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Abstract

This paper provides an in-depth study of the (most) refined best-response corre-
spondence introduced by Balkenborg, Hofbauer, and Kuzmics (2013). An example
demonstrates that this correspondence can be very different from the standard best-
response correspondence. In two-player games, however, the refined best-response
correspondence of a given game is the same as the best-response correspondence of
a slightly modified game. The modified game is derived from the original game by
reducing the payoff by a small amount for all pure strategies that are weakly inferior.
Weakly inferior strategies, for two-player games, are pure strategies that are either
weakly dominated or are equivalent to a proper mixture of pure strategies. Fixed
points of the refined best-response correspondence are not equivalent to any known
Nash equilibrium refinement. A class of simple communication games demonstrates
the usefulness and intuitive appeal of the refined best-response correspondence.
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1 Introduction

The refined best-response correspondence was introduced by Balkenborg, Hofbauer, and
Kuzmics (2013) in an effort to find the smallest face of the polyhedron of mixed strategy
profiles that can be termed evolutionary stable under some reasonable dynamic learning
process. Balkenborg, Hofbauer, and Kuzmics (2013) demonstrate that these faces are such
that they are minimally asymptotically stable under a particular “smallest” deterministic
dynamical system, which is a differential inclusion based on the, so-termed, (most) refined
best-response correspondence. If the best-response dynamics, introduced by Gilboa and
Matsui (1991), Matsui (1992), and Hofbauer (1995), can be described as a gradual process
in which agents who revise their strategy always switch to a best response, the refined
best-response dynamics can be described as a gradual process in which revising agents
always switch to a best response that is also a unique best response against a strategy
profile arbitrarily close to the current one.

The lattice theorem of Balkenborg, Hofbauer, and Kuzmics (2013, Theorem 1) im-
plies that of all best-response-like dynamics the refined best-response dynamics has the
fewest stationary points, as the refined best-response correspondence has the fewest fixed
points of all best-response-like correspondences.1 It furthermore implies that the refined
best-response dynamics has the most (asymptotically) stable points (all of course fixed
points of the refined best-response correspondence, and thus Nash equilibria) of all best-
response-like dynamics as it has the fewest solution trajectories of all best-response-like
dynamics. Of all best-response-like dynamics the refined best-response dynamics is the
one that makes the most Nash equilibria (yet, only Nash equilibria) stable. The refined
best-response dynamics, of all best-response-like dynamics, therefore provides the closest
justification, based on learning dynamics, of the general practice of using Nash equilib-
rium as the solution concept for games, while at the same time it allows us to identify
Nash equilibria that can never be made stable under any best-response-like dynamics.

The refined best-response dynamics is a very reasonable dynamic learning process
in the spirit of fictitious play. Balkenborg, Hofbauer, and Kuzmics (2013) provide a
sketch of a micro-foundation for this dynamics as follows. For every player position,
there is a large population of individuals. Time is continuous and runs from zero to
infinity. Individuals play pure strategies. At time zero, individuals’ behavior is given by
some arbitrary frequency distribution of pure strategies, with one distribution for each
population. In every short time interval, a small fraction of individuals is given the
opportunity to revise their strategy. Revising individuals do not know the exact state of
play. Different individuals have different beliefs (that are close to the truth) about the
aggregate play. Any individual’s belief over play in any two opponent populations i and j
is assumed to be statistically independent. If these beliefs are sufficiently diverse, only a
vanishing fraction of individuals adopt a strategy that is best only on a set of states with
Lebesgue measure zero. This gives rise to the refined best-response dynamics.

1What we here call a best-response-like dynamics or correspondence is what in Balkenborg, Hofbauer,
and Kuzmics (2013) is formally defined and termed a generalized best-response dynamics or correspon-
dence.
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The objective of this paper is to study properties of the refined best-response corre-
spondence and its fixed points (as they are stationary points of the refined best-response
dynamics) in detail for all normal form games that satisfy a mild restriction.

We show by example that the refined best-response correspondence, while, by defi-
nition, it shares many properties with the best-response correspondence, such as being
upper-hemi continuous, closed- and convex-valued, and having a product structure, is
not generally like a best-response correspondence. There are games with a refined best-
response correspondence, for which there is no game that has this refined best-response
correspondence as its best-response correspondence. Thus, even if you have studied the
best-response correspondence for all games, you have not automatically covered all refined
best-response correspondences.

The example that demonstrates this fundamental difference between refined best-
response and best-response correspondence is a three-player game. For two-player games
we show that refined best-response correspondences are like best-response correspon-
dences. For every two-player game with its refined best-response correspondence, there
is another such game with a best-response correspondence that coincides with the given
refined best-response correspondence. This result is shown by characterizing strategies
that are never refined best responses in terms of a local form of weak dominance, which we
call weak inferiority. We then characterize weakly inferior strategies for two-player games,
as those and only those pure strategies that are either weakly dominated or equivalent to
a proper mixture of pure strategies.2

While there are refined best-response correspondences that are unlike any best-
response correspondence in three or more player games, we can show that for all generic
normal form games, the refined best-response and best-response correspondences coincide,
nevertheless. This tells us that the refined best-response correspondence is of interest only
in non-generic games. Of course, many games of interest, such as extensive form games,
cheap-talk games, allocation games (e.g. auctions), and generally any games with many
pure strategies yet only few outcomes (e.g. win, draw, or lose as in many parlour-games),
have non-generic reduced normal form representations, in which the refined best-response
correspondence would typically not be identical to the best-response correspondence.

We then proceed to partially characterize fixed points of the refined best-response
correspondence and show by means of examples that there is no systematic relationship
between these fixed points and known refinements of Nash equilibrium. A fixed point of
the refined best-response correspondence does not have to be perfect (Selten 1975), per-
sistent (Kalai and Samet 1984), proper (Myerson 1978), or strategically stable (Kohlberg
and Mertens 1986). Conversely, a strategy profile that is perfect, persistent, proper, or an
element of a strategically stable set need not be a fixed point of the refined best-response
correspondence. Finally, we apply the refined best-response correspondence in a class of
simple communication games, that perhaps best demonstrates its intuitive appeal and
usefulness.

The paper proceeds as follows. Section 2 defines the very general class of games

2A proper mixture of pure strategies places positive weight on at least two pure strategies.
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we study and defines the refined best-response correspondence. Section 3 analyzes the
differences between best-response and refined best-response correspondences. Section 4
analyzes fixed-points of the best-response correspondence. Section 5 provides a simple di-
rect proof of the statement that every persistent retract (Kalai and Samet 1984) contains
a strategically stable set in the sense of Kohlberg and Mertens (1986). Section 6 further
illustrates the differences between the refined best-response and best-response correspon-
dences, and in particular the usefulness and intuitive appeal of the refined best-response
correspondence, for a class of games of independent economic interest, namely simple
games of cheap-talk communication. Section 7 concludes.

2 Preliminaries

Let Γ = (I, S, u) be a finite n-player normal form game, where I = {1, ..., n} is the set
of players, S = ×i∈ISi is the set of pure strategy profiles, and u : S → IRn the payoff
function3. Let Θi = ∆(Si) denote the set of player i’s mixed strategies, and let Θ = ×i∈IΘi

denote the set of all mixed strategy profiles. Let int(Θ) = {x ∈ Θ : xis > 0 ∀s ∈ Si ∀i ∈
I} denote the set of all completely mixed strategy profiles.

For x ∈ Θ let Bi(x) ⊂ Si denote the set of pure-strategy best responses to x for player
i. Let B(x) = ×i∈IBi(x). Abusing notation slightly, let βi(x) = ∆(Bi(x)) ⊂ Θi denote
the set of mixed-strategy best responses to x for player i. Let β(x) = ×i∈Iβi(x).

As in Balkenborg, Hofbauer, and Kuzmics (2013) we shall restrict attention to games
with a normal form in which the complement of the set of mixed-strategy profiles Ψ =
{x ∈ Θ| B(x) is a singleton} has Lebesgue measure 0. We denote this class by G∗. A
game in G∗ is, therefore, such that to almost all strategy profiles all players have a unique
best response. As shown in Balkenborg, Hofbauer, and Kuzmics (2013) if a game is not
in this class G∗ it must be such that at least one player has two (own-payoff) equivalent
pure strategies. Two strategies xi, yi ∈ Θi are (own-payoff) equivalent (for player i) if
ui(xi, x−i) = ui(yi, x−i) for all x−i ∈ Θ−i = ×j 6=iΘj (see Kalai and Samet (1984)).

For games in G∗ let σ : Θ⇒ Θ be the refined best-response correspondence as defined
in Balkenborg, Hofbauer, and Kuzmics (2013) as follows. For x ∈ Θ let the set of pure
refined best responses be given by

S i(x) = {si ∈ Si| ∃{xt}∞t=1 with xt ∈ Ψ ∀t : [(xt → x as t→∞) ∧ (Bi(xt) = {si} ∀t)]}.

Then, again abusing notation slightly, σi(x) = ∆ (S i(x)) and σ(x) = ×i∈Iσi(x) ∀ x ∈ Θ.
For x ∈ Θ a strategy si ∈ S i(x) is thus a best response against x that is also a best

response for an open subset of any neighborhood of x.4

3The function u will also denote the expected utility function in the mixed extension of the game Γ.
4Balkenborg (1992) calls strategies si ∈ Si(x) semi-robust best responses. This is inspired by Okada

(1983) who calls a strategy a robust best response to strategy profile x if it is a best response for an open
neighborhood of x. One could call a strategy robust if it is a robust best response against some strategy
profile. Any pure strategy that is either a robust best response or a semi-robust best response against
some strategy profile x is, thus, a robust strategy. Note that, while every strategy profile x ∈ Θ has a
semi-robust best response for all players, it may not have a robust best response.
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3 The difference between the best-response and the

refined best-response correspondence

This section defines and discusses notions of strict and weak local dominance (applied
globally), that will be useful in understanding the difference between the best-response
and the refined best-response correspondences. We term these notions strict and weak
inferiority.5 They are such that, naturally, every strictly dominated strategy is strictly
inferior, every weakly dominated strategy is weakly inferior, and every strictly inferior
strategy is weakly inferior.

