regardless of her cost-type: in this way, the low-cost manager
will attain information rents U12 =  1 (q

o
1). For any given �; the feasible mechanism

which maximizes the pro�t of the owner, ( �m1; �m2), leaves the high-cost manager with zero
pro�ts, i.e. �U1 = 0; and gives the low-cost manager an informational rent which leaves him
indi¤erent between the two options, i.e. �U2 =  1 (�q1) : Furthermore, the low-cost manager
produces the �rst-best level, �q2 = qo2; while the high-cost manager underproduces, i.e.
�q1 < qo1: The high-cost manager�s output balances the trade-o¤, in terms of the owner�s
expected (given prior beliefs) payo¤, between lower information rents for the low-cost
manager and higher output distortion.2

The analysis changes dramatically in Version 2 when the informed party becomes the
principal. Start with the case of private values, � = 0, where S (q; �) does not depend on
�: In this case, the manager-optimal, full-information contract

mM =
�

(UM
1 ; q

M
1 ); (U

M
2 ; q

M
2 )
�

= ((W1(q
o
1); q

o
1); (W2(q

o
2); q

o
2))

is always incentive-compatible. E¤ectively the contract allows each type to choose the
output he or she wants to produce and to keep all the proceeds. Note that under this
contract the owner breaks even regardless of the type he faces. This is the unique perfect
Bayesian equilibrium outcome in the three-stage game where the manager is the proposer
(see Maskin and Tirole (1990), Maskin and Tirole (1992)). The contract is illustrated in
the �gure below.
Consider next the case of common values, � > 0, which is the focus of our work. Still,

as long as W1(q
o
1) � W2(q

o
2) �  1 (q

o
2) holds, the manager does not have an incentive to

pretend that she is of a di¤erent type.3 mM remains the perfect Bayesian equilibrium
outcome.
We consider now the case W1(q

o
1) < W2(q

o
2) �  1 (q

o
2) that arises for su¢ciently high

� and su¢ciently low ratio of cost-types �2
�1
: In this case, the manager-optimal, �rst-

best contract is no longer incentive compatible. Now, there are two di¤erent subcases,
depending on the prior probabilities si, i = 1; 2. To discuss this case, we need a number

2Formally, �q1 = argmax
q�0

fs1W1(q1)� s2 (q)g: That is, in our example, �q1 =
1

4
��
1

(
s2
s1
��+ 1

�1
)2
:

3The inequality in the main text guarantees that the high-cost type does not want to mimic the
low-cost type. Note also that W2(q

o
2) � W1(q

o
1) +  (qo1) due to S(�2; q

o
2) � S(�2; q

o
1) > S(�1; q

o
1) and

C(�2; q
o
2) � C(�2; q

o
1): So, the low-cost manager prefers the option designed for her type,

�

UM2 ; qM2
�

:
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of additional concepts (see Myerson (1983) and Maskin and Tirole (1992)).
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Figure 1.

In the private value case, S (q; �) is independent of � (� = 0).
The manager-optimal, �rst-best contract is incentive compatible, as
is indicated by the linear indi¤erence curves I1 and I2 for the two
types. (Each type would prefer contracts above his indi¤erence curve.)

A feasible contract is undominated if it is not dominated in the Pareto sense, from the
point of view of the two types of the manager, by another feasible contract. A mechanism
is safe if it is incentive compatible for the manager and ex post individually rational for
the owner. Note that a safe mechanism is also feasible. A mechanism is a strong solution if
it is safe and undominated. For instance, the manager-optimal, full-information contract
is a strong solution if and only if it is incentive compatible. A mechanism is an RSW
(Rothschild-Stiglitz-Wilson) allocation (relative to the outside options) if it maximizes for
each type of the manager his utility subject to the incentive-compatibility constraints of
all types and subject to the ex post participation constraints of the owner. Note that the
RSW allocation is a strong solution if and only if it is undominated.4

In our set-up here we have directly that the RSW allocation is given by the full
information contract mM if the latter is incentive-compatible. So, if the manager-optimal,
full-information contract is incentive-compatible, then this contract coincides with the
RSW allocation. Therefore, the latter is also a strong solution.
However, if mM is not incentive-compatible, then the RSW allocation mRSW is given

by
mRSW
1 =

�

URSW
1 ; qRSW1

�

= (W1(q
o
1); q

o
1)

4Note also that the notion of an undominated contract and, as we will see shorty, of the neutral
optimum depends, in contrast to the notion of an RSW allocation, on the prior probabilities si.
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and
mRSW
2 =

�

URSW
2 ; qRSW2

�

=
�

URSW
1 +  1

�

qRSW2

�

; W�1
2

�

URSW
2

��

(see Maskin and Tirole (1992), Proposition 2). That is, the high-cost manager attains her
best full-information option, while the low-cost manager�s option is such that the high-cost
type is indi¤erent between the two options and the owner makes zero pro�ts from each
and every type. Note that at the option mRSW

2 we have qRSW2 > qo2: The following Figure
illustrates.
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Figure 2 The RSW allocation

In this case with common values the manager-optimal �rst-best

contract is not incentive compatible.

The RSW is an important allocation. Maskin and Tirole (1992) Theorem 1 show, for
our set-up, that a feasible mechanism is a perfect Bayesian equilibrium (PBE) outcome
if and only if it gives each type of the manager at least his payo¤ in the RSW allocation.
Therefore, if the RSW allocation is undominated, then it is the only perfect Bayesian

equilibrium allocation. However, the RSW allocation can be dominated. In this case,
then, there is multiplicity of PBE.
We show that a neutral optimum, as de�ned by Myerson (1983), is a feasible mech-

anism that weakly dominates the RSW allocation, and hence it is always a PBE. By
de�nition, the neutral optimum is undominated.
To �nd the neutral optimumwe must �rst determine the set of all undominated feasible

allocations. For each of these allocations Myerson (1983) de�nes so-called �warranted
claim� vectors that are essential in the calculation of the neutral optimum. These are
determined simultaneously with the undominated mechanisms.
We can �nd the undominated option contracts by maximizing for given weights � 1; � 2 �

0; � 1 + � 2 > 0; the weighted sum of utilities

� 1U
1
1 + � 2U

2
2
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subject to the incentive constraints for the two types of the manager and the participation
constraint for the owner. Without loss of generality we can assume � 1 + � 2 = 1.
The Lagrangian for this problem is, with the appropriate Lagrange multipliers �12,

�21 and ;

L = � 1U
1
1 + � 2U

2
2 + �12

�

U11 � U21
�

+ �21
�

U22 � U12
�

+  (s1�1 + s2�2)

= s1V S1 + s2V S2

where, for fi; jg = f1; 2g, j 6= i;

V Si =
1

si

��

� i + �ij
�

U i
i � �jiU

i
j + si�i

�

are the so-called virtual surpluses for the two types. The relevance of the virtual surpluses
becomes clear if we write them explicitly, using the de�nitions for U j

i ; i; j = 1; 2; and that
�i = Wi(qi)� Ui; as

V S1 =
1

s1
((� 1 + �12 � �21 � s1)U1 + (s1W1 (q1)� �21 1 (q1)))

V S2 =
1

s2
((� 2 + �21 � �12 � s2)U2 + (s2W2 (q2) + �12 1 (q2)))

Thus V S1 depends only on U1 and q1, and V S2 only on U2 and q2. Maximizing the
Lagrangian is (for given Lagrange multipliers!) the same as maximizing each virtual
surplus separately. The �rst-order conditions for an optimum are hence

s1
@V S1
@U1

= � 1 + �12 � �21 � s1 = 0 (4)

s2
@V S2
@U2

= � 2 + �21 � �12 � s2 = 0 (5)

s1
@V S1
@q1

= s1W
0
1 (q1)� �21 

0
1 (q1) = 0 (6)

s2
@V S2
@q2

= s2W
0
2 (q2) + �12 

0
1 (q2) = 0 (7)

As usual, the complementarity conditions must hold and the Lagrangian multipliers must
be non-negative. Summing the �rst-order conditions (4) and (5) gives, since � 1 + � 2 = 1,
that  = 1. This implies, by the complementarity conditions, that the participation
constraint of the owner must be binding.
Before continuing with the more detailed description of the optimal solution we note

that Myerson (1983) associates with each pair of strictly positive utility weights (� 1; � 2)
a vector of warranted claims (!1; !2) de�ned by

(� 1 + �12)!1 � �21!2 = s1V S
�
1 (8)

(� 2 + �21)!2 � �12!1 = s2V S
�
2 (9)

where V S�i (i = 1; 2) is the virtual surplus, and �12, �21 are the Lagrange multipliers, in
the optimal solution. Clearly, this simultaneous system of equations has a unique solution.
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We discuss the interpretation of the warranted claims further below. At the moment our
aim is to determine them simultaneously with the optimal solution for the given weights.
Notice that

� 1!1 + � 2!2 = s1V S
�
1 + s2V S

�
2 = L

� = � 1U
�
1 + � 2U

�
2 (10)

where L� is the value of the Lagrangian at the optimum and hence, by the complementarity
conditions, equal to the value of the objective function at the optimum, � 1U

�
1 +� 2U

�
2 . The

following Figure 3 illustrates the Pareto frontier, i.e. the utility allocations in undominated
mechanisms, for the two types of manager. Several tangents corresponding to di¤erent
utility weights are drawn. The two dotted lines intersect in the manager-optimal, �rst-best
allocation, which is not feasible in the example shown. The intersections of the tangents
with the two dotted hal�ines is here the set H of warranted claim vectors.

0.36

0.37

0.38

0.39

0.4

0.24 0.26 0.28 0.3 0.32 0.34
U1

U2

Figure 3

The warranted claim allocations for a particular Pareto frontier.