Definition 1 Let Γ = (I, S, u) ∈ G∗. A strategy si is strictly inferior if si 6∈ Bi(x) for
any x ∈ Θ. A strategy si ∈ Si is weakly inferior if there is no open subset of strategy
profiles U ⊂ Θ such that si ∈ Bi(x) for all x ∈ U .

In other words, a strictly inferior strategy is never a best response, whereas a weakly
inferior strategy, may be a best response against some strategy profiles, but is never a
refined best response. Another equivalent statement is that a weakly inferior strategy wi
is such that if wi ∈ Bi(x) then Bi(x) is not a singleton. That is, a weakly inferior strategy
is never the only best response. Note that every game in G∗ has at least one strategy for
each player that is not weakly inferior.

Suppose we now consider a fixed strategy profile x ∈ Θ and player i’s best responses
to x, given by Bi(x). We would like to know which of these best responses are also refined
best responses at this given strategy profile x (i.e. are in S i(x)). We must, of course, have
that any weakly inferior strategy wi satisfies wi 6∈ S i(x). Can there be another pure best
response in Bi(x) that is not in S i(x)? For two-player games, the answer is “No”. However,
for three of more player games, the answer is “Yes.” The crucial difference between two-
and more-player games is that for two-player games the set of strategy profiles for which a
player is indifferent between two different pure strategies is a hyperplane, while for three-
(or more-) player games it is some non-linear hypersurface. This in turn implies that the
set of strategy profiles against which a given player’s given pure strategy is a best response
is a convex set in the two-player case, but may well be a non-convex set in the three-player
case. How this difference matters for the refined best-response correspondence is made
clear in examples below.

3.1 Two-player games

The following theorem states that in two-player games, not only is a weakly inferior
strategy never a refined best response, but also any best response to a given strategy
profile x ∈ Θ that is not a refined best response must be weakly inferior. In other words,
for two-player games, the refined best response correspondence is completely understood
even locally once we know all weakly inferior strategies.

5Our notions of strict and weak inferiority are motivated by, but not identical to, the notion of inferior
choices in Harsanyi and Selten (1988).
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Theorem 1 Let Γ = (I, S, u) ∈ G∗ be a two-player normal form game. A strategy is a
pure refined best response, si ∈ S i(x), if and only if it is a best response, si ∈ Bi(x), and
is not weakly inferior.

We now provide a complete characterization of weakly inferior strategies.

Theorem 2 Let Γ = (I, S, u) ∈ G∗ be a two-player normal form game. A pure strategy
is weakly inferior if and only if it is weakly dominated or equivalent to a proper mixture
of pure strategies.

While the proofs of Theorems 1 and 2 are given in Appendix B, we here provide an
intuitive sketch of the argument. The results are, of course, similar to Pearce’s (1984)
result, also to be found in Myerson (1991, Theorems 1.6 and 1.7), that in two-player games
strictly dominated strategies are exactly those strategies that are never best responses,
and that weakly dominated strategies are exactly those that are never a best response to
a completely mixed strategy. The proofs of Theorems 1 and 2 in Appendix B, however,
does not follow the proof given by Pearce (1984), which is based on the minmax theorem
for zero-sum games, but on the sketch of the proof based on the separating hyperplane
theorem as given, for instance, by Fudenberg and Tirole (1991, pp. 50-52).
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Game 1, Figure 1, and Figure 2 (from left to right): A two-player game to illustrate the proof of Theorems

1 and 2. Payoffs are given only for player 1, who chooses the row. The first figure plots the payoff of player

1’s pure strategies against all mixed strategies of player 2. The second figure plots player 1’s strategies in

the space of payoffs against the two opponent strategies. The x-axis is the payoff against pure strategy F ,

while the y-axis is the payoff against pure strategy G. Dots represent the five pure strategies, while the

solid lines represent not strictly dominated payoff-tuples that can be achieved by appropriate mixtures

of player 1’s pure strategies.

Consider the two-player game given as Game 1 and the two figures given as Figures
1 and 2, which are simple variations of the game and pictures in Fudenberg and Tirole
(1991, p. 50-51, Figures 2.2 and 2.3). We shall first explain the reasoning behind Theorem
2. Clearly pure strategies A and B are unique best responses against some opponent
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strategies. Thus, both strategies are refined best responses. Refined best responses must
be best responses against an open set of opponent mixed strategies. A mixed strategy of
player 2 can be identified in the Figure 2 by the orthogonal vector to a downward sloping
straight line, such as the two dashed lines. In fact, as there is an open set of straight lines
going through point B, there is an open set of opponent strategy profiles against which
strategy B is a (unique) best response. This can also be seen in Figure 1.

Now turn to the weakly dominated strategy D. The only downward sloping straight
line through point D in Figure 2 that does not properly run through the convex hull of
payoff tuples is the line with infinite slope. Infinite slope reflects the fact that in order to
make strategy D a best response the opponent must not play strategy G with a positive
probability. Thus, the fact that there is no open set of downward sloping lines that go
through point D and are tangential to the convex hull of payoff tuples, implies that there
is no open set of opponent strategy profiles that makes strategy D a best response. This
can also be seen in Figure 1.

Now turn to strategy C, which is equivalent to an equal mix of pure strategies A and
B. Note that, just as in the case of weakly dominated strategies, in Figure 2 there is only
a single line through point C in the picture that is also tangential to the convex hull of
payoff tuples. The difference to weakly dominated strategies is that this single line does
not have infinite slope. Yet, rotate the line in any way, while keeping it fixed at point C,
and it will properly run through the convex hull of payoff tuples. So also in this case there
is no open set of opponent strategy profiles that would make strategy C a best response.
This can also be seen in Figure 1.

To understand the reasoning behind Theorem 1 note that every strategy in a two-
player game can be best only in a convex set. Figure 2 demonstrates this nicely. Consider
player 1’s strategy B. The dashed lines can be identified with different mixed opponent
strategies against which strategy B is a best response. There is a minimal slope and a
maximal slope, such that for all slopes inbetween strategy B is a best response. Thus,
the set of opponent (mixed) strategies against which B is a best response is convex. Note
that this is so, for all strategies of player 1. Consider now the mixed strategy of player
2 in which she places equal weight on her two pure strategies, denoted by x∗2. Player 1’s
strategy C is a best response to x∗2, but not to any mixed strategy nearby. Is it then
possible that strategy C is a best response against some other (mixed) strategy of the
opponent? No. If there is a unique mixed strategy of player 2 in the neighborhood of x∗2
against which C is best, then, as best response sets must be convex, strategy C cannot
be a best response to any other (mixed) strategy of the opponent. The convexity of the
best response sets in two-player games derives from the fact that, in these games, the
space of strategy profiles for which a player is indifferent between two pure strategies is
a hyperplane. For three-player games, this is typically not the case as we demonstrate in
the next subsection. For two-player games, however, we can say even more.

Theorem 3 Let Γ = (I, S, u) ∈ G∗ be a two-player game with refined best-response
correspondence σ(Γ). Then there is a game Γ′ = (I, S, u′) ∈ G∗ with payoff function
u′ : S → IR2 such that its best-response correspondence β(Γ′) ≡ σ(Γ).
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Proof: Let Γ′ be such that, for every i ∈ I, every s−i ∈ S−i, and every weakly inferior
wi ∈ Si, u′i(wi, s−i) = ui(wi, s−i) − δ for some δ > 0. Then, for this game Γ′ no weakly
inferior strategy is ever a best response. Thus, by Theorem 1, σ(Γ) ≡ σ(Γ′) ≡ β(Γ′).
QED

Theorem 3 is useful as it tells us that in two-player games, the structure of fixed points
of σ is the same as the structure of Nash equilibria. In particular, it implies that, in two-
player games, there are only finitely many components of fixed points of σ. More precisely,
applying the results in Jansen, Jurg, and Vermeulen (2002) we have the following.

Corollary 1 Let Γ = (I, S, u) ∈ G∗ be a two-player game with refined best-response
correspondence σ. Then the set of fixed points of σ is the union of finitely many polytopes
and hence the union of finitely many connected components.

3.2 Games with more than two players

In this subsection we turn to games with three or more players. We demonstrate by
example that neither Theorem 1 nor Theorem 3 extend to games with more than two
players.6 The refined best response correspondence can, in such games, be different from
any best response correspondence. Nevertheless, it can be shown that for generic games
(in the normal form) the refined best-response correspondence is identical to the best-
response correspondence. Note, however, that many games of interest, such as extensive
form games, cheap talk games, allocation games (e.g. auctions), and generally any games
with many pure strategies yet only few outcomes (e.g. win, draw, or lose as in many
parlour-games) are typically not generic in the space of all normal form games.

C D
A 0 0
B 0 0

C D
A 1 -1
B -1 0

E F

Game 2: A game where the refined best-response correspondence is not the best-response correspondence

of a modified game. Payoffs are given only for player 3 who chooses matrix.