While the participation constraint of the owner is always binding in an undominated
mechanism, we must distinguish three cases for the incentive constraints of the two types.5

To discuss these cases denote with q�i the output of type �i at optimum. The following

5There are four cases a priori concerning which incentive constraint is binding or not. Note that the
incentive constraints can be written as

 (q1) � U2 � U1 �  (q2)

Suppose that both incentive constraints were binding, so  (q1) = U2�U1 =  (q2) and hence q1 = q2 = q

(the option contract is a pooling contract). This is seen to lead immediately to a contradiction with the
�rst-order conditions (6) and (7) given that argmaxq�0 V S1 � qo1 < qo2 � argmaxq�0 V S2.
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Figure 4 shows the extended Pareto frontier associated with the undominated contracts,
as explained below.
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Figure 4

The extended Pareto frontier given a prior.

CASE 1. No incentive is binding and hence �12 = �21 = 0. (4) and (5) imply that
� 1 = s1 and � 2 = s2. (6) and (7) imply that both types produce at their �rst-best levels,
q�1 = qo1 and q

�
2 = qo2. The pair of optimal utilities (U

�
1 ; U

�
2 ) is on the line segment with

slope �s1=s2 given by the binding participation constraint

s1U
�
1 + s2U

�
2 = s1W1 (q

o
1) + s2W2 (q

o
2)

and the incentive constraints, which can be written as,

 1 (q
o
1) � U�2 � U�1 �  1 (q

o
2)

One checks immediately that this is a proper line segment of positive, �nite length. It is
the line segment BC in Figure 4.
Since �12 = �21 = 0 the virtual surpluses and hence the warranted claims are just

the �rst-best surpluses of the two types, !i = Wi (q
o
i ) (i = 1; 2). This case includes the

one we already studied above, where the manager�optimal, full-information is incentive-
compatible and, hence, coincides with the RSW allocation.
CASE 2. Only the incentive constraint U22 � U12 is binding and hence �12 = 0. (4) and

(5) imply that � 1 = s1+�21 � s1 and � 2 = s2��21 � s2. Thus, this case is relevant when
a relatively high utility weight is given on the high-cost type. By (7) the low type�s e¤ort
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level is at its �rst-best: q�2 = qo2. By (6), and given that  1 (q) is increasing, the high type�s
output level is weakly lower than the �rst-best: q�1 = argmaxq�0 fs1W1 (q)� �21 1 (q)g:
Given �21 = s2�� 2; we can �nd the various optima for various utility weights 0 � � 2 � s2
by gradually increasing �21 from �21 = 0 until �21 = s2. Point C in Figure 4 corresponds
to the utility allocation at the optimal solution with �21 = 0, where the low-cost type still
produces �rst-best. By increasing �21 (decreasing � 2), high-cost output falls below the
�rst-best level. Since the incentive constraint

U�2 � U�1 =  1 (q
�
1)

and the participation constraint are binding and since  1 (q) is increasing, as we increase
�21 we necessarily decrease U

�
2 (since U

�
2 = s1W1 (q

�
1) + s2W2 (q

0
2) + s1 1 (q

�
1) and q

�
1 is

decreasing in �21). U�1 ; on the other hand, is increasing insofar �21 � s2 (since U
�
1 =

s1W1 (q
�
1) + s2W2 (q

0
2) � s2 1 (q

�
1)). This yields segment CD in the Pareto frontier in

Figure 4. However, precisely from �21 = s2 onwards U
�
1 is decreasing. Any further

decrease in type 2�s utility U�2 is necessarily associated with a reduction in U
�
1 . We now

have a negative utility weight on the low type and are in the backward bending range
below point D of what we call the extended Pareto frontier in Figure 4. These contracts
are, of course, dominated. Interestingly, note that if �21 = s2; then q

�
1 = �q1:

Associated with an undominated option contract in range CD is the following war-
ranted claims vector. Since �12 = 0 and � 2 + �21 = s2 we obtain !2 = V S�2 = W2 (q

0
2). A

simple geometric argument using (10) shows that !1 � W1 (q
o
1). This means that (!1; !2)

is on the horizontal half line in Figure 3 (and 5).
CASE 3. Only the incentive constraint U11 � U21 is binding and hence �21 = 0. The

analysis is mostly symmetric to CASE 2. (4) and (5) imply that � 1 = s1 � �12 � s1
and � 2 = s2 + �12 � s2. Now, a relatively high weight is given on the low-cost type.
By (6) the low type�s e¤ort level is at its �rst-best: q�1 = qo1. By (7), and given that
 1 (q) is increasing, the high type�s output level is weakly higher than the �rst-best:
q�2 = argmaxq�0 fs2W2 (q)+�12 1 (q)g:Given �12 = s1�� 1; we can �nd the various optima
for various utility weights by gradually increasing �12 from �12 = 0 until �12 = s1. Point
B in Figure 4 corresponds to the utility allocation at the optimal solution with �12 = 0,
where the low-cost type still produces �rst-best. By increasing �12 (decreasing � 1), low-
cost output increases beyond the �rst-best level. Alongside the owner�s participation
constraint, the incentive constraint

U�2 � U�1 =  1 (q
�
2)

is binding. This implies that as we increase �12 we necessarily decrease U
�
1 (since U

�
1 =

s1W1 (q
o
1)+s2W2 (q

�
2)�s2 1 (q

�
2) and q

�
2 is increasing in �12). Initially, insofar �12 � s1; as

we increase �12 we increase U
�
2 (since U

�
2 = s1W1 (q

o
1)+ s2W2 (q

�
2)+ s1 1 (q

�
2)): This yields

segment AB in the Pareto frontier in Figure 4. From �12 = s1 onwards the utility weight
on the low type is negative and U�2 is decreasing. We are in the backward bending range
to the left of Point A of the extended Pareto frontier in Figure 4. The corresponding
contracts are dominated.
Associated with an undominated option contract in range AB is the following war-

ranted claims vector. Since �21 = 0 and � 1 + �12 = s1 we obtain !1 = V S�1 = W1 (q
0
1).

This means that (!1; !2) is on the vertical line U1 = W1 (q
0
1) in Figure 3 (and 5).
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Figure 5 shows how the extended Pareto frontier varies as we vary the probability
on the low cost type from s1 = 1=6 to s1 = 2=3. The latter prior corresponds to the
steeper curve. Because the RSW allocation does not depend on this distribution it is the
intersection of these curves. For s1 = 1=6 the point N is a neutral optimum, as will be
discussed shortly.

0.32

0.34

0.36

0.38

0.4

0.42

0.22 0.24 0.26 0.28 0.3 0.32 0.34

U2

U1

RSW

N

P1

P2

H1

H2

Figure 5

Two extended Pareto frontiers corresponding to di¤erent priors. The

RSW intersects both frontiers. The neutral optimum coincides with the

RSW for the steeper curve, but is di¤erent (point N) for the other.

We are now ready to discuss the neutral optimum.
Let P be the Pareto frontier for the two types of the manager, i.e. the set of utility

pairs (U�1 ; U
�
2 ) in undominated option contracts. De�ne for i = 1; 2

Umaxi = max
(U�1 ;U�2 )2P

U�i .

As we have seen, the set H of all warranted claims allocations is located on the union of
the two line half lines

H1 =
��

W1

�

q01
�

; U2
�

jU2 � max
�

Umax2 ;W2

�

q02
�		

H2 =
��

U1;W2

�

q02
��

jU1 � W1

�

q01
�	
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Let �H be the closure of H. Myerson (1983) characterizes a neutral optimum as an
undominated mechanism that dominates a utility allocation in �H, i.e. that dominates a
limit of a sequence of warranted claims.
Notice that the RSW allocation is on the half-line H1. It is either on segment CA

of the Pareto frontier or on the backward-bending part of the extended frontier. Corre-
spondingly, there are two cases:
a) H1 intersects the Pareto-frontier P; as for the frontier P1 in Figure 5. The point of

intersection is necessarily the RSW allocation, which, hence, coincides with the neutral
optimum.
b) H1 intersects the extended Pareto-frontier in the downward-bending part to the left

of Point A in Figure 4. In this case the RSW allocation is also on the backward-bending
part of the extended Pareto frontier. Here, the neutral optimum is the option contract
that gives the low-cost type the highest payo¤, Umax2 . In Figure 5 point N gives the
neutral optimum for frontier P2.
Before summarizing our results we motivate brie�y the notion of warranted claims in

Myerson (1983): Start with strictly positive utility weights � 1 and � 2 and the associated
optimal contract ((U�1 ; q

�
1) ; (U

�
2 ; q

�
2)). Let us jump out of the model and consider for the

same players and types in the abstract a mechanism that is also optimal with respect to
the same utility weights for the same Lagrange multipliers. Whatever the more general
model is exactly, such a mechanism must de�ne the numbers

��

v11; v
2
1

�

;
�

v22; v
2
1

�

; (�1; �2)
�

where vji is the expected utility to type i if he �mimics� type j and �i is the expected
payo¤ of the owner conditional on facing type i. If the mechanism is optimal with respect
to the same Lagrange multipliers, then, by the complementarity conditions and  > 0; we
have

s1�1 + s2�2 = 0

which means that the participation constraint of the owner is binding. Moreover, �ijv
i
i =

�ijv
j
i ; i 6= j; i; j = 1; 2. The virtual surpluses associated with the abstract contract would

be

V Si =
1

si

��

� i + �ij
�

vii � �jiv
i
j + si�i

�

=
1

si

��

� i + �ij
�

vii � �jiv
j
j + si�i

�

We now ask: what would the utilities (v11; v
2
2) have to be in an abstract mechanism like

the one above to yield the same virtual surpluses as the original optimal mechanism
((U�1 ; q

�
1) ; (U

�
2 ; q

�
2)) and be a strong solution? Since �1 = �2 = 0 in a strong solution,

(v11; v
2
2) has to satisfy the system of equations

�

� i + �ij
�

vii � �jiv
j
j = siV S

�
i for i 2 f1; 2g

The unique solution to this system is called a vector of warranted claims by Myerson
(1983). In that work, he makes it precise in which sense the warranted claims vector
de�nes a strong solution in an arti�cial, extended model where there are more mechanism
available than in the original model. His axiomatic characterization describes the neutral
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optimum as a mechanism that dominates the limit of a sequence of payo¤ vectors in strong
solutions of extended models. His main characterization result describes this condition in
terms of the warranted claim vectors only.
De�ne for the two-type case the assured allocation as the mechanism which maximizes

among all feasible option contracts the expected payo¤ of low-cost type subject to high-
cost type getting at least his �rst-best surplus W 1 (q01) : This de�nition will be extended
for an arbitrary number of types in Section 4. We can now summarize our analysis as
follows.

Proposition 1 The neutral optimum is the assured allocation..

Corollary 1 If the RSW allocation is undominated, it is a strong solution and coincides
with the neutral optimum. Otherwise a neutral optimum dominates the RSW.

We now turn to the case of at least two types and general value and cost functions.
With more than two types the possibility of bunching arises, in which case we do not
know how neutral optima look like for our environment. Moreover, in the more general
set-up, we do not know whether neutral allocations are unique.

3 The Model

A manager (the principal) produces q units of a product at the total cost C (q; �) which
depends on his �type� described by the scalar � belonging to some interval �. Costs and
marginal costs are non-decreasing in q, i.e.

@C

@q
� 0,

@2C

@q2
� 0

for all � and q � 0. Total and marginal costs are decreasing in �, i.e.

@C

@�
(q; �) < 0; if q > 0; and

@2C

@q@�
(q; �) < 0

holds for all �. The latter is a sorting condition that ranks types according to their
marginal utility from trade. It states that higher types value trading with the agent
more.
We restrict attention to the case of �nitely many types �1 < �2 < � � � < �N taken

from �. We denote the probability of type �i, 1 � i � N , by si. Let fi �
Pi

j=1 sj; with
the convention that f0 = 0: The type of the manager is his private knowledge, and the
distribution of types is common knowledge.
The value of the product to the owner (the agent) is S (q; �). The value of the product

is non-decreasing and the marginal value non-increasing in the level of output:

@S

@q
� 0

@2S

@q2
� 0

for all � and q � 0. In the case of independent values S (q; �) is independent of �. We are
here primarily interested in the case of common values and assume that the value of the
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product is non-decreasing in � and its marginal value not decreasing too fast in � and too
slow in q: Moreover, we assume that the value of the product is not decreasing too slow
in q :

@S

@�
� 0

@2S

@q@�
>

@2C

@q@�

@2S

@q2
<
@2C

@q2

and

lim
q!1

f
@S

@q
�
@C

@q
g < 0

for all � and q � 0. We also assume that there are gains from trade and �xed costs are
not too high:

@S(0; �1)

@q
>
@C(0; �1)

@q
S(0; �1) � C(0; �1)

These conditions imply that the participation constraints for the various types of the
principal are never binding in the RSW allocation and the assured allocation discussed
below because high types will not want to mimic lower types and the lowest type will get
at least the �rst best surplus. We can therefore ignore them in the following.

Remark 1 We could drop the assumption that � is an interval and assume that S (q; �)
and C (q; �) are de�ned for � = �1; � � � ; �N only. We would just need to express the
monotonicity conditions without partially di¤erentiating with respect to �.

Remark 2 The model satis�es the Sorting Assumption on page 5 of Maskin and Tirole
(1992), except that we restrict q to be nonnegative. However, even with this restriction,
Propositions 2, 3, 4(a) and 5 of Maskin and Tirole (1992) still hold. Thus, the hypothesis
of their Theorem 1 is satis�ed (see their Remark 3 after their Theorem 1). Proposition 2
and Theorem 1 of Maskin and Tirole (1992) will be used here to yield Propositions 2 and
3 below.

Throughout we will use the notations for the surplus generated from trade between
the agent and a principal of type �i and the cost di¤erence, respectively,

Wi (q) := S (q; �i)� C (q; �i) for 1 � i � N

 i (q) := C (q; �i)� C (q; �i+1) for 1 � i < N

Our assumptions imply that each Wi is a strictly concave function, and that q
o
i �

argmaxq�0Wi(q) exists and is unique and strictly positive and increasing in i: In ad-
dition, Wi (q

0
i ) > 0 for any 1 � i � N and Wi (q

0
i ) is strictly increasing in i:

Moreover, each  i(q) is strictly positive, if q > 0; and a strictly increasing function.
We assume that it is also concave.
A1 :  00i (q) � 0 for all 1 � i < N and q � 0.
We need A1 in order to guarantee that the problem Xn (y) discussed below is convex

for every n and y � 0, and hence has a convex solution set which is described by the
Lagrangian.
We also assume that
A2 : � i (q) +Wi(q) has a unique maximizer for all scalars � � 0 and all 1 � i < N .
Given A2; we obtain that fi�1��

si
 i�1 (q) +Wi (q) has a unique maximizer for all � 2

[0; fi�1]; denoted by qi(�):
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Remark 3 Notice that qi(fi�1) = qoi : Notice also that qi(�) is strictly decreasing in �
whenever qi(�) > 0:

We will also use for Theorem 2 the following assumption:
A3: qi(�) is a strictly increasing function of i for all � 2 [0; fN�1] if qi(�) > 0 :
This condition prevents bunching in certain important mechanisms that will be de�ned

later. A su¢cient condition for A3 is that

@Wi(q)=@q

@ i�1(q)=@q
;
fi�1
si

and
fi�1 � fN�1

si
are strictly increasing in i: (11)

Remark 4 These conditions are very similar to those in Jullien (2000).

Remark 5 To understand the above conditions on the probability distribution function,
note that these are su¢cient for6 fi�1��

si
to be strictly increasing in i for any � 2 [0; fN�1]:

The latter condition in conjunction with the above condition on @Wi(q)=@q
@ i�1(q)=@q

and the con-

cavity properties of Wi(q) and  i�1(q) ensure
7 in turn A3.

The principal and the agent are involved in the following three-stage game �3: First
the principal o¤ers a contract/mechanism to the agent in a take-or-leave-it manner. A
mechanism is a set of announcements for the principal,Mp; and a set of announcements for
the agentMa and an allocation-rule that maps announcements to (possibly lotteries over)
transfer-output pairs. The agent then accepts or rejects the o¤ered contract. If the agent
accepts the contract then the contract is executed: the players choose their announcements
and the associated allocation is implemented. We assume that the principal�s and agent�s
reservation payo¤s are zero.
Following Maskin and Tirole (1992) we focus on �nite simultaneous-actions mecha-

nisms. By the revelation principle for Bayesian games, we have that for any mechanism
o¤ered by the principal and for given beliefs after the contract has been accepted, any
equilibrium of the mechanism corresponds to a truthful equilibrium of a direct revelation
mechanism (DRM). In such a mechanism, the principal simply announces her type, and
given an announcement �i an allocation �i is implemented. This allocation is the same
with the one from the general mechanism. We therefore focus on DRMs.
Given our convexity assumptions we also focus on deterministic mechanisms. A de-

terministic DRM is then an option contract: � � (�i)1�i�N � ((ti; qi))1�i�N . ti denotes
the net8 transfer from the owner to the manager of type �i: For expositional simplicity, let
us refer, hereafter, with some abuse of terminology, to a deterministic DRM as, simply, a
mechanism/contract. Under such a contract, denote the payo¤ of the agent upon facing
a principal of type �i by

�i = S(qi; �i)� ti; (12)

6To see this consider � 2 [0; fN�1] and �x i; j with j > i: Suppose that sj � si: We then have,

by � � 0 and the assumed monotonicity of fi�1
si
; that

fj�1��
sj

� fi�1��
si

> 0: Suppose now that sj <

si: We then have, by � � fn�1 and the assumed monotonicity of
fi�1�fN�1

si
; that

fj�1��
sj

� fi�1��
si

=
fj�1�fN�1

sj
� fi�1�fN�1

si
+ (fN�1 � �)(

1
sj
� 1

si
) > 0:

7This is a direct consequence of the fact that qi(�) is given by
��fi�1
si

= @Wi(q)=@q
@ i�1(q)=@q

if qi(�) > 0.
8Though we allow for net transfers to be negative in the optimal allocations all transfers will be

positive.
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and the payo¤ of the principal of type �i by

Ui = ti � C(qi; �i): (13)

The agent�s participation constraint is

N
X

i=1

ŝi�i � 0; (FPC)

where (ŝi)1�i�N are the posterior beliefs of the agent after the principal has o¤ered an
option contract �: O¤ered a mechanism �, the agent will accept it if and only if the
participation constraint is satis�ed by the o¤ered contract. We will refer to a mechanism
that satis�es the participation constraint as an individually-rational mechanism. An ex
post individually-rational mechanism is a contract that satis�es:

S(qi; �i)� ti � 0 for 1 � i � N: (14)

Moreover, a mechanism � satis�es truth-telling if the following incentive-compatibility
constraints hold:

ti � C(qi; �i) � tj � C(qj; �i) for all 1 � i; j � N: (ICi;j)

We will refer to a mechanism that satis�es truth-telling as an incentive-compatible mech-
anism.
Notice that, after eliminating ti from the agent�s payo¤ upon facing a principal of

type �i; we have that �i = Wi(qi) � Ui: After using the de�nition of Ui; the incentive-
compatibility and participation constraints can be re-written, respectively, as9

Ui � Uj �

j�1
X

v=i

 v(qj) for 1 � i < N; i < j � N; (15)

Ui � Uj +
i�1
X

v=j

 v(qj) for 1 < i � N; 1 � j < i; (16)

N
X

i=1

ŝi(Wi(qi)� Ui) � 0: (17)

We have:

Lemma 1 For a mechanism to be incentive-compatible, it is necessary and su¢cient that

Ui � Ui+1 �  i(qi+1) for 1 � i < N; (18)

Ui+1 � Ui +  i(qi) for 1 � i < N; (19)

qi � qi+1 for 1 � i < N: (20)