6Theorem 2 does also not extend to games with more than two players. One direction is, of course,
true. That is that any pure strategy that is weakly dominated or equivalent to a proper mixture of pure
strategies is weakly inferior. But there may well be additional weakly inferior strategies. The reason is
well-known. In three player games an undominated strategy may still be never a best response (as players
here always know, or believe, if you will, that opponents cannot correlate their strategy choices). For a
textbook example see Ritzberger (2002, Example 5.7).
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0.60.41.0 0.20.0

Figure 3 and Figure 4 (left to right): In Figure 3 the regions where strategies E and F of player 3

are best responses in this game are indicated in the square of strategy profiles of players 1 and 2. The

probability with which player 1 chooses B is indicated vertically downwards in the graph while the

probability of player 2 choosing D is indicated horizontally. In the shaded area between the two branches

of the hyperbola E is the best response for player 3, outside it is F . The lower branch of the hyperbola

intersects the square only in the point (B,D), indicating that F is a best response against (B,D), but

not a refined best response. Figure 4 is the analogue picture to Figure 1 and plots the payoff to player 3

for her two pure strategies, against all mixed strategy profiles of the opponents.

The three-player game, given above as Game 2, which is in G∗, demonstrates that
neither Theorem 1 nor Theorem 3 holds generally for games with more than two players.
Here and in the following three-player games, player 1 chooses the row, player 2 the
column and player 3 the matrix. In this example we specify the payoffs of player 3 only.
As indicated in Figure 3, note that against opponent strategy profiles (1/2A+ 1/2B,C),
(A, 1/2C + 1/2D), and (2/3A+ 1/3B, 2/3C + 1/3D) (among others) both E and F are
refined best responses. However, against (A,C) F is the only best response and against
(B,D) E is the only refined best response. Nearby the latter strategy profile there is no
open set in the square of the opponents’ mixed strategy profiles where F is a best response.
Thus, strategy F while it is a best response and not weakly inferior is nevertheless not
a refined best response. This demonstrates that Theorem 1 does not extend to three or
more player games.

Now assume there exists another game with the same strategies for which the
best response mapping for player 3 is identical to the refined best response corre-
spondence of the given game. This implies that player 3 must remain indifferent be-
tween E and F against the strategy profiles (1/2A+ 1/2B,C) (A, 1/2C + 1/2D), and
(2/3A+ 1/3B, 2/3C + 1/3D). Moreover, F must be a best response against (A,C), but
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not against (B,D). This implies

1

2
(u3 (A,C,E)− u3 (A,C, F ))− 1

2
(u3 (B,C,E)− u3 (B,C, F )) = 0

1

2
(u3 (A,C,E)− u3 (A,C, F ))− 1

2
(u3 (A,D,E)− u3 (A,D, F )) = 0

4

9
(u3 (A,C,E)− u3 (A,C, F ))− 2

9
(u3 (B,C,E)− u3 (B,C, F ))

−2

9
(u3 (A,D,E)− u3 (A,D, F )) +

1

9
(u3 (B,D,E)− u3 (B,D, F )) = 0

We conclude that u3 (B,D,E)− u3 (B,D, F ) = 0, and, thus F is a best response against
(B,D), a contradiction.

The fact that Theorem 3 does not extend to three or more player games is quite
remarkable. It implies that, although the refined best-response correspondence σ satisfies
many properties that the best-response correspondence satisfies, such as being upper hemi
continuous, closed- and convex-valued, and having a product structure, it is nevertheless,
at least in some cases, not like any best-response correspondence. Thus knowing that
the best-response correspondence satisfies a certain property does not immediately imply
that the refined best-response correspondence does satisfy this property as well.

Nevertheless, and given the above example perhaps a little surprisingly, we can show
that in almost all games (whether two players or more) the refined best-response corre-
spondence is equal to the best-response correspondence. Remember, however, that many
games of interest in G∗ (derived for instance from an extensive form) are not among these
generic normal form games.

Theorem 4 For generic normal form games a pure strategy is a refined best response if
and only if it is a best response (i.e., si ∈ Si (x) ⇔ si ∈ Bi (x)). That is we have σ ≡ β
for generic normal form games.

Theorem 4 was originally established in Balkenborg (1992). Given that persistent re-
tracts are minimal CURB sets based on the refined best-response correspondence σ, see
Balkenborg, Hofbauer, and Kuzmics (2013, Lemma 3), also originally shown in Balken-
borg (1992), Theorem 4 implies that generically persistent retracts coincide with minimal
CURB sets. This fact has been used by Voorneveld (2005) to show that generically
persistent retracts coincide with his minimal prep sets.

While the proof of Theorem 4 can be found in Appendix A we conclude this section
with a discussion of the intuition as well as the difficulties behind this result.

Consider first two-player games. Theorem 1 states that the refined best responses to
a strategy profile x are all those best responses to x that are not weakly inferior. Let
us now highlight another implication of the proof of Theorem 3. If we modify the payoff
of any weakly inferior strategy by uniformly subtracting some positive real number, we
obtain another game in which the refined best-response correspondence is identical to
the best-response correspondence. It is also immediate that if we uniformly add a small
real number to all weakly inferior strategies we obtain yet another game in which the
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refined best-response correspondence is identical to the best-response correspondence.7

Thus, any small uniform subtraction or addition in payoffs to weakly inferior strategies
leads to a game in which the refined best-response correspondence is identical to the
best-response correspondence. Also we could dispense with the word “uniform”. If payoff
reductions/additions are positive but possibly different for different pure strategy pro-
files of the opponents, again in the new game the refined best-response correspondence
is identical to the best-response correspondence. We, thus, have that for any game in
which the refined best-response correspondence is different from the best-response corre-
spondence, and for any open set of games around this game, there is a game in which
both the refined and original best-response correspondence coincide. Thus, we have that
the set of two-player games in which the two correspondences coincide is dense in the
space of two-player games. On the other hand, it is also easy to see that for any game
in which the refined best-response correspondence coincides with the best-response corre-
spondence, there is an open set of games around this game in which this is still true. This
is almost a proof, except that we still have not established that the set of games in which
the refined best-response correspondence coincides with the best-response correspondence
has not only positive but “full” measure.

The remaining problem is that in the above argument we are always only changing
the payoffs of the weakly inferior strategies. A payoff change to a weakly inferior strategy
could be “compensated” by a similar payoff change for the other strategies. Yet, it
seems it would be “unlikely” that “random” changes to payoffs in a game would lead to a
game in which the refined best-response correspondence is different from the best-response
correspondence. In other words it remains to be shown that the equation β(Γ) = σ(Γ)
is satisfied everywhere except on a lower dimensional subset of the space of games. In
order to do this we appeal to an implication of Sard’s theorem known as the transversality
theorem (see Guillemin and Pollack (1974)).

For three-player games (or games with more players) there is even an additional dif-
ficulty. Compare Figures 1 and 4. For two-player games, as can be nicely seen in Figure
1, if a strategy is a best response to some strategy profile x, but not a refined best re-
sponse, this strategy can not be a refined best response anywhere (this is also the essence
of Theorem 1). For three-player games this local property of not being a refined best
response does not extend globally as Figure 4 demonstrates. Strategy F is not a refined
best response against (B,D) but is a refined best response in, of course, an open set of
strategy profiles around (A,C). Thus, small payoff changes will not only affect whether
or not a given strategy is a local best response against some given strategy profile x but
may also have a possibly different effect on whether this strategy is a local best response
against some other strategy profile, far away from x. It is still easy to see that a small
reduction in payoffs to a strategy which is locally not a refined best response to some
strategy profile x will lead to a new game, in which this strategy is not even a best re-
sponse. Yet, in three player games this may come with some additional consequences,
which are not necessarily clear. With the knowledge we built so far it still seems possible

7Note that the best-response correspondence in the former case is typically not identical to the best-
response correspondence in the latter case.
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that one could construct an example of a game-form in which small payoff changes, no
matter in which direction, somehow always compensate each other in a way that every
such perturbed game has some strategy profile in which there is a best response that is
not a refined best response. Our proof shows that such examples cannot be constructed.

4 Nash equilibrium versus best-response refinements

This section provides a few results relating fixed points of the refined best-response cor-
respondence to (refinements of) Nash equilibria. Given that every game has a fixed point
of the refined best-response correspondence we concentrate our comparison to well-known
refinements of Nash equilibrium that also have an existence property.

Proposition 1 Let Γ be a finite two-player game in G∗. Let x ∈ Θ be a fixed point of the
refined best-response correspondence σ. Then xiwi

= 0 for every weakly inferior wi ∈ Si.

Proof: Let x ∈ σ(x). By Theorem 1 wi 6∈ S i(x) for any weakly inferior wi ∈ Si. But then
no y ∈ Θ with yiwi

> 0 can be in σ(x). QED

Selten (1975) introduced the concept of a (trembling-hand normal form) perfect (Nash)
equilibrium. One way to define perfect equilibrium in normal form games is given in
the following definition, which is also due to Selten (1975) (see also Proposition 6.1 in
Ritzberger (2002) for a textbook treatment).

Definition 2 A (possibly mixed) strategy profile x ∈ Θ is a (trembling-hand normal form)
perfect (Nash) equilibrium if there is a sequence {xt}∞t=1 of completely mixed strategy pro-
files (i.e., each xt ∈ int(Θ)) such that xt converges to x and x ∈ β(xt) for all t.

We obtain the following Proposition.

Proposition 2 Let Γ be a 2-player game in G∗. Then every pure fixed-point, s ∈ S, of
the refined best-response correspondence, σ, is a perfect equilibrium.

Proof: Pure fixed point of σ are undominated by Proposition 1. An undominated Nash
equilibrium of a two-player game is perfect (see e.g. van Damme (1991, Theorem 3.2.2)).
QED

In what follows we demonstrate by examples that this is the strongest statement one
can make. Proposition 2 is not true if we replace “pure” with “mixed”, “2-player” with “3
or more player”, or “perfect” with “proper”, “KM-stable”, or “persistent”, where proper
is defined in Myerson (1978), persistent is defined as a Nash equilibrium of a persistent
retract by Kalai and Samet (1984), and KM-stable is (strategically) stable in the sense of
Kohlberg and Mertens (1986) (a minimal set satisfying their Property S). See Section 5
for a definition of KM-stable as well as persistent retracts.

To first see that Proposition 2 cannot be generalized to mixed fixed points of the
refined best-response correspondence, nor to games with more than two players, consider
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the following immediate characterization of fixed points of σ. For xi ∈ Θi let C(xi) =
{si ∈ Si|xisi > 0} denote the carrier (or support) of xi.

Proposition 3 Strategy profile x ∈ Θ satisfies x ∈ σ(x) if and only if for all i ∈ I and
for all si ∈ C(xi) there is an open set U si ⊂ Θ, with x in the closure of U si, such that
{si} = Bi(y) for all y ∈ U si.

Suppose x ∈ σ(x). Consider player i. Then for all si ∈ C(xi) let U si denote this open set
in which si is best and let V si denote its closure. Now a necessary condition for x to be
perfect is that

⋂
i∈I
⋂
si∈C(xi)

V si ∩
∫

(Θ) 6= ∅.8 However, this is not necessarily the case.

Consider the two-player Game 3 taken from Hendon, Jacobson, and Sloth (1996). For this
game σ and β are identical. The mixed strategy profile x∗ = ((0, 1/2, 1/2); (1/2, 0, 1/2))
is a Nash equilibrium, hence a fixed point of β, hence of σ, that, as Hendon, Jacobson,
and Sloth (1996) point out is not perfect.9 In this fixed point of σ player 2 uses his pure
strategies D and F only. D is best in the open set UD = {x ∈ Θ|x1C > 1

2
}, while F is

best in the open set UF = {x ∈ Θ|x1B >
1
2
}. There are no bigger open sets with the same

property. Yet the intersection of the closure of the two sets contains no interior point (no
completely mixed strategy). Hence, x∗ is not perfect.

D E F
A 0,0 0,1 0,0
B 2,0 2,1 0,2
C 0,2 0,1 2,0

C D
A 0,0,0 0,0,0
B 0,0,0 -3,3,0

C D
A 0,0,0 0,-1,3
B 1,0,-1 -2,2,2

E F

Game 3: A two-player game in which a mixed

fixed point of σ is not perfect.

Game 4: A three-player game in which a pure

fixed point of σ is not perfect.

The same logic also underlies the fact that Proposition 2 does not extend to games
with more than two players. Consider the three-player game given as Game 4. Pure
strategy profile (A,C,E) is a Nash equilibrium. Player 1’s strategy A is a best response
against x ∈ Θ if and only if 3x2D ≥ x3F . Player 2’s strategy C is a best response against
x ∈ Θ if and only if x3F ≥ 3x1B. Player 3’s strategy E is a best response against x ∈ Θ
if and only if x1B ≥ 3x2D. Thus, each strategy A, C, E is best in an open set of strategy
profiles with the closure containing (A,C,E) and (A,C,E) is a fixed point of σ. However,
there is not a single strategy profile, except (A,C,E), against which all three are best at
the same time. To see this use the first inequality in the third to obtain x1B ≥ x3F . Now
use this in the second inequality to obtain x3F ≥ 3x3F , which is only satisfied at x3F = 0.
But then, by the same inequalities, we must also have x2D = 0 and x1B = 0. There is,
thus, no strategy profile except (A,C,E) itself against which (A,C,E) is a best response
for all three players. This in turn implies that (A,C,E) is not perfect.

8Note that this condition is, for instance, satisfied, for the mixed equilibrium in the two-player game
of matching pennies.

9In fact, this can be seen directly from the observation that player 2’s strategy (1/2, 0, 1/2) is weakly
dominated by strategy E.
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A B C
A 1,1 0,0 -9,-9
B 0,0 0,0 -7,-7
C -9,-9 -7,-7 -7,-7

A B C
A 0,0 0,0 1,-1
B 0,0 1,1 0,-1
C -1,1 -1,0 -1,-1

Game 5: A two-player game in which a pure

fixed point of σ is not proper nor KM-stable.

Game 6: A two-player game in which a

pure fixed point of σ is not persistent.

To see that a pure fixed point of the refined best-response correspondence does not
have to be proper or KM-stable even in two-player games consider the symmetric two-
player Game 5. This game is from Myerson (1978), who uses it to illustrate the difference
between perfect and proper equilibrium. Note that strategy profile (B,B) is a Nash
equilibrium. Note that strategy B for each player is a best response if and only if the
opponent strategy satisfies xA ≤ 2xC . Thus, B is best against an open set of strategy
profiles with closure containing (B,B), and (B,B) is, therefore, a fixed point of the
refined best-response correspondence. As Myerson (1978) shows, however, (B,B) is not
a proper equilibrium.10 Note, furthermore, that strategy profile (A,A) (which is also a
fixed point of σ) is a strict Nash equilibrium and, thus, a singleton KM-stable set (or
strictly perfect). For (B,B) to be in a KM-stable set we would have to have that it is
also strictly perfect. Otherwise the minimality requirement of the KM-stability definition
would only pick up (A,A) as a KM-stable set. It is, however, easy to see that (B,B)
is not strictly perfect.11 Consider trembles (a tremble for a given pure strategy is the
minimal probability with which a player must play this pure strategy, see Section 5 for a
definition) such that player 2’s trembling probability for strategy A is more than twice as
large as the trembling probability for strategy C. As C is never a best response for player
2 she will use it only with minimal trembling probability. Thus, she will use strategy A
with a probability that exceeds twice that of strategy C. But then player 1’s unique best
response is A. Any perturbed game with such trembles only has one equilibrium, and
that is close to (A,A). Thus, (B,B) is not in a KM-stable set.

To see that a pure fixed point of the refined best-response correspondence does not
have to be persistent even in two-player games consider the symmetric two-player Game
6. Strategy C is strictly dominated. Strategies A and B are both refined best responses
against A. Thus, (A,A) is a fixed point of the refined best-response correspondence.
However, the unique persistent retract (minimal absorbing retract, see Kalai and Samet
(1984)) is the set {(B,B)}. Thus (B,B) is the only persistent equilibrium.

10Strategy C yielding the lowest possible payoff must be played with much smaller probability than
strategy A in any ε-proper equilibrium.

11That (B,B) is not strictly perfect also follows from the fact, shown in Vermeulen (1996), that in
3× 3-games strictly perfect equilibria are proper.
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A B C
A 2,2 1,2 1,2
B 2,1 2,2 0,0
C 2,1 0,0 2,2

C D
A 0,0,0 0,0,1
B 0,1,0 1,0,1

C D
A 0,1,0 1,0,0
B 1,0,1 0,1,0

E F

Game 7: A two-player game in which a

pure perfect (and proper and KM-stable)

equilibrium is not a fixed point of σ.

Game 8: A three-player game in which a pure

persistent equilibrium is not a fixed point of σ.

We now turn to the question whether some version of the converse of Proposition 2
could be true. We first demonstrate that the direct converse is not true and that even a
strengthening of the converse in which we replace “perfect” with “proper” or “singleton
KM-stable set” is not true.

To see this consider the symmetric two-player Game 7. In this game strategy A is
equivalent to the equal mixture of pure strategies B and C. However, A is a best response
only on a thin set of mixed-strategy profiles. In fact, A is best against any x ∈ Θ in which
the opponent uses xB = xC , the set of which is a thin set. Thus, this game is in G∗. In
this game (A,A) constitutes a perfect equilibrium. In fact every mixed strategy profile
((α, 1−α

2
, 1−α

2
); (α, 1−α

2
, 1−α

2
)) is a strictly perfect equilibrium, and hence, constitutes a

singleton KM-stable set. But none of these equilibria, except the one with α = 0, are
fixed points of σ, due to the fact that A is only best on a thin set (it is a weakly inferior
strategy).

The following version of a converse can be established.

Proposition 4 Let Γ be a 2-player game in G∗. Then every (pure or mixed) persistent
equilibrium x ∈ Θ is a fixed point of the refined best-response correspondence σ.

Proof: A persistent equilibrium x ∈ Θ, by definition, is a Nash equilibrium contained in
a persistent retract (or, equivalently contained in a minimal σ-CURB set, as defined in
Section 5). Therefore, x must place positive probability only on those pure strategies that
are refined best responses against some strategy profile. These pure strategies are, thus,
not weakly inferior. By Theorem 1 all these pure strategies must then be a refined best
response against x. QED

Proposition 4 cannot be extended to games with more than two players. Consider
Game 8, taken from Kalai and Samet (1984). The strategy profile (A,C,E) is persistent
(see Kalai and Samet (1984)) but is not a fixed point of σ. To see this note that player 1’s
strategy A is never best for nearby strategy profiles. The one pure strategy combination
(of players 2 and 3) against which A is better than B is (D,F ) which for nearby (to
(A,C,E)) strategy profiles will always have lower probability than the outcomes (C,F )
and (D,E) against which B is better than A.

Having, thus, established that fixed points of the refined best-response correspon-
dence have little relationship with well-known refinements of Nash equilibrium, we now
demonstrate that the two are, however, not completely incompatible either.
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Proposition 5 Let Γ be a game in G∗. Then there is a fixed point of the refined best-
response correspondence σ that is also a proper equilibrium.