9To see how these incentive-compatibility constraints arise note that ti � C(qi; �i) � tj � C(qj ; �i) is
re-written as Ui � Uj + C(qj ; �j) � C(qj ; �i): Notce then that for j > i we have C(qj ; �j) � C(qj ; �i) =
C(qj ; �j)�C(qj ; �j�1) +C(qj ; �j�1) � � � � + C(qj ; �i+1) � C(qj ; �i) = � j�1(qj) � � � �  i(qj): Similarly
if j < i:
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Proof. It follows by usual arguments. Speci�cally, the necessary part is a direct conse-
quence of the de�nition of incentive-compatible mechanisms, the properties of  i(q) and
that the local incentive-compatibility constraints for types i and i+ 1 imply

 i(qi+1) � Ui+1 � Ui �  i(qi):

The su¢ciency part follows from: (a) after forward iteration of Ui � Ui+1 �  i(qi+1)
we have Ui � Uj �

Pj�1
v=i  v(qv+1); with j > i; which, given  0v > 0 and, from qi � qi+1 for

any 1 � i < N; that qv+1 � qj for i � v < j � 1; implies Ui � Uj �
Pj�1

v=i  v(qj); (b) after

backward iteration of Ui +  i(qi) � Ui+1 we have Uj +
Pi

v=j  v(qv) � Ui+1; with j < i;

which, given  0v > 0 and, from qi � qi+1 for any 1 � i < N; that qv � qj for j < v � i;
implies Uj +

Pi
v=j  v(qj) � Ui+1:

From now on we will, unless stated otherwise, use the substitution Ui = ti �C (qi; �i)
and describe a contract as an N -tuple ((Ui; qi))1�i�N � (mi)1�i�N � m.

4 De�nitions and Concepts

4.1 Strong, undominated, interim e¢cient

In Myerson�s framework all constraints are rewritten as incentive constraints. Moreover,
in his model there can be several agents, who can have their own private information.
See page 1772 of Myerson (1983) for how to interpret the given model in his framework.
Adjusting his de�nitions to the way we set up the model here, we have:

De�nition 1 Amechanism is feasible if it is incentive-compatible and individually-rational
relative to prior beliefs (i.e. if ŝi = si for all 1 � i � N).

De�nition 2 A mechanism is interim e¢cient if it is feasible and there does not exist
another feasible mechanism which gives every type of every player at least the same utility
and some types a strictly higher utility.

De�nition 3 A mechanism is undominated if it is feasible and there does not exist an-
other feasible mechanism which gives every type of the principal at least the same utility
and some of his types a strictly higher utility.

Remark 6 An undominated mechanism is called an interim e¢cient allocation in Maskin
and Tirole (1992). For the purpose of this paper it will be more convenient to work with
Myerson�s terminology throughout.

De�nition 4 A mechanism is safe if it is incentive-compatible and ex post individually
rational.

Remark 7 A safe mechanism is feasible because ex-post implies (interim) individual
rationality.
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Remark 8 Myerson�s de�nition is more general because it also applies to models with
several agents who can have their own private information. He requires that the mecha-
nism would have to remain feasible even if the type of the principal would become common
knowledge.

De�nition 5 A mechanism is a strong solution if it is safe and undominated.

Remark 9 The assured allocation, we de�ne shortly, is an undominated mechanism
which, under certain conditions, is not safe.

4.2 Perfect Bayesian Equilibria and the RSW allocation

We will restrict attention to perfect Bayesian equilibria (for a formal de�nition, see page
8 of Maskin and Tirole (1992)) of the three-stage game �3.

De�nition 6 A mechanism ((Ui; qi))1�i�N is an RSW (Rothschild-Stiglitz-Wilson) allo-
cation if it maximizes for each type of the principal his utility subject to the incentive
constraints of all types and subject to the ex post participation constraints of the agent.

Given our assumptions (recall our Remark 2) we can apply Proposition 2 in Maskin
and Tirole (1992) to yield:

Proposition 2 The RSW allocation
��

URSW
i ; qRSWi

��

1�i�N
is the solution to Programs

(RSWn) de�ned inductively for n = 1; � � � ; N as follows:

max
(Un;qn)

Un

subject to

URSW
n�1 � Un �  n�1 (qn) provided n > 1

Wn (qn) � Un

The following proposition is an application of Theorem 1 in Maskin and Tirole (1992)
to our setting (recall our Remark 2).

Proposition 3 A feasible mechanism ((Ui; qi))1�i�N is a Perfect Bayesian equilibrium
allocation of the three-stage game �3 if and only if it gives each type of the principal at least
his utility in the RSW allocation. In particular, if the RSW allocation is undominated,
then it is the only Perfect Bayesian equilibrium allocation.

From the above Proposition, it follows directly that

Corollary 2 The following statements are equivalent:

1. The RSW allocation is undominated.

2. The RSW allocation is a strong solution.
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3. The 3-stage game has a unique perfect Bayesian equilibrium allocation, namely the
RSW allocation.

However, if the RSW allocation is dominated, then, following from the above Propo-
sition, an equilibrium selection problem arises. In this paper, we characterize one PBE
allocation that dominates the RSW allocation. This allocation is undominated, and, in
particular, a neutral allocation as introduced by Myerson (1983).

4.3 The Assured Allocation

This work introduces the assured allocation, which is de�ned in an inductive manner.
We consider a sequence of inductively de�ned optimization problems. Let 1 � n �

N . Suppose the numbers V1; � � � ; Vn�1 have been de�ned and let y � 0. We de�ne a
mechanism (Un

i (y) ; q
n
i (y))1�i�n as the solution to, and the scalar Vn (y) as the maximal

value of, the following constrained optimization problem, referred to as Xn (y):

Vn(y) � max
(Ui;qi)1�i�n

Un

subject to

Ui � Ui+1 �  i (qi+1) for 1 � i � n� 1 (ICi)

qi+1 � qi for 1 � i � n� 1 (MCi)

Ui � Vi for 1 � i � n� 1 (WCi)
n
X

i=1

si (Wi (qi)� Ui) + sny � 0 (PC)

Of particular importance is the case y = 0. We call (Un
i (0) ; q

n
i (0))1�i�n the n-assured

allocation. For n = N we speak for short of the assured allocation. We call Vn � Vn (0)
the assured claim of type n and use it in the de�nition of problems Xj (y), n+1 � j � N .
The assured utility levels Vi are, as we will see, closely related to the warranted claims in
Myerson (1983). We hence call the constraints Ui � Vi the warranted claim constraints.
One way to interpret the assured allocation is to think of the various types of the

principal as players and that the total group of N players is formed gradually by starting
with type/player i = 1 and adding each time a type/player i + 1: Type i + 1 is more
productive than every lower type. Therefore, conditional on, �rst, all lower types receiving
at least as much as they would if they were the most productive types in the group
and, second, incentive-compatibility being maintained, type i+ 1 extracts the maximum
possible surplus from what he has generated. The di¤erence, in our setting, of the assured
allocation from the RSW allocation is that in the latter it is the agent�s ex post, instead
of the interim, participation constraint(s) that must be satis�ed.
For further reference we introduce two related optimization problems de�ned for each

1 � i � n. First, letX�
n(y) be the more constrained optimization problem which is derived

from Xn(y) after adding the downward incentive constraints

Ui+1 � Ui +  i (qi) for 1 � i � n� 1: (DCi)
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The signi�cance of this problem comes from Lemma 1 which ensures that a solution
to X�

n (y) is a feasible mechanism for the informed principal problem with n types and
beliefs sni =

si
s1+���+sn

for 1 � i � n and sni = 0 for n < i.10 Secondly, let ~Xn (y) be the
less constrained problem which is derived from Xn(y) after dropping all the monotonicity
constraints MCi. In both the latter problems the numbers Vi used in the warranted claim
constraints are the maximal values U i

i (0) from the problem Xi (0).
The Lagrangian for the problem Xn (y) ; with the appropriate multipliers �i; �i; �i and

; is (with �n + �n > 0)

L=(�n + �n)Un +

n�1
X

i=1

�i (Ui � Vi) (21)

+
n�1
X

i=1

�i (Ui � Ui+1 +  i (qi+1))

+
n�1
X

i=1

�i (qi+1 � qi)

+ 

 

n
X

i=1

si (Wi (qi)� Ui) + sny

!

:

Notice that (�n + �n) is a weight on the objective function in the Lagrangian and not,
strictly speaking, a Lagrange multiplier. Normally one would set (�n + �n) = 1: However,
if one multiplies in a solution to the �rst-order conditions for the Lagrangian problem all
multipliers, including (�n + �n) ; by the same constant, the optimum is not changed.
Rather than �xing (�n + �n) we can hence �x any positive Lagrange multiplier at a
suitable value. For us it will be convenient to set  = 1, once we have shown that  must
always be positive. This will ease the comparison between the solutions to the problems
Xn (y) and Xk (0) for k < n below. Note thus that �k and �k are determined as Lagrange
multipliers for the problem Xn (y) while only their sum is determined in the problem
Xk (0) :
Using �0 � �0 � �n � 0 we can rewrite the Lagrangian as:

L=

n
X

i=1

�

�i +
�

�i � �i�1
�

� si
�

Ui (22)

+
n
X

i=1

�

�i�1 i�1 (qi) + siWi (qi) +
�

�i�1 � �i
�

qi
�

�

n�1
X

i=1

�iVi + sny:

10Note that (PC) can be rewritten as

n
X

i=1

sni (Wi (qi)� Ui) + s
n
ny � 0:
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The �rst-order conditions for i = 1; � � � ; n are:

�i +
�

�i � �i�1
�

� si = 0

�i�1 
0
i�1 (qi) + siW

0
i (qi) + �i�1 � �i = 0:

Addition of the former over i yields 0 <
Pn

i=1 �i + �n = 
Pn

i=1 si. Hence  > 0 and so
the participation constraint of the agent must be binding

n
X

i=1

si (Wi (qi)� Ui) + sny = 0 (23)

From now on we set  = 1.
Hence the �rst-order conditions for i = 1; � � � ; n become:

�i +
�

�i � �i�1
�

� si = 0

�i�1 
0
i�1 (qi) + siW

0
i (qi) + �i�1 � �i = 0: (24)

Let gi =
Pi

j=1 �j; with g0 � 0. The �rst-order conditions with respect to Ui imply, using

fi =
Pi

j=1 sj, that
�i = fi � gi: (25)

We will denote a solution to optimization problem Xn (y) by (U
n
i (y) ; q

n
i (y))1�i�n and

corresponding multipliers by �ni (y), �
n
i (y), and �

n
i (y) :We also write g

n
i (y) =

Pi
j=1 �

n
j (y).