Proof: The proof requires only a small modification of Myerson’s (1978) proof of the
existence of proper equilibrium. Recall that a proper equilibrium is the limit point of
a sequence of ε-proper equilibria. For ε > 0 an ε-proper equilibrium is a completely
mixed strategy profile xε with the property that, for every player i ∈ I and for all pure
strategies si, s

′
i ∈ Si, whenever ui(s

′
i, x

ε
−i) < ui(si, x

ε
−i) then xεi(s

′
i) ≤ εxεi(si). Here we

need to require, in addition, that an ε-proper equilibrium have the property that any
pure strategy si ∈ Si that is not a refined best response to xε receive weight less than ε,
i.e. xεi(si) ≤ ε. It is straightforward to verify that Myerson’s (1978) proof goes through
unchanged, with the result that we obtain existence of a proper equilibrium that is also
a fixed point of σ. QED

5 σ-CURB sets and strategic stability

Balkenborg, Hofbauer, and Kuzmics (2013) prove that CURB sets (Basu and Weibull
(1991)) based on σ give rise to absorbing retracts (Kalai and Samet (1984)) and minimal
such sets give rise to persistent retracts. This equivalence allows us to provide a relatively
simple proof of the fact that every persistent retract contains a strategically stable set in
the sense of Kohlberg and Mertens (1986), also known as KM-stable set.

Jansen, Jurg, and Borm (1994) have shown that persistent retracts contain a KM-
stable set for all two-player games. Mertens (1991) showed, for general n-player games,
that every persistent retract contains an M-stable set with the corollary that every per-
sistent retract also contains a KM-stable set. The proof is somewhat involved. One of the
authors of this paper showed in his PhD thesis, Balkenborg (1992), that every persistent
retract contains a strategically stable set in the sense of Hillas (1990). From this it also
follows that every persistent retract contains a KM-stable set. Both results are cited,
without proof, in van Damme (2002, Theorem 12 (iv)), who also writes that “ ... it can
be shown that each persistent retract contains a stable set of equilibria. (This is easily
seen for stability as defined by Kohlberg and Mertens ...)”. This “easy proof”, however,
to the best of our knowledge, has not been written down anywhere. We provide it here.

A set R ⊂ S is a strategy selection if R = ×i∈IRi and Ri ⊂ Si, Ri 6= ∅ for all i.
For a strategy selection R let Θ(R) = ×i∈I∆(Ri) denote the set of independent strategy
mixtures of the pure strategies in R. A set Ψ ⊂ Θ is a face if there is a strategy selection
R such that Ψ = Θ(R). Note that Θ = Θ(S). Note also that β(x) = Θ(B(x)) and
σ(x) = Θ(S(x)).

A strategy selection R is a σ-CURB set if S(Θ(R)) ⊂ R. It is a tight σ-CURB
set if, in addition S(Θ(R)) ⊃ R, and, hence, S(Θ(R)) = R. It is a minimal σ-CURB
set if it does not properly contain another σ-CURB set.

Definition 3 Let Γ = (I, S, u) be a normal form game. For i ∈ I let ηi : Si → IR be such
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that
ηi(si) > 0 ∀si ∈ Si

and ∑
si∈Si

ηi(si) < 1.

Then η = (η1, ..., ηn) is a tremble. Let Θi(η) = {x ∈ Θi|xi(si) ≥ ηi(si) ∀si ∈ Si}. Then
Γ(η) = (I,Θ(η), u) is the η-perturbed game.

The following defines property S of Kohlberg and Mertens (1986) for a set of strategy
profiles without the requirement of it being a subset of the set of Nash equilibria, before
defining Kohlberg and Mertens’s (1986) concept of strategic stability.

Definition 4 Let Γ be a finite normal form game. Let Q ⊂ Θ be a closed subset of the
set of mixed strategy profiles. Q is prestable if for all ε > 0 there is a δ > 0 such that for
all trembles η with ηi(si) < δ for all si ∈ Si and for all i ∈ I there is a Nash equilibrium,
xη, of the perturbed game Γ(η) such that ||xη − x|| < ε for some x ∈ Q. Such a set Q is
KM-stable if it is prestable and does not properly contain another prestable set.

Note that minimality requires that a KM-stable set consists exclusively of perfect
equilibria.

Proposition 6 Let Γ = (I, S, u) be a normal form game. Every σ-CURB set of Γ con-
tains a KM-stable set.

Proof: It is sufficient to show that a σ-CURB set is prestable. Let R be a σ-CURB
set. Fix a tremble η and the associated perturbed game Γ(η) with the set of restricted
strategy profiles Θ(η). Define Θ∗(R) = {x ∈ Θ(η)|xis = ηis if s 6∈ Ri}, a compact and
convex subset of Θ(η). For x ∈ Θ∗(R) let σ∗(x) = {y ∈ Θ(η)|yis = ηis if s 6∈ S i(x)}.
Thus, σ∗ is an upper hemi-continuous correspondence defined on a convex compact set.
By Kakutani’s fixed point theorem σ∗ has a fixed point. By the assumption that R is
a σ-CURB set and the fact that σ is upper hemi-continuous, we have that there is a
neighborhood U of Θ(R) such that σ(U) ⊂ Θ(R). Thus, as long as η is sufficiently close
to zero, such that Θ∗(R) ⊂ U , this fixed point of σ∗ is a Nash equilibrium of the perturbed
game. Thus, every sufficiently close perturbed game has a Nash equilibrium close to the
σ-CURB set. QED

Given the interpretation of Balkenborg, Hofbauer, and Kuzmics (2013) that σ-Curb
sets are asymptotically stable sets under the refined best-response dynamics, this result is
reminiscent to the result by Swinkels (1993) that every convex asymptotically stable set of
states under some reasonable deterministic dynamics, in which every Nash equilibrium is
stationary, contains a hyper-stable set. Of course, not every Nash equilibrium is stationary
under the refined best-response dynamics.
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6 A cheap-talk example

This section presents a very simple, perhaps the simplest, class of cheap-talk games, or
sender-receiver games.12 All games (in particular also generic games) within this class
are non-generic in the space of normal form games. We here show that the use of the
refined best reply correspondence greatly simplifies and clarifies the analysis for this class
of games.

Suppose there are two states of the world a and b. State a realizes with prob-
ability ρ ∈ (0, 1). Player 1 (the sender) is informed about the state of the world,
player 2 (the receiver) is not. Player 1 can, in each state, send one of two messages
m or n. Player 2 upon observing the message sent must choose one of two actions
A or B. Thus, both players have four pure strategies. Player 1’s strategy space is
S1 = {(ma,mb), (ma, nb), (na,mb), (na, nb)}, where strategy (ma, nb), for instance, stands
for “send message m in state a and message n in state b”. Player 2’s strategy space
is S2 = {(Am, An), (Am, Bn), (Bm, An), (Bm, Bn)}, where strategy (Am, Bn), for instance,
stands for “choose action A when message m is received and action B when message n is
received”.

There are only four possible outcomes: action A is chosen when the state is a, action A
is chosen when the state is b, action B is chosen when the state is a, and action B is chosen
when the state is b. Denote the set of these four outcomes by X = {aA, aB, bA, bB}. The
two players have preferences over these four outcomes given by utility levels uix for all
x ∈ X and i ∈ {1, 2}. Let these games be called simple communication games. The
general payoffs for such games are given in Game 9.

Am, An Am, Bn Bm, An Bm, Bn

ma,mb ρuiaA + (1− ρ)uibA ρuiaA + (1− ρ)uibA ρuiaB + (1− ρ)uibB ρuiaB + (1− ρ)uibB
ma, nb ρuiaA + (1− ρ)uibA ρuiaA + (1− ρ)uibB ρuiaB + (1− ρ)uibA ρuiaB + (1− ρ)uibB
na,mb ρuiaA + (1− ρ)uibA ρuiaB + (1− ρ)uibA ρuiaA + (1− ρ)uibB ρuiaB + (1− ρ)uibB
na, nb ρuiaA + (1− ρ)uibA ρuiaB + (1− ρ)uibB ρuiaA + (1− ρ)uibA ρuiaB + (1− ρ)uibB

Game 9: Payoffs for simple communication games.

Note that for generic choices of payoffs over outcomes in X the simple communication
game is in our class G∗. In what follows we shall assume that for both players uiaA 6= uiaB
and uibA 6= uibB. Consider first, player 1, the sender. There are only two substantially
different cases to be considered. Case 1 is such that player 1 prefers one of the two
actions in every state. Without loss of generality this can be action A. Case 2 is such
that player 1 prefers different actions in different states. Without loss of generality she
could prefer action A in state a and action B in state b.

12The games here are much simpler than those of Crawford and Sobel (1982). For a discussion of
communication in simple games see Farrell and Rabin (1996). See Gordon (2006) for a discussion of
persistent retracts in the cheap-talk games of Crawford and Sobel (1982).
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Claim 1 Suppose u1
aA > u1

aB and u1
bA > u1

bB (i.e. the sender prefers action A in both
states). Then her strategies ma, nb and na,mb (i.e. those strategies, in which she conditions
her message on the state) are weakly inferior, but not weakly dominated (i.e. are equivalent
to a proper mixture of the other two pure strategies).

Claim 2 Suppose u1
aA > u1

aB and u1
bA < u1

bB (i.e. the sender prefers different actions in
different states). Then her strategies ma,mb and na, nb (i.e. those strategies, in which she
does not condition her message on the state) are weakly inferior, but not weakly dominated
(i.e. are equivalent to a proper mixture of the other two pure strategies).

Proof of Claims 1 and 2: Considering the payoffs in Game 9 it is apparent that
all of the sender’s strategies yield the same payoff against receiver strategy Am, An (in
which the receiver ignores the message anyway and always plays A). Similarly, all of the
sender’s strategies yield the same payoff against receiver strategy Bm, Bn (in which the
receiver ignores the message anyway and always plays B). It is also apparent that all of
the sender’s strategies yield the same payoff against the receiver’s mixed strategy that
places equal weight on Am, Bn and Bm, An. Thus, against any mixed strategy of the form
(α, 1

2
− α, 1

2
− α, α) all of the sender’s four pure strategies are equally good. The sender,

therefore, does not have any weakly dominated strategies. Now suppose u1
aA > u1

aB and
u1
bA > u1

bB. That is the sender prefers action A in both states. Then strategies ma,mb

and na, nb provide more “extreme” payoffs than strategies ma, nb and na,mb: The highest
(lowest) possible payoff under strategies ma,mb and na, nb is higher (lower) than the
highest (lowest) possible payoff under strategies ma, nb and na,mb. From this fact and the
symmetry inherent in the game, it follows that strategies ma, nb and na,mb are equivalent
to a proper mixture of strategies ma,mb and na, nb, and, thus, weakly inferior strategies
by Theorem 2. In the case that u1

aA > u1
aB and u1

bA < u1
bB, we have the reverse result that

now strategies ma, nb and na,mb provide more “extreme” payoffs than strategies ma,mb

and na, nb. Thus, in this case, strategies ma,mb and na, nb are equivalent to a proper
mixture of strategies ma, nb and na,mb, and, thus, weakly inferior strategies. QED

For player 2, the receiver, the following is true. The proof of these claims is straight-
forward and omitted.

Claim 3 Suppose u2
aA > u2

aB and u2
bA > u2

bB (i.e. the receiver prefers action A in both
states). Then her strategy Am, An weakly dominates all other strategies.

Claim 4 Suppose u2
aA > u2

aB and u2
bA < u2

bB (i.e. the receiver prefers different actions in
different states). Suppose further that ρu2

aA + (1 − ρ)u2
bA > ρu2

aB + (1 − ρ)uibB (i.e. the
receiver with her a-priori information prefers action A over B). Then strategy Bm, Bn is
weakly dominated by Am, An. The remaining three strategies are not weakly inferior.

The analogue result holds for the case ρu2
aA + (1− ρ)u2

bA < ρu2
aB + (1− ρ)uibB.

Claim 5 Suppose u2
aA > u2

aB and u2
bA < u2

bB (i.e. the receiver prefers different actions
in different states). Suppose further that ρu2

aA + (1 − ρ)u2
bA = ρu2

aB + (1 − ρ)uibB (i.e.
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the receiver with her a-priori information is indifferent between actions A and B). Then
strategies Bm, Bn and Am, An are weakly inferior, but not weakly dominated (i.e. are
equivalent to a proper mixture of the other two pure strategies).

The first two claims can be summarized as follows. If the sender always wants the same
action implemented, regardless of the state, then the sender finds those pure strategies of
hers in which she conditions her message on the state weakly inferior (or never a refined
best response). This means, even without thinking about what the receiver does if the
sender avoids weakly inferior strategies she will not even contemplate sending different
messages in different states. Of course, and now depending on the receiver’s preferences,
she might want to randomize between which message she sends.

If the sender, on the other hand, would like to see different actions implemented in
different states, and if she avoids weakly inferior strategies, she will only consider strategies
in which she conditions her message on the state and will disregard those strategies of
hers that do not reveal any information in the first place. Again, this does not depend on
the receiver’s preferences. Of course, if the receiver also wants to choose different actions
in different states, but the opposite action than the sender prefers, then the sender may
randomize between her non-weakly inferior actions, in order to confuse the receiver.

Simple communication games are, thus, very intuitively and simply solvable using the
refined best-response correspondence. Using refinements of Nash equilbrium will typically
not do very much in these games. To perhaps see this best consider the special case of
what is essentially a coordination (or common interest) game, given as Game 10, for which
ρ = 1

2
and uiAA = uiBB = 1 and uiAB = uiBA = −1 for both i ∈ {1, 2}.

Am, An Am, Bn Bm, An Bm, Bn

mA,mB 0,0 0,0 0,0 0,0
mA, nB 0,0 1,1 -1,-1 0,0
nA,mB 0,0 -1,-1 1,1 0,0
nA, nB 0,0 0,0 0,0 0,0

Game 10: A simple communication game with common interest.

Note that Game 10 is a symmetric game and such that Claims 2 and 5 apply.13

There are no weakly dominated strategies. Yet, the sender’s pure strategies (mA, nB)
and (nA,mB) are (in fact unique) best responses against appropriate pure strategies
of the opponent, (Am, Bn) and (Bm, An), respectively. The sender’s pure strategies
(mA,mB) and (nA, nB) are best responses against any proper mixture of all opponent
strategies, in which pure strategies (mA, nB) and (nA,mB) receive equal weight. By sym-
metry, the same arguments apply to the receiver’s strategies. Thus, any strategy profile
(x1, x2, x3, x4), (y1, y2, y3, y4) with x2 = x3 and y2 = y3 is a Nash equilibrium of this game.
Every Nash equilibrium of this sort is a singleton strategically stable set in the sense of

13Note that even though players in this game have own-payoff equivalent pure strategies, this game is
in the class G∗.
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Kohlberg and Mertens (1986). To see this note that any completely mixed Nash equilib-
rium is always a singleton KM-stable set as such an equilibrium is also an equilibrium of a
sufficiently slightly perturbed game. To see that even (1, 0, 0, 0) for both players is a KM-
stable set, note that arbitrarily close to it there is a completely mixed Nash equilibrium:
for instance, when both players choose (1 − 3ε, ε, ε, ε). In addition to this continuum of
Nash equilibria, there are two additional ones: (0, 1, 0, 0) for both players and (0, 0, 1, 0)
for both players. These are also singleton KM-stable sets.

Yet, the sender’s pure strategies (mA,mB) and (nA, nB) are both equivalent to (each
other and to) an even mixture of pure strategies (mA, nB) and (nA,mB). Thus, the
sender’s pure strategies (mA,mB) and (nA, nB) are weakly inferior and never refined best
responses. This game has only three fixed points of the refined best-response correspon-
dence: the two pure informative equilibria (mA, nB), (Am, Bn) and (nA,mB), (Bm, An)
and the mixed equilibrium (0, 1

2
, 1

2
, 0) for both players. Thus, the refined best-response

correspondence by removing weakly inferior strategies turns this game into the simple
coordination it essentially is. This, in turn, greatly simplifies the analysis. Instead of a
continuum of singleton KM-stable sets or a continuum of proper equilibria we just have
three fixed points of the refined best-response correspondence, one of which is unstable
under the refined best-response dynamics.

7 Conclusion

We studied the refined best-response correspondence in normal form games as introduced
by Balkenborg, Hofbauer, and Kuzmics (2013) as the basis for a dynamic learning model.
We show by example that the refined best-response correspondence can be unlike any
best-response correspondence. In two-player games, however, the refined best-response
correspondence coincides with the best-response correspondence of a slightly modified
game. The modification is such that all pure weakly inferior strategies, as we define
them, receive a uniform payoff reduction. In two-player games we show that pure weakly
inferior strategies are those and only those strategies that are either weakly dominated
or equivalent to a proper mixture of pure strategies. While in general n-player games,
we cannot provide such a simple characterization, we show that for generic normal form
games refined best-response and best-response correspondences coincide. Of course, many
interesting games, such as cheap talk games or extensive form games, are non-generic in
the space of all normal form games.

The fixed points of the refined best-response correspondence are the stationary points
of the refined best-response dynamics of Balkenborg, Hofbauer, and Kuzmics (2013). They
are therefore the only candidates for convergence points of this dynamic process as well
as the only candidates for (Lyapunov or asymptotically) stable points under this dynamic
process. We show by examples that the set of fixed points of the refined best-response
correspondence is neither a subset nor a superset of the set of perfect equilibria (Selten
1975), proper equilibria (Myerson 1978), persistent equilibria (Kalai and Samet 1984), or
strategically stable equilibria (Kohlberg and Mertens 1986).
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We demonstrated the usefulness and intuitive appeal of the refined best-response cor-
respondence over the best-response correspondence in a simple class of communication
games.

There are still many open questions. We have, for instance, refrained in this paper
from discussing refined rationalizable strategies. That is, strategies which do survive the
iterated elimination of never refined best responses. These would be of interest, as the
refined best-response dynamics converges to the set of refined rationalizable strategies in
every game (Balkenborg, Hofbauer, and Kuzmics 2013). It is fairly easy to see that the
set of refined rationalizable strategies must be a sometimes proper subset of the set of
strategies which survive the S∞W -procedure of one round of elimination of all weakly
dominated strategies and then the iterated elimination of strictly dominated strategies.14

This is true, for instance, when a game has strategies that are weakly inferior but not
weakly dominated. On the other hand iterated admissibility, for which an epistemic
derivation has been given by Brandenburger, Friedenberg, and Keisler (2008), is sometimes
a subset and sometimes a superset of the set of refined rationalizable strategies. We would
find it of interest, to understand better the differences between the various concepts of
rationalizability and especially the reasons behind these differences.

Taking our class of simple communication games as a starting point we would also find
it of interest to study other classes of games, in which the set of outcomes is much smaller
than the set of strategy profiles. We believe that the study of the refined best-response
correspondence could be fruitful in many such cases. One example of such a class is the
class of extensive form games. Another is the class of communication games with more
states and strategies. These are topics we endeavor to address in future work.