Notice that gni (y) is non-decreasing in i:
When there is no danger of confusion we will often drop the (y) or even the superscript

n in the solution.

4.4 The neutral optimum

We use here Theorem 7 in Myerson (1983) to de�ne the neutral optima because our
framework does not allow us to introduce his axiomatic characterization. The notion of
a neutral optimum extends that of a strong solution.
Fix weights ~� = (� 1; � � � ; �N) with � i > 0 and

PN
i=1 � i = 1 for the di¤erent types of the

principal. We can then obtain an undominated mechanism by maximizing the weighted
utility

N
X

i=1

� iUi

subject to the participation constraint (17) for the full model in Section 3 and subject to
all incentive constraints ICi;j which can be rewritten as

Ui � Uj �  i;j (qj)

for all i; j; where  i;j (q) = C (q; �j)�C (q; �i).
11 Let  be the Lagrange multiplier on the

participation constraint and let �i;j be the Lagrange multiplier for the incentive constraint
ICi;j.

11We only ignore randomization here for simplicity of the exposition. However, it should be allowed
here to obtain a convex optimization problem. The critical reader may hence prefer to assume that all
 i;j are linear in this section.
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Myerson shows that on the hyperplane

(

(ui)1�i�N

�

�

�

�

�

N
X

i=1

� iui =
N
X

i=1

� iUi

)

one can uniquely identity a point (!i)1�i�N , called the warranted claim allocation, by the
system of equations

 

� i +
X

j

�i;j

!

!i �
X

j

�ji!j = siV Si

where

V Si =
1

si

 

siWi (qi)�
X

j

�ji ji (qi)

!

are the virtual surpluses of each type, where Ui; qi; �ij; 1 � i; j � n; and  are evaluated at
the optimal solution of the problem that determines the undominated allocations for given
weights � i; 1 � i � n.12 In case of a �xed point, (!i)1�i�n = (Ui)1�i�n, the mechanism
(Ui; qi)1�i�n is a strong solution of the given model and hence, according to Myerson
(1983), a neutral optimum. However, to have hope for existence of a �xed point one must
allow for some of the utility weights � i to be zero. If some of the � i are zero the above
de�nition of warranted claims no longer guarantees a unique solution for the warranted
claims. Myerson therefore proceeds by considering a sequence of strictly positive utility
weights ~� � converging to ~� . For each element in the sequence one can calculate the
undominated mechanism

�

(U �
i ; q

�
i )1�i�N

�

��1
which maximizes the weighted utility with

respect to these weights and the corresponding warranted claims
�

(!�i )1�i�N
�

��1
. If there

is an undominated mechanism (Ui; qi)1�i�N such that

lim
�!1

sup!�i � Ui

then (Ui; qi)1�i�N is called a neutral mechanism, regardless of whether it is a strong
solution or not.
Myerson shows that a ��xed point� de�ned in this way always exists in his model

with �nite action spaces. He does this by combining the method to prove existence of
a perfect equilibrium with duality theory and Kakutani�s �xed point theorem. Whether
neutral optima exist for our framework is unknown a priori. We avoid the problem by
constructing explicit candidates and then show that they have the above properties.

5 Properties of assured allocations

In this Section we characterize some properties of the assured allocations. These properties
will be crucial in proving our main results, Theorems 1 and 2, at the end of this Section.

12The warranted claim can be shown to yield a strong solution in an extension of the given model,
which yields the vector of virtual surpluses associated with an undominated allocation.
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5.1 Basic properties

Lemma 2 The participation constraint of the agent is binding in a solution to the problem
Xn (y). Moreover, for each type 1 � i < n either the incentive constraint ICi and/or the
warranted claim constraint WCi is binding.

Proof. Suppose the participation constraint was not binding in an optimum. By increas-
ing all utilities in this contract slightly by the same amount for all types 1 � i � n, we
would obtain another admissible contract for the problemXn (y) which would give strictly
higher utility to type n than in the proposed optimum.
Suppose for some type 1 � i � n � 1 both ICi and WCi are slack. Then one can

obtain a new admissible contract by reducing type i�s utility slightly and increasing the
utility of all types i + 1; � � � ; n such that the participation constraint is not violated and
they all receive the same amount more. This contradicts the optimality of the presumed
solution.

Lemma 3 Suppose type n produces qnn in a solution to Xn (0). Then

Vn+1 � Vn +  n (q
n
n)

and
Wn (q

n
n) � Vn

Proof. Let ((Un
i ; q

n
i ))1�i�n be a solution to the program Xn (0). We have U

n
n = Vn.

Consider now the contract
��

Ûn+1
i ; q̂n+1i

��

1�i�n+1
for the types 1 � i � n + 1 de�ned

by
�

Ûn+1
i ; q̂n+1i

�

= (Un
i ; q

n
i ) for 1 � i � n and

�

Ûn+1
n+1 ; q̂

n+1
n+1

�

= (Vn +  n (q
n
n) ; q

n
n). We

show now that this contract is admissible for the problem Xn+1 (0) and hence Vn+1 �
Vn +  n (q

n
n) follows from the de�nition of Vn+1. To show admissibility notice �rst that

the contract satis�es by construction all incentive constraints ICi, the monotonicity con-
straints MCi and the warranty constraints WCi.
The participation constraint for the agent is also satis�ed. To see the latter, we notice

�rst that Wn (q
n
n) � Vn must hold. For n = 1 this is clear. For n > 1 we would otherwise

obtain from the participation constraint for the problem Xn (0) that

n�1
X

i=1

si (Wi (q
n
i )� Un

i ) > 0.

So ((Un
i ; q

n
i ))1�i�n�1 would be admissible for the problem Xn�1 (0), give utility at least

Vn�1 to type n�1; due to U
n
n�1 � Vn�1 byWCn�1; and have a slack participation constraint

for the agent. However, this means that we have a solution for problem Xn�1 (0) in which
the participation constraint is slack. This contradicts Lemma 2.
We have furthermore that for any q

Wn+1 (q) = S (q; �n+1)� C (q; �n+1) � S (q; �n)� C (q; �n+1)

= (S (q; �n)� C (q; �n)) + (C (q; �n)� C (q; �n+1))

= Wn (q) +  n (q)
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and therefore

n+1
X

i=1

si

�

Wi

�

q̂n+1i

�

� Ûn+1
i

�

=

n
X

i=1

si (Wi (q
n
i )� Un

i ) + sn+1 (Wn+1 (q
n
n)� (Vn +  n (q

n
n))) �

sn+1 (Wn (q
n
n) +  n (q

n
n)� (Vn +  n (q

n
n))) � 0

The above Lemma implies, clearly, that assured claims are weakly increasing.

Lemma 4 Suppose that in a solution (Un
i ; q

n
i )1�i�n to Xn (y) the k-warranted claim con-

straint holds with equality for 1 � k < n. Then

k
X

i=1

si (Wi (q
n
i )� Un

i ) = 0. (26)

and the restricted solution (Un
i ; q

n
i )1�i�k is a solution to Xk (0). If in addition the war-

ranted claim constraint is not binding at k + 1; then we must have qnk < qnk+1, i.e. there
cannot be bunching between types k and k + 1.

Proof. Suppose �rst that
k
X

i=1

si (Wi (q
n
i )� Un

i ) > 0

Then the restriction of the solution ((Un
i ; q

n
i ))1�i�k would satisfy all constraints of the

problem Xk (0) with the participation constraint being slack. Since type k receives Vk
in this solution, (Un

i ; q
n
i )1�i�k is an optimal solution of Xk (0) in which the participation

constraint is slack. This contradicts Lemma 2.
Suppose next that

k
X

i=1

si (Wi (q
n
i )� Un

i ) < 0 (27)

Take a solution
��

Uk
i ; q

k
i

��

1�i�k
for the problemXk (0). Consider the new contract de�ned

by
�

Ûn
i ; q̂

n
i

�

=

� �

Uk
i ; q

k
i

�

for i � k
(Un

i ; q
n
i ) for i > k

We have Un
k = Vk = Uk

k = Ûn
k . Since the participation constraint for Xn (y) is binding

in the optimal contract (Un
i ; q

n
i )1�i�n and since the participation constraint for Xk (0) is

binding in the optimal contract
�

Uk
i ; q

k
i

�

1�i�k
, inequality (27) implies

n
X

i=1

si

�

Wi (q̂
n
i )� Ûn

i

�

+ sny > 0:
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By construction all warranted claim constraints and all incentive constraints ICi are satis-
�ed as well as the monotonicity constraints MCi for 1 � i � n possibly with the exception
of q̂nk+1 � q̂nk , are satis�ed. However, also the latter inequality holds.

To see this, note that, using ICk; and WCk+1 if �+1 < n or Ûn
n = Un

n � Vn if �+1 = n;
and Lemma 3,

Vk +  k
�

q̂nk+1
�

� Ûn
k+1 � Vk+1 � Vk +  k

�

qkk
�

which implies by the monotonicity of  k that q̂
n
k+1 � qkk = q̂nk . Thus

��

Ûi; q̂i

��

1�i�n
is

admissible for the problem Xn (y) with a slack participation constraint. Since Û
n
n = Un

n

it is also an optimal solution for this problem, again in contradiction to Lemma 2.
Thus the equality (26) must hold. In consequence, (Un

i ; q
n
i )1�i�k is admissible for the

problem Xk (0) and since U
n
k = Vk it is an optimal solution for this problem.