A On the generic equivalence of best responses and

refined best responses

This appendix provides a proof of Theorem 4, which is organized in a number of steps: We
will first fix some notations for the mappings and various submanifolds to be considered.
Step 1 argues that the embedding of the uncorrelated strategy combinations into the set
of beliefs has nice differentiability properties. Step 2 invokes the transversality theorem
(see Guillemin and Pollack (1974)) to show that for generic payoff functions we obtain
the needed transversality conditions.15 Step 3 argues that we can restrict attention to
completely mixed strategy combinations of the opponents. If the player is indifferent
between several of his strategies against a given completely mixed strategy combination,
step 4 shows how we can construct an arbitrarily nearby strategy combination, against
which the player strictly prefers a given one among these strategies. Step 5 completes the

14For this procedure see e.g. Dekel and Fudenberg (1990), Börgers (1994), and Ben Porath (1997).
15This transversality theorem is a straightforward consequence of Sard’s theorem. If one assumes an

algebraic map and uses in its proof in Guillemin and Pollack (1974) the algebraic version of Sard’s theorem
in Bochnak, Coste, and Roy (1998) one obtains a stronger version of the transversality theorem where
the conclusion of the theorem holds outside a lower dimensional semi-algebraic set.
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argument.
For any finite set M let IRM be the vector space of all mappings y : M → IR. The

dimension of IRM is the number of elements in M .
Let qi :

∏
j 6=i IR

Sj → IRS−i be the mapping defined by

(qi (x−i)) (s−i) :=
∏
j 6=i

xj (sj) .

The multilinear function qi describes the first step in the computation mentioned above.
While x−i ∈

∏
j 6=i IR

Sj denotes the usual strategy combinations of the opponents, we use

χ−i ∈ IRS−i to describe a “correlated strategy of the opponents”, i.e., a belief over the set
S−i of pure strategy combinations of the opponents. qi maps mixed strategy combinations
to such beliefs.

Let Li be the vector space of all linear mappings

vi : IRS−i → IRSi .

If χ−i ∈ IRS−i is a belief of player i and si ∈ Si a pure strategy player i chooses, then
(vi (χ−i)) (si) is the payoff player i expects with his strategy choice. In this context
a vector z ∈ IRSi represents the various gains a player could make, not probabilities.
The linear function vi describes for every si the second step in the computation of the
expected payoff. Any vi ∈ Li corresponds via ui (s−i, si) = (vi (s−i)) (si) uniquely to a
payoff function

ui : S → IR

in the standard notation (and this relation is a homeomorphism).
For Ti ⊆ Si set Zi (Ti) = {z ∈ IRSi | ∀si, ti ∈ Ti : z (si) = z (ti)}. vi (χ−i) ∈ Zi (Ti)

means that player i is indifferent between all his strategies in Ti when his belief is χ−i.
Let Xj := {xj ∈ IRSj |

∑
sj∈Sj

xj (sj) = 1} be the affine space generated by player j′s

strategy simplex for j 6= i and let X−i :=
∏

j 6=iXj.
For Tj ⊆ Sj (j 6= i) and T−i :=

∏
j 6=i Tj set

Xj (Tj) := {xj ∈ Xj | ∀sj /∈ Tj : xj (sj) = 0}

and
X−i (T−i) :=

∏
j 6=i

Xj (Tj) .

The sets Θ−i ∩X−i (T−i) describe the various faces of the polyhedron Θ−i. The strategies
of player j with support in Tj have Xj (Tj) as their affine hull.

Step 1: For all T−i the mapping qi : X−i (T−i)→ IRS−i \ {0} is a diffeomorphism onto its
image (in particular qi (X−i (T−i)) is a closed submanifold of IRS−i \ {0}).
Proof : X−i (T−i) is a closed affine submanifold in

∏
j 6=i
(
IRSj \ {0}

)
. It is straightforward

to check that
qi|X−i(T−i) : X−i (T−i)→ IRS−i \ {0}
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is well defined, is one-to-one, maps X−i (T−i) onto a closed set, and has a derivative dqi|x−i

with maximal rank everywhere.16

Step 2: Let Z ⊆ IRSi and X ⊆ IRS−i \{0} be submanifolds. Then for almost every vi ∈ Li
the mapping vi|X : X → IRS−i \ {0} is transversal to Z.

Proof : The family of linear maps Li defines a mapping

Vi : Li × IRS−i → IRSi (1)

(vi, χ−i) 7→ vi (χ−i) . (2)

The derivative of Vi at (vi, χ−i) can be computed as

dVi|(vi,χ−i) : TviLi × Tχ−i
IRS−i ∼= Li × IRS−i → IRSi (3)

(νi, ξ−i) 7→ νi (χ−i) + vi (ξ−i) . (4)

If χ−i 6= 0 we can find for every ζi ∈ IRSi some νi ∈ Li with νi (χ−i) = ζi. Then
dVi|(vi,χ−i) (νi, 0) = ζi.

Because for χ−i ∈ X the tangent space Tχ−i
X ⊆ IRS−i contains the 0-vector,

dVi|(vi,χ−i) : TviLi × Tχ−i
X → IRSi is surjective. Thus Vi : Li ×X → IRSi is transversal to

Z and our claim follows from the transversality theorem.

By step 1 and step 2 almost every vi ∈ Li satisfies:

⊗ For all subsets Ti ⊆ Si (1 ≤ i ≤ n) the mapping (vi ◦ qi) |X−i(T−i) is
transversal to Zi (Ti).

For given vi define Y (Ti) = {x−i ∈ X−i | (vi ◦ qi) (x−i) ∈ Z (Ti)}. Y (Ti) ∩ Θ−i is the
set of strategy combinations of the opponents such that player i is indifferent between the
strategies in Ti (i.e., they give the same payoff). If Ti is a set of best replies against x−i,
then x−i ∈ Y (Ti) ∩Θ−i.

Step 3: Suppose vi satisfies ⊗. For Ti ⊆ Si let x−i ∈ Y (Ti) ∩ Θ−i and let O−i be a
neighborhood of x−i. Then O−i ∩ Y (Ti) contains a point in the interior of Θ−i.

Proof : Suppose x−i is in the boundary of Θ−i. For each j 6= i define Tj := {sj ∈ Sj |
xj (sj) 6= 0}. Thus x−i ∈ X (T−i)∩Θ−i. If Tj = Sj, xj is in the relative interior of Θj. By
assumption Tj 6= Sj for at least one opponent j. Fix j∗ 6= i with Tj∗ 6= Sj∗ and tj∗ /∈ Tj∗.
Set T̃j := Tj for i 6= j 6= j∗ and T̃j∗ := Tj∗ ∪ {tj∗}. We show that O−i ∩ Y (Ti) contains

some y−i ∈ Θ−i ∩X
(
T̃−i

)
such that T̃j = {sj ∈ Sj | yj (sj) 6= 0} for all j 6= i. In other

words: y−i is in the relative interior of the face Θ−i ∩ X
(
T̃−i

)
. The claim then follows

by induction.

16The result is well known, e.g., in algebraic geometry: qi defines the so-called Segre-embedding. The
result is needed in algebraic geometry to show that the product of projective spaces can itself be embedded
into a projective space, i.e., is projective-algebraic.
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The transversality conditions imply that the submanifolds X−i (T−i) and Y (Ti) ∩
X−i

(
T̃−i

)
meet transversally in X−i

(
T̃−i

)
(see (Guillemin and Pollack 1974, Exercise

2.3.7)). Since X−i (T−i) has codimension 1 in X−i

(
T̃−i

)
it follows with arguments as in

the next step that X−i

(
T̃−i

)
∩ Y (Ti) ∩ {y−i | yj∗ (tj∗) > 0} ∩ O−i intersects the relative

interior of X−i

(
T̃−i

)
∩Θ−i.

Step 4: Suppose vi satisfies ⊗. For Ti ⊆ Si with #Ti ≥ 2 let x−i ∈ Y (Ti) be in the
interior of Θ−i and let O−i be a neighborhood of x−i. Then we can find for every si ∈ Ti
some y−i ∈ O−i ∩Θ−i such that

(vi ◦ qi) (y−i) (si) > (vi ◦ qi) (y−i) (ti) for all ti ∈ Ti \ {si}.

Proof : Because vi◦qi : X−i → IRSi is transversal to both Z (Ti) and Z (Ti \ {si}) it follows
that vi◦qi : Y (Ti \ {si})→ Z (Ti \ {si}) is transversal to Z (Ti). From this we can deduce
the existence of a tangent vector ξ ∈ Tx−i

(Y (Ti \ {si})) with dλ|x−i
(ξ) = 1, where λ is

the function

λ : Yi (Ti \ {si}) ∩X−i → IR (5)

y−i → (vi ◦ qi) (y−i) (si)− (vi ◦ qi) (y−i) (ti) (6)

defined for arbitrary but fixed ti ∈ Ti \{si}. We can therefore select a differentiable curve

c : (−ε, ε)→ Yi (Ti \ {si})

with c (0) = x−i and (λ ◦ c)′ (0) = 1. For sufficiently small 0 < γ < ε the vector
y−i := c (γ) has the required properties.

Step 5: Suppose si is a pure best response against x−i. For every neighborhood O−i
of x−i the continuity of the payoff function and the two steps above can be used to find
y−i ∈ O−i such that si ∈ Ti is the unique best response against y−i. Shrinking the open
sets we can find a sequence of such y−i’s converging to x−i. Continuity yields an open
set around each element in the sequence, where si is the unique best response. si is the
unique best response on the union of these sets, which is again open. Thus si is a refined
best response against x−i. QED

B Refined best responses in two-player games

This appendix provides proofs of Theorems 1 and 2. In the case of two player games the
payoff function is linear in the mixed strategy choice of the opponent. This allows the use
of convex analysis (see Rockafellar (1970)) to study the best-response correspondence of
a player. The most direct consequence is the convexity of the region where a strategy is
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a best response. From this Theorem 1 follows immediately, the arguments are given after
Lemma 1 below. More work is needed to obtain Theorem 2. We use conjugate functions
and provide the proof after Lemma 2.