Finally, suppose that the warranted claim constraint is not binding at k + 1, i.e.
Un
k+1 > Vk+1, and q

n
k = qnk+1: Since q

n
k is part of a solution to Xk (0) Lemma 3 implies

Un
k+1 > Vk+1 � Vk +  k (q

n
k ) = Un

k +  k
�

qnk+1
�

which contradicts the incentive constraint ICk.

Lemma 5 The solution (Un
i ; q

n
i )1�i�n to the optimization problemXn (y) is unique. More-

over, the corresponding mulitpliers �ni ; �
n
i and �

n
i as de�ned above (see formula (21)) are

unique up to the choice of the terms in �nn + �nn.

Proof. The proof is by induction. The claim is clearly true for n = 1. Suppose it holds
for n�1 � 1. In the problemXn (y) let k < n be the largest index for which the warranted
claim constraint is binding. (Set k = 0 if no warranted claim constraint is binding. The
remaining statements in this paragraph are then vacuously true.) Let

�

Uk
i ; q

k
i

�

1�i�k
be

the solution to the problem Xk (0), which is by assumption unique. Also the Lagrange
multipliers �ki ; �

k
i , and �

k
i of the latter problem are unique, up to the choice of the terms

in �kk+�
k
k. Let (U

n
i ; q

n
i )1�i�n be the solution to the problem Xn (y), and let �

n
i ; �

n
i , and �

n
i

be corresponding Lagrange mulitpliers. By Lemma 4 (Un
i ; q

n
i )1�i�k is a solution to Xk (0)

and by the assumed uniqueness we have Un
i = Uk

i and q
n
i = qki for 1 � i � k. From

Lemma 4 we have �nk = 0 (= �kk) by the de�nition of k. The �rst-order conditions for
the problem Xk (0) are hence a subset of the set of �rst order conditions for the problem
Xn (y). Thus �

k
i = �ni , �

k
i = �ni and �

k
i = �ni for i < k and �kk + �kk = �nk + �nk by the

induction assumption.
We now show the uniqueness of �nk , �

n
k , (U

n
i ; q

n
i ; �

n
i ; �

n
i ; �

n
i )k+1�i�n�1, U

n
n ; q

n
n and �

n
n+�

n
n

for a given �bunching pattern�. By the latter we mean that the set B of indices i for which
qni = qni+1 holds is �xed. The binding incentive constraints ICi for k < i < n (recall
Lemma 2) give

Un
i = Un

n �
n�1
X

j=i

 j
�

qnj+1
�

where Un
n is by de�nition the same in all solutions of Xn (y). Since �

n
i = 0 for k < i < n

by assumption, �ni for k � i < n and �nn + �nn are uniquely determined by formula (25)
and depend only on gnk or, equivalently, �

n
k . For any i =2 B we have �ni = 0. Partition the
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set of indices fk + 1; � � � ; ng into maximally connected sets J such that the monotonicity
constraint is binding for any two adjacent indices i, i+1 in J . Thus a set J = fi1 � i � i2g
is in the partition if i1 � 1; i2 =2 B and for all i 2 J it holds that (i 2 B , i+ 1 2 J).
(Notice that J = fig is a set in the partition if neither qni�1 = qni nor q

n
i = qni+1.) Summing

the �rst order conditions (24) over all i 2 J gives the equation

qni � argmax
q�0

f
X

j2J

�

�nj�1 j�1 (q) + sjWj (q))
�

g:

in which no non-zero �ni occur and from which qni for any i 2 J can be inferred uniquely
from

�

�ni�1
	

i2J
by the implicit function theorem. Starting with the lowest index in J =

fi1 � i � i2g one can then infer the �
n
i1
; �ni1+1; � � � ; �

n
i2�1

inductively from the �rst-order
conditions (24).
We now claim that the left-hand term in the participation constraint (23) is, with the

variables determined as just described, strictly increasing in gnk . To show this we prove
that its derivative with respect to gnk is strictly positive almost everywhere. The term on
the left-hand side in (23), which depends on gnk , is, using again Lemma 4,

n
X

i=k+1

si (Wi (q
n
i )� Ui) =

n
X

i=k+1

si

 

Wi (q
n
i )� Un

n +
n�1
X

j=i

 j
�

qnj+1
�

!

=

n
X

i=k+1

�

si (Wi (q
n
i )� Un

n ) + (fi�1 � fk) i�1 (q
n
i )
�

Di¤erentiating and using the equations (24) and (25) yields (recall gni = gnk for k � i < n.)

n
X

i=k+1

�

siW
0
i (q

n
i ) + (fi�1 � fk) 

0
i�1 (q

n
i )
� dqni
dgnk

=
n
X

i=k+1

�

siW
0
i (q

n
i ) +

�

�i�1 + gnk � fk
�

 0i�1 (q
n
i )
� dqni
dgnk

=
n
X

i=k+1

�

(gnk � fk) 
0
i�1 (q

n
i ) + �ni � �ni�1

� dqni
dgnk

= ��nk

n
X

i=k+1

 0i�1 (q
n
i )
dqni
dgnk

�

n�1
X

i=k

�ni

�

dqni+1
dgnk

�
dqni
dgnk

�

= ��nk

n
X

i=k+1

 0i�1 (q
n
i )
dqni
dgnk

> 0

for �nk > 0 because
dqn
i

dgn
k

< 0 by the monotonicity properties of the  i and Wi. Thus the

derivative is strictly positive except when gnk = fk, which proves our claim. Thus there
can be at most one value of gnk for which the participation constraint is satis�ed. Thus
there can only be one solution (including the Lagrange multipliers) for each bunching
pattern.
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Suppose next that we have two di¤erent solutions to the optimization problem Xn (y)
(excluding the Lagrange multipliers). Any convex combination of the two solutions is
also a solution because the optimization problem is convex. Since there are in�nitely
many convex combinations and only �nitely many bunching patterns, we can �nd two
di¤erent solutions with the same bunching pattern, which contradicts the above �nding.
This concludes the proof.
In particular, we have shown the following.

Remark 10 In the same fashion it can be shown that the optimization problem ~Xn (y)
has a unique solution.

Corollary 3 The assured allocation is unique.

Lemma 6 The solution ((Un
i ; q

n
i ))1�i�n for problem Xn (0) is also a solution to the com-

plete problem X�
n (0), which must hence be unique.

Proof. For type 1 � i < n we distinguish two cases: i) The incentive constraint ICi is
binding

Un
i = Un

i+1 �  i
�

qni+1
�

Then by the monotonicity constraint MCi we have

Un
i = Un

i+1 �  i
�

qni+1
�

� Un
i+1 �  i (q

n
i )

and hence (DCi) is satis�ed.
ii) If ICi is not binding, then by Lemma 2 WCi is binding. Then, by Lemma 3 and

WCi+1 and the de�nition of Vn we have

Un
i+1 � Vi+1 � Vi +  i

�

qii
�

= Un
i +  i

�

qii
�

where we can set qii = qni by Lemma 4 and Lemma 5. Thus the incentive constraint (DCi)
holds.

Lemma 7 The n-assured allocation is undominated.

Proof. Suppose the n-assured allocation is dominated by an undominated mechanism.
Then the undominated allocation is also a solution to Xn (0) and hence identical to the
n-assured allocation.
We are now ready to prove the following important result.

Proposition 4 The assured allocation weakly dominates the RSW allocation.

Proof. For n = 1; : : : ; N consider the following allocations. Let
��

URSW
i ; qRSWi

��

1�i�n

be the RSW allocation for the restricted typeset f1; : : : ng. Let ((Un
i ; q

n
i ))1�i�n be a

solution to the problem Xn (0). Let
��

Ûn
i ; q̂

n
i

��

1�i�n
be the contract which satis�es

�

Ûn
i ; q̂

n
i

�

=
�

Un�1
i ; qn�1i

�

for any 1 � i < n and where
�

Ûn
n ; q̂

n
n

�

solves the following

optimization problem Zn:
max
(Un;qn)

Un
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subject to

Un�1
n�1 � Un �  n�1 (qn) for n > 1

Wn (qn) � Un

We prove by induction over n that a)
�

URSW
n ; qRSWn

�

is admissible for the problem Zn and

hence satis�es URSW
n � Ûn

n ; and b)
��

Ûn
i ; q̂

n
i

��

1�i�n
is admissible for the problem Xn (0)

and hence satis�es that Ûn
n � Un

n = Vn. Thus, U
RSW
n � Vn, which proves our proposition.

For n = 1 all three solutions coincide and so our claims hold. Suppose that they
hold for n � 1 � 1. To prove claim a) for type n, notice that URSW

n�1 � Ûn�1
n�1 � Un�1

n�1

by our induction assumption. Hence
�

URSW
n ; qRSWn

�

is feasible for problem Zn; due to

URSW
n�1 � URSW

n �  n�1(q
RSW
n ). Since Ûn

n is the optimal value for problem Zn we have

therefore URSW
n � Ûn

n .
We show next that claim b) holds for type n. We notice that all warranty constraints

and all incentive constraints for ProblemXn (0) hold (by construction of
�

Ûn
n ; q̂

n
n

�

and be-

cause
��

Ûn
i ; q̂

n
i

��

1�i�n�1
is a solution to Xn�1 (0)). The ex-ante participation constraint

from problem Xn�1 (0) for
��

Ûn
i ; q̂

n
i

��

1�i�n�1
and the ex post participation constraint

for
�

Ûn
n ; q̂

n
n

�

from Problem Zn imply that the participation constraint from the Problem

Xn (0) also holds for
��

Ûn
i ; q̂

n
i

��

1�i�n
. As in the proof of Proposition 2 (Appendix A,

top of page 38) in Maskin and Tirole (1992), using that Wn�1

�

qn�1n�1

�

� Vn�1 = Un�1
n�1 by

Lemma 3, one can show for the problem Zn that q̂
n
n�1 < q̂nn. This implies in particular that

all monotonicity constraints of the problem Xn (0) are satis�ed by this contract. Hence
��

Ûn
i ; q̂

n
i

��

1�i�n
is admissible for Xn (0). Since U

n
n = Vn is the optimal value for problem

Xn (0) we have therefore Û
n
n � Un

n = Vn. This completes the proof.