We will restrict attention to the best responses of player 1. Suppose player 2 has K ≥ 2
strategies s1

2, · · · , sK2 . It will be convenient to identify the mixed strategies x2 ∈ Θ2 with
the vectors

x2 =
(
x1

2, x
2
2, · · · , xK−1

2

)
∈ IRK−1 (7)

for which xk2 ≥ 0 for all 1 ≤ k ≤ K − 1 and xK2 := 1−
∑K−1

k=1 x
k
2 ≤ 0. Notice that the zero

vector corresponds to pure strategy sK2 .
We define the function f : IRK−1 → IR by

f (x2) =

{
maxs1∈S1 u1 (s1, x2) for x2 ∈ Θ2

+∞ else
(8)

Because u1 is linear in x2, f is, in the terminology of Rockafellar (1970) a proper convex
polyhedral function. A key idea explored in the following is that the strategies of player 1
that are refined best responses, correspond to the maximal compact faces of the epigraph

F =
{

(x2, α) ∈ IRK−1 × IR | f (x2) ≤ α
}

of f , which is a convex (but not compact) polyhedron. Duality theory allows us to identify
these faces with the extreme points of the epigraph F ∗ of the conjugate function f ∗ of f .
This will be used in the proof of theorem Theorem 2.

Each strategy x1 ∈ Θ1 defines an affine function a : IRK−1 → IR by a (x2) = u1 (x1, x2),
which, for all x2 ∈ Θ2, satisfies the inequality a (x2) ≤ f (x2) and a (x2) = f (x2) holds if
and only if x1 ∈ β1 (x2).

For a strategy x1 ∈ Θ1 we define the set

G (x1) = {(x2, α) ∈ Θ2 × IR | x1 ∈ β (x2) and α = u1 (x1, x2)} (9)

and the set H (x1) = {x2 ∈ Θ2 | x1 ∈ β (x2)}, the projection of G (x1) onto Θ2. H (x1) is
the region where x1 is a best response.

Lemma 1 The region H (x1) is a convex polyhedron.

Proof: G (x1) is a face of the epigraph {(x2, α) ∈ Θ2 × IR | f (x2) ≤ α} of the function
f , which is a convex polyhedron. G (x1) is hence a convex polyhedron. H (x1) is the
image of the convex polyhedron G (x1) under the linear projection mapping and hence
also a convex polyhedron. QED

Clearly x1 is not weakly inferior if and only if the convex polyhedron H (x1) has non-
empty interior H◦ (x1). Moreover, H (x1) is the closure of H◦ (x1) if H◦ (x1) is not empty.
Therefore, if x1 is not weakly inferior and a best response against x2, then x2 is in the
closure of the open set H◦ (x1) and so x1 is a refined best response against x2. Given
Definition 1 this implies immediately Theorem 1.
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The remainder of this section aims at proving Theorem 2. We consider again the
epigraph F of the map f defined above. We notice that F is a polyhedral convex set
whose compact faces are precisely the sets G (x1) with x1 ∈ Θ1. The non-compact faces
are of the form F ∩ (Θ′1 × IR), where Θ′1 is a face of Θ1.

The conjugate function f ∗ : IRK−1 → IR of f is defined by

f ∗ (x∗2) = sup
x2∈IR

K−1

{x∗2 • x2 − f (x2)} = max
x2∈Θ2

{x∗2 • x2 − f (x2)} <∞, (10)

where x∗2 • x2 denotes the usual scalar product
∑K−1

k=1
x∗k2 x

k
2. As shown for any convex

polyhedral function in Rockafellar (1970), the conjugate is again a convex polyhedral
function and one has f ∗∗ (x2) = f (x2).

Any two strategies x1, x
′
1 ∈ Θ1 define the same affine function if and only if the two

strategies are own-payoff equivalent. Without loss of generality we can thus identify Θ1

up to own-payoff equivalence with a subset of the affine functions on IRK−1.
Any vector (x∗2, α) with x∗2 ∈ IRK−1 and α ∈ IR defines one and only one affine function

on IRK−1 by

a (x2) = −α +
K−1∑
k=1

x∗k2 x
k
2 (11)

We will identify affine functions with such vectors. For instance, e = (1, . . . , 1) corresponds
to the function −xK+

2 = −1 +
∑K−1

k=1 x
k
2 that assigns 0 to the first K − 1 pure strategies

and −1 to the last pure strategy of player 2.
Let F ∗ be the epigraph of f ∗.

Lemma 2 F ∗ is a polyhedral convex set generated by extreme points x1 that are refined
best responses in Θ1 and the directions

−ek =
(
−e1

k, . . . ,−eKk
)
∈ IRK with elk =

{
−1 for k = l
0 else

(12)

for k = 1, . . . , K − 1 and
e = (1, . . . , 1) ∈ IRK (13)

Proof: By definition (x∗2, α
∗) ∈ F ∗ if and only if α∗ ≥ x∗2 • x2 − f ∗ (x2) for all x2 ∈ Θ2.

v ∈ IRK is a direction in F ∗ if and only if there exists (x∗2, α
∗) ∈ F ∗ such that all vectors

(x∗2, α
∗)+λv with λ ≥ 0 are in F ∗. We can write v = −

∑K−1
k=1 ρkek+ρKe with ρ1, . . . , ρK ∈

IR since −e1, . . . ,−eK−1, e form a vector basis of IRK . We must show that v is a direction
in F ∗ if and only if all ρi are non-negative. Suppose that v is a direction in F ∗. Let
x2 = (0, . . . , 0) ∈ Θ2. The condition that (x∗2, α

∗)+λv ∈ F ∗ for all λ ≥ 0 yields for this x2

that α∗+λρK ≥ −f (x2) holds for all λ ≥ 0. This can be true only if ρK ≥ 0. For ek ∈ Θ2

(1 ≤ k ≤ K − 1) we obtain similarly α∗ + λρK ≥ x∗k2 − λρk + λρK − f (ek) for all λ ≥ 0,
which can hold only if ρk ≥ 0. Thus only positive combinations of −e1, . . . ,−eK−1, e can
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be directions in F ∗. For every combination v = −
∑K−1

k=1 ρkek + ρKe with ρ1, . . . , ρK ≥ 0,
every λ ≥ 0, every (x∗2, α

∗) ∈ F ∗ and every x2 ∈ Θ2 we have conversely

α∗ + λρK ≥ x∗′2 x2 −
K−1∑
k=1

λρkx
k
2 + λρK − f (x2) (14)

which proves that v is a direction in F ∗.
We have characterized the directions of F ∗ and must now determine the extremal

points of F ∗. Suppose (x̂∗2, α̂
∗) is an extremal point. Because F ∗ has only finitely many ex-

tremal points, these are exposed points by Straszewick’s theorem (Theorem 18.6 in Rock-
afellar (1970)). Therefore we can find x2 ∈ Θ2 such that the hyperplane {x∗2 • x2 = f (x2)}
is a supporting hyperplane that meets F ∗ only in (x̂∗2, f

∗ (x̂∗2)). Because F ∗ has only
finitely many extreme points and directions there exists an open neighborhood U of x2 in
Θ2 for which the hyperplanes {x∗2 • y2 = f (y2)} are for all y2 ∈ U supporting hyperplanes
that intersect F ∗ only in (x̂∗2, f

∗ (x̂∗2)). This implies that the graph of the affine function
(x̂∗2, f

∗ (x̂∗2)) intersects F in a K − 1 dimensional face. It is therefore identical to an affine
function defined by a strategy x1 in Θ1 for which H (x1) is full dimensional. Given our
identification, (x̂∗2, f

∗ (x̂∗2)) is consequently a not weakly inferior strategy in Θ1, which was
to be shown. QED

Proof of Theorem 2:
The lemma implies that all extreme points and hence all the points in the compact

faces of F ∗ are in Θ1.
However, no points on the compact faces of F ∗ apart from the extreme points are

not weakly inferior strategies. To see this, notice that a proper mixture x1 =
∑L

l=1 ρlx1k

(L > 2, ρl > 0,
∑L

l=1 ρl = 1) of non-equivalent not weakly inferior strategies in Θ1 is
weakly inferior. Otherwise there would be an open set in Θ2 on which x1 and hence
all strategies x1k were best responses. They would yield identical payoffs on an open
set and were hence (by Kalai and Samet (1984, Lemma 4)) all own-payoff equivalent,
contradicting the assumption. Per construction such a mixture is own-payoff equivalent
to a proper mixture of strategies that are pairwise not own-payoff equivalent.

It remains to consider strategies in Θ1 that are not on a compact face of F ∗. Such a
strategy can be written as x′1 = x1 −

∑K
k=1 ρkek + ρKe where x1 is on one of the compact

faces of F ∗ and, hence, in Θ1, and the ρk are all non-negative and at least some of them
are strictly positive. We obtain

u1 (x′1, x2) = u1 (x1, x2)−
K−1∑
k=1

ρkx
k
2 − ρK

(
1−

K−1∑
k=1

xk2

)
≤ u1 (x1, x2) , (15)

where this inequality holds as a strict one for the k-th pure strategy of player 2 whenever
ρk > 0. Thus x′1 is weakly dominated. It is a weakly inferior strategy because it is a best
response only on a proper face of Θ1 (see Pearce (1984)).

In summary, the only robust strategies in Θ1 are the extreme points of F ∗. All other
strategies are proper mixtures of not own-payoff equivalent not weakly inferior strategies
or are weakly dominated and therefore weakly inferior. QED
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