Corollary 4 The RSW allocation is undominated if and only if it is the assured alloca-
tion.

The previous properties will be used to prove Theorem 1. The next two will be used
to prove Theorem 2.

Lemma 8 Suppose that (Un
i (y) ; q

n
i (y))1�i�n is a solution to the optimization problem

~Xn (y). Then
k
X

i=1

si (Wi (q
n
i (y))� Un

i (y)) � 0

for any k < n and the restricted solution (Un
i (y) ; q

n
i (y))1�i�k is a solution to

~Xk (y
0) ;

where

y0 � �

k
X

i=1

si
sk
(Wi (q

n
i (y))� Un

i (y)) :
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Proof. The inequality follows as in the �rst part of the proof of Lemma 4. (Un
i (y) ; q

n
i (y))1�i�k

is admissible for ~Xk (y
0). If it is a solution, our claim is proved. Otherwise there is a so-

lution to ~Xk (y
0) where type k�s utility �Uk

k is higher than U
n
k (y). Therefore

�Uk
k > Un

k (y) � Un
k+1 (y)�  k

�

qnk+1 (y)
�

By the maximum theorem we can �nd a solution
��

Uk
i (y

0 � ") ; qki ((y
0 � "))

��

1�i�k
to

problem ~Xk (y
0 � ") with " small and Uk

k (y
0 � ") > Un

k (y) � Un
k+1(y)�  k

�

qnk+1(y)
�

. The
new contract de�ned by

�

Ûn
i ; q̂

n
i

�

=

� �

Uk
i (y

0 � ") ; qki (y
0 � ")

�

for i � k
(Un

i (y); q
n
i (y)) for i > k

is admissible for problem ~Xn (y) and has a slack participation constraint. The for-
mer is by construction, while the latter follows directly from the de�nitions of y0 and
(Un

i (y); q
n
i (y))1�i�N and

�

Uk
i (y

0 � ") ; qki (y
0 � ")

�

1�i�N
. The new contract is also optimal

since it gives utility Un
n (y) to type n. This contradicts Lemma 2.

Proposition 5 Under Assumption A3 there is no bunching in a solution for the problem
Xn (y), y � 0; i.e.

qn1 (y) < qn2 (y) < � � � < qnn (y)

Thus a solution to the problem ~Xn (y) is also a solution to the problem Xn (y).

Proof. The proof of the �rst part is by induction on n. For n = 1 there is nothing to
show. Suppose the claim holds for all 1 � i < n. Let (Un

i (y) ; q
n
i (y))1�i�n be a solution

of Xn (y)
Suppose �rst that none of the warranted claim constraints WCi, 1 � i < n, are

binding. Then gni (y) =
Pi

j=1 �
i
j (y) = 0 for all 1 � i � n�1. Therefore qni (y) = qi (0) for

all 1 � i � n; with qi (�) as de�ned prior to Assumption A3. By Assumption A3 we have

q1 (0) < q2 (0) < � � � < qn (0) .

Hence (Un
i (y) ; q

n
i (y))1�i�n is the solution of the relaxed problem

~Xn (y) where the monotonic-
ity constraints of problem Xn (y) are ignored.
Otherwise there exists a largest 1 � k < n for which WCi is binding. By Lemma 4

(qni (y))1�i�k is part of a solution for problem Xk (0) and hence for ~Xk (0) because

qn1 (y) < qn2 (y) < � � � < qnk (y)

by the induction assumption. By de�nition of k; none of the warranted claim constraints
WCi, k + 1 � i < n, are binding. Thus gni (y) = gnk (y) for all k + 1 � i � n � 1 and
therefore qni (y) = qi(g

n
k (y)) for all k + 1 � i � n. By Assumption A3

qk (g
n
k (y)) < qk+1 (g

n
k (y)) < qk+2 (g

n
k (y)) < � � � < qn (g

n
k (y))

Thus, (Un
i (y) ; q

n
i (y))1�i�n is a solution of the relaxed problem

~Xn (y). This completes
the proof.
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5.2 The main results

Theorem 1 The assured allocation is a perfect Bayesian equilibrium of the three stage
game �3.

Proof. This follows from Proposition 3 and Proposition 4.

Theorem 2 Under assumption A3 the assured allocation is a neutral optimum.

The proof is given below.

6 Proof of Theorem 2

We assume that Assumption A3 holds. Hence, by Proposition 5, any solution to a problem
Xn (y) for any y features output q

n
i (y) which is increasing in i; and so we can ignore

the monotonicity constraints qi < qi+1 in the following. Thus, we can assume that all
multipliers �i are zero, and only the multipliers �i and �i appear in the Lagrangian for
the derivation of the assured allocation.
The virtual surplus associated with this solution is

V Sni (y) =
1

si

�

�ni�1 (y) 
n
i�1 (q

n
i (y)) + siWi (q

n
i (y))

�

: (28)

Corresponding to Equation (8.8) in Myerson (1983) we can de�ne the warranted claims
!ni (y) for problem Xn (y) inductively over i by

(�ni (y) + �ni (y))!
n
i (y)� �ni�1 (y)!

n
i�1(y) = siV S

n
i (y) : (29)

Notice that the !ni (y) are uniquely determined by Lemma 5. A solution to the problem
Xn (y) can now overall be described by

(Un
i (y) ; q

n
i (y) ; �

n
i (y) ; �

n
i (y))1�i�n

and has the warranted claims (!ni (y))1�i�n associated with it.
Suppose the following holds for all l < n and y � 0:

1.
!li (y) � U l

i (y) for 1 � i � l

2. We have !ll (0) = Vl and for all 1 � i < l and y � 0 we have !li (y) = Vi whenever
�li (y) > 0.

3. A solution to Xl (0) is a neutral optimum for the restricted type set f1; � � � ; lg.

Note that all these claims are true for any y � 0 when n = l = 1. X1 (0) is feasible
and the �rst best, hence a strong solution and therefore a neutral optimum according to
Myerson (1983). Therefore (3) holds. Since !11 (y) = W1 (q

1
1 (y)) � W1 (q

1
1 (y))+y = U11 (y)

also (1) holds.
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We prove them now for l = n > 1 and y � 0. By Lemma 8 the solution to Xn (0)
induces the solution Xn�1 (y) with y determined by

sn�1y = �
n�1
X

i=1

si (Wi (q
n
i (0))� Un

i (0)) � 0

We thus have !ni (0) = !n�1i (y) � Un�1
i (y) = Un

i (0) for all i < n; after using also
claim (1) of the induction assumption and because we can choose the same Lagrange
multipliers in both problems. This proves claim (1) for y = 0 and all i < l = n: We also
have �ni (0) = �n�1i (y). Hence, we have by a similar argument !ni (0) = !n�1i (y) = Vi for
all 1 � i < n� 1 which satisfy �n�1i (y) > 0 by claim (2) of our induction assumption. If
�nn�1 (0) > 0; then necessarily y = 0 by Lemma 4 and hence !

n
n�1 (0) = !n�1n�1 (0) = Vn�1

again by the induction assumption. This proves the second part of claim (2) for y = 0
and l = n: Per construction, from the de�nition of warranted claims for y = 0;

n�1
X

i=1

�ni (0)!
n
i (0) + (�

n
n (0) + �nn (0))!

n
n(0) =

n
X

i=1

siV S
n
i (0) : (30)

Since Un
n (0) = Vn by de�nition, and since U

n
i (0) = Vi whenever �

n
i (0) > 0; for i < n; we

have

n�1
X

i=1

�ni (0)U
n
i (0) + (�

n
n (0) + �nn (0))U

n
n (0) =

n�1
X

i=1

�ni (0)Vi + (�
n
n (0) + �nn (0))Vn: (31)

Comparing expressions (21) and (22), and using the complementarity and the �rst-
order conditions yields

n
X

i=1

siV S
n
i (0) =

n�1
X

i=1

�ni (0)U
n
i (0) + (�

n
n (0) + �nn (0))U

n
n (0):

Thus, we have form (30) and (31)

n�1
X

i=1

�ni (0)!
n
i (0) + (�

n
n (0) + �nn (0))!

n
n(0) =

n�1
X

i=1

�ni (0)Vi + (�
n
n (0) + �nn (0))Vn

We obtain, after using the second part of claim (2) for y = 0 and i < n, overall that
!nn (0) = Vn = Un

n (0). This proves claims (1) and the �rst part of (2) for y = 0 and
i = l = n:
Next, we construct a sequence

(Un
i (0; "�) ; q

n
i (0; "�) ; �

n
i (0; "�) ; �

n
i (0; "�) ; !

n
i (0; "�))1�i�n

for "� > 0, lim�!1 "� = 0 which converges to

(Un
i (0) ; q

n
i (0) ; �

n
i (0) ; �

n
i (0) ; !

n
i (0))1�i�n
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such that the �rst-order conditions for the Lagrangian and the complementarity condi-
tions always hold, where the !ni (0; "�) are de�ned as above with respect to the �virtual
surpluses� V S"�i and where �

n
i (0; "�) ; �

n
i (0; "�) � "� . Namely, set "� = 1=� for any integer

� su¢ciently large and set �ni (0; "�) = �ni (0) if �
n
i (0) > 0 and �

n
i (0; "�) = "� otherwise.

Set g"�i =
Pi

j=1 �
n
j (0; "�). Then �

n
i (0; "�) = fi � g"�i is non-negative for su¢ciently large

�. The qni (0; "�) are then uniquely determined by �
n
i�1 (0; "�) from the condition (24)

using �i = �i�1 = 0: The �virtual surpluses� V S"�i are then derived from the formulae
(28) and the �warranted claims� !ni (0; "�) from (29). Continuity and the uniqueness of
the solution implies as � ! 1 that !ni (0; "�) ! !ni (0), �

n
i�1 (0; "�) ! �ni�1 (0) etc. The

�ni (0; "�) ; �
n
i (0) and !

n
i (0) etc. play hereby the role of the utility weights �

�
i , � i, and the

warranted allocation !i, etc. as in the characterization of the neutral bargaining solution
discussed in Section 4.4 when the type space is restricted to the types i = 1; � � � ; n and
the prior for each type is si=fi. Thus, from claim (1) with y = 0 the assured allocation
for the �rst n types is a neutral optimum by Theorem 7 in Myerson (1983) and so claim
(3) holds.
It remains to show claims (1) and (2) for l = n and y > 0.
Suppose that �ni (0) = 0 for any i < n in the solution to Xn (0) : It is immediately seen

that
�

Un
i (0) +

sny

n
; qni (0) ; 0; �

n
i (0)

�

1�i�n

is a solution to the problemXn(y) for all y > 0 because U
n
i (y) = Un

i (0)+
sny
n
> Un

i (0) � Vi
(and hence �ni (y) = 0) for all i < n and (qni (0) ; �

n
i (0))1�i�n satisfy the �rst-order con-

ditions of the problem Xn (y) : Clearly, then, claim (2) is trivially satis�ed and, further-
more, !ni (y) = !ni (0) : Thus, given !ni (0) � Un

i (0) by claim (1) for y = 0, we have
Un
i (y) > !ni (y) for any y > 0.
Suppose next that there is some i < n such that �ni (0) > 0 in the solution to Xn (0)

and let k < n be the largest such index. By continuity, as we increase y we will have
�nk (y) > 0 in some maximal interval 0 � y < �y, which can easily be shown to be of �nite
length. In this interval we will �rst show that all Un

i (y) for i > k are strictly increasing
in y. Hence the warranted claim constraints Un

i (y) � Vi cannot become binding for
k < i < n. At �y the largest index k0 for which �nk0 (�y) > 0 is thus necessarily smaller than
k. We will also show that claims (1) and (2) hold for all 0 � y < �y: One can now apply
exactly the same arguments on the maximal interval �y � y < �y0 where �k0 (y) > 0 as on
the interval 0 � y < �y.
Proceeding by induction in this way one will eventually arrive at a level of ~y from

which onwards all �ni (y), i < n, are zero. From there onwards a further increase in y does
not a¤ect the multipliers �ni (y) ; i < n; anymore, which are now at their maximal value
�ni (y) = fi. Hence, neither q

n
i (y) nor the virtual surpluses nor !

n
i (y) change as y increases.

Only the Un
i (y) are increased, all in the same way because all incentive constraints ICi

are binding (recall Lemma 2). Thus, once all �ni (y) are zero for i < n they remain so for
all y0 � y; and if !ni (y) � Un

i (y) holds in addition, this remains so for all y
0 � y. Hence,

claims (1) and (2) hold for all y � �y if they hold for y < �y.
To complete, given this outline, the proof, we now show (a) that Un

i (y) ; for i > k; are
strictly increasing in y; and (b) that claims (1) and (2) hold for all 0 � y < �y.
Since Un

k (y) = Vk in the solution to Xn (y), for all 0 � y < �y, the solution in question
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induces by Lemma 4 the solution to Xk (0) ; and so we have !
n
i (y) = !ki (0) � Uk

i (0) =
Un
i (y) for all 0 � y < �y and i � k. Moreover, Un

i (y) = Uk
i (0) = Vi = !ki (0) = !ni (y) for

all i � k which satisfy �ki (0) = �ni (y) > 0, in particular for i = k. Thus, claims (1) and
(2) are proved in the interval for all i � k. None of these variables change as we vary y in
the interval. Since, by Lemma 4, �nl (y) = fl � g

n
k (y) = fl � g

n
k�1 (0)� �

n
k (y) ; a marginal

change in y a¤ects �nk (y) and thereby a¤ects all �
n
l (y), l � k, in the same way, i.e.

d�nl
dy

=
d�nj
dy

= �
d�nk
dy

for all l; j � k

We abbreviate d�
dy
=

d�n
l

dy
for l � k. All incentive constraints ICl must be binding for l > k

by Lemma 2. Therefore, Un
l (y) = Un

k (y) +
Pl

i=k+1  i�1 (q
n
i (y)). When we now slightly

increase y we obtain

dUn
l (y)

dy
=

l
X

i=k+1

 0i�1 (q
n
i (y))

dqni (y)

dy

The �rst-order condition for qni (y) is �
n
i�1 (y) 

0
i�1 (q

n
i (y)) + siW

0
i (q

n
i (y)) = 0. Di¤erentia-

tion yields

d�

dy
 0i�1 (q

n
i (y)) +

�

�ni�1 (y) 
00
i�1 (q

n
i (y)) + siW

00
i (q

n
i (y))

� dqni (y)

dy
= 0

dqni (y)

dy
= �

 0i�1 (q
n
i (y))

�ni�1 (y) 
00
i�1 (q

n
i (y)) + siW

00
i (q

n
i (y))

d�

dy
;

which has the same sign as d�=dy by the second-order conditions, and hence

dUn
l (y)

dy
=

 

�

l
X

i=k+1

�

 0i�1 (q
n
i (y))

�2

�ni�1 (y) 
00
i�1 (q

n
i (y)) + siW

00
i (q

n
i (y))

!

d�

dy

where the term in brackets is positive. For l = n we obtain d�
dy
> 0 since an increase in y

slackens the participation constraint and hence Un
n (y)must increase. (Formally

dUnn (y)
dy

> 0

follows by applying the envelope theorem to the Lagrangian.) We see, in turn, that all
Un
l (y) are strictly increasing for all 0 � y < �y and k < l < n: Therefore, all warranted
claim constraints remain slack. In particular, �ni (y) = 0 for all i > k and, hence, claim
(2) is proved for all 0 � y < �y and 1 � i < l = n.
We continue with the proof of claim (1). For l > k we have for the warranted claims13

�nl (y)!
n
l (y)� �nk (y)!

n
k (y) =

l
X

i=k+1

�

�ni�1 (y) i�1 (q
n
i (y)) + siWi (q

n
i (y))

�

Since qni (y) maximizes the virtual surplus and since !
n
k (y) = Vk constant we obtain

d

dy
[�nl (y)!

n
l (y)� �nk (y)!

n
k (y)] =

d�

dy
(!nl (y)� !nk (y)) + �

n
l (y)

d!nl
dy

=

"

l
X

i=k+1

 i�1 (q
n
i (y))

#

d�

dy

13For this calculation it is convenient to set �nn (y) = 0.
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and so
d!nl
dy

=

"

l
X

i=k+1

 i�1 (q
n
i (y)) + !

n
k (y)� !nl (y)

#

d�

dy
=�nl (y)

Since !nk (y) = Un
k (y) and U

n
l (y) = Un

k (y) +
Pl

i=k+1  i�1 (q
n
i (y)) by the incentive con-

straints, it follows that

d!nl
dy

= (Un
l (y)� !nl (y))

d�

dy
=�nl (y) :

The proof is now concluded by the following statement:
Consider the maximal interval [0; �y) of all values of y for which �nk (y) > 0. Then

!nl (y) � Un
l (y) for all l > k and for all y in this interval.

The proof of the statement is by contradiction. Suppose Un
l (y) < !nl (y) for some

0 � y < �y. Let ŷ = inf fyjUn
l (y) < !nl (y)g. For y = ŷ we have Un

l (y) = !nl (y) because

both functions are continuous and so
d!n

l

dy jy=ŷ
= 0. Since

dUn
l

dy
> 0 we have

d(Unl �!nl )
dy jy=ŷ

> 0.

It follows that Un
l (y) > !nl (y) for all small y > ŷ, in contradiction to the de�nition of ŷ.

7 Conclusions

In this paper we introduced a speci�c mechanism which we called the assured allocation.
We showed that it always weakly dominates the RSW and coincides with the RSW only
when the latter is undominated. If the assured allocation is fully separating it is a neutral
optimum. Thus the assured allocation sheds new light on the connection between the
papers by Myerson (1983) and Maskin and Tirole (1992).
Here, we impose quasi-linearity primarily to simplify the analysis. We believe that our

analysis extends to more general utility functions. However, many questions still remain
open. We do not know whether the assured allocation is a neutral optimum when there
is bunching. We also do not know whether other neutral optima exist. These issues are
left for future research.
It would also be interesting to add ex post participation constraints for the agent

(i.e. he can ex post refuse a contract if the principal decides to take a particular option).
Such model modi�cations, which relax the commitment assumptions used here, could
be handled within the Myerson framework and would alter the nature of the neutral
optima. A very important task in such a future extension would be to investigate the
ex post e¢ciency and robustness properties of these mechanisms. We conjecture that
such mechanisms will involve bunching which might be in con�ict with ex-post e¢ciency.
Such mechanisms will be less robust than mechanisms that can be implemented in ex
post equilibria, studied, for instance, in Bergemann and Morris (2005), but might have
better e¢ciency properties and will be more robust than the assured allocation studied
here. Moreover, they may be more appropriate in certain environments such as when ex
post equilibria do not exist or are extremely ine¢cient.
One could also allow for type-dependent outside options. This would enable the in-

vestigation of insurance and franchise contracts. Our analysis, and the one in Maskin
and Tirole (1992), does not allow us to handle cases where there is a trade-o¤ between
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high quality and high costs. For our analysis, it is important that higher types are un-
ambiguously preferred by the agent. However, interesting applications, such as in the
procurement of public services, might require purchaser who prefers a producer of lower
cost-e¢ciency and higher quality of produced services. Finally, the relationship to re�ne-
ment concepts for signalling games remains to be studied. All these are very interesting
future research projects.
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